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REFLECTION OF INTERNAL GRAVITY WAVES

IN THE FORM OF QUASI-AXISYMMETRIC BEAMS

ROBERTA BIANCHINI AND THIERRY PAUL

Abstract. Preservation of the angle of reflection when an internal gravity wave hits a sloping boundary generates a

focusing mechanism if the angle between the direction of propagation of the incident wave and the horizontal is close to
the slope inclination (near-critical reflection). This paper provides an explicit description of the leading approximation of

the unique Leray solution to the near-critical reflection of internal waves from a slope in the form of a beam wave. More

precisely, our beam wave approach allows to construct a fully consistent and Lyapunov stable approximate solution,
L2 -close to the Leray solution, in the form of a beam wave, within a certain (nonlinear) time-scale. To the best of our

knowledge, this is the first result where a mathematical study of internal waves in terms of spatially localized beam

waves is performed.
A beam wave is a linear superposition of rapidly oscillating plane waves, where the high frequency of oscillation is

proportional to the inverse of a power of the small parameter measuring the weak amplitude of waves.

Being localized in the physical space thanks to rapid oscillations (and high variations of the modulus of the wavenumber),
beams are physically more relevant than plane waves/packets of waves, whose wavenumber is nearly fixed (microloca-

lized). At the mathematical level, this marks a strong difference between the previous plane waves/packets of waves
analysis and our approach.

The main novelty of this work is to exploit the spatial localization of beam waves to exhibit a spatially localized,

physically relevant solution and to improve the previous mathematical results from a twofold perspective: 1) our beam
wave approximate solution is the sum of a finite number of terms, each of them is a consistent solution to the system

and there is no artificial/non-physical corrector; 2) thanks to the absence of artificial correctors (used in the previous

results) and to the special structure of the nonlinear term, we can push the expansion of our solution to next orders,
so improving the accuracy and enlarging the consistency time-scale.

Finally, our results provide a set of initial conditions localized on rays, for which the Leray solution maintains

approximately in L2 the same localization.
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1. Introduction

This work is dedicated to the study of beam-type solutions to the two-dimensional Boussinesq system

∂tu− b sin γ + ∂xp− ν∆u = −δ(u∂x + w∂y)u,

∂tw − b cos γ + ∂yp− ν∆w = −δ(u∂x + w∂y)w,

∂tb+ u sin γ + w cos γ − κ∆b = −δ(u∂x + w∂y)b,

∂xu+ ∂yw = 0,(1.1)

in the half space R2
+, with the parameters δ, ν, κ > 0 and γ ∈ (0, π2 ), endowed with the boundary conditions

u|y=0 = w|y=0 = ∂yb|y=0 = 0.(1.2)

System (1.1) describes, after a suitable rotation of coordinates, the phenomenon of internal gravity waves reflecting off
a flat boundary inclined at an angle γ with respect to the horizontal plane. Specifically, the coordinates (x, y) in (1.1)
undergo a rotation of angle γ from the standard Cartesian coordinates (as given in (1.13)). Similarly, the variables
(u,w) represent a rotation of angle γ of the horizontal and vertical components of the velocity field, as presented in
(1.15). Notably, system (1.1) is an outcome of rotating the original two-dimensional Boussinesq system, presented in
(1.5) below, by an angle γ.

In (1.1), the viscosity/diffusion coefficients satisfy the following

ν := εν0; κ := εκ0,(1.3)

where now ε is a dimensionless parameter. The Boussinesq equations (1.1) model an important class of incompressible
flows with variable density. In particular, they find a wide application in oceanography, see for instance [32], where
both the incompressibility and small viscosity/diffusivity assumptions are very good approximations of the reality.

Before stating our mail results in Section 2, let us dedicate the rest of this section to the presentation of the model,
the motivation of our results and the comparison with the existing literature.

Formal derivation of the Boussinesq equations. The starting point for the formal derivation of the Boussinesq
system (1.1) is represented by the non-homogeneous incompressible Navier-Stokes equations with diffusivity

(1.4)

ρ(∂t + u · ∇)u+∇p = −ρg+ ν∆u,

(∂t + u · ∇)ρ = κ∆ρ,

∇ · u = 0,

where x = (x1, x2) ∈ R2, the spatial gradient ∇ = (∂x1
, ∂x2

)T , the unknowns ρ = ρ(t,x), u = u(t,x) = (u1, u2)
T ,

p = p(t,x) represent density, velocity field and scalar pressure respectively, while g = (0, g) is the gravity vector
and ν, κ > 0 are the viscosity and diffusivity coefficients. A derivation of those equations starting from the Navier-
Stokes Fourier system, in the limit of the Oberbeck-Boussinesq approximation, is performed for instance in [11].
It is customary to introduce some additional hypotheses to obtain the so-called Boussinesq equations. We explain
this in the following. In many physical systems of non-homogeneous fluids, the variations of the density profile are
negligible compared to its (constant) average. One then assumes that the equilibrium stratification is a stable profile
ρ̄(x, y) = ρ̄(y), with ∂yρ̄(y) < 0. Among all the possible stratification’s equilibria, one usually takes into account
locally affine profiles, so that ∂yρ̄(y) is constant, see [1, 16] and references therein. One linearizes equations (1.4)
around the hydrostatic equilibrium, namely a steady solution with zero velocity field such that

(ρ, u, w, p) = (ρ̄(y), 0, 0, p̄(y)),

where p̄′(y) = −gρ̄. More precisely, we consider the following expansions.

ρ(t,x) = ρ̄(y) + ρ̃(t,x);

u1(t,x) = ũ1(t,x), u2(t,x) = ũ2(t,x);

p(t,x) = p̄(y) + ρ0P̃ (t,x),

with ρ̄(y) = ρ0 + r(y), where ρ0 is the (constant) averaged density and r(y) is a function of the vertical coordinate,
such that r′(y) < 0. Plugging the previous expansions in system (1.4), one applies the Boussinesq approximation, see
[32], which consists in neglecting density variations in all the terms but the one involving gravity. In other words, in
the Boussinesq regime, the restoring force of equilibrium’s fluctuations is gravity: it is an application of Archimedes’
principle. Since gravity has a direct impact on the equation satisfied by the vertical velocity u2, one focuses on it.
After plugging the above expansions into it, one obtains

(ρ̄(y) + ρ̃)(∂tũ2 + ũ · ∇ũ2)− gρ̄(y) + ρ0∂yP̃ = ν∆ũ2 − gρ̄(y)− gρ̃,
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which yields

∂tũ2 +
ρ0∂yP̃

(ρ̄(y) + ρ̃)
=

ν

ρ̄(y) + ρ̃
∆ũ2 − g

ρ̃

(ρ̄(y) + ρ̃)
− ũ · ∇ũ2.

Relying on the Boussinesq hypothesis, one neglects all density variations but the gravity term gρ̃. Then we replace
ρ̄(y) + ρ̃ in the above equation by the averaged constant density ρ0. Now, denoting ν̃ := ν

ρ0
, the equation satisfied by

the fluctuation of the vertical velocity reads

∂tũ2 + ∂yP̃ = ν̃∆ũ2 − gρ̃− ũ · ∇ũ2.
Applying the same reasoning to the density equation, one gets

(∂t + ũ · ∇)ρ̃+ ũ2∂yρ̄(y) = κ∆ρ̃.

Introducing the buoyancy variable b := g
ρ0
ρ and dropping the tilde ˜for lightening the notation, we obtain

(1.5)

∂tb−N2u2 = κ∆b− u · ∇b,
∂tu1 + ∂x1

P = ν∆u1 − u · ∇u1,
∂tu2 + ∂x2

P = ν∆u2 − b− u · ∇u2,
∂x1u1 + ∂x2u2 = 0,

where

N2 = −gρ̄
′(y)

ρ0
(1.6)

is the Brunt-Väisälä frequency, which is a strictly positive quantity (as ρ̄′(y) < 0, for a stable stratification) representing
the maximal frequency of oscillations of internal gravity waves, propagated by the Boussinesq system, see [32, 13, 1].
These waves are studied in detail in the discussion below, where we work under the linear stratification assumption: we
assume that the background density profile ρ̄(y) is an affine function, so that ∂yρ̄(y) = constant. In the ocean and the
middle atmosphere, this hypothesis is realistic, see for instance [13, 34], but more general background stratifications
are also of great interest, see [34]. When the Brunt-Väisälä frequency N is not constant and is instead a function of
y, the wave dynamics is governed by a Sturm-Liouville problem, which is described in [34] and studied in [16]. This
more general framework is out of the scope of the present work.

The Boussinesq system (1.1) under the inviscid and linear approximation (with ν = κ = 0) is a system of (internal
gravity) waves. The dispersion relation of these waves can be derived in analogy with acoustic/electromagnetic waves.
More precisely, we seek for a solution to system (1.5) with ν = κ = 0, in the form of a superposition of plane waves, i.e.
e−iωt+ik·x(u,w, b, p)T , with x = (x1, x2) the spatial coordinate and k = (k1, k2) ∈ R2 the wavenumber. Such a plane
wave is a solution of the system under a dispersion relation between the parameters, expressing the time frequency
ω = ω(k1, k2) as a function of the wavenumber k = (k1, k2). For two-dimensional internal gravity waves, it reads

ω2(k1, k2) =
k21

k21 + k22
= sin2 θ,(1.7)

where θ is the angle between the wave direction (the group velocity) and the horizontal x2 = 0.
The Boussinesq system (1.1) under investigation in this paper is obtained from (1.5), after applying a rotation of

the (x1, x2) coordinates of an angle γ (see (1.13)) and denoting by (x, y) the new spatial coordinates and by (u,w)
the rotated velocity field. The smallness of the fluctuations ρ̃, ũ in (1.5) is represented, in the rotated system (1.1),
by the small parameter δ > 0, which measures the small amplitude of waves.

We finally recall that, in the context of incompressible flows, the scalar pressure p can be simply seen as a Lagrange
multiplier assuring the divergence-free condition in (1.1). This implies that the scalar pressure p can be always
recovered from the vector field (u,w)T , by using the Helmholtz-Hodge decomposition (the Leray projector), see [8].
For this reason, in the course of this paper we discard the scalar pressure p from our unknown vector field, which will
be denoted by (u,w, b)T .

The importance of working with beams. In the near-critical reflection of internal gravity waves, an incident
wave hits a slope of angle γ with respect to the horizontal. This happens for instance in the ocean, where internal
gravity waves interact with the bottom topography, see for instance the numerical simulations in [25] and the laboratory
experiments from the group of Dauxois [34] and Maas [30]. When the fluid is further confined, it leads to the formation
of attractors, as found in laboratory experiments in [30, 15] and rigorously proved (with some further assumptions)
in [10, 18, 19]. We consider an incident internal wave hitting the sloping boundary. Preservation of the angle of the
reflection generates a focusing mechanism when the difference between the wavenumber of the incident wave and the
slope’s inclination is small. This is due to the very peculiar dispersion relation (1.7) (see [29] for further details), which
assigns the direction of propagation of internal gravity waves rather than fixing the modulus of the wavenumber. Even
if the size of the incident wave is small, the amplitude of the wave reflected (in the inviscid case where ν = κ = 0 in
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(1.1)) from the slope is enhanced because of the interaction with the sloping boundary and the energy accumulates
along it. This energy focusing plays a role in the quadratic nonlinear terms by radiating a second harmonic and a
mean flow which are not confined to the boundary, so that the energy is transferred from the boundary layer to the
outer region. This phenomenon is described in [13]. A rigorous mathematical study is provided in [1]. In particular,
[1] provides a consistent and Lyapunov stable solution in L2(R2

+), which is made of packets of waves: those packets
are linear superpositions of plane waves, whose wavenumbers are very strongly localized around a given wavenumber
k0 in the frequency space. The counterpart of the strong frequency localization, which makes the packets of waves of
[1] very close (at least in L∞) to single plane waves (although they have L2 finite energy) is the fact that the packets
of waves of [1] are very spread in all directions of the physical space. In this paper, we adopt a different point of view:
we want to work with beams, which are wave-packets spatially localized along their axis of propagation (a localization
corresponding precisely to the upslope and downslope reflection introduced in [13]). Axisymmetric beams are widely
investigated in physics, see for instance [33, 3] and the dedicated section in [34]. There are several reasons for being
interested in the dynamics of beams. One of them is the fact that their behavior in the context of instabilities of
internal waves is very different from the case of plane waves. As explained in [34], the finite width of beams reduces
the time of energy absorption from unstable modes and therefore it reduces (and in some cases avoid) instabilities.
This is connected to the help of spatial localization in preventing time resonances (and related time growths) that
is also a key point of the space-time resonance method and the null structures of [22, 24, 9]. The interest in the
dynamics of internal gravity wave beams is one of the motivations of our work. In particular, we are able to provide
the following explicit characterization: the Leray solution to the near-critical reflection of internal waves in L2(R2

+)
is L2 close to a (finite) sum of (spatially localized) beam waves. Another motivation to this work has been raised in
[1], where the approximate solution to the near-critical reflection problem contains a non-physical term/corrector that
is not a consistent solution, so preventing any further improvement of the accuracy of the approximation and/or the
extension of its time of validity. Our approach will allow to overcome this problem: we will provide a fully consistent
and improved approximate (beam wave) solution in terms of accuracy. This aspect will be further detailed below.

The criticality of the near-critical reflection phenomenon is measured in terms of closeness between the angle of the
incident internal wave and the angle of the slope. We therefore define the criticality parameter as follows

ζ := sin2 θ − sin2 γ = ω2 − sin2 γ.(1.8)

The physical literature on this problem is quite vast, we refer to the first investigation that goes back to 1999 and it
is due to Dauxois & Young [13], but we point out that this is still an active direction of research in physics, see for
instance [23]. In the setting of Dauxois & Young, see [13], the considered scaling relation is

|ζ| ∼ ε1/3.(1.9)

Recalling that the dimensionless parameter 0 < ϵ ≪ 1 represents the size of viscosity/diffusivity (ν ∼ κ ∼ ϵ) as
detailed in (1.3) (where physical dimensions are encoded in ν0 and κ0, such that ν = ν0ϵ and κ = κ0ϵ), it is noteworthy
that relation (1.9) establishes a connection between the criticality parameter ζ and the size of viscosity/diffusivity.
According to [13, page 278], “the main justification for these choices is a posteriori - they work in the sense that the
dissipative terms are comparable to the others in the final amplitude equation”. To elaborate, the approach in [13]
relies on asymptotic expansions at distinct orders followed by matching conditions of equations within the inner (near
the slope) and outer (far from the boundary) regions. The amplitude of the leading-order term is determined through
this matching process by the lower-order expansion. Although our linear analysis in Section 3 adopts a different
mathematical approach, inspired by [14], and our matching is performed at the boundary of the physical domain (the
slope) where suitable boundary conditions are imposed by the system, our leading-order equations for both the inner
and outer regions align with those in [13]. Thus, in this work, we adopt the scaling relation (1.9) for the same reason.

We consider a rotated coordinate system, with rotation angle given by the slope of inclination γ. The rotated
coordinates (see Figure 1 below) will be denoted by (x, y). Setting the notation k = (k,m) for the wavenumber in the
rotated coordinate system (x, y), the dispersion relation reads

(1.10) ω2
k,m = ω2(k,m) =

(k cos γ −m sin γ)2

k2 +m2
.

We also introduce the rotated coordinates (x∗, y∗), where x∗ is the direction along the wavenumber k (which forms
an angle θ with the vertical) and y∗ its orthogonal (i.e. the direction given by the group velocity of the beam wave
of wavenumber k). We localize the beam wave in the physical space, along the direction x∗ of its wavevector (or
wavenumber) k, which is orthogonal to its group velocity. The spatial localization is expressed in terms of high
oscillations driven by a small parameter σ. Notice that at this stage we do not assume any relation between ε and σ.

We consider the following form of a quasi-axisymmetric incident beam wave

W0
inc =M

∫
R2

Xk,mψ̂ε,σ(k
∗
1 , θ) e

−iωt+ikx+my dk dm,(1.11)
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Figure 1. Coordinate systems

where ψ̂ε,σ(k
∗
1 , θ) is a compactly supported C∞

0 function that will be introduced more precisely later on,M is a (strictly
positive) normalizing constant which will be determined in the following, and Xk,m is the eigenvector of the form

Xk,m =


1
−k
m

i(k cos γ−m sin γ)
mωk,m

1
k [ω + sin γ (k cos γ−m sin γ)

mωk,m
]

 .(1.12)

The above expression of (almost) axisymmetric beam wave has been inspired by several works in theoretical physics
on internal gravity wave beams, in particular the group of Akylas, see for instance [33, 21]. As explained in [34],
laboratory experiments on internal wave beams are realized by means of a beam wave generator, that is for instance
a cylinder oscillating at a fixed frequency in a uniform stratification.

As we report from [34], “Each wave beam is a combination of plane waves over a continuous range of wavenumbers,
resulting in the energy being present only over a finite width (along the common wave vector direction) in space. The
cylinder diameter imposes a length-scale on the finite width of the wave beams.” Here, this length-scale is represented
by the parameter σ in (1.11). Notice in particular that the superimposed plane waves inside the integral (1.11) have
the same (fixed) direction of propagation, so that the time-frequency ω = ω0 is also fixed, while the modulus of their
wavenumber takes values in an interval that is bounded by σ−1. In fact, we see in [(2.9), [34]] that, in the physics
literature, an axisymmetric beam is defined as

ψ(t, x, y, θ) = e−iω0t

∫ ∞

0

Ψ(|k|)eikx+imy d|k|+ c.c.,

for some smooth and compactly supported function Ψ. In the laboratory studies on the reflection of internal waves
from a slope (and internal wave attractors) by the group of Maas & Dauxois, the angle of inclination of the slope is
slightly modified by changing the trapezoidal geometry of the domain.

The mathematical approach that we adopt here provides a rigorous description of this situation. Our (incident)
beam wave (1.11) is a superposition, spread enough to provide localization in physical space, of plane waves whose
direction (angle of the dispersion relation (1.7)) is almost fixed, so providing a quasi-axisymmetric beam wave. The
angle θ in (1.11) (and in Definition 2.1 later on) models the near -criticality of the problem.

Comparison with the existing literature and presentation of our results. The Boussinesq equations attracted
the interest of the mathematical community thanks to their wide range of applications and to some common features
with 3D incompressible fluids: the inviscid 2D Boussinesq equations are equivalent to the incompressible axi-symmetric
3D Euler equations [31]; the global well-posedness of the 2D inviscid Boussinesq system is still largely open (see for
instance [20]), and a very active research direction focuses on the minimal amount of viscous/diffusive dissipation (see
[5, 7]) and/or damping (see [6]) that guarantees long-time well-posedness of the system. The near-critical reflection of
internal waves in two dimensions is well understood within a certain time-scale depending on the physical parameters of
the system: after a theoretical investigation due to Dauxois & Young [13], the mathematical theory of this phenomenon
was established by the first author, A.-L- Dalibard and L. Saint-Raymond in [1] (see also [2] for the linear analysis
with different sizes of viscosity and diffusivity). The approximate solution of [1] contains a non-physical corrector to
replace a mean flow that is degenerate (see [page 219, [1]), in the sense that its very slow decay does not assure in
general the boundedness of its L2 norm (of its energy) and therefore it cannot be implemented in the construction of
the solution. The idea adopted in [1] to solve this issue is to use a non-physical corrector to assure stability, but this
rules out any possibility to improve the accuracy/time-scale of validity as the non-physical corrector is not a consistent
approximation to system (1.1). In this paper, we overcome this problem by constructing a spatially localized beam
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wave approximate solution to the near-critical reflection of internal waves. In particular, our approximate solution is
constituted by all “physical” terms, i.e. consistent approximations to (1.1), and all the spatially localized wave-beam
terms of our solution have finite L2 norm. Thus, in this paper we are able to construct a fully consistent and L2

stable approximate solution to the near-critical reflection of internal waves in the half-plane (Theorem 2.8). We also
show that the accuracy of our approximate solution can be further improved (Theorem 2.10), by exploiting the null
structure of the convection term for incompressible flows which was already pointed out in [13]. Finally, a byproduct of
our result is the characterization of the (unique) Leray solution to this problem within a certain (nonlinear) time-scale:
we prove that the Leray solution, emanating from a suitable set of initial conditions concentrated approximately on
rays, maintains the same localization (Theorem 2.12).

