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Exact and Heuristic Solution Techniques
for Mixed-Integer Quantile Minimization Problems

Diego Cattaruzza, Martine Labbé, Matteo Petris, Marius Roland,
Martin Schmidt

Abstract. We consider mixed-integer linear quantile minimization problems
that yield large-scale problems that are very hard to solve for real-world
instances. We motivate the study of this problem class by two important real-
world problems: a maintenance planning problem for electricity networks and a
quantile-based variant of the classic portfolio optimization problem. For these
problems, we develop valid inequalities and present an overlapping alternating
direction method. Moreover, we discuss an adaptive scenario clustering method
for which we prove that it terminates after a finite number of iterations with a
global optimal solution. We study the computational impact of all presented
techniques and finally show that their combination leads to an overall method
that can solve the maintenance planning problem on large-scale real-world
instances provided by the EURO/ROADEF challenge 20201and that they also
lead to significant improvements when solving a quantile-version of the classic
portfolio optimization problem.

1. Introduction

Many real-world planning and investment problems face a significant amount
of uncertainty since they inevitably need to incorporate aspects that lie in the
future and are thus unknown at the time of decision making. Consequently, usual
objective functions in this context combine the minimization of expected costs (or
the maximization of expected profits) with some kind of risk minimization. In this
paper, we consider general planning and investment problems in which we minimize
a convex combination of expected costs and the risk’s quantile. In other words, the
objective function is a combination of the expected value and the Value at Risk
(VaR) of some function that is linear in the problem’s variables. It is well known
that VaR is nothing but the τ -quantile. It is a measure of risk used in various
domains. In portfolio optimization, [8, 9] consider the problem of maximizing the
VaR subject to a lower bound on the expected return while [1, 2, 4, 16] maximize
the expected return given a lower bound on the VaR.

Limiting the VaR of a random variable is a particular type of chance constraint
since it is equivalent to setting up a lower bound on the probability that the
random variable takes a value larger than the said limit. Chance-constrained
formulations have been proposed for various applications such as the design of
reliable networks [25], the packing of objects with random weights [26], or the
allocation of scarce vaccines to prevent the occurrence of disease epidemics [27].
Moreover, the VaR is also used in real-world regulatory frameworks such as Basel
or Solvency.
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Besides considering the quantile minimization, which already poses a compu-
tational challenge on its own, we study both continuous and mixed-integer linear
settings, which are required by many real-world problems to properly model plan-
ning or investment decisions. Thus, in total, we consider the challenging class of
mixed-integer linear quantile minimization problems. To this end, stochasticity
is modeled via finite scenario sets, which leads to large-scale mixed-integer linear
problems that can hardly be solved with state-of-the-art solvers.

Throughout the paper we use two examples for the general class of problems
under consideration: A maintenance planning problem in electricity networks as
it was posed in the EURO/ROADEF challenge 2020 and a variant of the classic
portfolio optimization problem. The grid operation based outage maintenance
planning problem (MPP) consists in determining the start time of maintenance
interventions in a high-voltage transmission network over a given time horizon. Each
of the interventions lasts a certain number of time units that depends on the start
time of the intervention. All interventions must be planned and finished before
the end of the time horizon. Further, some interventions cannot take place at the
same time. Finally, each intervention consumes resources and the total amount of
resources used at each time step is bounded from below and above. The objective is
to minimize the risk of the maintenance plan. More precisely, a set of scenarios is
given and for each such scenario, we know, at each time period, the risk value of
each intervention. The goal is to minimize a combination of the expectation and
the quantile of the risk.

The second problem is a variant of the well-known portfolio optimization problem.
The goal in portfolio optimization is twofold: maximize the return and minimize the
risk for which different measures have been proposed; see, e.g., [4, 9, 16, 18]. Among
them, the VaR or τ -quantile has attracted particular attention, namely because it is
used to measure market risk by regulators; see, e.g., [3] and the references therein.

As we already mentioned above, the studied models lead to large-scale mixed-
integer linear problems (MILPs). For these problems, we develop tailored solution
techniques. In Section 2, we introduce the general problem class and the two
specific examples. In Section 3, we propose problem-tailored valid inequalities. They
are derived from duality theory applied to a properly chosen linear optimization
problem that models the quantile. In Section 4, we present an overlapping alternating
direction method that serves as a primal heuristic for quickly computing feasible
points of good quality. In Section 5, we then present an adaptive scenario clustering
method for which we prove that it computes an approximate global optimal solution
after finitely many iterations. We illustrate the computational impact of all presented
techniques in our numerical study in Section 6 before we close this paper with some
concluding remarks and a brief discussion of potential future research in Section 7.

2. Problem Statement

In this section, we first state the general problem class that we consider in the
following. Afterward, we present two specific examples for the general modeling
framework to underline the importance of the studied class of problems.

We consider a discrete set of indices t ∈ T = {1, . . . , T}. With this at hand, the
general problem is given by

min
x

α
∑
t∈T

E[c>t x] + (1− α)
∑
t∈T

f
(
Q[c>t x]

)
(1a)

s.t. x ∈ X ⊆ RN . (1b)
The feasible set X is a non-empty and closed set that may also include integrality
restrictions for all or some of the variables. For each index t, we are given a finite
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set St of scenarios and for each scenario s ∈ St, cst is the respective cost vector and
pst ∈ [0, 1] is the associated probability with

∑
s∈St

pst = 1. The expected value is
then defined as

E[c>t x] =
∑
s∈St

pst (cst )
>
x

and the τ -quantile is given by

Q[c>t x] = min

q ∈ R :
∑

s∈N (q)

pst ≥ τ

 , N (q) =
{
s ∈ St : (cst )>x ≤ q

}
.

Further, α ∈ [0, 1] is a scaling factor that either puts more emphasis on the expected
value terms E[c>t x] or on the τ -quantile terms f(Q[c>t x]), where f is an arbitrary
function depending on the τ -quantile Q[·].

Usually, the τ -quantile Q[·] cannot be stated in closed form. However, it can
be expressed by the solution of the following quantile optimization problem in an
extended variable space:

Q[c>t x] = arg min
qt,ys

t

qt (2a)

s.t. qt ≥ (cst )>x+Ms
t (yst − 1), s ∈ St, (2b)∑

s∈St

yst pt ≥ τ, (2c)

yst ∈ {0, 1}, s ∈ St, (2d)
where Ms

t are sufficiently large numbers. We will discuss specific choices of these
parameters later when we consider concrete examples. Using such a technique leads
to the reformulation

min
x,z

α
∑
t∈T

E[c>t x] + (1− α)
∑
t∈T

g(zt) (3a)

s.t. x ∈ X, zt ∈ Zt(x), t ∈ T , (3b)
where the (possibly mixed-integer) constraint sets Zt(x), which are required to model
the quantile, depend on the original variables x. Moreover, we have z = (zt)t∈T
and g is an arbitrary function depending on the newly introduced variable vector z.

To highlight the generality of this class of optimization models, we now consider
two examples in the following subsections.

2.1. The Maintenance Planning Problem. Let I denote the set of interventions
to be scheduled, let T = {1, . . . , T} be the set of time indices representing the time
horizon, i.e., the set of time steps at which interventions can take place, and let
R be the set of resources used for the interventions. Further, for each time t ∈ T ,
St represents the set of scenarios at this time, which all have the same probability,
i.e., pst = pt = 1/|St| holds for all t ∈ T . The duration of intervention i ∈ I, if it
starts at time t ∈ T , is given by ∆i

t. The amount of resource r used at time t by
intervention i starting at time t′ is given by rit′,t. The total amount of resource r
used by all interventions in process at time t must be at least lrt and cannot be larger
than urt . Moreover, σi,st′,t denotes the risk in scenario s at time t of intervention i if it
starts at time t′. We are also given a set D of triplets (i, j, t) such that intervention i
and j cannot be both in process at time t.

Intervention preemption is not allowed and each intervention must be terminated
at time T . We thus denote by T (i) = {t ∈ T : t+∆i

t ≤ T} the set of feasible starting
times of intervention i. Further, we denote by T (i, t) = {t′ ∈ T : t′ ≤ t, t′+ ∆i

t′ ≥ t}
the set of starting times of intervention i for which the intervention is in process at
time t.
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To model the maintenance planning problem (MPP), we use a set of binary
variables x: for i ∈ I and t ∈ T (i), we have xit = 1 if intervention i starts at time t.
Further, for t ∈ T , qt and εt are continuous variables representing the τ -quantile
as well as the maximum of zero and the difference between the τ -quantile and the
average of the risk at time t for the different scenarios in St, respectively. We now
present the MILP:

min
x,ε,q

α
1
T

∑
t∈T

1
|St|

∑
s∈St

∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ + (1− α) 1

T

∑
t∈T

εt (4a)

s.t.
∑
t∈T (i)

xit = 1, i ∈ I, (4b)

lrt ≤
∑
i∈I

∑
t′∈T (i,t)

rit′,tx
i
t′ ≤ urt , r ∈ R, t ∈ T , (4c)

∑
t′∈T (i,t)

xit′ +
∑

t′∈T (j,t)

xjt′ ≤ 1, (i, j, t) ∈ D, (4d)

εt ≥ qt −
1
|St|

∑
s∈St

∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ , t ∈ T , (4e)

εt ≥ 0, t ∈ T , (4f)
xit ∈ {0, 1}, i ∈ I, t ∈ T , (4g)
qt ∈ Zt(x), t ∈ T , (4h)

with x = (xt)t∈T and xt = (xit)i∈I . Analogous vector notation is used to define ε
and q.