To conclude, the beam wave approach is crucial in this work and it marks a strong difference with respect to [1]:
besides the physical relevance of beam waves ([33, 21]), it allows to characterize the Leray solution in the physical
space, to obtain consistency and to improve the accuracy of the approximate solution.

Notation and conventions. We use the following notation and conventions.

• The coordinates (x1, x2) denote the usual two-dimensional reference system. We will also use the following
rotated coordinate systems

x = x1 cos γ + x2 sin γ;

y = −x1 sin γ + x2 cos γ.(1.13)

x∗ = x1 sin θ + x2 cos θ;

y∗ = −x1 cos θ + x2 sin θ,(1.14)

see Figure 1. Accordingly, we introduce the new variables (u,w), representing a rotation of angle γ of the
original unknowns (u1, u2), i.e.

u = u1 cos γ + u2 sin γ;

w = −u1 sin γ + u2 cos γ.(1.15)

• Throughout this paper, we will use the convention a = O(b), a ∈ R, b ∈ R, if there exists C > 0 such that
a ≤ Cb.

• We use the notation a ≈ b, a, b ∈ R if there exist uniform constants c > 0, C > 0 such that a ≥ cb, a ≤ Cb.
• For any fε = f(ε), gε = g(ε) = εaḡ with a ∈ R, ḡ ∈ R, we use the notation fε ∼ gε if gε is the leading order
term of the expansion of fε in terms of ε, i.e. lim

ε→0
ε−afε = ḡ (this corresponds to the usual definition of

equivalence).

• Given a function f(x), we denote by f̂(ξ) its Fourier transform, namely

f̂(ξ) =

∫
e−iξ·xf(x) dx.

2. Main results

A very general form of wave beam is given by (1.11). The assumptions on ψ̂ε,σ(|k|, θ) will be introduced later on.
Note that since k = (k,m) is the rotation of angle γ in (1.13) of (k1, k2), and (k∗1 , k

∗
2) is the rotation of angle θ (in

Figure 1) in (1.14) of (k1, k2), then

exp(ikx+ imy) = exp(i|k|(x sin(θ + γ) + y cos(θ + γ))) = exp(i|k|x∗),

and

k∗1 = k1 sin θ + k2 cos θ = |k|.

Then, in (1.11), the function ψ̂ε,σ(k
∗
1 , θ) = Ψ̂ε,σ(|k|, θ), where θ is the direction of the wavenumber k. In the physical

space, our wave beam will be localized in the x∗ direction, which is orthogonal to the wavenumber k (a more precise
description of this localization will be provided in Lemma 2.11).

We provide below the definition of wave beam (hereafter b.w. ) and boundary layer wave beam (resp. b.l.b.w. ).

Definition 2.1. [Beams, boundary layer and incident wave ansatz] In the sequel, recall the notation k = (k,m).
For η > 0, we define

(I) a beam as any function vtbeam in L2(R× R+) of the form

vtbeam(x, y) = Iy ≥ 0(y)

∫ ∞

η

∫ 2π

0

Ψ̂(|k|, θ)e−iΩk,mt+ik(x−x0)+imy |k| d|k| dθ,(2.1)
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(II) a boundary layer beam as any function vtBL in L2(R× R+) of the form

vtBL(x, y) = Iy ≥ 0(y)

∫ ∞

η

∫ 2π

0

Ψ̂(|k|, θ)e−iΩk,mt+ik(x−x0)−λ(k)y |k| d|k| dθ,(2.2)

where

• Ψ̂(|k|, θ) is a C∞compactly supported function in (|k|, θ);
• the time frequencyΩk,m is a function of (k,m) = k;

• Re(λ(k)) > 0 for all k, |k| ≥ η;

(III) a beam wave (b.w. ) as a three dimensional vector whose components are beams;

(IV) a boundary layer beam wave (b.l.b.w. ) as a three dimensional vector whose components are boundary layer
beams.

The two following objects are crucial in our analysis:

(V) the incident b.w. as the following b.w. solving the linear part of system (1.1)

W0
inc :=

σ

ε1/6

∫ 2π

0

∫ ∞

η

Ψ̂ε,σ(|k|, θ)Xk,me
−iωk,mt+ik(x−x0)+imy |k| d|k| dθ,(2.3)

where
(a) for any 0 < ε, σ ≪ 1 in the regime of Assumption 2.5, we define

Ψ̂ε,σ(|k|, θ) : = χ(σ|k|)
(
χ′
(
sin θ − sin γ

ε1/3

)
χ′
(
cos θ − cos γ

ε1/3

)
+ χ′

(
sin θ + sin γ

ε1/3

)
χ′
(
cos θ + cos γ

ε1/3

))
,(2.4)

whereχ = χε,σ, χ
′ = χ′

ε,σ ∈ C∞
0 with compact support, uniformly in ε, σ;

(b) the eigenvector Xk,m is given by (1.12);
(c) the time frequency ω = ωk,m is given by the dispersion relation (1.10), i.e.

ω = ω± = ±k cos γ −m sin γ√
k2 +m2

,(2.5)

and, for the beam to be incident, since γ > 0, we choose the sign of the time frequency ω±(k,m) in (2.5)
in such a way that

∇k,mω±(k,m) · (0, 1)T < 0;

(VI) a linear b.l.b.w. of order (α, β, p, q) as a b.l.b.w. in (II) solving the linear part of system (1.1); it has the general
form

Wλ
BL,εα :=

σ

ε1/6

∫ 2π

0

∫ ∞

η

Ψ̂p,q
ε,σ(|k|, θ)Xk,λe

−iωk,mt+ik(x−x0)−λ(k)y |k| d|k| dθ,(2.6)

where
(a) α > 0,
(b) for any 0 < ε, σ ≪ 1 in the regime of Assumption 2.5, and for any p, q ∈ R,

Ψ̂p,q
ε,σ(|k|, θ) : = ap,q(ε, |k|)Ψ̂ε,σ(|k|, θ) where ap,q(ε, |k|) = O(εp|k|q) and Ψ̂ε,σ is defined in (2.4);(2.7)

(c) there exists a function ℓ(θ) ∈ C∞(suppΨ̂p,q
ε,σ,C); Re(ℓ) > 0 such that lim

ε→0
εαλ(k) = ℓ(θ)|k|β , β ∈ R;

(d) the eigenvector Xk,λ is given below in (3.7);
(e) the time frequency ω = ωk,m is in (2.5), with the same convention.

The following objects will appear in the course of our proofs:

(VII) a degenerate boundary layer beam wave of order (α, β, p, q), any (family of) function(s) Wλ
BL,εα given by (2.6),

with α ≤ 0;

(VIII) a mean flow beam of order (p, q), any (family of) function(s) b.w. WMF as in (III), where the function Ψ̂(|k|, θ)
localizes near Ωk,m ∼ 0 as ε→ 0;
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(IX) a second harmonic beam wave of order (p, q), any (family of) function(s) WII as in (III), where the function

Ψ̂(|k|, θ) localizes near Ωk,m ∼ ±2ωk,m as ε→ 0, and ωk,m being given by (2.5);
(X) a mean flow b.l.b.w. of order (α, β, p, q), any (family of) function(s) WBL;MF as in (IV), where the function

Ψ̂(|k|, θ) localizes near Ωk,m ∼ 0 as ε→ 0;

(XI) a second harmonic b.l.b.w. of order (α, β, p, q), any (family of) function(s)WBL;II as in (IV), where the function

Ψ̂(|k|, θ) localizes near Ωk,m ∼ ±2ωk,m as ε→ 0, and ωk,m being given again by (2.5).

Some remarks are in order.

Remark 2.2. We point out that, when evaluated at y = 0, beams and boundary layers are expressed by the same
formula in Definition 2.1.

Remark 2.3. Notice that, for any fixed ω ∈ R, there exist four frequency vectors k ∈ R2 fulfilling the relation

ω2 = sin2 θ = (sin2 θ)(k). However, the amplitude Ψ̂ε,σ in (2.4) selects the two (out of four) b.w. or b.l.b.w. with
collinear frequency vectors. We also remark that the sign of ω = ω± in Definition 2.1 point (e) is chosen in such a
way that

∇k,mω± · (0, 1)T = ∓k(m cos γ + k sin γ)

(k2 +m2)3/2
< 0.

As the support of Ψ̂ε,σ forces θ = γ +O(ε
1
3 ) or θ = γ + π +O(ε

1
3 ), we can check that in both cases the function

ω+ =
k cos γ −m sin γ√

k2 +m2

satisfies the incidence condition ∇(k,m)ω+ · (0, 1)T < 0. In other words, it automatically follows from the incidence

condition that k and ω always have the same sign. In fact, ω = sin θ = sin γ + O(ε
1
3 ) > 0 (in polar coordinates)

if k > 0 and ω = sin θ = sin(γ + π) + O(ε
1
3 ) < 0 if k < 0. This remark will be important in the linear boundary

layer analysis of the next section, where in some cases the sign of k/ω determines the sign of Re(λ(k)) of b.l.b.w. in
Definition 2.1.

Let us state immediately the following lemma that estimates the norms of vbeam and vBL and which is proven in
Appendix A below.

Lemma 2.4. Let vtbeam be any beam (b.w. ) of order (p, q) and vtBL be any boundary layer beam (b.l.b.w. ) of order
(α, β, p, q). Then, uniformly in t ∈ R+,

∥vtbeam∥L2(R×R+) = O(εpσ−q);

∥vtBL∥L2(R×R+) = O(ε
1
6+p+α

2 σ−q− 1
2 );

∥vtbeam∥L∞(R×R+) = O(εp+
1
6σ−q−1);

∥vtBL∥L∞(R×R+) = O(εp+
1
6σ−q−1).(2.8)

Moreover, the following hold.

(i) ∂xv
t
beam, ∂yv

t
beam are b.w. of order (p, q + 1).

(ii) ∂xv
t
BL (resp. ∂yv

t
BL) is a b.l.b.w. of order (α, β, p, q + 1) (resp. (α, β, p− α, q + β)).

(iii) Given vtBL, v
′t
BL b.l.b.w. of order (α, β, p, q) and (α′, β′, p′, q′) respectively, and vtbeam, v

′t
beam b.w. of order (p, q)

and (p′, q′), one has the following estimates:

∥vtbeam × v′tbeam∥L2(R×R+) = O(εp+p′+ 1
6σ−1−q−q′)

∥vtBL × v′tBL∥L2(R×R+) = O(εp+p′+
max{α,α′}

2 + 1
3σ− 3

2−q−q′),(2.9)

∥vtBL × v′tbeam∥L2(R×R+) = O(εp+p′+α
2 + 1

3σ− 3
2−q−q′).

Lemma 2.4 (together with other features that will appear in the course of our proofs) leads to the following general
hypothesis on the parameters present in our analysis.

Assumption 2.5 (Admissible range of the involved parameters). First, we assume that γ ∈ (0, π2 ). The scaling
assumptions in terms of the dimensionless parameter ε are listed below.

• ν = εν0, κ = εκ0, [scaling of viscosity/diffusion coefficients]

• δ = O(σ
2
3 ε

1
2 ) [strength of nonlinearity w.r.t. beam spatial concentration and critical parameter ]

• σ > εµ for any 0 < µ < 1
8 . [order of viscosity/diffusion w.r.t. spreading in frequencies of the beam ]
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First, the case γ = π
2 corresponds to the very degenerate case of the vertical propagation of internal gravity waves,

which is excluded from our analysis (and for γ = 0 there is no slope).
The first scaling condition is simply the smallness of the viscosity ν and diffusivity κ coefficients. The third one is

dictated by the range of validity of the asymptotic expansions of the roots of the boundary layers in the next section,
which is chosen to be in accordance with the studies of [13]. If they are violated, different asymptotics for the decay
of the boundary layers (see the next section) should be expected. This is out of the scope of the present investigation.
The condition on the weakly nonlinear parameter δ is the minimal assumption (i.e. the maximal order of δ) which
allows to prove that the approximate solution to system (1.1) constructed in this work is stable in L2(R2

+) (i.e. close
to the Leray solutions) for a (large) logarithmic time-scale given by (2.12). The smaller is δ, the larger is the stability
time-scale.

Remark 2.6. It is interesting to compare Definition 2.1 ((V) and (VI)) with the setting of [1]. In [1] (see (2-14)-

(2-16), pp. 223-224 in [1]), the wavenumbers of the superposed waves k = (k,m) is an ε
1
3 correction of the critical

wavenumber k0 = (k0,m0), so that its modulus (not only the angle) is almost fixed, i.e. |k| ∼ |k0|. In this work,
instead, the modulus of the wavenumber is upper bounded by σ−1 ≤ ε−µ (where σ ≪ 1, so that σ ≫ 1 as µ > 0), while

its inclination θ is an ε
1
3 correction of the critical angle γ. Thus, in this work we deal with a more general framework

where the spatial frequency of oscillations of the superimposed waves can vary largely. The choice of (almost) fixing
the angle/direction of the wavenumber is natural in the context of internal gravity waves, whose anisotropic dispersion
relation is completely determined by the inclination of the wavenumber, see [1, 13, 10].

Remark 2.7 (On the existence of Leray solutions). It follows from the standard theory on the two-dimensional Navier-
Stokes equations in general domains (see [8]), which can be readily extended to the two-dimensional Boussinesq system
(1.1) in the half-plane, that there exists a unique global-in-time weak solution W(t) to system (1.1) in C(R+;V′

σ) ∩
L∞(R+;L2(R2

+)) ∩ L2
loc(R+;Vσ), where Vσ := {(u,w, b) ∈ H1(R2

+); ∂xu + ∂yw = 0} and V′
σ is the dual of Vσ, with

initial data W0 := W(0) ∈ L2(R2
+). The proof of that, which is an adaptation of the argument in [8], can be found in

the Appendix of [1].

The main aim of this work is to prove the following three theorems.

Theorem 2.8 (Consistency & stability). Let W0
inc be any incident b.w. (beam wave) defined by (2.3)-(2.5) for some

χ, χ′.
Assume the validity, for any 0 < ε≪ 1, of the Assumptions 2.5 on the scaling parameters of the Boussinesq system

(1.1).
Then, there exists an approximate solution Wapp to system (1.1) of the form

Wapp = (uapp, wapp, bapp)T := W0
inc +WBL +WII +WMF,

where WBL is a b.l.b.w. (boundary layer beam wave), WII is a second harmonic b.w. (double time frequency of the
incident beam wave), WMF is a mean flow b.w. (almost vanishing time frequency).

More precisely, the following results hold true.
(i) Wapp is a consistent approximation to system (1.1), in the sense that it satisfies the following system

∂tu
app − bapp sin γ + ∂xp

app − ν∆uapp = −δ(uapp∂x + wapp∂y)u
app +Rapp

u ,

∂tw
app − bapp cos γ + ∂yp

app − ν∆wapp = −δ(uapp∂x + wapp∂y)w
app +Rapp

w ,

∂tb
app + uapp sin γ + wapp cos γ − κ∆bapp = −δ(uapp∂x + wapp∂y)b

app +Rapp
b ,

∂xu
app + ∂yw

app = 0,

with a remainder

Rapp = (Rapp
u , Rapp

w , Rapp
b )T = O(max{δε 1

6σ−2, δ2ε−
1
3σ− 5

2 }) in L2(R2
+).

In particular, when δ = O(ε
1
2σ

2
3 ) (Assumptions 2.5),

∥Rapp∥L2(R2
+) = O(δε

1
6σ−2) = O(ε

2
3σ− 10

3 ).

(ii) Wapp is a stable approximation to system (1.1) in the following sense. Consider the unique global-in-time Leray
solution W(t) = W(t, x, y) to system (1.1) in C(R+;V′

σ) ∩ L∞(R+;L2(R2
+)) ∩ L2

loc(R+;Vσ), where Vσ := {(u,w, b) ∈
H1(R2

+); ∂xu+∂yw = 0} and V′
σ is the dual of Vσ, with initial data W(t = 0) = Wapp(t = 0). Then, for any t ∈ R+,

∥Wapp(t)−W(t)∥2L2(R2) ≤ Cδε
5
6σ− 10

3 exp
(
δε−

1
2σ− 2

3 t
)
.(2.10)

Proof of Theorem 2.8. (i) The first part of the theorem is proven in Corollary 4.2 in Section 4 below.
(ii) The construction of the approximate solution Wapp will be the main body of the paper. The existence of a unique
global-in-time Leray solution W, which satisfies the energy inequality
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∥W(t)∥2L2(R2
+) + 2εν0

∫ t

0

(
∥∇u(s)∥2L2(R2

+) + ∥∇w(s)∥2L2(R2
+)

)
ds

+2εκ0

∫ T

0

∥∇b(s)∥2L2(R2
+) ds ≤ ∥W0∥2L2(R2

+),(2.11)

is classical and it follows by applying the Spectral Theorem to the inverse of the Stokes operator acting on the half
plane (see Remark 2.7 and [1, 8] for details, we omit them). It provides a regularized solution Wk(t), for which we
can derive an energy inequality (the inequality is rather for the difference Wapp −Wk)

d

dt
∥Wapp −W∥2L2(R2) + ⟨LεWapp −W,Wapp −W)(t)⟩L2(R2)

+ εν0(∥∇(uapp − u)∥2L2(R2) + ∥∇(wapp − w)∥2L2(R2)) + εκ0∥∇(bapp − b)∥2L2(R2)

≤ 2δ√
εσ2/3

∥Wapp −W∥2L2(R2) +

√
εσ2/3

δ
∥Rapp∥2L2(R2),

which gives the desired control thanks to the skew-symmetry of Lε, using δ∥∇Wapp∥L∞(R2
+) = O(δε−

1
2σ− 2

3 ) (from

Proposition 3.1 and Corollary 3.2), and using the estimate of ∥Rapp∥L2(R2) from Corollary 4.2. □

Remark 2.9 (Consistency & Stability). Notice that the requirements for consistency alone and consistency and

stability are different. In fact, consistency is ensured as long as ∥Rapp∥L2 = o(1), i.e. δ ≪ σ2ε−
1
6 , while a more

restrictive condition, i.e. δ = O(ε
1
2σ

2
3 ), is needed to have stability. The stability estimate (2.10) implies that, if

δ ∼ ε
1
2σ

2
3 , then

∥Wapp(t)−WLeray(t)∥2L2 = O(δε
5
6−

10
3 µ) exp(t),

so that ∥Wapp(t)−WLeray(t)∥L2 = o(1) within the logarithmic time-scale

T δ
log = o(log(ε−

5
6σ

10
3 δ−1)) = o(log(ε−

4
3σ

8
3 )).(2.12)

To have a longer stability time-scale, δ has to be smaller, namely the stability time-scale depends on the weakly
nonlinear parameter δ.

The approximate solution Wapp will be constructed in the following by a fixed point argument: we start from
the linear solution, then we correct the quadratic interactions due to the convection term. We could try to improve
the approximation by iteration, correcting the trilinear, quartic interactions and so on. However, the obstruction is
represented by the possible appearance of secular growths (see for instance [27]). A classical example of secular growth
is the weakly damped harmonic oscillator

ẍ+ 2εẋ = 0, x(0) = 0, ẋ(0) = 1.

The approximation at order ε reads xapp(t) = sin(t) − εt sin(t), so that the perturbation expansion becomes invalid
starting from the time-scale t ∼ ε−1.

The approximate solution Wapp provided by Theorem 2.8 contains correctors to the quadratic terms. We shall see
in the following that in our case trilinear interactions can always be corrected as secular growths do not appear thanks
to the structure of the convection term for divergence-free vector fields. Therefore, the approximate solution Wapp

can be improved, by providing a more accurate consistent solution W̃app which contains the two next order terms
of the expansion (so taking into account trilinear and quartic interactions, but secular growth could be generated by
quintic interactions). This is the content of the following result, whose proof is given in Section 5.1.

Theorem 2.10. Let Wapp be the approximate solution constructed in Theorem 2.8. For any t > 0, there exists a

corrector W̃corr(t) ∈ L2(R2
+), such that

W̃app := Wapp + W̃corr

is a consistent approximate solution to system (1.1) in the sense of Theorem 2.8, with a remainder R̃app(t) such that

∥R̃app(t)∥L2 = o(δ3ε−
5
6σ− 19

6 t).

When δ = O(ε
1
2σ

2
3 ) (Assumption 2.5), then

∥R̃app(t)∥L2 = o(ε
2
3σ− 7

6 t),

and the consistency time-scale Tc ≫ ε−
2
3σ

7
6 .

In the following result, we prove how beam waves are localized in the physical space. This marks a strong difference
with respect to the solution constructed in [1].
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Lemma 2.11 (beam waves are localized in the physical space). The support of the incident beam wave (b.w. ) in
(2.3) is concentrated, as ε goes to 0, inside the following union of cones of the (upper) half plane

C = C+ ∪ C−,(2.13)

where, for υ > 0 small enough,

C+ = {(x, y) ∈ R2
+ : −σ1−υ ≤ (x− x0) sin(2γ + ε

1
3−υ) + y cos(2γ + ε

1
3−υ) ≤ σ1−υ};

C− = {(x, y) ∈ R2
+ : −σ1−υ ≤ (x− x0) sin(2γ + π + ε

1
3−υ) + y cos(2γ + π + ε

1
3−υ) ≤ σ1−υ},

in the sense that

∥W0
inc∥L2(R2

+\C) = O(ε∞)∥W0
inc∥L2(R2

+).

The support of the boundary layer beam waves (b.l.b.w. ) W0
BL,ε1/3

and W0
BL,ε1/2

provided by Proposition 3.1 are

localized in a horizontal strip of size O(ε
1
3−µ), O(ε

1
2−µ) respectively, so that

∥W0
BL,ε1/3∥L2(R2

+); y>εa; a≥ 1
3−µ = O(ε

2
3µ)∥W0

BL,ε1/3∥L2(R2
+),

∥W0
BL,ε1/2∥L2(R2

+); y>εa; a≥ 1
2−µ = O(εµ)∥W0

BL,ε1/2∥L2(R2
+).

Finally,

∥WBL,ε1/3 +WBL,ε1/2∥L2(R2
+\(C∩{y>εa})) = O(ε∞)∥WBL,ε1/3 +WBL,ε1/2∥L2(R2

+).

Proof. From the definition of incident b.w. in (2.3) and integration in |k|, we deduce that there exists a function g(θ)
such that

W0
inc(x, y) =

σ

ε1/6

∫ 2π

0

e−iω(θ)tg(θ)χ̂

(
(x− x0) sin(θ + γ) + y cos(θ + γ)

σ

)
dθ.

As χ is a compactly supported function, it follows that χ̂ is a Schwartz function and therefore the first assertion is
proved.
For the b.l.b.w. results, we consider WBL,ε1/2 (the same argument applies to WBL,ε1/3). From Proposition 3.1, we
know that

WBL,ε1/2(x, y) =
σ

ε1/6

∫ ∞

0

∫ 2π

0

Xk,λ3Ψ̂ε,σ(|k|, θ)e−iωk,mt+(x−x0)|k| sin(θ+γ)−λ3y |k| d|k| dθ,

where λ3 = ε−
1
2 ℓ̃3(θ)(1 +O(ε

1
6 )), so that the concentration of WBL,ε1/2 in a vertical band of size ε

1
2−µ easily follows.

The fact that WBL,ε1/2 +WBL,ε1/3 is concentrated in C is a direct consequence of Proposition 3.1, from which we know
that the boundary contribution WBL,ε1/3 |y=0 +WBL,ε1/2 |y=0 = −Winc|y=0, where Winc is localized in C. The proof is
concluded. □

As it will be clear in the course of the proofs, the approximate solution that we build shares the same localization
than the one in Lemma 2.11. Therefore, applying the aforementioned lemma, we get our last main result.

Theorem 2.12 (Localization of the Leray solution). For any ε > 0 and t = o(log(ε−
4
3σ

8
3 )), the Leray solution

WLeray(t) to system (1.1) with initial condition Win
Leray = Wapp(t = 0) is L2-localized in C defined by (2.13) modulo

ε∞, i.e.

∥WLeray(t)∥L2(R2
+\C) = O(ε∞)∥Win

Leray∥L2(R2
+).

It is interesting to notice that the above cones C+ and C− correspond to the places where the upslope reflection and
the downslope reflection, introduced in [13], take place.

Remark 2.13 (Time-scale of validity of the higher-order approximate solution W̃ app). We would like to provide

some remarks about the improved approximate solution W̃ app, provided by Theorem 2.10. Its validity holds within
a certain time-scale. The time-scale of consistency alone is entirely determined by the possible appearance of secular
growths. More precisely, notice that by definition of boundary layers, the leading part of the approximate solution
(far from the boundary) is given by Wapp = Winc +WII +WMF, where Winc has time oscillations which are localized
around the frequencies ±ω0, and for instance WII oscillates around ±2ω0. Thus in the nonlinear contribution, one
has for instance the term δQ(Winc + WII,Winc + WII). Since the linear part (the linear oscillatory part, without
dissipation) Lε of the operator of system (1.1) in the scaling of the boundary layers contains oscillations ±ω0, then
eLεtQ(Winc,WII) may give rise to linear time growths, which are usually called secural growths, see [13]. In particular,

it might produce an error R̃app = O(δ2ε−
1
3σ− 5

2 t) in L2, so that consistency would hold within a time-scale of the

order Tc = o(δ−2ε
1
3σ

5
2 ) (see the end of the proof of Corollary 4.2). However, we will show in the following that no

resonance (and then no secular growth) is generated by the terms eLεtQ(Winc,WII), e
LεtQ(WII,Winc). This is due to
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some cancellations related to the structure of the convection term for divergence-free vector fields (which satisfies the

Jacobi identity, see [13, 33]). Then, the estimated time of consistency of the improved approximate solution W̃app is

much larger than the above Tc (if δ = O(ε
1
2σ

2
3 )), as stated in Theorem 2.10.

Remark 2.14 (Stability of the higher-order approximate solution W̃ app). Theorem 2.10 states that the higher-order

approximate solution W̃ app is consistent. In fact, consistency is what we prove in Section 5. Notice however that
it can be proved that Lyapunov stability (and L2 closeness to the Leray solution) remains valid for the improved

approximation W̃ app, by simply applying the machinery of Step 2 of Section 4.1 (lifting the boundary conditions) to
each further corrector of the higher order approximation. We will not fully develop this last point in this paper for the

sake of readibility, but we are rather confident that this argument allows to prove that W̃ app is still stable within the

time-scale T δ
log in (2.12) with very small (improved) remainder term R̃app, whose L2 norm is given by Theorem 2.10.

Plan of the paper. The paper is organized as follow. In Section 3, we provide a boundary layer analysis of the
linear part of system (1.1) and we construct an (almost) exact approximate solution to the linear problem. Section 4
is devoted to the weakly nonlinear system (1.1), for which we construct an approximate solution that is constituted
by the linear solution of Section 3 and further terms originating from nonlinear interactions. Section 4 contains also
the proof of Theorem 2.8 (i) in Corollary 4.2. Finally, in Section 5, we show how the approximate solution can be
improved and extended at least to the next two orders of the asymptotic expansion with a very small error in L2 prove
Theorem 2.10 in Section 5.1.

3. Linear analysis

In this section, we solve the linear part of system (1.1) (with δ = 0) by ansatz given by Definition 2.1. In this

definition, the function Ψ̂(|k|, θ) provides different localizations in the Fourier variables or, in other words, different
regimes of the parameter

ζ := ω2 − sin2 γ.(3.1)

The regime ζ ≈ ε
1
3 (i.e. ω ∼ ± sin γ) is called near-critical, according to [13, 1] and will be studied in Section 3.1.

Other regimes where 0 < c ≤ |ζ|, c independent of ε, will be treated in Section 3.3.

3.1. Linear analysis in the near-critical regime ζ ≈ ε
1
3 , ω ∼ ± sin γ. We provide the following result, where we

show that one can construct linear boundary layer beam waves (b.l.b.w. ) to balance the contribution of the incident
wave beam W0

inc (in Definition 2.1, (X)) on the boundary y = 0.

Proposition 3.1 (Critical reflection for a beam wave (b.w. ) ). Let ν0 > 0, κ0 > 0 be such that ν = ν0ε, κ = κ0ε for
any ε > 0. Let Assumption 2.5 be fulfilled. There exists a function W0 = (u0, w0, b0)T and a remainder

∂tu
0 − b0 sin γ + ∂xp

0 − ν0ε∆u
0 = r0u,

∂tw
0 − b0 cos γ + ∂yp

0 − ν0ε∆w
0 = r0w,

∂tb
0 + u0 sin γ + w0 cos γ − κ0ε∆b

0 = r0b ,

∂xu
0 + ∂yw

0 = 0,

u0|y=0 = w0|y=0 = ∂yb
0|y=0 = 0,(3.2)

with

∥(r0u, r0w, r0b )∥L2(R2
+) = O(εσ−2).

The function W0 reads

W0 = W0
inc +W0

BL,

where W0
inc is the incident b.w. and W0

BL is a b.l.b.w. , as both defined in Definition 2.1. More precisely,

W0
BL := W0

BL,ε1/3 +W0
BL,ε1/2 ,

where

• W0
BL,ε1/3

= (uBL,ε1/3 , wBL,ε1/3 , bBL,ε1/3)
T is a b.l.b.w. of order ( 13 ,

1
3 ,−

1
3 ,−

2
3 ), as in Definition 2.1, (VI);

• W0
BL,ε1/2

= (uBL,ε1/2 , wBL,ε1/2 , bBL,ε1/2) is a b.l.b.w. of order ( 12 , 0,−
1
6 ,−

1
3 ).
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Corollary 3.2. (Sizes of the components of W0) Let W0 be the approximate solution to the linear part of system
(1.1) with exact boundary conditions (1.2). The following estimates hold provided that µ < 1

2 :

∥Winc∥L2(R2
+) = O(1); ∥W0

BL,ε1/3∥L2(R2
+) = O(σ

1
6 ); ∥W0

BL,ε1/2∥L2(R2
+) = O(ε

1
4σ− 1

6 );

∥Winc∥L∞(R2
+) = O(ε

1
6σ−1); ∥W0

BL,ε1/3∥L∞(R2
+) = O(σ− 1

3 ε−
1
6 ); ∥W0

BL,ε1/2∥L∞(R2
+) = O(σ− 2

3 );

∥∇W0∥L∞(R2
+) ≤ ∥∇W0

inc∥L∞(R2
+) + ∥∇W0

BL∥L∞(R2
+) = O(ε−

1
2σ− 2

3 ).(3.3)

Proof. Recalling that Xk,m in (1.12) and Xk,λj in (3.7) (for λj , j = 1, 2, 3 provided by Lemma 3.6) are uniformly

bounded and since we know thatWinc is a b.w. of order (0, 0), whileW0
BL,ε1/3

,W0
BL,ε1/2

are b.l.b.w. of order ( 13 ,
1
3 ,−

1
3 ,−

2
3 )

and ( 12 , 0,−
1
6 ,−

1
3 ) respectively, then the results are a straightforward application of Lemma 2.4. □

Remark 3.3. The incident b.w. Winc is chosen in such a way that it has automatically L2 norm of O(1). The
intuition behind the finite L2 norm of b.l.b.w. is the following: because of the beam localization in the physical space,
a b.l.b.w. is localized in a band of size σ of the (x, y) positive half plane. The b.l.b.w. WBL,ε1/3 is also localized in

a band of size ε1/3 near y = 0, thanks to the decay in y and the lower bound |k| ≥ η. Then the support of the
b.l.b.w. WBL,ε1/3 is of size (σ × ε1/3). Thus

∥WBL,ε1/3∥L2 ≤ ∥WBL,ε1/3∥L∞(σ × ε
1
3 )

1
2 = O(σ

1
6 ).

Remark 3.4. Notice that the solution W0 provided by Proposition 3.1 solves the linear system (3.2) with boundary
conditions (1.2) without any error on the boundary y = 0. However, W0 is an almost exact linear solution as an
error of size εσ−2 in L2 is due to the purely oscillatory nature of the incident b.w. W0

inc, which is only an approximate
solution to the linear viscous and diffusive system (3.2) (r0 in Proposition 3.1).

3.2. Proof of Proposition 3.1. The first step to construct W0 is to determine the values of (α, β, p, q) characterizing
b.l.b.w. in (2.6) (as in Definition 2.1) which solve the linear system (3.2). Let us consider the ansatz in (2.6), where
we set

R4 ∋ Xλ,k =


Uλ

Wλ

Bλ

Pλ

 , with Uλ = Uλ(k), Wλ =Wλ(k), Bλ = Bλ(k), Pλ = Pλ(k).(3.4)

Inserting this ansatz inside system (3.2), we obtain the corresponding (algebraic) linear system

Aε(ω, κ0, ν0, k, λ)


Uλ

Wλ

Bλ

Pλ

 = 0, where Aε(ω, κ0, ν0, k, λ) ∈ space of matrices M4×4.(3.5)

Then, we look for vectors Xk,λ ∈ ker(Aε(ω, κ0, ν0, k, λ)), with the restriction that λ = λ(k) is such that Re(λ) > 0,
as in Definition 2.1. To satisfy kerAε(ω, κ0, ν0, k, λ) ̸= {0}, we impose detAε(ω, κ0, ν0, k, λ) = 0. This amounts at
finding the roots in λ of the following characteristic polynomial associated with Aε(ω, κ0, ν0, k, λ):

P(λ) := −ε2κ0ν0λ6 + (−iεω(κ0 + ν0) + 3ν0κ0ε
2k2)λ4 + (ζ + 2iω(κ0 + ν0)εk

2 − 3ν0κ0ε
2k4)λ2

− 2iλk sin γ cos γ + k2(cos2 γ − ω2 − iεω(ν0 + κ0)k
2 + ν0κ0ε

2k4).(3.6)

Furthermore, the vector Xk,λj
∈ ker(Aε(ω, κ0, ν0, k, λj) reads

Xk,λj
=


1
ik
λj

λj sin γ+ik cos γ

λj(iω−εκ0(k2−λ2
j ))

1
ik [iω + εν0(λ

2 − k2) + sin γ sin γ+ikλ−1 cos γ
iω+εκ0(λ2−k2) ]

 .(3.7)

We shall rely on the following intermediate result.

Lemma 3.5 (Asymptotics of the roots in the critical case ζ ≈ ε
1
3 for ω ∼ ± sin γ). Let ν0 > 0, κ0 > 0 be such that

ν = εν0, κ = εκ0 for any 0 < ε ≪ 1. Let c0ε
1
3 < |ω ± sin γ| ≤ C0ε

1
3 and ζ = ζ0ε

1
3 for some universal constants

c0 > 0, C0 > 0 and ζ0 ∈ R. There exists η0 = η0(κ0, ν0, γ) > 0 such that, for any η ≥ η0, the characteristic polynomial
P(λ) in (3.6) associated with a linear b.l.b.w. ansatz as in (2.6), i.e. the determinant of the matrix Aε(ω, κ0, ν0, k, λ) of
the linear algebraic system (3.5), admits exactly three roots λj = λj(k), j = 1, 2, 3, with Re(λj) > 0. Their asymptotic
expansions in terms of the singular parameter 0 < ε≪ 1 is as follows:

λ1 = ε−
1
3 |k| 13 ℓ̃1(θ) +O(|k|), λ2 = ε−

1
3 |k| 13 ℓ̃2(θ) +O(|k|), λ3 = ε−

1
2 ℓ̃3(θ) +O(ε−

1
6 ),
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for some functions ℓ̃i(θ) ∈ C∞(suppΨ̂ε,σ,C), i ∈ {1, 2, 3}.
More precisely, if η ≤ |k| ≤ σ−1 with σ ≥ εµ and µ > 0 small enough (Assumption 2.5), then

λ1 = ε−
1
3 |k| 13 ℓ̃1(θ)(1 +O(ε

1
3−

2
3µ)), λ2 = ε−

1
3 |k| 13 ℓ̃2(θ)(1 +O(ε

1
3−

2
3µ)), λ3 = ε−

1
2 ℓ̃3(θ)(1 +O(ε

1
6 )).(3.8)

Moreover, there exists an exact solution to the linear part of system (1.1), with boundary conditions

(3.9)

 u0|y=0

w0
|y=0

∂yb
0
|y=0

 = W0
inc|y=0

where W0
inc is given in Definition 2.1, (X). The solution is

W0
BL = Wλ1

BL,ε1/3
+Wλ2

BL,ε1/3
+Wλ3

BL,ε1/2
,(3.10)

where Wλj

BL,εα , j = 1, 2, 3 is a linear b.l.b.w. as in (2.6), where Xk,λj
is given by (3.7). More precisely, Wλ1

BL,ε1/3
,Wλ2

BL,ε1/3

are b.l.b.w. of order ( 13 ,
1
3 ,−

1
3 ,−

2
3 ), while Wλ3

BL,ε1/2
is a b.l.b.w. of order ( 12 , 0,−

1
6 ,−

1
3 ).

Proof. We want to apply Lemma B.1 to prove that there exist roots λ of P(λ) with singular (leading order) asymptotic
λ ∼ ε−α|k|βℓ where ℓ = ℓ(θ), α > 0, β ∈ R, i.e. b.l.b.w. as in (II) of Definition 2.1. To this end, we first have to
identify the possibile values of α > 0. In other words, plugging the ansatz λ ∼ ε−α|k|βℓ inside the expression of P(λ),
one has to find the values of α > 0 for which the leading part of P(ε−α|k|βℓ) is represented at least by two different
monomials, so providing a reduced (algebraic) equation with non-trivial solutions. We obtain the following.