This problem is the one of the EURO/ROADEF challenge 2020. The first term of
the objective function represents the average risk and the second term represents the
average excess, i.e., the average of the maximum of zero and the difference between
the risk’s τ -quantile and the risk’s average. They are weighted with coefficients α
and (1− α), α ∈ [0, 1], respectively. Constraints (4b) specify that each intervention
must start in exactly one time period. Constraints (4c) indicate that the amount
of each resource must be within its lower and upper bounds at each time period.
Constraints (4d) forbid pairs of interventions to be in process at the same time
when they are in conflict. Constraints (4e) together with the objective function
define the excess, at each time t, as the difference between the τ -quantile and the
average of the risks. Note that we used that all scenarios have the same probability
in this setting while defining the quantile. Finally, (4f)–(4g) specify the type of the
different variables.

The set Zt(x) appearing in Constraints (4h) is the set of optimal solutions of the
following problem that states that the quantile denoted by qt must be the smallest
value larger than or equal to at least pt = dτ |St|e risk values

∑
i∈I
∑
t′∈T (i,t) σ

i,s
t′,tx

i
t′ .

To this end, it uses the variables yst that take binary values. Thus, we have
Zt(x) = arg min

qt,ys
t

qt (5a)

s.t. qt ≥
∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ +Ms

t (yst − 1), s ∈ St, (5b)

∑
s∈St

yst pt ≥ τ, (5c)

yst ∈ {0, 1}, s ∈ St. (5d)
Given that the objective function (4a) to be minimized is non-decreasing in the
quantiles qt, we can replace Constraints (4h) by Constraints (5b)–(5d). Note further
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that Problem (5) also ensures that every quantile is non-negative if all risks are
non-negative.

Constraints (5b) involve the big-M constants Ms
t that must be an upper bound

on
∑
i∈I
∑
t′∈T (i,t) σ

i,s
t′,tx

i
t′ . Given that variables xit satisfy (4b), we can choose

Ms
t =

∑
i∈I

max
t′∈T (i,t)

σi,st′,t.

A stronger big-M can be computed via

Ms
t = max

∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ (6a)

s.t. (4b), (4c), (4d) and xit ∈ {0, 1}, i ∈ I, t′ ∈ T (i, t). (6b)
A compromise consists in solving the LP relaxation of (6).

Finally, to show that Problem (4) is a special instance of the general problem (1),
we first note that for every scenario s ∈ St, the random variable in the maintenance
planning problem is given by

(cst )>x =
∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ , s ∈ St,

with associated probability pst = 1/|St|. Then, we replace the excess εt in the second
term of the objective function with

f(Q[c>t x]) = max

0, Q[c>t x]− 1
|St|

∑
s∈St

∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′

 .

Thus, the variables εt, t ∈ T , and Constraints (4e), (4f) and (4h) are not required
anymore.

By putting this all together and by re-scaling the objective function with T , for
X defined by (4b)–(4d) and (4g), we obtain

min α
∑
t∈T

E[c>t x] + (1− α)
∑
t∈T

f(Q[c>t x]) s.t. x = (xt)t∈T ∈ X,

which is exactly of the general form (1).

2.2. Portfolio Optimization. In the classic portfolio optimization problem [19]
we are given a budget B that we need to invest in a set of n equities so that
the expected return is maximized while the corresponding risk, calculated by the
standard deviation, is limited to be at most of a given value.

In recent years the risk measure that has mostly been used in the financial
community is the Value-at-risk (VaR) [4]: to minimize the portfolio’s risk, one
wishes that, for a given value of the parameter τ , that the corresponding quantile
(or VaR) is large.

According to [2], the VaR at the 100τ % confidence level of a risky portfolio is the
rate of return vq such that F (−vq) = 1− τ and F (·) is the cumulative distribution
function of the portfolio’s rate of return at the end of the period.

Let ri be the return of equity i after, e.g., one year, which is a random variable.
Moreover, let x ∈ Rn be the vector describing the investment. This means that we
invest xiB in equity i and it holds

n∑
i=1

xi = 1, x ≥ 0.

The return of the entire portfolio is then given by r>x.
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The resulting general model for portfolio optimization reads
max
x

αE[r>x] + (1− α)Q[r>x] (7a)

s.t. x ∈ X =
{
x ∈ Rn :

n∑
i=1

xi = 1, E[r>x] ≥ ρ, x ≥ 0
}

(7b)

with α ∈ [0, 1] and ρ is the minimum expected return of the portfolio.
This model is a particular case of Model (1) with T being a singleton and f being

the identity. Furthermore, to fit into our general framework it remains to change
the sign of all observed returns and minimize the objective function.

For α = 0 this problem amounts to minimize the VaR with a minimum expected
return. This is the model proposed in [9] and we can deduct from [4] that it
is strongly NP-hard. However, (7) also encompasses the possibility of a linear
combination of both objectives or to relax the constraint of a minimal expected
return by choosing a value for ρ that is sufficiently small.

A common approach to determine an optimal portfolio consists in using his-
torical or simulated data. In this context, return vectors rs with their associated
probability ps are given for a set S of scenarios so that

E[r>x] =
∑
s∈S

ps(rs)>x

and

Q[r>x] = max

q :
∑

s∈N (q)

ps ≥ 1− τ

 , N (q) =
{
s ∈ S : (rs)>x ≥ q

}
holds. Finally, the portfolio optimization problem (POP) can then be formulated as
the MILP

max
x,q,y

α
∑
s∈S

ps(rs)>x+ (1− α)q (8a)

s.t. x ∈ X, (8b)
q ≤ (rs)>x+Msys, s ∈ S, (8c)∑
s∈S

psys ≤ τ, (8d)

ys ∈ {0, 1} , s ∈ S, (8e)
where Ms is a sufficiently large constant that can be set equal to

min

q :
∑

s′∈M(q)

ps
′
≥ τ

−min
i
rsi with M(q) =

{
s′ ∈ S : max

i
rs
′

i ≤ q
}
.

Again, this is a special case of Model (3) in which z = (q, y) as well as g(z) = q
holds and Z(x) is defined by Constraints (8c)–(8e).

3. Valid Inequalities

For the ease of notation, we omit the index t in this section when there is no
possible ambiguity. Lower bounds on the variable q representing the τ -quantile can
be obtained in two different ways. The first one uses the strong-duality property of
linear optimization while the second one is based on a combinatorial argument.

In what follows, we set p(S̄) =
∑
s∈S̄ p

s and ci(S̄) =
∑
s∈S̄ c

s
i for S̄ ⊆ S.
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Proposition 1. The following inequality is valid for the quantile problem (2) for
all subsets S̄ ⊆ S with p(S̄) < τ :(

τ − p(S̄)
)
q ≥

n∑
i=1

(
bi − ci(S̄)

)
xi (9)

with

bi = min
w

{∑
s∈S

csiw
s :
∑
s∈S

ws = τ, 0 ≤ ws ≤ ps, s ∈ S
}
.

Furthermore, it can be separated in polynomial time.

Proof. Let us consider ds := (cs)>x and ps, s ∈ S, as the realizations of a discrete
random variable and its corresponding probability. It is well known, see, e.g., [18],
that the τ -quantile q is the optimal solution of the linear optimization problem

max
u,q

τq −
∑
s∈S

psus (10a)

s.t. q − us ≤ ds, us ≥ 0, s ∈ S, (10b)
q ∈ R. (10c)

The dual of this problem reads

min
w

∑
s∈S

dsws (11a)

s.t.
∑
s∈S

ws = τ, (11b)

0 ≤ ws ≤ ps, s ∈ S. (11c)
Using strong duality of linear optimization, the quantile q must satisfy

τq ≥
∑
s∈S

dsws +
∑
s∈S

psus.

Since us ≥ max{q − ds, 0}, the following inequality is valid for all S̄ ⊆ S:

τq ≥
∑
s∈S

dsws +
∑
s∈S̄

ps(q − ds). (12)

In our general framework, the realization ds is a linear function
∑n
i=1 c

s
ixi so

that the resulting inequality (12) is nonlinear. However, the linear inequality (9)
can be obtained by noticing that∑

s∈S
dsws =

∑
s∈S

n∑
i=1

csixiw
s ≥

n∑
i=1

bixi, bi = min
w

{∑
s∈S

csiw
s : (11b), (11c)

}
(13)

and by rearranging terms.
The separation problem for Inequality (9) is easy. Given a solution x̄, q̄, it suffices

to choose S̄ = {s ∈ S : q̄ >
∑n
i=1 c

s
i x̄i} and check whether the resulting inequality

(9) is violated. �

Note that these inequalities can be seen as a special case of the valid inequalities
discussed in [14] for bilevel optimization.