• Plugging the ansatz λ ∼ ε−
1
3 |k|1/3ℓ inside P(λ), and using that |k| ≤ σ−1 ≤ ε−µ (Assumption 2.5), the

leading order part of the polynomial reads

ω(κ0 + ν0)ℓ
3 + 2 sin γ cos γ = 0.(3.11)

Since k and ω have always the same sign (see Definition 2.1 and Remark 2.3), then the above equation admits
two roots

ℓ1 = ℓ1(θ) =

(
2 sin γ cos γ

ω(κ0 + ν0)

)1/3

exp(iπ/3), ℓ2 = ℓ2(θ) =

(
2 sin γ cos γ

ω(κ0 + ν0)

)1/3

exp(i5π/3)

with strictly positive real part and such that ℓj(θ) ∈ C∞(suppΨ̂ε,σ), j = 1, 2. Now we want to prove that

there exist two roots λj , j ∈ {1, 2} of the original polynomial P(λ) which are r-close to ε−1/3|k|1/3ℓj with ℓj
solutions to (3.11) for any 0 < r < ε−1/3|k|1/3. We verify that the assumptions of Lemma B.1 are fulfilled:
for ℓj roots of (3.11), one has for ε > 0 sufficiently small that

• |ζ0|
2

|k|1/3

ε1/3
≤ |P(ε−1/3|k|1/3ℓj)| ≤ 2|ζ0|

|k|1/3

ε1/3
;

• |ℓj ||k|| sin γ cos γ| ≤ |P ′(ε−1/3|k|1/3ℓj)| ≤ 4|ℓj ||k|| sin γ cos γ|;

• |P ′′(z)| ≤ 2|ζ0|ε1/3 for |z| ≤ 2r where r ≥

∣∣∣∣∣ P(ε−1/3|k|1/3ℓj)
P ′(ε−1/3|k|1/3ℓj)

∣∣∣∣∣ ≳ ε−1/3|k|−2/3.

Therefore, we have that

|P(ε−1/3|k|1/3ℓj)| ≤ 2|ζ0|
|k|1/3

ε1/3
≤ |ℓj |2|k|2| sin γ cos γ|2

8|ζ0|ε1/3
≤ |P ′(ε−1/3|k|1/3ℓj)|2

4 supz≤2r |P ′′(z)|

⇔ 16|ζ0|2 ≤ |ℓj |2|k|5/3| sin γ cos γ|2 ⇔ |k| ≥

(
sup

j∈{1,2}

16|ζ0|2

|ℓj |2| sin γ cos γ|2

)3/5

⇔ |k| ≥
(
16|ζ0|2(ω(κ0 + ν0))

2/3

22/3| sin γ cos γ|5/3

)3/5

:= η0,

where η0 > 0 is in Definition 2.1. This way we obtain that the roots λj , j ∈ {1, 2} of the polynomial P(λ)
admit the following expansion

λj ∼ ε−1/3|k|1/3ℓj + ε−1/3|k|−2/3ℓ′j , where ℓj solves (3.11) and for some ℓ′j = ℓ′j(θ).

Applying Lemma B.1 once again, we obtain that

λj ∼ ε−1/3|k|1/3ℓj + ε−1/3|k|−2/3ℓ′j + |k|ℓ′′j , for some ℓ′′j = ℓ′′j (θ),

where we recall that η ≤ |k| ≤ ε−µ.
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• Plugging the ansatz λ3 ∼ ε−1/2ℓ inside P(λ), we obtain that the leading order terms satisfy

κ0ν0ℓ
2 + iω(κ0 + ν0) = 0.(3.12)

We denote by

ℓ3 =

√
ω(κ0 + ν0)

κ0ν0
exp(i7π/4)

the root with strictly positive real part. Once again, we want to apply Lemma B.1 to prove that there exists
a root λ3 ∼ ε−1/2 of P(λ). In this case we have

• P(ε−1/2ℓ3) ∼ ε−2/3, P ′(ε−1/2ℓ3) ∼ ε−1/2 ⇒ r = O(ε−1/6)

• supP ′′(z) = O(1), |z| ≤ Cε−1/6.

We check then that the assumptions of Lemma B.1 are fulfilled with r ∼ ε−1/6, and we obtain that

λ3 ∼ ε−1/2ℓ3 + ε−1/6ℓ′3 for some ℓ′3 = ℓ3(θ) uniformly bounded.

It remains to construct an exact solution to the linear part of system (1.1) with boundary conditions (3.9). With

λj and Xk,λj
in (3.7) at hand for j = 1, 2, 3, let us construct a Wλj

BL,εαj as in (2.6). By the above analysis, it is

automatically known that α1 = α2 = 1
3 , α3 = 1

2 and β1 = β2 = 1
3 , β3 = 0. We need to find the indexes (pj , qj),

i.e. to determine the function apj ,qj (ε, |k|) for each j = 1, 2, 3. Given the eigenvector Xk,λj
as in (3.7), let us denote

(Uλj
,Wλj

, Bλj
) the first three components of the four dimensional vector Xk,λj

respectively. In order to determine
apj ,qj = apj ,qj (ε, |k|) for each j = 1, 2, 3, we have to solve the following linear algebraic system

ap1,q1Uλ1 + ap2,q2Uλ2 + ap3,q3Uλ3 = u,

ap1,q1Wλ1 + ap2,q2Wλ2 + ap3,q3Wλ3 = w,

−ap1,q1λ1Bλ1
− ap2,q2λ2Bλ2

+ ap3,q3λ3Bλ3
= b,

where we used the notation

W0
inc|y=0 =

∫
R2

u
w
b

 Ψ̂ε,σ(|k|, θ)ei(kx−ωt) dk dm.

Using the precise structure of the eigenvector (3.7), one deduces that this amounts at inverting the matrix

M =

 1 1 1
ik
λ1

ik
λ2

ik
λ3

−λ1 sin γ+ik cos γ
iω−εκ0(k2−λ2

1)
−λ2 sin γ+ik cos γ

iω−εκ0(k2−λ2
2)

−λ3 sin γ+ik cos γ
iω−εκ0(k2−λ2

3)
.


From (3.8), we know that λj = λj(k) ∼ εε

α
j ℓj(θ)|k|βj with ℓj(θ)|k|βj ̸= ℓi(θ)|k|βi for all ε > 0 if i ̸= j. Then, the

eigenvectors Xk,λj
, j = 1, 2, 3 are linearly independent,

detM =

3∑
i,j=1, i ̸=j

O

(
k
λi
λj

)
,

and the above matrix A is invertible. Moreover, the leading order entries of the inverse matrix read

M−1 ∼ (detM)−1

ik(λ2

λ3
− λ3

λ2
) λ3 − λ2 ik( 1

λ2
− 1

λ3
)

ik(λ1

λ3
− λ3

λ1
) λ1 − λ3 ik( 1

λ1
− 1

λ3
)

ik(λ1

λ2
− λ2

λ1
) λ2 − λ1 ik( 1

λ2
− 1

λ1
).

 .

Since (detM)−1 ∼
(∑

i=1,2
kλ3

λi

)−1

∼ ε
1
6 k−

2
3 , then one obtains the leading order terms of apj ,qj j = 1, 2, 3, i.e.

ap1,q1 ∼ ε
1
6 |k|− 2

3 × (λ3 − λ2) ∼ ε−
1
3 |k|− 2

3 ,

ap2,q2 ∼ ε
1
6 |k|− 2

3 × (λ1 − λ3) ∼ ε−
1
3 |k|− 2

3 ,

ap3,q3 ∼ ε
1
6 |k|− 2

3 × (λ2 − λ1) ∼ ε−
1
6 |k|− 1

3 .

Recalling that (|k|, π2 − (θ + γ)) are the polar coordinates of k = (k,m), i.e. k = |k| sin(θ + γ), then thanks to the

angular localization due to Ψ̂
pj ,qj
ε,σ in Definition 2.1, we have

|ap1,q1 | ∼ ε−
1
3 |k|− 2

3 , |ap2,q2 | ∼ ε−
1
3 |k|− 2

3 , |ap3,q3 | ∼ ε−
1
6 |k|− 1

3 .(3.13)

This concludes the proof the lemma. □
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End of the proof of Proposition 3.1. Let W0
BL := Wcrit

sol,ω0
= Wλ1

BL,ε1/3
+Wλ2

BL,ε1/3
+Wλ3

BL,ε1/2
, as constructed in Lemma

3.6. Then the solution to (3.2) with boundary conditions (1.2) is given by W0 := W0
inc + W0

BL, where the incident
b.w. is in Definition 2.1. The only error of the approximation is due to viscosity and diffusivity acting on the incident
b.w. and, from Lemma 2.4, we have

∥(r0u, r0w, r0b )∥L2 = O(ε∥∆Winc∥L2) = O(εσ−2).

The proof of the proposition is concluded. □

3.3. Linear analysis in different regimes. This section is dedicated to the construction of b.w. and b.l.b.w. solving
the linear system (3.2) for different asymptotics of ω and ζ. The linear analysis in the regimes ω ≈ 0 and ω ≈ 1 in
the non-critical case ζ ≈ 1, which we develop below, will be needed.

Lemma 3.6 (Asymptotics of the roots in the non-critical case ζ ≈ 1 for |ω| ≪ 1). Let ν0 > 0, κ0 > 0 be such that

ν = εν0, κ = εκ0 for any 0 < ε ≪ 1. Let ω ≈ ε
1
3 . Consider a b.l.b.w. ansatz as in Definition 2.1 for some constant

value η = η(κ0, ν0, γ) > 0 solving the linear part of system (1.1). The characteristic polynomial P(λ) in (3.6), i.e. the
determinant of the matrix Aε(ω, κ0, ν0, k, λ) associated with the linear algebraic system (3.5), admits exactly three roots
λj = λj(k), j = 1, 2, 3, with Re(λj) > 0. Their asymptotic expansions in terms of the singular parameter 0 < ε ≪ 1
read as follows:

λ1 =
ik

ζ
(sin γ cos γ + ω

√
1− ω2) + εℓ′′1(θ)k

3 +O(ε2k5);

λj = ε−
1
2 ℓj(θ) +O(ε−

1
6 ) for j = 2, 3,

for some functions ℓj(θ) ∈ C∞(supp(Ψ̂ε,σ),C), j = 2, 3, ℓ′′1(θ) ∈ C∞(supp(Ψ̂ε,σ),R), s.t. Re(ℓ′′1(θ)) > 0, and where ζ
is the criticality parameter in (1.8).

Proof. We apply again Lemma B.1 following the method of the proof of Lemma 3.5.
• Plugging the ansatz λ̃ ∼ ε−

1
3 ℓ inside P(λ), and using that |k| ≤ σ−1 ≤ ε−µ, the leading order part of the polynomial

reads

ν0κ0ℓ
4 + sin2 γ = 0.

The solutions with positive real part are given by

ℓ2 = (sin2 γ/(ν0κ0))
1/4 exp(iπ/4), ℓ3 = (sin2 γ/(ν0κ0))

1/4 exp(i7π/4).

To apply Lemma B.1, it is enough to notice that for i = 1, 2,

|P(ε−1/2ℓi)| ≤ 2ε−2/3|ω0|(κ0 + ν0)|ℓi|4,

while

|P(ε−1/2ℓi)|
|P ′(ε−1/2ℓi)|

≤ Cε−1/6 for some universal constantC > 0.

Moreover,

|P ′(ε−1/2ℓi)|2

8 sup|z|≤Cε−1/6 |P ′′(z)|
≥ C ′ε−1 for some universal constantC ′ > 0.

We check therefore that the assumptions of Lemma B.1 are fulfilled for every ε ≤ ε0 small enough.
• Next, we look for an eigenvalue of the form λ̃ ∼ kℓ. We find that the leading order equation is

ζℓ2 − 2iℓ sin γ cos γ + cos2 γ − ω2 = 0,

whose solutions are given by

λ̃±1 =
ik

ζ2
(sin γ cos γ + ω

√
1− ω2) = −ikℓ1 ± iε1/3kℓ′1(θ) with ℓ1 = −i cot γ; ℓ′1(θ) = − iω0(θ)

sin2 γ
+ o(1),

(in this context ω = ε
1
3ω0). We need the next order expansion of λ̃±1 ,

λ̃′±1 − λ̃±1 = − P(kℓ1)

P ′(kℓ1)
∼ iεω(κ0 + ν0)k

4(ℓ1)
4 − 2iω(ν0 + κ0)εk

4(ℓ1)
2 + iεω(κ0 + ν0)k

4

−2ik sin γ cos γ − 2k sin2 γℓ1 + 2ε2/3ω2
0kℓ1 ± 2iε1/3k sin2 γℓ′1

=
N

D
.

As ℓ1 = − i
tan γ , thenN > 0 for ε small enough, while the first two addends ofD vanish. Choosing λ̃−1 = − ik

tan γ−iε
1/3ℓ′1,

one has

λ̃′−1 ∼ iεω(κ0 + ν0)k
3((tan γ)−4 + (tan γ)−2 + 1)

2iε1/3 sin2 γℓ′1 + 2iε2/3ω2
0 tan γ

−1
= εk3ℓ′′1 ,
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for some function ℓ′′1 = ℓ′′1(θ) such that Re(ℓ′′1) > 0 (we recall that ω = ε1/3ω0.) The next order expansion is then

λ̃1 + λ̃′−1 =
ik

tan γ
− iε1/3kℓ′1 + εk3ℓ′′1 , Re(ℓ′′1) > 0.

Now, we want to prove that there exists a root λ1 of the original polynomial P(λ) which is r-close to λ̃1+ λ̃
′−
1 applying

Lemma B.1. We have the following

|P(λ̃1 + λ̃′−1 )| ≤ 12ν0κ0
tan2 γ

ε2k6;

|P(λ̃1 + λ̃′−1 )|
|P ′(λ̃1 + λ̃′−1 )|

≤ C(ν0, κ0, ω0, γ)ε
2|k|5;

|P ′(λ̃1 + λ̃′−1 )|2

|P ′′(z)||z|≤Cε2|k|5
≥ k4

2 tan2 γ
.

We obtain therefore that the assumptions of Lemma B.1 are always fulfilled for ε ≤ ε0 small enough provided that
ε2k2 ≪ 1, i.e. ε2−2µ ≪ 1, namely µ < 1. The proof is concluded. □

Lemma 3.7 (Asymptotics of the roots in the non-critical case ζ ≈ 1 for bounded ω). Let ν0 > 0, κ0 > 0 be such that
ν = εν0, κ = εκ0 for any 0 < ε ≪ 1. Let ω ≈ 1 and ζ ≈ 1. Consider a b.l.b.w. ansatz as in Definition 2.1 for some
constant value η = η(κ0, ν0, γ) > 0 solving the linear part of system (1.1). The characteristic polynomial P(λ) in (3.6),
i.e. the determinant of the matrix Aε(ω, κ0, ν0, k, λ) associated with the linear algebraic system (3.5), admits exactly
three roots λj = λj(k), j = 1, 2, 3, with Re(λj) > 0. Their asymptotic expansions in terms of the singular parameter
0 < ε≪ 1 read as follows:

λ1 =
ik

ζ
(sin γ cos γ + ω

√
1− ω2) +O(ε|k|3); λj = ε−

1
2 ℓj(θ) +O(|k|), j = 2, 3,

for some functions ℓj(θ) ∈ C∞(supp(Ψ̂ε,σ),C), j = 2, 3.

Proof. We apply again the method of Lemma 3.5.
• We look for a root o13f the type λ̃ ∼ kℓ. Since in this case ω ∼ 1, then the leading order terms read

ζℓ2 − 2iℓ sin γ cos γ + cos2 γ − ω2 = 0,

whose solutions are given by

ℓ± =
i

ζ
(sin γ cos γ ± ω

√
1− ω2).

We want to apply Lemma B.1. Since |P(kℓ±)| = O(εk4) and |P(kℓ±)/P ′(kℓ±)| = (ε|k|3), we have that

|P ′(kℓ±)|2

sup|z|≤Cε|k|2 |P ′′(z)|
≥ C ′k2 ≥ C ′′εk4 ≥ |P(kℓ±)|,

for all ε ≤ ε0 small enough provided that ε|k|2 ≤ ε1−2µ ≪ 1, namely µ < 1
2 . Therefore, the assumptions of Lemma

B.1 are fulfilled and we deduce that there exists a root λ1 of the original polynomial P(λ) such that

λ1 =
ik

ζ
(sin γ cos γ + ω

√
1− ω2) +O(ε|k|3), Re(λ1) > 0, Re(λ1) = O(ε|k|3).

• Plugging the ansatz λ̃ ∼ ε−1/2ℓ, applying the same procedure as in the first part of the proof of the previous lemma
(where roots of asymptotics ∼ ε−1/2 are also investigated), we obtain similalar expansions satisfying the assumptions
of Lemma B.1. We omit the details and refer to the first part of the proof of the previous lemma. The proof is
therefore concluded. □

4. The weakly nonlinear system

Since system (1.1) is weakly nonlinear as the nonlinear term is weakened by the small parameter δ > 0, it is
reasonable to look at the solution W0 to the linear system (3.2) in Proposition 3.1 as an approximate solution to the
weakly nonlinear system.

In the following, let us denote by P the standard Leray projector in L2(R2
+,R3), and we introduce

Lε

uw
b

 = P

−ν0ε∆ 0 − sin γ
0 −ν0ε∆ − cos γ

sin γ cos γ −κ0ε∆

uw
b

 .(4.1)

For the unknowns W = (u,w, b)T ,W ′ = (u′, w′, b′)T , we also introduce the following bilinear form

Q(W,W ′) = P(u∂x + w∂y)W ′.(4.2)
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With this notation, the nonlinear system (1.1) rewrites as

∂tW + LεW = −δQ(W,W).(4.3)

Plugging the linear solution W0 inside the nonlinear system in compact form, it generates an error due to the
quadratic nonlinearity

E0 = −δQ(W0,W0).(4.4)

This section is devoted to the construction an approximate solution to (4.3) correcting the error E0 generated by the
nonlinear term. Note that despite the presence of 0 < δ ≪ 1 in front of the nonlinear term, E0 contains non-negligible
error terms because of the boundary layers of the linear solution W0 provided by Proposition 3.1.

Proposition 4.1. Let W0 provided by Proposition 3.1 be the solution to the linear system (3.2) with boundary
conditions (3.9). There exists a function W1 = (u1, w1, b1)T and a remainder r1 such that

∂tW1 + LεW1 = −δQ(W0,W0) + r1,

u1|y=0 = w1|y=0 = ∂yb
1|y=0 = 0,

with

∥r1∥L2(R2) = O(δε
1
6σ−2) = O(δε

1
6−2µ).

The function W1 reads

W1 = W1
II +W1

MF +W1
BL,ε1/3 +W1

BL,ε1/2

where

• W1
II (II for second harmonic) is associated to the time frequency ωII = ±2 sin γ +O(ε

1
3 );

• W1
MF (MF for mean flow) is associated to the frequency ωMF = O(ε

1
3 )

• W1
BL,ε1/2

(resp. W1
BL,ε1/3

) is the product of a b.l.b.w. of order ( 12 , 0,−
2
3 ,−

1
3 ) and a b.l.b.w. of order ( 12 , 0, 0,

2
3 )

(resp. ( 13 ,
1
3 , 0, 0) and ( 13 ,

1
3 ,−

2
3 ,−

1
3 )).

The sizes of the boundary layer components read

∥W1
BL,ε1/3∥L2 = O(δε−

1
6σ− 7

6 ), ∥W1
BL,ε1/2∥L2(R2) = O(δε−

1
12σ− 11

6 ),

while, for the mean flow and the second harmonic, we have

∥W1
MF∥L2 ∼ ∥W1

II∥L2 = O(δε−
1
6σ− 10

3 ).

Corollary 4.2 (Proof of (i) of Theorem 2.8). The function Wapp = (uapp, wapp, bapp)T := W0 +W1, where W0,W1

are provided by Proposition 3.1 and Proposition 4.1 respectively, is an approximate solution to the system (1.1), in the
following sense:

∂tWapp + LεWapp = δQ(Wapp,Wapp) +Rapp,

uapp|y=0 = wapp|y=0 = ∂yb
app|y=0 = 0,

where ∥Rapp∥L2 = O(max{δε 1
6σ−2, δ2ε−

1
3σ− 5

2 }). If δ = O(ε
1
2σ

2
3 ) (Assumption 2.5), then ∥Rapp∥L2 = O(δε

1
6σ−2).

Proof. The approximate solution Wapp is given by

Wapp = W0 +W1.

Plugging now Wapp inside system (4.3)-(4.1), we have immediately from Proposition 3.1 and Proposition 4.1 that

∂tWapp + LεWapp = δQ(W0,W0) + r0 + r1

= δQ(Wapp,Wapp)− δ(Q(W0,W1) +Q(W1,W0) +Q(W1,W1)) + r0 + r1

= δQ(Wapp,Wapp) +Rapp,

where

Rapp := r0 + r1 − δ(Q(W0,W1) +Q(W1,W0) +Q(W1,W1)),(4.5)

with r0, r1 in Proposition 3.1 and Proposition 4.1 respectively. It can be checked that the term with the largest L2

norm among δQ(W0,W1), δQ(W1,W0), δQ(W1,W1) is proportional to

δ2wBL,ε1/3wBL,ε1/3∂yyuBL,ε1/3 ,

where W0
BL,ε1/3

= (uBL,ε1/3 , wBL,ε1/3 , bBL,ε1/3)
T is provided by Proposition 3.1. We have that

δ2∥wBL,ε1/3wBL,ε1/3∂yyuBL,ε1/3∥L2 ≲ δ2∥wBL,ε1/3∥L∞∥wBL,ε1/3∂yyuBL,ε1/3∥L2 .
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Noticing that wBL,ε1/3 is a b.l.b.w. of order ( 13 ,
1
3 , 0, 0) and ∂yyuBL,ε1/3 is a b.l.b.w. of order ( 13 ,

1
3 ,−1, 0), using Lemma

2.4 we have

δ2∥wBL,ε1/3∥L∞∥wBL,ε1/3∂yyuBL,ε1/3∥L2 = O(δ2 × ε
1
6σ−1 × ε−

2
3+

1
6σ− 3

2 ) = O(δ2ε−
1
3σ− 5

2 ).

Notice that as δ = O(ε
1
2σ

2
3 ) (Assumptions 2.5), then O(δ2ε−

1
3σ− 5

2 ) = O(δε
1
6σ− 3

2 ), and this implies that the leading
order term is r1, so that

∥Rapp∥L2(R2
+) = O(∥r1∥L2(R2

+)) = O(δε
1
6σ−2).

The proof is concluded. □

The rest of this section is dedicated to the proof of Proposition 4.1. First, the sizes of the error terms are provided
by the following result.

Lemma 4.3. The quadratic terms to be corrected in (4.4) are described by the following Table 1.

Table 1. List of quadratic interactions

type of interaction size in L2 typical decay rate

(a1) = Q(W0

BL,ε1/3
,W0

BL,ε1/3
) O(σ−7/6ε−1/6) ε−1/3

(a2) = Q(Winc,W0

BL,ε1/3
) O(σ−7/6ε−1/6) ε−1/3

(b1) = Q(W0

BL,ε1/3
,W0

BL,ε1/2
) O(σ−7/6ε−1/12) ε−1/2

(b2) = Q(Winc,W0

BL,ε1/2
) O(σ−7/6ε−1/12) ε−1/2

(c1) = Q(Winc,Winc) O(σ−2ε1/6) no decay

(c2) = Q(W0

BL,ε1/3
,Winc) O(σ−11/6ε1/6) ε−1/3

(d1) = Q(W0

BL,ε1/2
,W0

BL,ε1/3
) O(σ−11/6ε1/4) ε−1/2

(d2) = Q(W0

BL,ε1/2
,W0

BL,ε1/2
) O(σ−11/6ε1/4) ε−1/2

(d3) = Q(W0

BL,ε1/2
,Winc) O(σ−13/6ε5/12) ε−1/2

Proof. We systematically apply Lemma 2.4. Since Q(·, ·) is a (non-symmetric) bilinear operator and W0 = W0
inc +

W0
BL,ε1/3

+ W0
BL,ε1/2

is composed of three terms, Q(W0,W0) is a sum of nine terms. Their L2 norm can be easily

computed by applying formula (2.9) of Lemma 2.4. Recalling that the unknown vector is W = (u, v, b)T , from the
expression of the quadratic term Q(W,W ′) = P(u∂x + v∂y)W ′ we notice that, if W ′ is a b.l.w.b., one obtains that for
a universal constant C > 0

∥Q(WBL,WBL)∥L2 ≤ C∥wBL × ∂yu
′
BL∥L2 ,

thanks to the structure of the Leray projector. On the other hand, when W,W ′ are b.w. , then one can use
∥Q(W,W)∥L2 ≤ C∥u× ∂xu

′∥L2 or ∥Q(W,W)∥L2 ≤ C∥w × ∂yu
′∥L2 . In both cases, we apply Lemma 2.4.

• (a1) Q(W0
BL,ε1/3

,W0
BL,ε1/3

) : from (3.8)-(3.13), wBL,ε1/3 is a b.l.w.b. of order ( 13 ,
1
3 , 0, 0), and ∂yuBL,ε1/3 is a

b.l.w.b. of order ( 13 ,
1
3 ,−

2
3 ,−

1
3 ). From estimate (2.9) of Lemma 2.4, we immediately obtain

∥Q(W0
BL,ε1/3 ,W

0
BL,ε1/3)∥L2 ≤ C∥wBL,ε1/3 × ∂yuBL,ε1/3∥L2 = O(σ− 7

6 ε−
1
6 ).

• (a2)Q(Winc,W0
BL,ε1/3

): we see that winc is a b.w. of order (0, 0) and ∂yuBL,ε1/3 is a b.l.b.w. of order (
1
3 ,

1
3 ,−

2
3 ,−

1
3 ).

Then we have that

∥Q(W0
inc,W0

BL,ε1/3)∥L2 ≤ C∥winc × ∂yuBL,ε1/3∥L2 = O(σ− 7
6 ε−

1
6 ).

• (b1) Q(W0
BL,ε1/3

,W0
BL,ε1/2

): first, from (3.8)-(3.13), wBL,ε1/3 is a b.l.b.w. of order ( 13 ,
1
3 , 0, 0), next ∂yuBL,ε1/2

is a b.l.b.w. of order ( 12 , 0,−
2
3 ,−

1
3 ), so that

∥Q(W0
BL,ε1/3 ,W

0
BL,ε1/2)∥L2 ≤ C∥wBL,ε1/3 × ∂yuBL,ε1/2∥L2 = O(ε−

1
12σ− 7

6 ).

• (b2) Q(W0
inc,W0

BL,ε1/2
): winc is a b.w. of order (0, 0) and ∂yuBL,ε1/2 is a b.l.b.w. of order ( 12 , 0,−

2
3 ,−

1
3 ), so

that

∥Q(W0
inc,W0

BL,ε1/2)∥L2 ≤ C∥winc × ∂yuBL,ε1/3∥L2 = O(ε−
1
12σ− 7

6 ).

• (c1) Q(W0
inc,W0

inc): uinc is a b.w. of order (0, 0), next ∂xuinc is a b.w. of order (0, 1), so that

∥Q(W0
inc,W0

inc)∥L2 ≤ C∥uinc × ∂xuinc∥L2 = O(ε
1
6σ−2).

• (c2) Q(W0
BL,ε1/3

,W0
inc): uBL,ε1/3 is a b.l.b.w. of order ( 13 ,

1
3 ,−

1
3 ,−

2
3 ) and ∂xuinc is a b.w. of order (0, 1)

∥Q(W0
BL,ε1/3 ,W

0
inc)∥L2 ≤ C∥uBL,ε1/3 × ∂xuinc∥L2 = O(ε

1
6σ− 11

6 ).
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• (d1) Q(W0
BL,ε1/2

,W0
BL,ε1/3

): first, from (3.8)-(3.13), wBL,ε1/2 is a b.l.b.w. of order ( 12 , 0,
1
3 ,

2
3 ), next ∂yuBL,ε1/3

is a b.l.b.w. of order ( 13 ,
1
3 ,−

2
3 ,−

1
3 ), so that

∥Q(W0
BL,ε1/2 ,W

0
BL,ε1/3)∥L2 ≤ C∥wBL,ε1/2 × ∂yuBL,ε1/3∥L2 = O(ε

1
4σ− 11

6 ).

• (d2) Q(W0
BL,ε1/2

,W0
BL,ε1/2

): wBL,ε1/2 is a b.l.w.b. of order ( 12 , 0,
1
3 ,

2
3 ), next ∂yuBL,ε1/2 is a b.l.b.w. of order

( 12 , 0,−
2
3 ,−

1
3 ), so that

∥Q(W0
BL,ε1/2 ,W

0
BL,ε1/2)∥L2 ≤ C∥wBL,ε1/2 × ∂yuBL,ε1/2∥L2 = O(ε

1
4σ− 11

6 ).

• (d3) Q(W0
BL,ε1/2

,W0
inc): uBL,ε1/2 is a b.l.b.w. of order (12 , 0,−

1
6 ,−

1
3 ), next ∂xuinc is a b.l.b.w. of order (0, 1),

so that

∥Q(W0
BL,ε1/2 ,W

0
inc)∥L2 ≤ C∥uBL,ε1/2 × ∂xuinc∥L2 = O(ε

5
12σ− 13

6 ).

□

Remark 4.4 (On the size of the quadratic term and the role of spatial localization). The product of two b.w. (or
two b.l.b.w. or a b.w. and a b.l.b.w. ) does not preserve the localization in frequency space: the angle associated with
the vector (k + k′,m + m′) can assume any value even though the angles of (k,m) and (k′,m′) are well localized.
However, the localization in the physical space can provide a better (i.e. smaller) L2/L∞ norm with respect to the
case of packets of waves (this happens for instance for WBL,ε1/3 in Corollary 3.2).
In contrast to [1], thanks to the spatial localization, every physical corrector of our approximate solution will have
a bounded L2 norm and there will be no artificial corrector, so that the approximate solution that we build is fully
consistent.

We shall prove Proposition 4.1 interaction type by interaction type.

4.1. Interactions of type (a). There are two terms of type (a) interaction, as given by Table 1:
(a1) = Q(W0

BL,ε1/3
,W0

BL,ε1/3
) and (a2) = Q(Winc,W0

BL,ε1/3
).

Proposition 4.5. There exists a corrector W1
(a) = (u1(a), w

1
(a), b

1
(a))

T which solves

∂tW1
(a) + LεW1

(a) = −δ((a1) + (a2)) + r1(a),(4.6)

u1(a)|y=0 = w1
(a)|y=0 = ∂yb

1
(a)|y=0 = 0,(4.7)

with ∥r1(a)∥L2 = O(δε
1
6σ− 11

6 ) = O(δε
1
6−

11
6 µ). The corrector is composed of

W1
(a) = W1

(a);II +W1
(a);MF +W1

(a) BL,ε1/3 +W1
(a);BL,ε1/2 ,

where for the boundary layer part, we have

∥W1
(a);BL,ε1/3∥L2 = O(δε−

1
6σ− 7

6 ), ∥W1
(a);BL,ε1/2∥L2(R2) = O(δε−

1
12σ− 11

6 ),

while for the mean flow b.w. (MF) and the second harmonic b.w. (II) it holds

∥W1
(a);MF∥L2 ∼ ∥W1

(a);II∥L2 = O(δε−
1
6σ− 10

3 ).

Moreover, if sin γ > 1
2 then the second harmonic W1

(a);II is evanescent, i.e. it has a decay of order O(1) in y.

The rest of Section 4.1 is devoted to the proof of Proposition 4.5, which is divided in two steps. We develop the
two steps below.
Step 1 : solving equation (4.6). We consider (a1) = Q(W0

BL,ε1/3
,W0

BL,ε1/3
). Being very similar, the treatment of

(a2) will be omitted.

We want to find a corrector V1,nonlin
(a1) solving the (a1) part of equation (4.6) (in this step we ignore the boundary

conditions, which will be considered in the next step), i.e. such that

∂tV1,nonlin
(a1) + LεV1,nonlin

(a1) = −δ(a1) + r1(a).

The remainder r1(a) is generated by the approximation of the Leray projector: we will see below that, in the scaling

introduced by the boundary layers, the 3x3 system (4.3)-(4.1) can be reduced to a 2x2 system by introducing the error
r1(a).

(i) : correcting the error for the components U,B.
We write the expression of the convection term

(a1) = Q(W0
BL,ε1/3 ,W

0
BL,ε1/3) =

2∑
i,j=1

P(u0,λi

BL,ε1/3
∂x + w0,λi

BL,ε1/3
∂y)W

0,λj

BL,ε1/3
,
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where λi, λj with i, j ∈ {1, 2} are given by Lemma 3.5. For any i, j ∈ {1, 2}, we use the notation

W0,λi

BL,ε1/3
= (u0,λi

BL,ε1/3
, w0,λi

BL,ε1/3
, b0,λi

BL,ε1/3
)T = (U,W,B)T ,

W0,λj

BL,ε1/3
= (u

0,λj

BL,ε1/3
, w

0,λj

BL,ε1/3
, b

0,λj

BL,ε1/3
)T = (U ′,W ′, B′)T .

This yields

(u0,λi

BL,ε1/3
∂x + w0,λi

BL,ε1/3
∂y)W

0,λj

BL,ε1/3
= σε−

1
3

∫
aia

′
iΨ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+i(k+k′)(x−x0)

× e−(λi+λ′
i)y (ik′U − λ′iW )

U ′

W ′

B′

 dk dk′ dmdm′,(4.8)

where ai, ai, Ψ̂ε,σ, Ψ̂
′
ε,σ are deduced from the proof of Lemma 3.5.

Notice that the Leray projector, which is a homogeneous pseudodifferential operator of degree 0, does not

change the structure of the convection term, but since Re(λi) ∼ ε−
1
3 |k|

1
3 for i = 1, 2 and Re(λ3) ∼ ε−1/2 (from

Lemma 3.5), it introduces a (spatial) scaling in terms of powers of the small parameter ε (see also [[1], Section
3]).

We explain this fact in the following for the boundary layers of decay λi ∼ ε−
1
3 |k|

1
3 , i = 1, 2 (in Lemma

3.5). It is known from classical references such as [8] that the two-dimensional Leray projector is the 0-th
order pseudodifferential operator of symbol of Id−∇∆−1∇·. In order to include the variable b, in the present
case the Leray projector will be the operator associated with the symbol of

P =

(
IdR2 −∇∆−1∇· 0

0T 1

)
, 0 =

(
0
0

)
.

Then, for λ ∼ ε−
1
3 |k| 13 , k ∼ ±|k| sin γ (Lemma 3.5) and η ≤ |k| ≤ ε−µ (Assumption 2.5), we have

(Id− P)

eikx−λy

U ′

W ′

B′

 = eikx−λy

 0
W ′

0

+O(ε
1
3σ− 2

3µ)

 ,

yielding

P

eikx−λy

U ′

W ′

B′

 = eikx−λy

U ′

0
B′

+O(ε
1
3σ− 2

3µ)

∣∣∣∣∣∣
U ′

0
B′

∣∣∣∣∣∣
 .(4.9)

Therefore, the approximation of the Leray projector introduces an error of the order δ × ε
1
3−

2
3µ (δ is due

to the quadratic term), which will be included in r1(a) in Proposition 4.5. This implies that the main order

system corresponding to these boundary layers only involves two of the three variables, i.e. u and b, while the
vertical velocity w will be constructed by exploiting the divergence-free condition. Since the component W
is expected to be ε

1
3 smaller than U,B in this regime, to handle system (1.1) in a perturbative way, we first

reduce the system (1.1) to the equations for u, b ((U,B) denote their Fourier transform). In other words, we
consider the first and third equation where w = 0.

For V = (U,B)T , the equations in compact formulation read

∂tV + LV = δ exp(ilx− iαt− λy)V ′,(4.10)

where

L = sin γ

(
0 −1
1 0

)
.(4.11)

We simply have that exp(Lt) = exp(it sin γ)Π+ + exp(−it sin γ)Π−, where

Π+ =
1

2

(
1 −i
i 1

)
, Π− = Π+.

The solution to (4.10) is given by

V = V(t) = δ exp(ilx− iαt− λy)
∑
±

(−iα± i sin γ)−1Π±V ′.

Since the localization due to Ψ̂ε,σ in (2.4) implies that θ is supported in a ball of radius ε1/3 centered in γ or

γ+π, if follows that sin(θ+ γ)+ sin(θ′ + γ) is localized either in a ball of size ε1/3 around ±2 sin γ or in a ball
of size ε1/3 around 0. These two scenarios correspond to a second harmonic and a mean flow respectively. It
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follows in particular that | − α ± sin γ| > c0 > 0 as α is either close to ±2 sin γ or close to 0. Thus, recalling
from Lemma 3.5 the expressions of λi, i = 1, 2, we can define by superposition:

the “nonlinear”mean flow corrector for ω + ω′ = O(ε1/3) as

V1,nonlin
(a1);MF =

δσ2

ε1/3

∫
Ψ̂ε,σΨ̂

′
ε,σ

∑
i,i′=1,2

aia
′
ie

−i(ω+ω′)t+i(k+k′)(x−x0)−(λi+λ′
i)y × (−k′U + iλ′iW )

ω + ω′ ± sin γ
Π±

(
U ′

B′

)
dk dk′ dmdm′;

(4.12)

the “nonlinear”second harmonic corrector for ω + ω′ = ± sin 2γ +O(ε1/3) as

V1,nonlin
(a1);II =

δσ2

ε1/3

∫
Ψ̂ε,σΨ̂

′
ε,σ

∑
i,i′=1,2

aia
′
ie

−i(ω+ω′)t+i(k+k′)(x−x0)−(λi+λ′
i)y × (−k′U + iλ′iW )

ω + ω′ ± sin γ
Π±

(
U ′

B′

)
dk dk′ dmdm′.

(4.13)

Hereafter we will use the notation

V1,nonlin
(a1) = (u(a1), b(a1))

T (resp. V1,nonlin
(a2) = (u(a2), b(a2))

T )

either for V1,nonlin
(a1);MF (resp. V1,nonlin

(a2);MF) or for V
1,nonlin
(a1);II (resp.V1,nonlin

(a2);II ).

(ii) : correcting the error of the quadratic term for W by restoring the divergence-free condition.