The second approach to derive a lower bound on the τ -quantile uses a covering
argument and can be seen as a generalization of the idea proposed by [21] for the case
where at most k linear inequalities among n given ones are allowed to be violated.
In our context, if for a subset S̄ of scenarios the probability satisfies p(S̄) < τ , then
q ≥ (cs)>x holds for some scenarios s ∈ S \ S̄.
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Proposition 2. The following inequality is valid for the quantile problem (2) for
all subsets S̄ ⊆ S with p(S̄) < τ :(

τ − p(S̄)
)
q ≥

n∑
i=1

bi(S̄)xi (14)

where

bi(S̄) = min
w

 ∑
s∈S\S̄

csiw
s :

∑
s∈S\S̄

ws = τ − p(S̄), 0 ≤ ws ≤ ps, s ∈ S \ S̄

 .

Proof. Since p(S̄) < τ holds, there exists a subset Sc ⊂ S \ S̄ such that p(Sc) >
τ − p(S̄) and q ≥ (cs)>x holds for all s ∈ Sc. Taking a weighted sum of these
inequalities with coefficients vs for s ∈ Sc with

∑
s∈Sc vs = τ−p(S̄) and 0 ≤ vs ≤ ps

yields (
τ − p(S̄)

)
q ≥

n∑
i=1

∑
s∈Sc

vscsixi. (15)

Inequality (14) is obtained by additionally using that
∑
s∈Sc vscsi ≥ bi(S̄) holds. �

Let us remark that the definitions of bi and bi(S̄) imply that bi = bi(∅). To avoid
any ambiguities in the sequel we will rather use the notation bi(∅).

The following example shows that a priori there is no dominance relation between
the inequalities in (14).

Example 1. Consider four scenarios s ∈ {1, 2, 3, 4} with equal probability 1/4 and
four variables xi with i ∈ {1, 2, 3, 4} and let csi = 0, if i = s and csi = 1 otherwise.
If τ = 3/4, then the inequalities in (14) are the following (after rescaling):

• q ≥ 2/3
∑4
i=1 xi, for S̄ = ∅

• q ≥
∑
i∈S̄ xi + 1/2

∑
i/∈S̄ xi, if |S̄| = 1

• q ≥
∑
i∈S̄ xi, if |S̄| = 2.

None of them is dominated by a nonegative linear combination of the others.

As shown in the following proposition, the separation of the inequalities in (14)
is difficult at least for a fixed value of p(S̄).

Proposition 3. For a fixed value of p(S̄), the separation problem for the inequalities
in (14) is NP-hard even in the special case where ps = 1/|S| for all s ∈ S, τ = k/|S|,
and csi ∈ {0, 1}.

Proof. Under the above conditions, the decision version (D-SEP) of the separation
problem of (14) for a point (x∗, q∗) consists in determining whether there exists a
subset S̄ such that |S̄| = B and

|S|
n∑
i=1

bi(S̄)x∗i > q∗(k −B) (16)

holds.
This problem clearly belongs to NP. Further, we show that CLIQUE reduces to it;

see, e.g., Problem GT19 in [10]. To this end, for an instance of CLIQUE given by a
graph G = (V,E) and an integer B, we define an instance of (D-SEP) as follows.
We set S = V , I = E, k = B + 1, x∗i = x∗ for all i, q∗ = x∗(B(B − 1)/2− 1), and
csi = 0 if edge i is incident to vertex s and csi = 1 otherwise. Then, |S|bi(S̄) =
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min
{
csi : s ∈ S \ S̄

}
= 1 if both end vertices of i belong to S̄ and 0 otherwise. Hence,

(16) reads

x∗|S|
n∑
i=1

bi(S̄) = x∗|E(S̄)| > q∗(k −B) = x∗(B(B − 1)/2− 1)

and is satisfied if and only if S̄ is a clique of size B. �

The following proposition shows that the inequalities in (14) are stronger than
the inequalities in (9).

Proposition 4. For S̄ ∈ S, Inequality (14) dominates Inequality (9).

Proof. The left-hand sides of both inequalities are equal. Further, we have

bi(∅) = min
w

{∑
s∈S

csiw
s :
∑
s∈S

ws = τ, 0 ≤ ws ≤ ps, s ∈ S
}
≤ ci(S̄) + bi(S̄)

Hence, the ith coefficient of (14) is larger than or equal to the corresponding one
of (9). �

The above results suggest to use the separation procedure for Inequality (9) but
to add the corresponding stronger inequality (14).

3.1. Application to the Maintenance Planning Problem. First recall that, in
the MPP, we have a set of scenarios St for each time step t and ps = 1/|St| holds
for all s ∈ St.

The following proposition shows how to adapt the valid inequalities (9) and (14)
to MPP.

Proposition 5. The following two inequalities are valid for the MPP (4) for all
subsets S̄ ⊆ St with |S̄| < dτ |St|e:(

dτ |St|e − |S̄|
)
qt ≥

∑
i∈I

∑
t′∈T (i,t)

bit,t′(∅)−∑
s∈S̄

σi,st′,tx
i
t′

 (17)

and (
dτ |St|e − |S̄|

)
qt ≥

∑
i∈I

∑
t′∈T (i,t)

bit,t′(S̄)xit′ , (18)

where

bit,t′(S̄) = min
w

 ∑
s∈S\S̄

σi,st′,tw
s :

∑
s∈S\S̄

ws = dτ |S|e − |S̄|, 0 ≤ ws ≤ 1, s ∈ S \ S̄


holds. In addition, Inequality (17) can be separated in polynomial time but is
dominated by Inequality (18), whose separation is NP-hard.

Proof. The objective function of Problem (10) can be rewritten as

max
u,q

dτ |S|eq −
∑
s∈S

us, (19)

which leads to the dual formulation
min
w

∑
s∈S

dsws (20a)

s.t.
∑
s∈S

ws = dτ |S|e, (20b)

0 ≤ ws ≤ 1, s ∈ S. (20c)
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Note that in the MPP, we need to select dτ |S|e scenarios with a risk lower than or
equal to the quantile, which allows us to use the constant in the right-hand side
of (20b) and in the objective function (19). Next, by strong duality, the quantile
must then satisfy

dτ |S|eq ≥
∑
s∈S

dsws +
∑
s∈S̄

(q − ds). (21)

After re-introducing the t-index and bounding the nonlinear terms as in (13),
Inequality (21) applied to the MPP reads

dτ |St|eqt ≥
∑
i∈I

∑
t′∈T (i,t)

bit,t′(∅)xit′ +
∑
s∈S̄

qt −∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′

 , t ∈ T , (22)

with

bit,t′(∅) = min
w

{∑
s∈S

σi,st′,tw
s : (20b), (20c)

}
.

The coefficient bit,t′(∅) is the sum of the dτ |S|e smallest risk values σi,st′,t of intervention
i ∈ I at time t ∈ T that has started at t′ ∈ T (i, t).

By grouping the terms in q in the left-hand side, Inequality (22) becomes (17)
and its separation can be done in polynomial time since it suffices to include in S̄
each scenario s ∈ St if the value of the second term of the right-hand side of (22) is
positive for the current solution.

The proofs of the validity of Inequality (17), of the NP-hardness of its separation,
and the fact that it dominates Inequality (17) are similar to those of Propositions 2–4
while taking again into account that the scenarios of a set St have equal probability.

�

3.2. Application to the Portfolio Optimization Problem. In the case of the
portfolio optimization problem, given that −q is the (1− τ)-quantile of the linear
functions −(rs)>x, we can directly apply Propositions 2–4 with the modified data
c̃s = −rs, τ̃ = 1− τ , and variables q̃ = −q. The following proposition summarizes
these results.

Proposition 6. The following two inequalities are valid for the portfolio optimization
problem (8) for all subsets S̄ ⊆ S with p(S̄) < 1− τ :

(1− τ − p(S̄))q ≤
∑
i∈I

(bi(∅)−
∑
s∈S̄

psrsi )xi, (23)

and
(1− τ − p(S̄))q ≤

∑
i∈I

bi(S̄)xi, (24)

where

bi(S̄) = max
w

 ∑
s∈S\S̄

rsiw
s :

∑
s∈S\S̄

ws = 1− τ − p(S̄), 0 ≤ ws ≤ ps, s ∈ S \ S̄


holds. In addition, Inequality (23) can be separated in polynomial time but is
dominated by Inequality (24), whose separation is NP-hard.
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4. An Overlapping Alternating Direction Method

In this section, we describe an overlapping alternating direction method to solve
Problem (3). Alternating Direction Methods (ADMs) have been initially proposed
in [7, 13] as extensions of Lagrangian methods. They are iterative procedures
typically used to tackle problems defined by means of two vectors of decision
variables, which are subject to some coupling constraints. Instead of solving the
monolithic original problem, at each iteration of an ADM, one sequentially solves
two smaller subproblems each of which determines a new value for one of the variable
vectors, having fixed the value of the other one. In recent years, ADMs have been
exploited to solve large-scale optimization problems in the field of gas transport
[11, 12], machine learning [5, 17], bilevel problems [15], or supply chain problems
[22]. In our work, we devise an overlapping ADM (OADM), which can be seen as a
variant of an ADM to solve problems for which the vector of variables is partitioned
into three subvectors. As in usual ADMs, two subproblems related to two variable
subvectors are identified and solved sequentially. However, the remaining variable
subvector is to be determined in both subproblems, since it is part of both. The
idea behind OADMs can be traced back to overlapping Schwarz methods (see, e.g.,
[6, 20]) used in the field of partial differential equations to solve boundary value
problems defined on a domain that is a union of some intersecting subdomains.
Recently, it also has been applied very successfully to graph-structured problems;
see, e.g., [23].

In the following, we present an OADM for Problem (3), which is motivated by
the special structure of the problem itself and by our formulation for the quantile.
We observe that Problem (3) makes use of the pair (x, z) of variable vectors, where
z is introduced only to reformulate the term of the objective function (3a) that
is related to the quantile. Specifically, z ∈ Zt(x), t ∈ T , encodes the formulation
of the quantile. In both of our applications, sets of constraints Zt(x), t ∈ T , are
defined over two vectors of variables; see Problem (5) and (8). Hence, in this
section, we generalize the setting of Problem (3) by considering it defined over the
3-tuple (x, z1, z2) of variable vectors, where z1 and z2 are two subvectors of z, i.e.,
z = (z1, z2). In what follows, we may still write z in lieu of (z1, z2) if the explicit
decomposition is not required. In our OADM, we identify a subproblem related
to x and one related to z1. The variable vector z2 is overlapping, i.e., it is part
of the optimization for both subproblems. Finally, we highlight that our OADM
enjoys two special features. The value of z depends only on the one of x (see, e.g.,
Constraints (3b)) and z has no influence on the feasible set of the problem, i.e., at
each iteration, solving the two subproblems provides feasible points for Problem (3).

We apply the OADM outlined in Algorithm 1 to determine a feasible point of
Problem (3), which improves on an initial one (x0, z0

1 , z
0
2) in terms of the objective

function value. The initial point (x0, z0
1 , z

0
2) is defined by

x0 ∈ arg min
x

{
α
∑
t∈T

E[c>t x] : x ∈ X
}
,

z0 = (z0
1 , z

0
2) ∈

{
z = (zt)t∈T : zt = (z1,t, z2,t) ∈ Zt(x0)

}
.

Specifically, x0 is chosen among the solutions of the problem obtained by Problem (3)
after removing the constraints and the objective function term involving the variable
vector z. Clearly, (x0, z0) is a feasible point of Problem (3).

Now, we describe the iterative procedure outlined in Algorithm 1. In what follows,
we write

v(x, z) := α
∑
t∈T

E[c>t x] + (1− α)
∑
t∈T

g(zt)
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to lighten the notation. In Line 1, we set the iteration counter j to zero. In
iteration j+ 1, the algorithm first solves Problem (3) in the direction of (x, z2) while
having fixed the value of z1 to zj1 to determine a new value (xj+1, zj+1

2 ) for (x, z2);
see Line 3. Then, Problem (3) is solved in the direction of (z1, z2) while having fixed
the value of x to xj+1 to determine a new value (zj+1

1 , zj+1
2 ) for (z1, z2). Finally,

the algorithm stops (Line 7) once a given stopping criterion is met such as that a
time limit is reached or that the improvement of the value of the feasible points is
less than a given threshold.

Algorithm 1: An Overlapping Alternating Direction Method
Input :An initial feasible point (x0, z0 = (z0

1 , z
0
2)) of Problem (3).

Output :A feasible point (xj , zj = (zj1, z
j
2)) of Problem (3).

1 Set j ← 0.
2 while stopping criterion is not satisfied do
3 Compute

(xj+1, zj+1
2 ) ∈ arg minx,z2{v(x, zj1, z2,t) : x ∈ X, (zj1,t, z2) ∈ Zt(x), t ∈ T }.

4 Compute
zj+1 = (zj+1

1 , zj+1
2 ) ∈ arg minz=(z1,z2){v(xj+1, z) : zt ∈ Zt(xj+1), t ∈ T }.

5 Increment j ← j + 1.
6 end
7 return (xj , zj)

4.1. Application to the Maintenance Planning Problem. In this section, we
discuss how Algorithm 1 is applied to the MPP. Specifically, we apply our OADM
to the variant of Problem (4) that makes use of Constraints (5). This problem is
defined on four vectors of variables: x = (xt)t∈T with xt = (xit)i∈I , y = (yt)t∈T
with yt = (yst )s∈St , q = (qt)t∈T , and ε = (εt)t∈T . In the OADM for the MPP,
variable vectors x and y play the role of x and z1 and variable vectors q and ε play
the role of the overlapping variables z2 in Algorithm 1. Hence, Problem (4) is solved
in the direction of x and y and, in both directions, q and ε are also part of the
optimization. Here, we consider the variable vector ε as part of z. This leads to a
re-definition of the sets Zt(x), t ∈ T , where Constraints (4e) and (4f) are included.

An initial point (x0, y0, q0, ε0) of Problem (4) is retrieved as for the general case.
First, we select a planning x0 for the interventions among the feasible solutions
of the problem obtained by Problem (4) without taking into account the quantile
related variables, constraints, and the objective function term, i.e.,

x0 ∈ arg min
x

α 1
T

∑
t∈T

1
|St|

∑
s∈St

∑
i∈I

∑
t′∈T (i,t)

σi,st′,tx
i
t′ : (4b), (4c), (4d), (4g)

 .

Then, we determine values y0, q0, and ε0 for variable vectors y, q, and ε as when
solving the problem in the direction of y. We do so as follows.

In iteration j + 1, the subproblem in the x-direction corresponds to finding a
maintenance planning for the interventions of I in the time horizon T while having
fixed the scenarios used to calculate the quantile at each time instant. Hence, the
values xj+1 for x are selected among the feasible points of Problem (4) with the
values of variables in vector y fixed to yj . We observe that this subproblem is
NP-hard. Indeed, it can be reduced to the resource constrained scheduling problem;
see, e.g., [10]. Differently, solving the subproblem in the direction of y corresponds
to computing the value of the objective function (4a) having fixed a planning for
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the interventions xj+1. This can be done in a polynomial time. Specifically, given a
time instant t ∈ T , we first need to compute risk values σst related to each scenario
s ∈ St as

σst =
∑
i∈I

∑
t′∈T (i,t)

σi,st′,t(x
j+1)it′ .

Then, we sort the scenarios in St by non-decreasing values of σst . The first pt
scenarios appearing in this order are those for which we set (yj+1)st = 1. For the
others, we set (yj+1)st = 0. This procedure is repeated for each time period t ∈ T .

4.2. Application to the Portfolio Optimization Problem. The OADM for
the portfolio optimization problem is applied to the MILP (8), which makes use
of variable vectors x ∈ X, y = (ys)s∈S , and a variable q. It sequentially solves a
subproblem in the x-direction and one in the y-direction. The variable q is part of
both optimization tasks. Solving the subproblem in the x-directions corresponds to
maximizing the portfolio revenue, having fixed the scenario selection. This problem
is modeled as a linear program (see the MILP (8)) and can thus be efficiently solved.
Solving the subproblem in the y-direction corresponds to computing the value of
the objective function (8a) knowing the portfolio composition. This can be done in
polynomial time.

The initial point computation and the iterative procedure are analogous to the
one discussed for the MPP. Hence, we do not report the details here.

5. An Adaptive Scenario Clustering Approach

This section presents an adaptive scenario clustering algorithm (ASCA) for solving
Problem (1) in the case function f is nondecreasing. Given t ∈ T , let us first denote
with c̄t the average cost at t, i.e.,

c̄t = 1
|St|

∑
s∈St

cst ,

which allows to rewrite the objective function (1a) as

min α
∑
t∈T

c̄tx+ (1− α)
∑
t∈T

f
(
Q[c>t x]

)
. (25)

Observe that the scenarios only have an impact on the quantile computations, i.e., on
the second term in (25). Thus, a large number of scenarios can make the resolution
of the problem computationally hard. Therefore, a way to approximate the general
problem is to reduce the size of each St by clustering its scenarios. This allows to
heuristically find feasible solutions of good quality quickly.

More precisely, let Ct be a partition of St into Kt ≤ |St| nonempty clusters.
Each cluster γ ∈ Ct has a cost vector cγt and a probability pγt . The ASCA consists
in solving a sequence of instances of Problem (1)—each defined over a clustered
scenario set Ct instead of the original set St. The probability pγt of cluster γ ∈ Ct is
given by

pγt =
∑
s∈γ

pst ,

which satisfies ∑
γ∈Ct

pγt = 1. (26)

We now present two strategies to associate a cost vector to each cluster of
scenarios. First, the average scenario clustering (ASC) associates with each cluster
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ASC MSC

v(x∗ASC) ≥ vUB

vMSC(x∗MSC) ≤ vLB
vMSC(x∗MSC) > vLB

v(x∗ASC) < vUB

Figure 1. State diagram of the adaptive scenario clustering algorithm.