The vertical velocity w(a1) does not appear in the main order system, as its size is smaller than V1,nonlin
(aℓ) =

(u1,nonlin(aℓ) , b1,nonlin(aℓ) ), ℓ = 1, 2, but it can be simply recovered for (a1) (resp. (a2)) by integrating the divergence

free condition:

∂xu(a1) + ∂yw(a1) = 0.

This gives, for i = 1, 2,

w(a1) =
δσ2

ε1/3

∫ ∑
i,i′=1,2

∑
±
aia

′
iΨ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+i(k+k′)(x−x0)−(λi+λ′
i)y

× i(k + k′)

λi + λ′i
× (−k′U + iλ′iW )

ω + ω′ ± sin γ
(U ′ ± iB′) dk dk′ dmdm′,(4.14)

and a similar expression holds for w1,nonlin
(a2) . Let use denote

W1,nonlin
(aℓ) = (u(aℓ), w(aℓ), b(aℓ))

T ℓ = 1, 2.(4.15)

By construction

∂t

∑
ℓ=1,2

W1,nonlin
(aℓ)

+ Lε

∑
ℓ=1,2

W1,nonlin
(aℓ)

 = −δ((a1) + (a2)) + r1(a),

where r1(a) is an error term, generated by the approximation of the Leray projector in (4.9) (of order ε
1
3−

2
3µ) and

the viscosity term ((ε∂yy + ε∂xx)e
ikx− ℓ(θ)|k|

1
3

ε1/3
y
= O(ε

1
3 ) for µ small enough, see Assumption 2.5 ). Therefore,

we have

∥r1(a)∥L2 ≤ Cδε
1
3−

2
3µ∥W1,nonlin

(aℓ) ∥L2 ,

where, from (a1) in Table 1, we recall that for ℓ = 1, 2 we have

∥W1,nonlin
(aℓ) ∥L2 = O(δε−

1
6σ− 7

6 ),

so that

∥r1(a)∥L2 = O(δε
1
6−

11
6 µ).(4.16)

Finally note that W1,nonlin
(a1) +W1,nonlin

(a2) corresponds to W1
BL,ε1/3

in the statement of Proposition 3.1.

Remark 4.6. Notice that the interactions of type (c) in Table 1 have approximately the size of r1(a) in the L2

norm. Therefore we will not correct them.
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Step 2: solving (4.7) by lifting the boundary conditions. The oscillating terms in (4.12)-(4.13) provide different

contributions. In fact, the superimposed plane waves in the integral (4.12) represent a nonlinear mean flow W1,nonlin
(a1);MF

as ω + ω′ = O(ε
1
3 ), while (4.13) is a nonlinear second harmonic W1,nonlin

(a1);II as ω + ω′ = ±2 sin γ +O(ε
1
3 ).

Remark 4.7. The above contributions are a second harmonic and a mean flow in terms of time oscillation, thanks
to the strong localization of the angle θ. On the other hand, the spatial frequency of our beam wave is quite spread,
indeed |k| ≤ σ−1 ≤ ε−µ, µ > 0, see (2.1). This is different with respect to the framework of [page 233, [1]], where the

quadratic term is a second harmonic (resp. a mean flow) in time and space, in the sense that ω = ±2 sin γ+O(ε
1
3 ) (resp.

ω = O(ε
1
3 ) and k = ±2k0 +O(ε

1
3 ) (resp. k = O(ε

1
3 )) for a given k0. In fact, while in [1] the approximate solution is

constructed as a sum of packets of plane waves with k lying in a neighborhood of some given k0 (microlocalized), in
the present work we construct a beam wave approximate solution with spreading frequency and strong localization in
the physical space.

Let us consider a linear mean flow W1,lin
(aℓ);MF and a linear second harmonic W1,lin

(aℓ);II solving the linear part of system

(1.1) for ℓ = 1, 2 (in the non-critical case, with ω ∼ 0 and ω ∼ ±2 sin γ respectively), which are provided by Lemma
3.6 (for the mean flow) and Lemma 3.7 (for the second harmonic). To balance the boundary contribution due to

W1,nonlin
(a1);MF (for ω + ω′ = O(ε

1
3 )) and W1,nonlin

(a1);II (for ω + ω′ = ±2 sin γ +O(ε
1
3 )), we will solve

2∑
ℓ=1

(W1,nonlin
(aℓ);MF |y=0 +W1,nonlin

(aℓ);II |y=0 +W1,lin
(aℓ);MF|y=0 +W1,lin

(aℓ);II|y=0) = 0.(4.17)

We deal with the MF (mean flow) and the II (second harmonic) term separately. Let us start with MF.

(i) The mean flow corrector. The nonlinear mean flow contribution is the three dimensional vector in (4.15),

with ω + ω′ = O(ε
1
3 ). Evaluating it in y = 0 for ℓ = 1, it reads as follows

W1,nonlin
(a1);MF|y=0 =

δσ2

ε1/3

∫
1M0

∑
i=1,2

aia
′
iΨ̂ε,σΨ̂

′
ε,σ

−k′U + iλ′iW

ω + ω′ ± sin γ
×

 Π±U
′

i(k+k′)
λi+λ′

i
(U ′ ± iB′)

Π±B
′

 e−i(ω+ω′)t+i(k+k′)(x−x0) dk dk′ dmdm′,

(4.18)

where

M0 := {(k, k′) ∈ R2 : ω + ω′ = O(ε
1
3 ), ε

1
3 η ≤ |k + k′| ≤ ε−µ, µ > 0}.(4.19)

A similar expression holds for W1,nonlin
(a2); (MF).

As ω + ω′ = O(ε1/3), we seek for a solution to the linear part of system (1.1) such that ω ∼ ε
1
3 . To this

end, we systematically apply Lemma 3.6, from which we know that for ω ∼ ε
1
3 , the characteristic polynomial

(3.6) admits exactly three roots with strictly positive real part (for fixed ε), which read

λ1 = − i(k + k′)

sin2 γ
(sin γ cos γ + ω + ω′ + o(ε

1
3 )) + εℓ′′1(θ)(k + k′)3 +O(ε2(k + k′)5);

λj = ε−
1
2 ℓj(θ) +O(ε−

1
6 ), j = 2, 3.(4.20)

We will use the apexes nonlin and lin in order to distinguish the linear and nonlinear contribution at each
step. Using the general expression of the eigenvector in (3.7), we write the first two components and multiply
the last one by −λj to express the no-flux condition on the buoyancy term on y = 0 in (1.2). Then, the vector
associated with the linear mean flow (the above λ1) reads Uλ1

(a1);MF

Wλ1

(a1);MF

−λjBλ1

(a1);MF

 =

 1

− tan γ +O(ε
1
3−µ)

(k+k′)
sin2 γ

+O(ε
1
3−µ)

 .(4.21)

Moreover, in the regime ω ∼ ε
1
3ω0 for some ω0 ̸= 0 uniformly, the eigenvectors related to λj = ε−

1
2 ℓj(θ) +

O(ε−
1
6 ), j = 2, 3, read  U

λj

(a1);MF

W
λj

(a1);MF

−λjB
λj

(a1);MF

 =

 1
iε

1
2 (k+k′)

ℓj
+O(ε

1
3−µ)

ε−
5
6
i sin γℓj

ω0
+O(ε−

1
3−µ)

 .(4.22)
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The goal now is to find (c1, c2, c3) ∈ C3, cj = cj(k, k
′) such that

2∑
ℓ=1

(W1,nonlin
(aℓ);MF |y=0 +W1,lin

(aℓ);MF|y=0) = 0,(4.23)

where

W1,lin
(aℓ);MF =

3∑
j=1

W1,lin,λj

(aℓ);MF,

and, for j = 1, 2, 3 and ℓ = 1, 2,

W1,lin,λj

(aℓ);MF : =
σ2

ε1/3

∫
1M0

cj(k, k
′)Ψ̂ε,σΨ̂

′
ε,σ

U
λj

(aℓ);MF

W
λj

(aℓ);MF

B
λj

(aℓ);MF

 e−i(ω+ω′)t+i(k+k′)(x−x0)−λj(k+k′)y dk dk′ dmdm′.(4.24)

Using (4.15) and the above expression of the components in (4.12) and (4.14), equation (4.23) reads

C′

c1c2
c3

 =
∑
i=1,2

aia
′
iΨ̂ε,σΨ̂

′
ε,σ

−k′U + iλ′iW

ω + ω′ ± sin γ
×

 Π±U
′

i(k+k′)
λi+λ′

i
(U ′ ± iB′)

Π±B
′

 =: (r.h.s.),(4.25)

where

C′ =

 Uλ1

(a1);MF Uλ2

(a1);MF Uλ3

(a1);MF

Wλ1

(a1);MF Wλ2

(a1);MF Wλ3

(a1);MF

−λ1Bλ1

(a1);MF −λ2Bλ2

(a1);MF −λ3Bλ3

(a1);MF

 ∼

 1 1 1

− tan γ ε
1
2 (k + k′)ℓ−1

2 ε
1
2 (k + k′)ℓ−1

3
(k+k′)
sin2 γ

i sin γℓ2
ω0ε5/6

i sin γℓ3
ω0ε5/6

 .(4.26)

In the regime of Assumptions 2.5, where ε
1
3 η ≤ |k + k′| ≤ Cσ−1, one easily checks that

(C′)−1 ∼ i tan γ(ℓ3 − ℓ2)

ω0

ε
1
2 (k + k′)( ℓ2ℓ3 − ℓ3

ℓ2
) i sin γ(ℓ2−ℓ3)

ω0
ε

4
3 (k + k′)(ℓ−1

3 − ℓ−1
2 )

i tan γ sin γℓ3
ω0

i sin γℓ3
ω0

−ε 5
6 tan γ

− i tan γ sin γℓ2
ω0

− i sin γℓ2
ω0

ε
5
6 tan γ


=

O(ε
1
2 (k + k′)) O(1) O(ε

4
3 (k + k′))

O(1) O(1) O(ε
5
6 )

O(1) O(1) O(ε
5
6 )

 .

Now we can solve (4.25) by applying (C′)−1 to (r.h.s). Let us first note from (4.12) and (4.14) (where we recall
that i = 1, 2 according with the numerology of Lemma 3.5) that

(r.h.s.) = ε−
2
3 |k|− 1

3 |k′| 23

 O(1)

O(ε
1
3 (k + k′))
O(1)

 ,

so that

c1 = O(ε−
1
3 |k|− 1

3 |k′| 23 )× (k + k′), c2,3 = O(ε−
2
3 |k|− 1

3 |k′| 23 ).(4.27)

We will now estimate the norm of W1,lin,λj

(a1);MF, j = 1, 2, 3. Let us first focus on W1,lin,λ1

(a1);MF.

Recalling that

U
λ1

(aℓ);MF

Wλ1

(aℓ);MF

Bλ1

(aℓ);MF

 is O(1) in L∞, using (4.24), (4.20), the expression of c1 in (4.27), we have

W1,lin,λ1

(aℓ);MF =
δσ2

ε1/3

∫
1M0

c1Ψ̂Ψ̂′

U
λ1

(aℓ);MF

Wλ1

(aℓ);MF

Bλ1

(aℓ);MF

 e
−i(ω+ω′)t+i(k+k′)(x−x0)+i(k+k′)(cot γ+ ω+ω′

sin2 γ
+o(ε1/3))y

× e−Re(λ1)y dk dk′ dmdm′

=
δσ2

ε2/3

∫
1M0

O(|k|− 1
3 )O(|k′| 23 )(k + k′)Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+i(k+k′)(x−x0)+i(k+k′)(cot γ+ ω+ω′

sin2 γ
+o(ε1/3))y

× e−Re(λ1)y dk dk′ dmdm′.(4.28)
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At a first stage, we ignore the decay. We want to compute the L2 norm of

Wnodecay =
δσ2

ε2/3

∫
1M0

O(|k|− 1
3 )O(|k′| 23 )(k + k′)Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+i(k+k′)(x−x0)+i(k+k′)(cot γ+ ω+ω′

sin2 γ
+o(ε1/3))y

dk dk′ dmdm′.

Let us consider the following change of variables k̃ = (k, m̃), k̃
′
= (k′, m̃′), where

m̃ = k

(
cot γ +

ω + ω′

sin2 γ

)
; m̃′ = k′

(
cot γ +

ω + ω′

sin2 γ

)
.(4.29)

The (transpose of the) Jacobians of the change of variables are

det

(
1 cot γ + ω+ω′+k∂kω

sin2 γ

0 k(∂mω)
sin2 γ

)
= −k

2(k sin γ +m cos γ)

|k|3(sin γ)2
; det

(
1 cot γ + ω+ω′+k′∂k′ω′

sin2 γ

0 k′(∂m′ω′)
sin2 γ

)
= − (k′)2(k′ sin γ +m′ cos γ)

|k′|3(sin γ)2
,

where the expressions of ∂mω and ∂m′ω′ can be computed from (1.10). Note that as (|k|, π2 − (θ + γ)) are
the polar coordinates of (k,m) (resp. (k′,m′)), it follows that k sin γ +m cos γ = |k| cos(θ) (resp. k′ sin γ +

m′ cos γ = |k′| cos(θ′)). Now, thanks to the angular localization provided by Ψ̂ε,σΨ̂
′
ε,σ inside the integral, one

has that

dkdk′dmdm′ = O(1) dkdk′dm̃dm̃′,

so that we can rewrite

Wnodecay =
δσ2

ε2/3

∫
1M0

O(k̃
2
3 )O(|k̃

′
| 53 )Ψ̂Ψ̂′e−i(ω+ω′)t+i(k+k′)(x−x0)+i(m̃+m̃′+o(ε

1
3 ))y dk dk′ dm̃ dm̃′.(4.30)

Now note that from (4.29), denoting by θ̃ the angle of k̃ and by θ̃′ the angle of k̃
′
, as ω + ω′ = O(ε

1
3 ) we

have that

tan θ̃ =
m̃

k
= cot γ +O(ε

1
3 ); tan θ̃′ =

m̃′

k′
= cot γ +O(ε

1
3 ).

We use this information to express the angular localization due to Ψ̂ε,σΨ̂
′
ε,σ inside the integral in terms of the

new angular variables θ̃, θ̃′. Recall the expression of Ψ̂ε,σ in Definition 2.1, i.e.

Ψ̂ε,σ = χ(σ|k|)(χ′(ε−
1
3 (sin θ − sin γ))χ(ε−

1
3 (cos θ − cos γ)) + χ′(ε−

1
3 (sin θ + sin γ))χ(ε−

1
3 (cos θ + cos γ))).

We know from (2.5) that

ω = sin θ, ω′ = sin θ′,

so that the change of variables (4.29) reads

m̃

k
= tan θ̃ = cot γ + sin θ + sin θ′;

m̃′

k′
= tan θ̃′ = cot γ + sin θ + sin θ′.(4.31)

Now, the presence of Ψ̂ε,σ, Ψ̂
′
ε,σ inside the integral implies that

θ, θ′ ∈ {γ +O(ε
1
3 ), γ + π +O(ε

1
3 )}.

As we are dealing with the linear mean flow b.w. , by definition ω + ω′ = O(ε
1
3 ). Thus let us consider for

simplicity the case

θ = γ +O(ε
1
3 ); θ′ = γ + π +O(ε

1
3 ).

It then follows from (4.31) that

sin θ − sin γ = tan θ̃ − cot γ +O(ε
1
3 ); sin θ′ + sin γ = tan θ̃′ − cot γ +O(ε

1
3 ),(4.32)

so that

θ̃ = arctan(sin θ − sin γ + cot γ) +O(ε
1
3 ); θ̃′ = arctan(sin θ′ + sin γ + cot γ) +O(ε

1
3 ).

Since sin θ − sin γ = O(ε
1
3 ) and sin θ′ + sin γ = O(ε

1
3 ), we deduce that

θ̃ = arctan cot γ +O(ε
1
3 ); θ̃′ = arctan cot γ +O(ε

1
3 ),

which in the new tilde variables provides an angular localization with the same ε1/3 scaling (and a different
angle), i.e.

θ̃, θ̃′ ∈ {π
2
− γ,

3π

2
− γ}.
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In order to express the above angular localization of θ̃, θ̃′ inside the integral, one has to write Ψ̂ε,σ, Ψ̂
′
ε,σ as

functions of |k̃|, θ̃ and |k̃
′
|, θ̃′ respectively. It is immediate to notice that since (4.29) gives

m̃ = k cot γ +O(ε
1
3−µ) = |k| cot γ sin(2γ) +O(ε

1
3−µ),

m̃′ = k′ cot γ +O(ε
1
3−µ) = −|k′| cot γ sin(2γ) +O(ε

1
3−µ),

it follows that there exist two universal constants C,C ′ such that χ(σ|k|) = χ(Cσ|k̃|) and χ(σ|k′|) = χ(Cσ|k̃
′
|).

This provides lower (Cη,C ′η) and upper (Cσ−1, C ′σ−1) extreme values of the interval where |k̃|, |k̃
′
| take

values.
Taking into account the normalization factor ε−

1
6σ of a beam wave (see Definition 2.1) (and the weakly

nonlinear small parameter δ), we deduce from the above computations that (4.30) is approximately a product
of a b.w. of order (− 1

6 ,
2
3 ) by a b.w. of order (− 1

6 ,
5
3 ). Thus we can reproduce the proof of Lemma 2.4 to

estimate its L2 norm. Using (2.9) yields

∥Wnodecay∥L2 = O(δε−
1
6σ− 10

3 ).(4.33)

Now we would like to use this information on the L2 norm of Wnodecay to deduce the size of W1,lin,λ1

(aℓ);MF in

L2. We use the following change of variables

ζ1 = k + k′, ζ2 = m̃+ m̃′.

This yields that

Wnodecay =
δσ2

ε2/3

∫
1M0

O(|k̃| 23 + |ζ| 23 )ζ1Ψ̂ε,σΨ̂
′
ε,σe

−i(ω+ω′)t+iζ1(x−x0)+i(ζ2+o(ε
1
3
−µ))y dk dm̃ dζ1 dζ2.

Let us go back to W1,lin,λ1

(aℓ);MF in (4.28), with the slow decay in y given by Re(λ1) in (4.20). We have that

W1,lin,λ1

(aℓ);MF =
δσ2

ε2/3

∫
1M0

O(|k̃| 23 + |ζ| 23 )ζ1(1− e−Re(λ1)y)Ψ̂ε,σΨ̂
′
ε,σe

−i(ω+ω′)t+iζ1(x−x0)+i(ζ2+o(ε
1
3
−µ))y dk dm̃ dζ1 dζ2.

One has to estimate the latter. Note that

F(x−x0)→ζ1(Wnodecay −W1,lin,λ1

(aℓ);MF) =
δσ2

ε2/3

∫
O(|k̃| 23 + |ζ| 23 )ζ1Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+iζ2y(1− e−Re(λ1)y) dk dm̃ dζ2.

(4.34)

Now, we can compute for any λ > 0

∥F(x−x0)→ζ1(Wnodecay −W1,lin,λ1

(aℓ);MF)∥L2

y≤ε−λ
≤ δσ2

ε2/3

∫
O((|k̃| 23 + |ζ| 23 )|ζ|)Ψ̂ε,σΨ̂

′
ε,σ∥1− e−Re(λ1)y∥L2

y≤ε−λ
dk dm̃ dζ2.