γ ∈ Ct a cost vector cγt defined as follows:

(cγt )i = 1
|γ|
∑
s∈γ

(cst )i, i ∈ N.

Let us indicate with CASC
t the corresponding clustering of scenarios.

Further, the minimum scenario clustering (MSC) associates with each cluster
γ ∈ Ct a cost vector cγt defined as

(cγt )i = min {(cst )i : s ∈ γ} , i ∈ N.
Let us indicate with CMSC

t the corresponding clustering of scenarios.

Proposition 7. Let x∗ be an optimal solution of Problem (1) and let x∗ASC as
well as x∗MSC denote optimal solutions of Problem (1) solved on the scenarios set
CASC
t and CMSC

t , respectively. For a vector x ∈ X, let v(x) and vMSC(x) denote the
objective value w.r.t. x and (1a) defined over St and CMSC

t , respectively. Then,
vMSC(x∗MSC) ≤ v(x∗) ≤ min{v(x∗ASC), v(x∗MSC)}

holds.

Proof. We get the first inequality by construction of the MSC, hence vMSC(x∗MSC) ≤
vMSC(x∗) ≤ v(x∗). The second inequality is due to x∗ being optimal for Problem (1).

�

Thus, both ASC and MSC allow to compute a bound on v(x∗) while solving
Problem (1) over clustered scenario sets.

Corollary 1. Let x∗ be an optimal solution of Problem (1) and let x∗ASC as well as
x∗MSC denote optimal solutions of Problem (1) solved for the scenarios set CASC

t and
CMSC
t , respectively. For a vector x ∈ X, let v(x) and vMSC(x) denote the objective

value w.r.t. x and (1a) defined over St and CMSC
t , respectively. Then, if

vMSC(x∗MSC) = min{v(x∗ASC), v(x∗MSC)}
holds, x∗ASC is an optimal solution of Problem (1).

Additionally, solving Problem (1) with the MSC can be improved using the valid
inequality (14).

Proposition 8. Given CMSC
t for a specific t ∈ T . Let γ be a cluster in CMSC

t such
that pγt > 1− τ holds. Then, in Problem (2) defining the quantile of t, it holds that

yγt = 1,
and the resulting inequality (2b) is dominated by the valid inequality (14) for S̄ =
St \ γ.
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Algorithm 2: Adaptive Scenario Clustering Algorithm.
Input :Threshold parameter ε ∈ (0, 1).

1 Set C0
t ← {St} for all t ∈ T , i.e., we start with a single cluster per index t.

2 Set j ← 0, vUB ← +∞, vLB ← −∞, and κ← true.
3 while (vUB − vLB)/vUB ≥ ε do
4 if κ then
5 Solve Problem (1) on CASC,j

t , let x∗ASC denote the optimal solution.
6 if v(x∗ASC) < vUB then
7 set xUB ← x∗ASC and vUB ← v(x∗ASC)
8 else
9 set κ← false.

10 else
11 Solve Problem (1) on CMSC+,j

t , let x∗MSC+ denote the optimal solution.
if vMSC+(x∗MSC+) > vLB then

12 set xLB ← x∗MSC+ and vLB ← vMSC+(x∗MSC+)
13 else
14 set κ← true.
15 if v(x∗MSC+) < vUB then
16 set xUB ← x∗MSC+ and vUB ← v(x∗MSC+).
17 Update j ← j + 1 and refine Cj−1

t , yielding Cjt .
18 end
19 return xUB

Proof. Since pγt > 1− τ , (2c) and (2d) imply yγt = 1. Furthermore, the definition of
bi(S̄t) with S̄ = St \ γ implies

bi(St \ γ)
τ − p(St \ γ) ≥ (cγt )i, i ∈ N, (27)

so that (14) dominates (2b). �

Proposition 8 hence tells us that given the set
B := {γ ∈ CMSC

t : pγt > 1− τ},
we can replace the quantile constraint (2b) associated to γ ∈ B by the valid
inequality (14) applied on the set St \ γ in the MSC. Furthermore, Constraint (2c)
reduces to ∑

γ∈CMSC
t

yγt p
γ
t ≥ τ −

∑
γ∈B

pγt .

We denote by MSC+ the resulting optimization problem. By construction, we thus
have that

vMSC(x∗MSC) ≤ vMSC+(x∗MSC+) ≤ v(x∗)
holds.

For what follows, we define vUB and vLB as the current best upper and lower
bounds on v(x∗). Additionally, Cjt stands for the clustering of St for t ∈ T in
iteration j of the algorithm. We indicate with CASC,j

t and CMSC+,j
t the instance of

Cjt where the cost vectors are calculated using ASC and MSC+, respectively.
Algorithm 2 states the pseudo-code of our adaptive algorithm and Figure 1 shows

a state diagram of the inner while loop of the algorithm. The algorithm solves a
sequence of problems of Type (1) defined over CASC

t and CMSC+

t to improve the
lower or upper bound on v(x∗) as shown in Proposition 7. After each resolution,
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the algorithm refines the previous clustering Cj−1
t , yielding Cjt for all t ∈ T . The

resulting clustering Cjt allows to have a better representation of the scenario set St.
This makes the next resolution of Problem (1) defined over CASC

t or CMSC+

t harder
to solve. However, the new clustering of scenarios will likely allow to compute a
better lower or upper bound on v(x∗). The sequence of resolutions over CASC

t is
then interrupted and switched to the resolution over CMSC+

t when v(x∗ASC) ≥ vUB.
Similarly, the sequence of resolution of Problem (1) over CMSC+

t is interrupted and
switched to CASC

t when vMSC+(x∗MSC+) ≤ vLB. Finally, the algorithm terminates
once we achieve a relative gap smaller than a prescribed tolerance ε, i.e.,

vUB − vLB

vUB
≤ ε.

Theorem 1. Let x∗ be an optimal solution of Problem (1) and let v(x∗) be its value.
Moreover, let Cjt be the clustering of St for index t ∈ T in iteration j. Suppose
further that there exists an index t ∈ T such that

|Cjt | > |C
j−1
t |, (28)

for all iterations j. Then, Algorithm 2 terminates after a finite number of cluster
refinements with a point x ∈ X such that

v(x)− v(x∗)
v(x) ≤ ε. (29)

Proof. Due to Inequality (28), each iteration of Algorithm 2 increases the size of Cjt
for at least one t ∈ T . Therefore, if the termination criterion (vUB − vLB)/vUB ≤ ε
is never satisfied, Cjt will increase in size over the iterations until being equal to St.
If Cjt equals St for all t ∈ T , then |γ| = 1 for all γ ∈ Cjt .

The cost vectors cγt for each γ ∈ Cjt correspond to the cost vector associated with
the single scenario in γ for both ASC and MSC clustering strategies. Otherwise, if
(vUB − vLB)/vUB ≤ ε is satisfied, we know that xASC also satisfies Inequality (29)
by Proposition 7. �

Remark 1. We close this section with the discussion of two features of the ASCA.
• The cluster refinement step in Line 17 of Algorithm 2 is done using kernel
density estimation (KDE). KDE allows to estimate the probability density
function of a random variable by using a set of samples of this random
variable [24]. The local minima of the estimated probability density function
then yield a splitting of the random variable samples. In our case, for a given
t ∈ T and γ ∈ Ct as well as a point x ∈ X, we compute the KDE of (cst )>x
using all s ∈ γ, which results in a splitting of γ. We use x∗ASC or x∗MSC
depending on whether the previous iteration j−1 of the ASCA used CASC,j−1

t

or CMSC,j−1
t . Additionally, only a subset of time steps T ⊆ T is selected for

re-clustering after each iteration of the ASCA. Given a parameter Θ ∈ (0, 1),
we compute this refinement set T to be the minimal subset of T satisfying∑

t∈T

∣∣∣Q[c>t x; Cj−1
t ]−Q[c>t x]

∣∣∣ > Θ
∑
t∈T

∣∣∣Q[c>t x; Cj−1
t ]−Q[c>t x]

∣∣∣ .
Here, Q[·] is the original quantile, whereas Q[·; Cj−1

t ] denotes the quantile’s
approximation based on the clustering Cj−1

t . Hence, we select the subset of
indices t ∈ T that have the biggest difference between their clustered and
their real quantile value for a chosen x.
• The solution processes in Lines 5 and 11 of Algorithm 2 can benefit from a
series of improvements. First, every valid inequality from MSC+ obtained
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through Proposition 8 is kept in the subsequent MSC+ and ASC problems
even if the associated cluster is split in the refinement step. Second, the
OADM discussed in Section 4 is applied first, as a heuristic, for every MILP.
Here, we use xLB and xUB (see Algorithm 2) as initial iterates for the
OADM provided that we are in the corresponding clustered problem. Third,
we use the valid inequalities in (14) to speed up the MILP solution process.

6. Numerical Results

In this section, we present and discuss the results obtained by testing our methods
on the maintenance planning and on the portfolio optimization problem.