Let us look at ∥1− e−Re(λ1)y∥L2

y≤ε−λ
. From (4.20) and recalling that we are integrating over M0 in (4.19),

one has that

Re(λ1) ∼ ε(k + k′)3 ≤ O(ε1−3µ).

In particular, there exists a universal constant C > 0 such that

1− e−Re(λ1)y ≤ 1− e−Cε1−3µy.

Therefore, we have

∥1− e−Re(λ1)y∥L2

y≤ε−λ
≤ ∥1− e−Cε1−3µy∥L2

y≤ε−λ
= O(ε1−3µ− 3

2λ) = o(1) for λ <
2

3
(1− 3µ).

This gives that

∥F(x−x0)→ζ1(Wnodecay −W1,lin,λ1

(aℓ);MF)∥L2

y≤ε−λ
≤ C

δσ2

ε2/3
× ε1−3µ− 3

2λ

∫
O((|k̃| 23 + |ζ| 23 )|ζ|)Ψ̂ε,σΨ̂

′
ε,σ dk dm̃ dζ2.

Now we use Plancherel identity, so that

∥Wnodecay −W1,lin,λ1

(aℓ);MF∥L2

x,y|y≤ε−λ
≤ ∥F(x−x0)→ζ1(Wnodecay −W1,lin,λ1

(aℓ);MF)∥L2
ζ1

L2

y≤ε−λ

≤ Cδσ2ε
1
3−3µ− 3

2λ

∥∥∥∥∫ O((|k̃| 23 + |ζ| 23 )|ζ|)Ψ̂ε,σΨ̂
′
ε,σ dk dm̃ dζ2

∥∥∥∥
L2

ζ1

≤ Cδσ− 2
3 ε

2
3−3µ− 3

2λ = O(δε
2
3−

11
3 µ− 3

2λ),
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where the additional ε
1
3 factor comes from the angular localization of the vector (k, m̃). Choosing for instance

λ = 2
3 (1 − 4µ) with µ small enough, since from (4.33) we have ∥Wnodecay∥L2 = O(δε−

1
6−

10
3 µ), under the

condition O(ε−µ) ≤ O(ε−
1
6−

10
3 µ) (which is always satisfied for µ > 0), it follows that

∥W1,lin,λ1

(aℓ);MF∥L2

x,y|y≤ε−λ
≤ 2∥Wnodecay∥L2

x,y|y≤ε−λ
.

Coming back to the variables (m̃, m̃′), integrating by parts in m̃, we have that

iyF(x−x0)→ζ1(W
1,lin,λ1

(aℓ);MF) = − δσ2

ε2/3

∫
ei(m̃+m̃′)y∂m̃(O(|k̃| 23 + |k̃

′
| 23 )ζ1Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)te−Re(λ1)y) dk dm̃ dm̃′

= − δσ2

ε2/3

∫
ei(m̃+m̃′)yO((1 + t)|k̃|−1(|k̃| 23 + |k̃

′
| 23 ))ζ1Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)te−Re(λ1)y dk dm̃ dm̃′.

This way

|F(x−x0)→ζ1(W
1,lin,λ1

(aℓ);MF)| = y−1|F(x−x0)→ζ1(W
1,lin,λ1

(aℓ);MF)|O(1 + t),

and

∥F(x−x0)→ζ1(W
1,lin,λ1

(aℓ);MF)∥L2

ζ1,y|y>ε−λ
= O(ελ(1 + t))∥W1,lin,λ1

(aℓ);MF∥L2(R2
+).

Now, as λ = 2
3 (1− 4µ), using that

∥W1,lin,λ1

(aℓ);MF∥L2(R2
+) ≤ ∥W1,lin,λ1

(aℓ);MF∥L2

x,y|y>ε−λ
+ ∥W1,lin,λ1

(aℓ);MF∥L2

x,y|y≤ε−λ
,

we have that

∥W1,lin,λ1

(aℓ);MF∥L2

x,y|y>ε−λ
(1−O(ε

2
3−

8
3µ(1 + t))) ≤ ∥W1,lin,λ1

(aℓ);MF∥L2

x,y|y≤ε−λ
≤ 2∥Wnodecay∥L2(R2

+).

As µ < 1
4 , we get the desired bound until t = O(ε−

2
3+

8
3µ), which is already longer than our stability time-scale

in Remark 2.9, but the same type of estimate for all times can be obtained by integrating by parts in time

(recall that W1,lin,λ1

(aℓ);MF × 1(ε−λ,+∞) at ε fixed is the tail of an L2(R2
+) function in the Schwartz space).

Now we compute the norms of the remaining W1,lin,λj

(aℓ);MF for j = 2, 3. For the boundary layer part, recall from

(4.20) (and the above discussion) that for j = 2, 3 we have Re(λj) ≥ Cj

ε1/2
for some universal constant Cj > 0

independent of k, k′. Therefore, W1,lin,λj

(aℓ);MF can be seen as a product of a b.l.b.w. of order ( 12 , 0,−
1
3 ,−

1
3 ) and a

b.l.b.w. of order ( 12 , 0,−
1
3 ,

2
3 ). Using Lemma 2.4 yields

∥W1,lin,λj

(aℓ);MF∥L2 = O(δε−
1
12σ− 11

6 ), j = 2, 3.

Remark 4.8. Note that in the nonlinear mean flow corrector (4.12)-(4.14) where ω + ω′ ∼ ε
1
3 , we have that

ε
1
3 ≲ k + k′ ≲ ε−µ for µ > 0 small. This is different from the setting of [1], where k + k′ ∼ ε

1
3 if and only

if ω + ω ∼ ε
1
3 (namely, a time resonance is also a spatial resonance). In fact, in our case time resonances do

not correspond necessarily to spatial resonances thanks to the stronger spatial localization of our beam waves
with respect to the packets of plane waves in [1].

(ii) The second harmonic corrector. Similarly to what has been done before, now we seek for a linear solution
of system (3.2) that balances the boundary contribution due to the (nonlinear) second harmonic in (4.13).
Then we appeal to Lemma 3.7. We see that the asymptotics of the roots λj , j = 1, 2, 3 are the same as for the

mean flow in (4.20), but in the present case ω + ω′ = ±2 sin γ +O(ε
1
3 ) and k + k′ has a uniform lower bound

given by η > 0 for all ε > 0. Note in particular that as Lemma 3.7 we know that

λ1 ∼ i(k + k′)

((ω + ω′)2 − sin2 γ)
(sin γ cos γ + (ω + ω′)

√
1− (ω + ω′)2),

then there is a contribution with with strictly positive real part if (ω + ω′)2 > 1. Since ω + ω′ ∼ ±2 sin γ,
this real contribution appears if sin γ > 1

2 . In this case, the second harmonic as a decay of O(1) in y and it is
called evanescent second harmonic (see [1, 13] for further details).

Now, exactly as before, we introduce the functions cj for j = 1, 2, 3 to be determined by solving the
analogous of (4.25), and from (4.15) with ω + ω′ ∼ ±2 sin γ for ℓ = 1, 2 we have

W1,lin,λj

(aℓ);(II) : =
δσ2

ε1/3

∫
1MII

cj(k, k
′)Ψ̂ε,σΨ̂

′
ε,σ

U
λj

(aℓ);(II)

W
λj

(aℓ);(II)

B
λj

(aℓ);(II)

 e−i(ω+ω′)t+i(k+k′)(x−x0)−λj(k+k′)y dk dk′ dmdm′,(4.35)



28 R. BIANCHINI AND T. PAUL

MII := {(k, k′) ∈ R2 : ω + ω′ = ±2 sin γ +O(ε
1
3 ), η ≤ |k + k′| ≤ ε−µ, µ > 0}.(4.36)

As before, the functions cj solve the linear algebraic system

2∑
ℓ=1

(W1,nonlin
(aℓ);(II) |y=0 +W1,lin

(aℓ);(II)|y=0) = 0,(4.37)

where

W1,lin
(aℓ);(II) =

3∑
j=1

W1,lin,λj

(aℓ);(II),

and we recall that W1,nonlin
(aℓ);(II) is given exactly by the same expression in (4.18), with M0 replaced by MII. One

can repeat the computations of the previous section to obtain again that

c1 = O(ε−
1
3 |k|− 1

3 |k′| 23 )× (k + k′), c2,3 = O(ε−
2
3 |k|− 1

3 |k′| 23 ).(4.38)

An application of Lemma 2.4 gives immediately that for the boundary layer part (for j = 2, 3) we have

∥W1,lin,λj

(a1);(II)∥L2 = O(δε−
1
12σ− 11

6 ), j = 2, 3.

It remains to estimate the L2(R2
+) norm of W1,lin,λ1

(aℓ);(II), i.e. the second harmonic b.w. We have that

W1,lin,λ1

(aℓ);(II) =
δσ2

ε1/3

∫
1MII

c1Ψ̂ε,σΨ̂
′
ε,σ

U
λ1

(aℓ);(II)

Wλ1

(aℓ);(II)

Bλ1

(aℓ);(II)

 e
−i(ω+ω′)t+i(k+k′)(x−x0)+i

(k+k′)
31 sin2 γ

(sin γ cos γ+(ω+ω′)
√

1−(ω+ω′)2+o(ε1/3))y

× e−Re(λ1)y dk dk′ dmdm′

=
δσ2

ε2/3

∫
1MII

O(|k|− 1
3 )O(|k′| 23 )(k + k′)Ψ̂ε,σΨ̂

′
ε,σe

−i(ω+ω′)t+i(k+k′)(x−x0)+i
(k+k′)
3 sin2 γ

(sin γ cos γ+(ω+ω′)
√

1−(ω+ω′)2+o(ε1/3))y

× e−Re(λ1)y dk dk′ dmdm′.

As before, we can ignore the decay in y. We apply again the change of variables (4.29) and thanks to the
angular localization

k sin γ +m cos γ ∼ k′ sin γ +m′ cos γ ∼ cos(γ),

so that we have again

dkdk′dmdm′ = O(1)dkdk′dm̃dm̃′.

Since now ω + ω′ = ±2 sin γ +O(ε
1
3 ), in this case the change of variables (4.29) gives that

θ̃ ∼ arctan(cot γ ± 2

sin γ
); θ̃′ ∼ arctan(cot γ ± 2

sin γ
),

so that the angular localization (with a different angle) still holds for the vectors (k, m̃), (k′, m̃′). Therefore,
exactly as before, we have that

∥W1,lin,λ1

(aℓ);(II)∥L2 = O(δε−
1
6σ− 10

3 ).

The proof of Proposition 4.5 is now complete.

4.2. Interactions of type (b). Consider the interactions (bℓ), ℓ = 1, 2 in Table 1.

Proposition 4.9. There exists a corrector W1
(b) = (u1(b), w

1
(b), b

1
(b))

T which solves

∂tW1
(b) + LεW1

(b) = −δ × ((b1) + (b2)) + r1(b),

u1(b)|y=0 = w1
(b)|y=0 = ∂yb

1
(b)|y=0 = 0,

with ∥r1(b)∥L2 = O(δε
1
4σ− 11

6 µ). The corrector is composed of

W1
(b) = W1

(b);II +W1
(b);MF +W1

(b);BL,ε1/2 ,

where for the boundary layer part, we have

∥W1
(b);BL,ε1/2∥L2(R2) = O(δε−

11
6 µ),

while

∥W1
(b);MF∥L2 ∼ ∥W1

(b);II∥L2 = O(δε−
1
12−

10
3 µ).
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The proof is identical to the proof of Proposition 4.5 as the interactions between b.w. and/or b.l.b.w. are exactly
the same as before modulo a re-scaling in ε. In fact, in this case every object has an additional smallness factor in
terms of positive powers of ε (that is precisely ε

1
12 ), so that it is smaller than the corresponding object in the proof

of Proposition 4.5, but it has the same structure. Therefore, we omit the proof of this proposition as it does not add
any new idea and it is already detailed in [1] in the case of strongly (frequency-) localized packets of waves.

4.3. Proof of Proposition 4.1. We immediately have from Proposition 4.5 and Proposition 4.9 that, denoting
W1 := W1

(a) +W1
(b), it holds

∂tW1 + LεW1 = −δ((a1) + (a2) + (b1) + (b2)) + r1(a) + r1(b)

= −δQ(W0,W0) + δ((c1) + (c2) + (d1) + (d2) + (d3)) + r1(a) + r1(b)

= −δQ(W0,W0) + r1,

where

r1 := δ((c1) + (c2) + (d1) + (d2) + (d3)) + r1(a) + r1(b).(4.39)

From Table 1, Proposition 4.5 and Proposition 4.9, we deduce that

∥r1∥L2 ≤ O(δ∥(c1)∥L2) = O(δε
1
6σ−2) = O(δε

1
6−2µ).

5. Higher-order Approximation

A nice advantage of space-localized beam waves with respect to packets of waves in [1] is the possibility to construct
an approximate solution Wapp (in the previous sections) that is the some of a finite number of terms, each of them
being physically relevant. Every term of Wapp in Theorem 2.8 is indeed an approximate solution of (1.1), with a
remainder in L2 which is strictly smaller than its L2 size. We recall that in [1], the linear mean flow corrector W1

MF

(Theorem 2.8) had a too singular amplitude combined with a too slow decay, in such a way that its L2 norm had a
priori a bad dependency on the small physical parameter ε. Thus, in [1], that mean flow contribution was replaced
by a non-physical term, which balances the error of the approximate solution on the boundary but it is not (even an
approximate) solution to (1.1). In this work, in the previous sections, we succeeded to overcome this problem using
(almost) axisymmetric beam waves which are spatially localized, in such a way that we can actually use the true mean
flow to contruct Wapp and we do not introduce any non-physical corrector. This allows us to push the approximation
at next orders, using a nice cancellation of the triadic interactions that was discovered in [13] (see also [33]), and it is
due to the null form structure of the convection term for incompressible fluids, [24].

This is the content of this last section, whose aim is to prove Theorem 2.10. To this end, we have to identify the
next order (triadic) contributions to be corrected, which are originated by the interactions in Q(W1,W0), Q(W0,W1),
where W0 is the linear solution given by Proposition 3.1, and W1 is the corrector provided by Proposition 4.1. We
recall from Proposition 4.1 that W1 = W1

MF + W1
II, where W1

MF is a mean flow, so that it has nearly zero time
frequency, while W1

II is a second harmonic, so its time frequency is approximately twice the time frequency of the
incident wave. Now, as showed in (5.3), the linear operator L (i.e. the approximation of the linear operator Lε in
the scaling of the boundary layer neglecting viscosity and dissipation) of system (1.1) has pure imaginary eigenvalues
±iω0 = ±i sin γ, where ω0 is nearly the frequency of the incident beam wave. Therefore, when the triadic terms in
Q(W1,W0), Q(W0,W1) oscillate approximately with the same time frequency

∂tWapp + LεWapp = −δ(Q(W1,W0) +Q(W0,W1)),

the above source term is resonant with respect to the oscillations of the linear part of the system and linear growths
in time (secular growths) can appear [13, 27]. Let us analyze the next order triadic term. We recall from Proposition
4.1 that

W1 = W1
II +W1

MF +W1
II,BL,ε1/2 +W1

MF,BL,ε1/2 +W1
II,BL,ε1/3 +W1

MF,BL,ε1/3 .

All the terms in Table 2 could potentially generate secular growths. From Proposition 4.1 and Proposition 3.1, we
know that

∥W1
II,BL,ε1/3∥L2(R2

+) = O(δε−
1
6σ− 7

6 ); ∥W1
MF,BL,ε1/3∥L2(R2

+) = O(δε−
1
6σ− 7

6 );

∥∇W0
BL,ε1/3∥L∞(R2

+) = O(σ− 2
3 ε−

1
2 ).(5.1)

Therefore, we can deduce from Lemma 2.4 that

δ∥(A1)∥L2 ∼ δ∥(A2)∥L2 = O(δ2ε−
2
3σ− 11

6 ).(5.2)

The triadic interactions of Table 2 have decreasing L2 norm. We look at the last one. From Proposition 4.1, we know
that

∥W1
II∥L2(R2) ∼ ∥W1

MF∥L2(R2) = O(δε−
1
6σ− 10

3 ); ∥∇W1
MF∥L2(R2) ∼ ∥∇W1

II∥L2(R2) = O(δε−
1
6σ− 13

3 ).
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Table 2. List of triadic interactions

type of interaction time frequency typical decay rate

(A1) Q(W1

II,BL,ε1/3
,W0

BL,ε1/3
) ±ω0;±3ω0 ε−1/3

(A2) Q(W1

MF,BL,ε1/3
,W0

BL,ε1/3
) ±ω0 ε−1/3

(B1) Q(W1
II,W

0

BL,ε1/3
) ±ω0;±3ω0 ε−1/3

(B2) Q(W1
MF,W

0

BL,ε1/3
) ±ω0 ε−1/3

(C1) Q(W1

II,BL,ε1/3
,W0

BL,ε1/2
) ±ω0;±3ω0 ε−1/2

(C2) Q(W1

MF,BL,ε1/3
,W0

BL,ε1/2
) ±ω0 ε−1/2

(D1) Q(W1
II,W

0

BL,ε1/2
) ±ω0;±3ω0 ε−1/2

(D2) Q(W1
MF,W

0

BL,ε1/2
) ±ω0 ε−1/2

(E1) Q(W1

II,BL,ε1/2
,W0

BL,ε1/3
) ±ω0;±3ω0 ε−1/2

(E2) Q(W1

MF,BL,ε1/2
,W0

BL,ε1/3
) ±ω0 ε−1/2

(F1) Q(W0

BL,ε1/2
,W1

II) ±ω0;±3ω0 ε−1/2

(F2) Q(W0

BL,ε1/2
,W1

MF) ±ω0 ε−1/2

(G1) Q(W1

II,BL,ε1/2
,W0

BL,ε1/2
) ±ω0;±3ω0 ε−1/2

(G2) Q(W1

MF,BL,ε1/2
,W0

BL,ε1/2
) ±ω0 ε−1/2

(H1) Q(W0

BL,ε1/3
,W1

II) ±ω0;±3ω0 ε−1/3

(H2) Q(W0

BL,ε1/3
,W1

MF) ±ω0 ε−1/3

(I1) Q(W0
inc,W

1
II) ±ω0;±3ω0 no decay

(I2) Q(W0
inc,W

1
MF) ±ω0 no decay

(L1) Q(W1
II,W

0
inc) ±ω0;±3ω0 no decay

(L2) Q(W1
MF,W

0
inc) ±ω0 no decay

We also notice that
∥∇Winc∥L2 = O(σ−1).

We can deduce that
δ∥(L1)∥L2 ∼ δ∥(L2)∥L2 = O(δ2ε−

1
6σ− 13

3 ).

We show in the following that we can correct all the terms of the above table. Then the error ∥R̃app∥L2 of our

consistent approximation W̃ app will be of the size stated in Theorem 2.10. We finally remark that once the terms of
Table 2 will be corrected in the following, the correctors will be trilinear with time oscillation ∼ 0,±2ω0, and they
could give rise to secular growths due to their interaction with W1 in Proposition 4.1.

Lastly, we show how to exploit the nice cancellation in the convection term to correct the first triadic term (A1).
Since it would not add anything but long and tedious computations, we omit the treatment of the other terms of Table
2. For (A1), whose decay in y is order ε

1
3 , we exploit the scaling of the boundary layer. As done in Section 3, we

reduce the system (1.1) to the equations for u, b ((U,B) denote their Fourier transform). For V = (V1,V2) = (U,B)T ,
the equations assume the general structure

∂tV + LV = δ exp(ilx− iαt− λy)V ′,

where

L = sin γ

(
0 −1
1 0

)
.(5.3)

We now introduce (and explain the formal motivation of) a scaling in time. Notice that the boundary layer W0
BL,ε1/3

in Proposition 3.1 has a vertical component of the velocity field that is approximately of order ε
1
3 in L2 or in L∞.

Since the vertical component of the velocity of the boundary layer is O(ε
1
3 ) in L∞ and has to balance the boundary

contribution of the incident wave of O(1), this balance will be effective after a time of the order ε−
1
3 as the group

velocity cg = ∇k,mω = O(|k|−1) = O(1). This is the formal reason behind the time scaling t = τε−
1
3 , as suggested by

[13].

5.1. Proof of Theorem 2.10. We define a scaled time variable τ = ε
1
3 t, so that ∂t = ε

1
3 ∂τ and we rewrite the

previous compact system as in (4.3)

(5.4) ∂τV + ε−
1
3LV = −δε− 1

3Q(V,V).

We recall from Section 3 that exp(ε−
1
3Lt) = exp(iε−

1
3 sin γτ)Π+ + exp(−iε− 1

3 sin γτ)Π−. Now define the filtered
variable

Ṽ := exp(ε−
1
3Lτ)V,
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so that the system reads

∂τ Ṽ + ε−
1
3 δ exp(ε−

1
3Lt)Q(exp(−ε− 1

3Lt)Ṽ, exp(−ε− 1
3Lt)Ṽ) = 0.

We also use the notation Ṽ+ = Π+Ṽ, Ṽ− = Π−Ṽ = Ṽ+, where

Π+ =
1

2

(
1 i
−i 1

)
; Π− = Π̄+.

Exploiting the mutual orthogonality of the projectors, we have

(5.5)
∂τ Ṽ± +

δ

ε1/3
exp(i

i sin γ

ε1/3
τ)(Ṽ+

1 , −∂−1
y ∂xṼ+

1 ) · ∇Ṽ±

+
δ

ε1/3
exp(−i sin γ

ε1/3
τ)(Ṽ−

1 , −∂−1
y ∂xṼ−

1 ) · ∇Ṽ± = 0.

At this stage, notice that the approximate solution that we built in the previous section, i.e. Wapp = W0 +W1, with
W0 given by Proposition 3.1 and W1 by Proposition 4.1, can be written as Wapp = W0 + δW1,δ, since the expression
of W1 in Proposition 4.1 is multiplied by the weakly nonlinear parameter δ. Notice that quadratic terms in (5.5) are

multiplied by ε−
1
3 δ. This means that our first-order corrector δW1,δ, where the singular factor ε−

1
3 does not appear,

is the result of time integration of the quadratic terms in (5.5). Thus, in order to push the approximation at the next
order and decrease its error, we expect to add a corrector of the form δ2W2. We denote the approximate solution of
the previous section in filtered form as

Ṽapp
0 = Ṽ0 + δṼ1.

Now, we want an approximate solution of the form

Ṽapp
1 = Ṽ0 + δṼ1 + δ2Ṽ2,

where the last term has to be determined, while we recall from the previous section that Ṽ1 solves the equation

∂τ Ṽ1 +
δ

ε1/3
exp(

Lt

ε1/3
)Q(exp(− Lt

ε1/3
)Ṽ0, exp(− Lt

ε1/3
)Ṽ0) = 0.

To shorten the notation, we denote

B(V,V) := exp(
Lt

ε1/3
)Q(exp(− Lt

ε1/3
)V, exp(− Lt

ε1/3
)V),

so that the system reads

∂τV +
δ

ε1/3
B(V,V) = 0.

As we look for the next order corrector Ṽ2, we plug the ansatz Ṽapp
1 = Ṽapp

0 + δ2Ṽ2 inside the compact system, and
we obtain

∂τ Ṽapp
0 + δ2∂τ Ṽ2 +

δ

ε1/3
B(Ṽ0, Ṽ0) +

δ2

ε1/3
(B(Ṽ0, Ṽ1) + B(Ṽ1, Ṽ0))

+
δ3

ε1/3
(B(Ṽ0, Ṽ2) + B(Ṽ2, Ṽ0)) +

δ4

ε1/3
(B(Ṽ2, Ṽ1) + B(Ṽ1, Ṽ2)) +

δ5

ε1/3
B(Ṽ2, Ṽ2) = 0.(5.6)

As already pointed out above, Ṽapp, constructed in the previous section, solves ∂τ Ṽapp
0 + δ

ε1/3
B(Ṽ0, Ṽ0) = 0.

The next order approximation is obtained by requiring that Ṽ2 solves

δ2∂τ Ṽ2 +
δ2

ε1/3
(B(Ṽ0, Ṽ1) + B(Ṽ1, Ṽ0)) = 0.(5.7)

Recalling the definition of the bilinear form B(·, ·) and equation (5.5), we write more explicitly, with the notation

Ṽι,± = (Ṽι,±, Ṽι,±), ι ∈ {0, 1}, that

δ2∂τ Ṽ2,± +
δ2

ε1/3
exp(i

sin γ

ε1/3
τ)(Ṽ0,+

1 , −∂−1
y ∂xṼ0,+

1 ) · ∇Ṽ1,± (a)

+
δ2

ε1/3
exp(−i sin γ

ε1/3
τ)(Ṽ0,−

1 , −∂−1
y ∂xṼ0,−

1 ) · ∇Ṽ1,± (b)

+
δ2

ε1/3
exp(i

sin γ

ε1/3
τ)(Ṽ1,+

1 , −∂−1
y ∂xṼ1,+

1 ) · ∇Ṽ0,± (c)

+
δ2

ε1/3
exp(−i sin γ

ε1/3
τ)(Ṽ1,−

1 , −∂−1
y ∂xṼ1,−

1 ) · ∇Ṽ0,± = 0. (d)(5.8)



32 R. BIANCHINI AND T. PAUL

Now observe that, while Ṽ0,± does not oscillate in time, since its time oscillations have been filtered by means of the

change of variable, the next order Ṽ1,± has time oscillations. More precisely, coming back to the non-filtered variable
V, it holds

Ṽ1,± = exp(±iε− 1
3 (sin γ)τ)V1,±,(5.9)

where V1,± = V1,±
II +V1,±

MF constructed in the previous section contains a second hamornic and amean flow contribution,
which oscillate in time with frequency ωII ∼ ±2 sin γ, ωMF ∼ 0, thanks to the angular localization of our wave

beam (due to the angular localization given by Ψ̂ε,σ in (2.4)). Therefore we deduce that Ṽ1,± in (5.9) contains

contributions which oscillate in time with frequency ∼ ±(sin γ)ε−
1
3 , ±3(sin γ)ε−

1
3 . The dangerous point is that in

(5.8) the oscillations exp(±ε− 1
3 sin γ) hit Ṽ1,±. As some terms of Ṽ1,± oscillate with frequency ±(sin γ)ε−

1
3 , there are

some non-oscillating terms (resonances) in equation (5.8). When this is the case, Ṽ2 satisfies an equation of the form

∂τ Ṽ2 + f(Ṽapp)MF + (oscillating terms) = 0,

where f(Ṽapp)MF is generic a function of a non-oscillating contribution in time. The solutions to this equations has
a linear growth in time, which is often named secular growth [13]. The only hope to avoid this growth, which would
prevent ourselves to be able to obtain an improved approximate solution, is that the non-oscillating terms cancel
thanks to the structure of the quadratic/bilinear form. This is precisely what happens in this context, as we show
below. We also point out that, even though at this stage this can appear as a miraculous cancellation, it is actually
related to the null form structure of the convection term for incompressible fluids, see for instance [24]. Now, in
equation (5.8), we recall that, in view of (5.5),

Ṽ1,± ∼− δ exp(i
sin γ

ε1/3
τ)(Ṽ0,+

1 ,−∂−1
y ∂xṼ0,+

1 ) · ∇Ṽ0,±

− δ exp(−i sin γ
ε1/3

τ)(Ṽ0,−
1 ,−∂−1

y ∂xṼ0,−
1 ) · ∇Ṽ0,±.

Plugging this expression inside (5.8), after some computations we obtain that

(a) + (c) = [∂−1
y (∇⊥Ṽ 0,−

1 · ∇Ṽ 0,+
1 ),−∂−1

y ∂x∂
−1
y (∇⊥Ṽ 0,−

1 · ∇Ṽ 0,+
1 )]

+ [((∇⊥∂−1
y Ṽ 0,−

1 ⊗∇⊥∂−1
y Ṽ 0,+

1 ) · ∇] · ∇Ṽ 0,± + (oscillating terms);

(b) + (d) = −((a) + (c)) + (oscillating terms).

Therefore the non-oscillating (resonant) terms cancel out and we can correct the oscillating ones solving the equation

for Ṽ2. This implies that we can actually construct

Ṽapp
1 = Ṽ0 + δṼ1 + δ2Ṽ2,

with Ṽ2 solving (5.7). Looking at (5.6), the potential secular growths are in the second non-corrected term, i.e.

δ4ε−
1
3 (B(Ṽ2, Ṽ1) + B(Ṽ1, Ṽ2)). In fact, adding Ṽ2 to the approximate solution, the first non-corrected term, given by

δ3ε−
1
3 (B(Ṽ0, Ṽ2) + B(Ṽ2, Ṽ0)), oscillates in time (this can be easily verified recalling that Ṽ2 contains the oscillations

0,±2,±4 and therefore cannot generate any secular growth). Finally, recalling that we corrected (A1) and (A2) in
Table 2, we claim that all the terms of Table 2 can be corrected exactly in the same way, so that using the estimates
(5.1), we obtain that in the original time-scale t = ε−

1
3 τ the worst remainder is estimated by Lemma 2.4 as

∥R̃app∥L2 = o(δ3t∥w
BL,ε

1
3
∂yu

BL,ε
1
3
× w

BL,ε
1
3
∂yyu

BL,ε
1
3
∥L2)

= o(δ3t∥w
BL,ε

1
3
∂yu

BL,ε
1
3
∥L∞∥w

BL,ε
1
3
∂yyu

BL,ε
1
3
∥L2)

= o(δ3ε−
5
6σ− 19

6 t),

where w
BL,ε

1
3

is a b.l.b.w. of order ( 13 ,
1
3 , 0, 0), ∂yuBL,ε

1
3

is a b.l.b.w. of order ( 13 ,
1
3 ,−

2
3 ,−

1
3 ) and ∂yyu

BL,ε
1
3

is a

b.l.b.w. of order ( 13 ,
1
3 ,−1, 0).

Appendix A. Proof of Lemma 2.4

By definition (2.1), vtbeam is the Fourier transform of the function

g(k) =
√
2π

σ

ε1/6

(
Ψ̂ε,σ(|k|, θ)e−iωt

)
||k|≥η(A.1)

where
(
|k|, π2 − (θ + γ)

)
are the polar coordinates of k in the rotated reference system (x, y) for θ ∼ γ (i.e. the first

addend inside the integral (2.1), given by the first term of Ψ̂ε,σ(|k|, θ) in Definition 2.1, while the second addend is
just the complex conjugate of the first one, yielding θ ∼ γ + π). We focus on the first term θ ∼ γ and from now on,
we use the shortened notation

Ψ̂ε,σ(|k|, θ) = χε,σ(σ|k|, ε−1/3(θ − γ))O(εp|k|q)
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for Ψ̂ε,σ in Definition 2.1. By the Plancherel equality, one has

∥vtbeam∥2L2 = 2π
σ2

ε1/3

∫ ∞

η

∫ 2π

0

χ2
σ,ε(σ|k|, ε−1/3(θ − γ))O(ε2p|k|2q)|k|d|k|

= O(ε2p)2π
σ2

ε1/3

∫ ∞

η

∫ 2π

0

χ2
σ,ε(σ|k|, ε−1/3(θ − γ))|k|1+2q

d|k|dθ,

(A.2)

and the estimate easily follows. For the boundary layer term, one first notices that

∥vtBL∥L2 ≤
√
2π

σ

ε1/6

∫ 2π

0

∥∥∥∥∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ))O(εp|k|q)e−iωt+i|k| sin(θ+γ)(x−x0)−λ(k)α,βy|k|d|k|
∥∥∥∥
L2

x,y

dθ.

(A.3)

By the Plancherel equality again, one has∥∥∥∥∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ))O(εp|k|q)e−iωt+i|k| sin(θ+γ)(x−x0)−λ(k)α,βy|k|d|k|
∥∥∥∥2
L2

x

≤ O(ε2p) 1
sin(θ+γ)2

∫ ∞

η

χ′(σ|k|, ε−1/3(θ − γ))2|k|2q+2
e−2Re(λ(k)α,β)yd|k|.

Indeed, the function

f̂(|k|) :=
√
2π

∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ))|k|q+1e−iωt+i|k| sin(θ+γ)(x−x0)−λ(k)α,βyd|k|(A.4)

is nothing but the Fourier transform in |k| of the function

f(|k|) := χσ,ε(σ|k|, ε−1/3(θ − γ))|k|q+1e−iωt+i|k| sin(θ+γ)x0−λ(k)α,βy(A.5)

evaluated at the point sin(θ + γ)x. It is enough now to notice that∫ ∞

η

χε,σ(σ|k|, ε−1/3(θ − γ))2|k|2q+2
e−2Re(λ(k)α,β)yd|k|

≤ e
−2 inf

k
Re(λ(k)α,β)y

∫ ∞

η

χε,σ(σ|k|, ε−1/3(θ − γ))2|k|2q+2
d|k|

= e
−2 inf

k
Re(λ(k)α,β)y

σ−2q−3

∫ ∞

η

χ′(p, ε−1/3(θ − γ))2 p2q+2 dp.

Thanks to the assumptions on λ(k)α,β in Definition 2.1, there exists ℓ̃ such that Re(ℓ̃) > 0 and infk Re(λ(k)
α,β) ≥

Re(ℓ̃) |k|
β

εα ≥ Re(ℓ̃)η
β

εα , so that, integrating in y, one has

∥e−2Re(λ(k)α,β)y∥2L2
y
≤ ∥e−2Re(ℓ̃) ηβ

εα y∥2L2
y
= O(εα).

Integrating in θ, it yields∫ 2π

0

1

sin(θ + γ)2

∫ ∞

η

χε,σ(p, ε
−1/3(θ − γ))2 p2q+2 dp dθ = O(ε

1
3 ),

and finally, we obtain

∥vtBL∥L2
x,y

= O(ε
1
6+p+α

2 σ−q− 1
2 ).

Note that when α = 1
3 , q = − 2

3 , p = − 1
3 (the widest boundary layer of Proposition 3.1), we get

∥vtBL∥L2 = O(σ
1
6 ).

For the L∞ norm of the wave beam, simply notice that

∥vtbeam∥L∞(R2
+) ≤ εp−

1
6σ

∫ 2π

0

∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ)) |k|1+q
d|k| dθ = O(εp+

1
6σ−q−1).

Similarly, the L∞ norm of the wave beam boundary layer yields

∥vtBL∥L∞(R2
+) ≤ εp−

1
6σ

∫ 2π

0

∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ)) sup
y≥0

(e−Re(λ(k)α,β)y) |k|1+q
d|k| dθ

≤ εp−
1
6σ

∫ ∞

η

χσ,ε(σ|k|, ε−1/3(θ − γ)) |k|1+q
d|k| dθ = O(εp+

1
6σ−q−1).

We further prove the remaining claims.
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(i) Notice from (2.1) that

∂xv
t
beam =

σ

ε1/6

∫ ∞

η

∫ 2π

0

i|k| sin(θ + γ)χσ,ε(σ|k|, ε−1/3(θ − γ))O(εp|k|q)e−iωt+i|k| sin(θ+γ)(x−x0)+i|k| cos(θ+γ)y|k| d|k|dθ.

Therefore |i|k| sin(θ + γ)χσ,ε(σ|k|, ε−1/3(θ − γ))O(εp|k|q)| = O(εp|k|q+1) so that, by Definition 2.1, ∂xWt
beam is

b.w. of order (p, q + 1). The same argument works for ∂yWt
beam.

(ii) The conclusion follows by applying exactly the same reasoning as for (i).

(iii) To estimate the product of two b.l.b.w. of order (α, β, p, q) and (α′, β′, p′, q′) respectively, it is enough to notice
that

∥vtBL × v′tBL∥L2(R×R+) ≤ min{∥vtBL∥L2(R×R+)∥v′tBL∥L∞(R×R+), ∥vtBL∥L∞(R×R+)∥v′tBL∥L2(R×R+)}

= O(εp+p′+ 1
3+

max{α,α′}
2 σ−q−q′− 3

2 ),

where the estimates in (2.8) have been applied.
The product of a b.l.b.w. vtBL and a b.w. vtbeam, and of two b.w. vtbeam, v

′t
beam are estimated exactly in the same way.

Appendix B. A useful lemma

The proofs of Lemmata 3.5, 3.6 and 3.7 rely on the following simple and useful result.

Lemma B.1. Let g be any complex polynomial. Let us suppose that, for some µ0,

g(µ0) ≤
|g′(µ0)|2

4 sup
|ν|≤2

|g(µ0)|
|g′(µ0)|

|g′′(ν)|
.

Then there exists a unique root µ of g such that

|µ− µ0| ≤ 2
|g(µ0)|
|g′(µ0)|

.

Proof. Let ε0 := g(µ0), α0 := g′(µo) and

f(x) =
g(x+ µ0)− ε0

α0
.

Then,

f(0) = 0, f ′(0) = 1.

Therefore f satisfies the hypothesis of [26, Lemma 1.3 p. 130] which can be formulated as:

“if sup
|x|,|z|≤r

|f ′(x)− f ′(z)| ≤ s(r) < 1 and |y| ≤ (1− s(r))r, then ∃!x, |x| ≤ r such that y = f(x).”

We have

f(x) = y ⇐⇒ g(µ0 + x) = yα0 + ε0

so that

g(µ0 + x) = 0 ⇐⇒ y = − ε0
α0
.

Therefore, the lemma is proved as soon as one can find s0 < 1 such that

(B.1) sup
|x|,|z|≤2

|ε0|
|α0|

|f ′(x)− f ′(z)| ≤ s0 < 1 and
|ε0|
|α0|

≤ (1− s0)2
|ε0|
|α0|

⇐⇒ s0 ≤ 1
2 .

Defining s0 by

s0 := 1
|α0|2r sup

|z|≤2
|ε0|
|α0|

|g′′(z)| ≥ 1
|α0| sup

|x|,|z|≤2
|ε0|
|α0|

|g′(x+ µo)− g′(z + µo)| ≥ sup
|x|,|z|≤2

|ε0|
|α0|

|f ′(x)− f ′(z)|,

we find that (B.1) is satisfied as soon as α0 ≤ 1
2 that is

2|ε0|
|α0|2 sup

|z|≤2
|ε0|
|α0|

|g′′(z)| ≤ 1
2 ⇐⇒ ε0 ≤ α2

0

4 sup
|z|≤2

ε0
α0

|g′′(z)|
⇐⇒ g(µ0) ≤

|g′(µ0)|2

4 sup
|ν|≤2

|g(µ0)|
|g′(µ0)|

|g′′(ν)|
.

□
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