In what follows, we make use of the following notation. When assessing the perfor-
mance of our MILP models, we consider the following three configurations. We write
MILP meaning that we solve Model (4) when considering the MPP and Model (8)
when considering the POP, both without valid inequalities. We write MILPVI and
MILPVI∗ meaning that we solve Model (4) enriched with Inequalities (17) and
Inequalities (18), when considering the MPP. In the case of the POP, MILPVI and
MILPVI∗ stand for Model (8) enriched with Inequalities (23) and (24), respectively.
Furthermore, we add the superscript OADM to the notation yet introduced, when
the corresponding configuration is warm-started with an initial solution found by
OADM as described in Section 4. For example, in the case of the MPP, MILPOADM

VI∗
means that Model (4) enriched with Inequalities (18) is warm-started with an initial
solution found by the OADM. LetM denote the set of considered methods. For
m ∈ M we denote by vmLB and vmUB the best lower and upper bound values found
by method m on a given problem instance. For the sake of simplicity, we will
additionaly use vLB and vUB when discussing the upper or lower bound without
referring to a specific method.

In the following, we make some further comments regarding the tests we will
discuss in Sections 6.1 and 6.2. In configurations MILPVI and MILPVI∗ , we separate
valid inequalities only at the root node of the branch-and-bound tree, as preliminary
results showed that this is the best strategy. Indeed, separating them at each node
of the tree significantly reduces the time left to explore the tree itself, leading to
poor primal bounds—in particular in the case of the MPP. Moreover, the valid
inequalities considered in MILPVI∗ dominate the ones considered in MILPVI; see
Proposition 4. In the case of the MPP, this is reflected in the results obtained
by performing some preliminary tests. Hence, in Section 6.1 we only discuss the
results obtained by MILPVI∗ . This behavior does not occur when considering the
POP. Thus, in Section 6.2, we discuss the results of both configurations. Finally, we
remark that the solver does not struggle to provide feasible solutions of good quality
on the POP instances when solving MILP, MILPVI or MILPVI∗ ; see Section 6.2.
Consequently, we do not consider the inclusion of OADM and ASCA in the solution
procedure for this problem.

All computations have been executed on a remote server with 64 GB RAM and
an AMD Opteron 6176 SE processor with 12 cores and 2.30 GHz. The techniques
presented in this paper have been coded in C++14 and are compiled using g++

version 9.3.0. All MILP models are solved using Gurobi 9.1.0. The time limit is set
to 90 min for which the time for reading the instance is ignored.

6.1. Numerical Results for the Maintenance Planning Problem. We first
present the numerical results of the proposed methods when applied to the
EURO/ROADEF 2020 challenge instances. Table 1 shows the main characteris-
tics of the these instances. Their names start with a capital letter that, based on
their alphabetical order, correspond to a different phases of the EURO/ROADEF
2020 challenge. Hence, instances with a name starting with a letter appearing later
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in the alphabet are more likely to be computationally challenging. Note that we
omit to list those instances that are trivial due to a very small number of scenarios.

The size of some instances makes the time to complete multiple OADM iterations
too large w.r.t. the total computational time allowed. Thus, we set the stopping
criterion of the OADM so that only the first iteration is applied. Finally, the ASCA
computational parameters are given in Table 2 and have been chosen based on our
preliminary numerical tests.

Because of the large amount of EURO/ROADEF instances we use the bar plots
in Figures 2–5 to visually compare the different methods. Let M′ be the subset
of methods ofM considered in the bar plot. Then, for all m ∈ M′ the bar plots
show the re-scaled value of vmLB (left side) and vmUB (right side) on all instances. The
bars’ lengths are determined as follows. The left side of the bar plots is equal to
minm′∈M′{vm

′

LB : vm′LB > 0}/vmLB. The numerator minm′∈M′{vm
′

LB : vm′LB > 0} takes the
value of the smallest lower bound obtained by the methods inM′ while ignoring a
lower bound if the method m′ does not improve on vm′LB = 0. We apply a similar
rule for the right side of the bar plots using vmUB/maxm′∈M′{vm

′

UB : vm′UB <∞}. Here,
maxm′∈M′{vmUB : vm′UB < ∞} takes the value of the largest upper bound obtained
by the two compared methods without considering vm′UB if no incumbent is found
during the solution process of m′. The rescaling of vLB or vUB is constant for a
specific instance and therefore allows to easily visualize how they compare for two
different methods.

Hence, bars close to zero mean that the corresponding method performs better
compared to the other method on the respective bound. However, we would like
to draw attention to the fact that the spacing between the sides of the bars is not
representative of the relative gap given by (vUB − vLB)/vLB.

Figure 2 shows a comparison between the results obtained by MILP with those
obtained by MILPVI∗ . We observe that MILPVI∗ systematically outperforms MILP,
yielding a great improvement on both vLB and vUB, where the lower bound improves
more significantly than the upper bound. However, we remark that MILPVI∗ fails
to provide an incumbent solution for some instances within the time limit for which
MILP succeeds in doing so; see, e.g., B03. Most likely, this has two reasons. First,
additional time is needed to separate violated inequalities in the first node of the
branch and bound tree. Second, the model’s relaxations are a bit harder to solve
after adding valid inequalities due their increased size.

To counteract this effect, we also tested to apply the OADM described in Section 4
to the MILP model with valid inequalities for the MPP as a primal root node
heuristic. Figure 3 shows the comparison of MILPVI∗ and MILPOADM

VI∗ . In the
latter configuration, the point to warm-start is the result of a single iteration of
the OADM. The resulting bar plot only displays the instances with a significant
difference in vLB or vUB. Note that the one iteration of the OADM allows to obtain
an incumbent solutions for all the instances where the resolution of MILPVI∗ fails
to do so. For the remaining instances, we see that activating a single OADM step
mostly performs worse in terms of vUB. Also, for instance X05 and C13, the time
spent in one OADM iteration is rather long—hence harming the impact of the valid
inequalities on vLB.

Figure 4 shows the results obtained by the ASCA presented in Section 5 when
compared to the results obtained by MILP. One can observe that ASCA provides
better results in terms of both vLB and vUB. However, it fails to get a strictly positive
value for vLB for some of the more computationally challenging instances. As it is is
the case for MILPVI∗ , both for vLB and vUB we see that ASCA outperforms MILP.
For those instances for which ASCA fails to obtain a strictly positive value for vLB,
ASCA keeps improving vUB using the ASC problem during the initial iterations of
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Table 1. Characteristics of all the EURO/ROADEF 2020 challenge instances.

ID |I| |R| |T |
∑

t∈T
|St|
|T | |D|

A02 89 9 90 120.0 1869
A05 180 9 182 120.0 6791
A08 18 9 17 645.59 29
A11 54 9 53 639.53 96
A14 108 10 53 160.3 438
A15 108 10 53 320.06 438
B01 100 9 53 191.45 553
B02 100 9 53 191.45 404
B03 706 9 53 63.49 23674
B04 706 9 53 63.49 23674
B05 706 9 53 63.49 27276
B06 100 9 53 255.42 404
B07 250 9 53 191.45 3787
B08 119 9 42 254.07 550
B09 120 9 42 127.4 730
B10 398 9 25 192.4 3231
B11 100 9 53 191.45 679
B12 495 9 102 63.91 20205
B13 99 9 102 159.51 148
B14 297 9 191 95.5 14448
B15 495 9 250 63.38 61786
C01 120 9 53 191.45 1080
C02 120 9 53 191.45 828
C03 706 9 53 63.49 24260
C04 706 9 53 63.49 23638
C05 706 9 53 63.49 27276
C06 280 9 53 191.45 3404
C07 120 9 42 126.76 578
C08 426 9 25 192.88 3405
C09 110 9 53 191.45 718
C10 522 9 102 63.24 26250
C11 89 9 102 191.05 1474
C12 298 9 191 95.21 13996
C13 505 9 230 63.4 44384
C14 465 9 220 95.34 53628
C15 528 9 300 50.69 69715
X01 120 9 53 191.45 917
X02 706 9 53 63.49 24464
X03 280 9 53 191.45 3299
X04 426 9 25 188.84 4509
X05 467 9 220 95.3 48595
X06 528 9 300 50.64 79180
X07 209 9 300 63.52 8873
X08 209 9 300 63.6 6032
X09 548 9 30 156.97 8942
X10 460 9 35 159.54 7083
X11 521 9 131 63.35 35112
X12 522 9 131 63.92 35241
X13 336 9 212 95.27 19978
X14 613 9 180 63.73 57762
X15 613 9 180 63.32 64400
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∞ 1 0 1 ∞
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A14
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B04
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B06
B07
B08
B09
B10
B11
B12
B13
B14
B15
C01
C02
C03
C04
C05
C06
C07
C08
C09
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C13
C14
C15
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X11
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X13
X14
X15

Figure 2. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′

UB : vm′UB < ∞} (right side), where M′ is
composed of MILP (blue) and MILPVI∗ (yellow).
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Table 2. OADM parameters.

Θ OADM gap (Line 3) OADM gap (Line 4) Solver gap (Lines 5,11)

0.25 0.0025 0 0.025

∞ 1 0 1 ∞
B03
B10
B14
C02
C03
C06
C08
C12
C13
C14
X01
X02
X03
X04
X05
X06
X08
X09
X10
X12
X13
X15

Figure 3. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′

UB : vm′UB < ∞} (right side), where M′ is
composed of MILPOADM

VI∗ (blue) and MILPVI∗ (yellow). Only the
instances with a significant difference in the results for vLB and
vUB are displayed.

the algorithm. Since vUB keeps decreasing in every iteration, ASCA never enters
the MSC+ problem before reaching the given time limit. Thus, it never improves
on the vLB = 0 lower bound. Similarly, MILP fails to compute incumbent solutions
for some of the more computationally challenging instances and, hence, does not
decrease the vUB =∞ bound. On the contrary, ASCA always finds an improved
incumbent solution since it is designed to start solving the ASC problem in order to
decrease the value of vUB.

We close the comparison of the methods with Figure 5, which compares ASCA
and MILPOADM

VI∗ , i.e., it compares the methods that perform best in terms of vUB
and vLB. Considering the values of vLB, we see that MILPOADM

VI∗ always outperforms
ASCA except for the instances C14 and X05. The opposite situation occurs when
the two configurations are compared w.r.t. the values of vUB. The detailed results
obtained on the EURO/ROADEF instances with our methods are reported in Tables 5
and 6.

6.2. Numerical Results for the Portfolio Optimization Problem. We build a
test set of 24 instances for the portfolio optimization problem following the procedure
used in [21] to generate instances for the probabilistically chance-constrained portfolio
optimization model. Our instances are characterized by n ∈ {20, 200} equities
and |S| = 200 equiprobable scenarios with ps = 1/|S|, s ∈ S. We draw the
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∞ 1 0 1 ∞
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C06
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C08
C09
C10
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C12
C13
C14
C15
X01
X02
X03
X04
X05
X06
X07
X08
X09
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X11
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X13
X14
X15

Figure 4. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′

UB : vm′UB < ∞} (right side), where M′ is
composed of MILP (blue) and ASCA (yellow).
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∞ 1 0 1 ∞
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A05
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A11
A14
A15
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B10
B11
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B15
C01
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C03
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C13
C14
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X01
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X07
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Figure 5. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′

UB : vm′UB < ∞} (right side), where M′ is
composed of MILPOADM

VI∗ (blue) and ASCA (yellow).
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components of return vectors rs, s ∈ S, using an independent uniform distribution
law on the interval [80, 150]. This means, we generate equities whose returns range
between a 20% loss and a 50% profit on the investment. The minimum expected
return ρ is set to 110, forcing an average portfolio return of 10% w.r.t. the invested
budget. We consider the VaR confidence level of 7.5 %, 15 %, and 22.5 %, i.e.,
τ ∈ {0.075, 0.15, 0.225} holds. Finally, the objective function weight α takes values
in set {0, 0.25, 0.5, 0.75}: Smaller values of α favor risk minimization over return
maximization—larger values of α favor the opposite behavior.

First, we discuss the results obtained by solving MILP, MILPVI, and MILPVI∗ on
the entire set of 24 instances. For MILPVI∗ , where the separation of the inequalities
in (24) is NP-hard (see Proposition 6), we separate them by means of the same
procedure employed for the inequalities in (23). By doing so, the time spent to
separate and build the two families of valid inequalities differs of a factor of ten.
However, in both cases, this time remains negligible w.r.t. the computational time
limit since it is always less than 4 s.

Table 3 reports the results obtained by solving the instances with the three
configurations. Each row of the table corresponds to an instance for which its
parameterization is summarized in columns two to six of the table. Then, for each
approach, we include three columns. The first and second columns contain the
lower and upper bounds (vLB and vUB), respectively. The third is a mixed time/gap
(tsolve/gap) column reporting either the computational time if the model is solved to
global optimality within the time limit or the relative optimality gap in percentage
(100 (vUB − vLB)/vLB) otherwise.

In general, all three configurations yield comparable results. The solver provides
feasible points of comparable value (vLB) on all the instances and it manages to
prove the optimality of the same four instances (W1, W4, W7, W10) on average
in 436, 438, and 604 seconds, respectively. The average optimality gap returned
by the solver on the instances for which optimality is not proven within the time
limit is 3.4% for the plain MILP and 2.6% for both configurations involving valid
inequalities.

To assess the impact of the two families of valid inequalities, we focus on those
instances that are not solved to optimality. In what follows, the upper bound
improvement of a configuration against another one, e.g., MILP against MILPVI,
is computed as (vMILP

UB − vMILPVI
UB )/vMILP

UB , where vMILP
UB and vMILPVI

UB are the upper
bounds returned by the solver for the configurations MILP and MILPVI, respectively.
The improvements regarding the optimality gap are computed analogously.

First, we observe that the introduction of either inequalities (23) or (24) yields
benefits in terms of both decreasing the upper bound and reducing the optimality
gap. Indeed, the upper bound and integrality gap improvements on average are
equal to 0.8 % and 18 % when comparing MILP to MILPVI and they are equal to
0.7 % and 16 % when comparing MILP to MILPVI∗ . The same trend emerges when
analyzing the values of the upper bound and the optimality gap after the solution
of the root node of the branch-and-bound tree; see Table 4.

As mentioned in the introduction of this section, although inequalities (23) are
dominated by inequalities (24) (see Proposition 6), this relation is not reflected in
the computational results. Indeed, when comparing MILPVI to MILPVI∗ , the upper
bound improvement in percent becomes negligible and the optimality gap tends
to be smaller for MILPVI—on average of 3 %. Conversely, a slight dominance of
configuration MILPVI∗ over configuration MILPVI arises from the results obtained
after the solution of the root node; see Table 4. To explain this behavior, we note
that the separation procedure for inequalities (24) is heuristic.
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Table 3. Results obtained by solving the instances of the portfolio optimization problem with configurations MILP, MILPVI and
MILPVI∗ within a time limit of 90 minutes.

Parameters MILP MILPVI MILPVI∗

ID Assets |S| α ρ τ vLB vUB tsolve(s)/gap(%) vLB vUB tsolve(s)/gap(%) vLB vUB tsolve(s)/gap(%)

W1 20 200 0 110 0.075 111.05 111.05 934.522s 111.05 111.05 1058.42s 111.05 111.05 885.981s
W2 20 200 0 110 0.15 112.629 114.825 1.95% 112.629 114.772 1.90% 112.629 114.837 1.96%
W3 20 200 0 110 0.225 113.844 119.218 4.72% 113.719 118.829 4.49% 113.82 120.508 5.88%
W4 20 200 0.25 110 0.075 112.558 112.558 370.782s 112.558 112.558 380.56s 112.558 112.558 1226.77s
W5 20 200 0.25 110 0.15 113.33 115.169 1.62% 113.258 115.409 1.90% 113.33 115.39 1.82%
W6 20 200 0.25 110 0.225 115.051 119.067 3.49% 115.054 119.716 4.05% 115.007 119.544 3.95%
W7 20 200 0.5 110 0.075 113.778 113.778 325.911s 113.778 113.778 113.778s 113.778 113.778 206.893s
W8 20 200 0.5 110 0.15 114.345 115.705 1.19% 114.385 115.734 1.18% 114.375 116.205 1.60%
W9 20 200 0.5 110 0.225 114.959 117.764 2.44% 114.907 118.117 2.79% 114.876 118.1 2.81%
W10 20 200 0.75 110 0.075 114.31 114.31 113.189s 114.31 114.31 92.8553s 114.31 114.31 126.28s
W11 20 200 0.75 110 0.15 114.642 115.362 0.63% 114.678 115.271 0.52% 114.678 115.33 0.57%
W12 20 200 0.75 110 0.225 115.126 115.813 0.60% 115.126 115.96 0.72% 115.126 115.874 0.65%
W13 400 200 0 110 0.075 116.551 120.701 3.56% 116.545 119.155 2.24% 116.612 119.165 2.19%
W14 400 200 0 110 0.15 117.094 125.632 7.29% 117.219 122.351 4.38% 117.226 122.363 4.38%
W15 400 200 0 110 0.225 117.595 130.208 10.73% 117.811 125.778 6.76% 117.812 125.736 6.73%
W16 400 200 0.25 110 0.075 116.738 119.85 2.67% 116.762 118.696 1.66% 116.745 118.705 1.68%
W17 400 200 0.25 110 0.15 117.203 123.38 5.27% 117.233 121.102 3.30% 117.229 121.131 3.33%
W18 400 200 0.25 110 0.225 117.775 126.679 7.56% 117.829 123.704 4.99% 117.715 123.727 5.11%
W19 400 200 0.5 110 0.075 116.909 118.83 1.64% 116.9 118.112 1.04% 116.907 118.122 1.04%
W20 400 200 0.5 110 0.15 117.378 121.241 3.29% 117.332 120.073 2.34% 117.33 120.087 2.35%
W21 400 200 0.5 110 0.225 117.583 123.293 4.86% 117.684 121.521 3.26% 117.654 121.509 3.28%
W22 400 200 0.75 110 0.075 117.25 118.136 0.76% 117.24 117.78 0.46% 117.25 117.785 0.46%
W23 400 200 0.75 110 0.15 117.199 119.012 1.55% 117.209 118.547 1.14% 117.222 118.517 1.10%
W24 400 200 0.75 110 0.225 117.659 120.392 2.32% 117.677 119.695 1.71% 117.715 119.752 1.73%
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Table 4. Average upper bound and integrality gap percentage
improvements after the resolution of the root node of the branch-
and-bound tree

Comparison avg. vUB impr.(%) avg. gap impr.(%)
MILP vs. MILPVI 1.73 34.50
MILP vs. MILPVI∗ 1.77 39.15
MILPVI vs. MILPVI∗ 0.05 4.85

Finally, as opposed to the MPP, the solver does not fail to provide feasible points
of good quality on the instances of the portfolio optimization problem. Indeed, the
average optimality gap already after the resolution of root node is rather small. It
is equal to 11.5%, 6.1%, and 5.6% for configurations MILP, MILPVI and MILPVI∗ ,
respectively.

7. Conclusion

In this paper we considered several solution techniques for mixed-integer quantile
minimization problems. We stated the problem in a very general form and developed
techniques to strengthen the dual bound (via tailored valid inequalities), to find good
primal solutions quickly (via the overlapping ADM), and to derive provably optimal
solutions using a problem-specific approach (via the adaptive clustering method).
Our numerical results on the maintenance planning problem of the EURO/ROADEF
challenge 2020 and on the quantile-based version of the portfolio optimization
problem show that the combination of these techniques significantly outperforms
the application of general-purpose MILP solvers.

We briefly touched the field of chance constraints that is highly related to the
quantile minimization problems discussed in this paper. Thus, a natural topic of
future research will be to investigate on how to transfer our novel techniques to
improve solution methods for chance-constrained problems.
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Appendix A. Detailed Results for the Instances of the EURO/ROADEF Challenge 2020

Table 5. Results for all methods applied to the A and B instances of the EURO/ROADEF challenge 2020.

MILP MILPVI∗ MILPOADM
VI∗ ASCA

ID vUB vLB gap (%) vUB vLB gap (%) vUB vLB gap (%) vUB vLB gap (%)
A02 4682.57 2075.8 55.67 4676.16 4594.49 1.75 4673.88 4596.33 1.66 4676.99 4570.84 2.27
A05 649.25 593.35 8.61 637.36 615.61 3.41 637.087 615.65 3.36 645.767 602.549 6.69
A08 744.35 710.52 4.54 744.29 739.85 0.6 744.469 739.58 0.66 744.293 729.207 2.03
A11 500.37 456.27 8.81 497.47 477.1 4.09 495.499 476.5 3.83 496.744 471.108 5.16
A14 2275.96 2093.47 8.02 2274.39 2161.94 4.94 2273.4 2161.6 4.92 2298.28 2153.18 6.31
A15 2297.72 2078.2 9.55 2277.11 2163.3 5 2283.86 2164.64 5.22 2309.31 2134.33 7.58
B01 4466.12 1793.44 59.84 3994.03 3839.8 3.86 3992.4 3838.76 3.85 3986.2 3827.57 3.98
B02 4757.6 2000.87 57.94 4332.3 3679.17 15.08 4351.97 3679.01 15.46 4318.82 3602.24 16.59
B03 40780.7 11894.1 70.83 - 34043.6 - 35300.4 34038.7 3.57 35294.3 33815.8 4.19
B04 38202.7 11782.5 69.16 34837.5 33653.8 3.4 34836.2 33660.7 3.37 34845.6 33452.3 4
B05 3234.52 1133.02 64.97 2399.01 2323.41 3.15 2398.92 2324.26 3.11 2399.45 2295.4 4.34
B06 4982.95 1972.34 60.42 4345.36 3684.41 15.21 4335.23 3683.91 15.02 4301.25 3486.57 18.94
B07 8200.08 4396.8 46.38 7817.26 6134.58 21.53 8295.25 6134.69 26.05 7570.9 5766.54 23.83
B08 8242.35 2144.27 73.98 7436.35 7240.81 2.63 7436.3 7239.54 2.65 7436.08 7197.57 3.21
B09 8050.04 2336.22 70.98 7493.25 7262.21 3.08 7495.97 7264.14 3.09 7497.76 7246.02 3.36
B10 11112.6 5745.84 48.29 10806.9 8472.26 21.6 11040.6 8472.3 23.26 10621.9 8461.01 20.34
B11 4061.66 1723.11 57.58 3673.93 3187.98 13.23 3682.11 3187.97 13.42 3646.96 2894.26 20.64
B12 39281.9 14788.8 62.35 37602.8 36690.9 2.42 37606 36690.6 2.43 37632.1 36540.5 2.9
B13 5486.03 2321.9 57.68 5025.11 4843.72 3.61 5025.11 4842.8 3.63 5025.45 4792.55 4.63
B14 12212.5 7428.6 39.17 12039.4 9615.35 20.13 12212.5 9615.35 21.27 12131.2 9059.02 25.32
B15 23749 9867.61 58.45 22574.4 21309.8 5.6 22573.8 21309.8 5.6 23812 14022.6 41.11
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Table 6. Results for all methods applied to the C and X instances of the EURO/ROADEF challenge 2020.

MILP MILPVI∗ MILPOADM
VI∗ ASCA

ID vUB vLB gap (%) vUB vLB gap (%) vUB vLB gap (%) vUB vLB gap (%)

C01 9467.7 2107.45 77.74 8518.94 8233.48 3.35 8524.85 8236.19 3.39 8518.43 8187.43 3.89
C02 3662.99 2201.19 39.91 3580.33 2969.05 17.07 3660.18 2968.88 18.89 3556.65 2777.08 21.92
C03 38448.1 11297.3 70.62 - 31856.5 - 33529.6 31840.7 5.04 33525.9 31611.4 5.71
C04 40790.2 11304.7 72.29 37602.3 36430.4 3.12 37603 36542.9 2.82 37603.5 36183 3.78
C05 4134.92 1061.68 74.32 3167.83 3086.67 2.56 3170.99 3086.54 2.66 3169.41 3077.42 2.9
C06 8910.6 4582.13 48.58 - 6738.91 - 8764.45 6738.76 23.11 8475.4 6270.43 26.02
C07 6101.87 2730.57 55.25 6099.53 5897.3 3.32 6096.17 5895.13 3.3 6085.14 5892.19 3.17
C08 11771.2 6391.58 45.7 - 9180.71 - 11600.4 9180.72 20.86 11212 9171.45 18.2
C09 6421.51 2099.57 67.3 5660.99 4379.42 22.64 5648.66 4380.04 22.46 5634.22 3718.77 34
C10 48983 14502 70.39 43348.8 42013 3.08 43345.1 42013.7 3.07 43353.6 41817.9 3.54
C11 6205.78 2437.72 60.72 5751.26 5499.78 4.37 5751.26 5500.1 4.37 5749.96 5454.68 5.14
C12 13171.7 6946.82 47.26 12951.5 9389.39 27.5 13179.9 9389.62 28.76 13034.2 9132.07 29.94
C13 - 13602 - - 41378.6 - 45607.4 13809.1 69.72 44878.5 - -
C14 - 10695.8 - - 10695.2 - 28329.9 10686.2 62.28 28145.9 13376.2 52.48
C15 - - - 43437.7 14076.3 67.59 43554.5 14076.3 67.68 43147.5 - -
X01 4435.85 2058.52 53.59 4289.81 2870.42 33.09 4531.54 2870.43 36.66 4033.74 2632.89 34.73
X02 37594.5 12194.5 67.56 - 30607.4 - 32254.8 30649 4.98 32242.2 30407.8 5.69
X03 - 4390.86 - - 6487.7 - 8427.73 6487.59 23.02 8136.08 6145.04 24.47
X04 12120.1 5962.21 50.81 - 9011.92 - 11612.5 9011.77 22.4 11375.2 9003.65 20.85
X05 - 10068.4 - - 17700.1 - 23650.5 10086.6 57.35 23649.5 12989.2 45.08
X06 - 718.87 - 47607.6 16203.8 65.96 49435.5 16203.8 67.22 49454.9 - -
X07 14203.8 5594.45 60.61 13278.1 12713 4.26 13233.1 12712.9 3.93 13488.2 - -
X08 - 5351.69 - 13944.4 9904.99 28.97 15190 9904.84 34.79 14151.4 9289.43 34.36
X09 22170.2 8743.09 60.56 - 12894.9 - 22053.1 12894.9 41.53 20266.9 12885.2 36.42
X10 - 7445.86 - 17380.9 15778.7 9.22 17630.9 15777.9 10.51 17410.8 15549 10.69
X11 - 14384 - 39132.3 38112.8 2.61 39133.9 38113.4 2.61 39133.7 37551.6 4.04
X12 - 13952.3 - - 37534.1 - 48594.8 37534.3 22.76 48113 - -
X13 16409.2 8819.77 46.25 - 14040.4 - 16403.5 14022.8 14.51 15987.2 13018 18.57
X14 - 18718.5 - 79583.7 76588.3 3.76 79589.1 76587.7 3.77 82782 58069.3 29.85
X15 - 16558.7 - - 38778.4 - 49584.7 38729.5 21.89 47679.5 - -
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