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Abstract: This paper introduces the design of a novel indoor and outdoor mobility assistance system
for visually impaired people. This system is named the MAPS (Mobility Assistance Path Planning
and orientation in Space), and it is based on the theoretical frameworks of mobility and spatial
cognition. Its originality comes from the assistance of two main functions of navigation: locomotion
and wayfinding. Locomotion involves the ability to avoid obstacles, while wayfinding involves the
orientation in space and ad hoc path planning in an (unknown) environment. The MAPS architecture
proposes a new low-cost system for indoor–outdoor cognitive mobility assistance, relying on two
cooperating hardware feedbacks: the Force Feedback Tablet (F2T) and the TactiBelt. F2T is an
electromechanical tablet using haptic effects that allow the exploration of images and maps. It is
used to assist with maps’ learning, space awareness emergence, path planning, wayfinding and
effective journey completion. It helps a VIP construct a mental map of their environment. TactiBelt
is a vibrotactile belt providing active support for the path integration strategy while navigating; it
assists the VIP localize the nearest obstacles in real-time and provides the ego-directions to reach the
destination. Technology used for acquiring the information about the surrounding space is based
on vision (cameras) and is defined with the localization on a map. The preliminary evaluations
of the MAPS focused on the interaction with the environment and on feedback from the users
(blindfolded participants) to confirm its effectiveness in a simulated environment (a labyrinth). Those
lead-users easily interpreted the system’s provided data that they considered relevant for effective
independent navigation.

Keywords: visually impaired mobility assistance; tactile tablet; tactibelt; maps’ learning; space
awareness emergence; path planning; wayfinding

1. Introduction

Autonomous navigation in an unknown environment is one of the greatest challenges
for a VIP as vision plays an important role in gathering the information necessary for
many processes involved in this complex task. In the last decade, many research projects
were developed to compensate for the loss of vision, most of them relying on sensory
substitution. Sensory substitution is grounded in the idea of replacing an impaired or
lost sense with another sense [1]. Paul Bach-y-Rita, pioneer in this field, aimed to work
at restoring visual functions in blind people [2]. The usual sensory substitution devices
(SSDs) aspire to efficiently convey visual data in real-time via touch or hearing. This data
may include the shape and/or size of an object, the perceived (ego-centered) distance from
it, or the color of the object [1,3]. Typical SSDs consist of the following three components:
a sensor, a processing unit that simplifies and converts the sensory information, and a
user interface to transmit this information to the user. All SSDs are based on the sensory
substitution motor loop (cf. Figure 1).
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Figure 1. Sensory substitution loop.

This loop presents the embodiment of perceptions: (1) The sensor (usually a camera)
is pointed in a given (ego-centered) direction (to the target). (2) A cloud computing or a
computer interprets the image and converts it to tactile or audio stimulations. Then the user
receives and interprets these stimulations (audio and tactile descriptions), and the brain
generates the ad hoc percept. (3) During training, the user tests percepts while interacting
with the space via the received feedback. Through iterations of the sensory-motor loop, the
VIP adjusts understanding of the code to match perceptions with the sensory feedback that
was perceived.

Presently, some SSDs cannot transfer the volume and complexity of visual information
with the precision and speed suitable to fit the vision-based task. They lack spatial and
temporal resolution and also bandwidth [4]. Schinazi et al. [5] presented the topic of
functional reorganization of perceptual modalities considering new developments for SSDs
based both on locomotion and wayfinding. Consequently, some SSDs try to understand
how some specific elements improve and assist navigation and wayfinding [6–9].

Navigation usually involves both wayfinding and locomotion tasks [10]. Locomotion
is closely linked to the ability to localize obstacles and negotiate a path around them, while
wayfinding involves the orientation in space and ad hoc path planning in any environ-
ment (large environments included). Both tasks are easier to implement having a visual
input [11–14]. However, locomotion and wayfinding involve different components of deci-
sion making, different skills [10], and require different characteristics of visual information.
For example, in locomotion tasks, vision is used to update distance information to an
obstacle [12,13]; in wayfinding tasks, vision helps in spotting points of interest for mobility
(PIM), landmarks, cues, and clues useful for navigation guidance. Consequently, SSDs
should be geared to answer the specific demands of both locomotion and wayfinding
to convey the specific information needed for both tasks. Therefore, to efficiently assist
the navigation, we need to develop a novel system that supports both locomotion and
wayfinding, thus allowing the emergence of spatial awareness; the proposed system is
named the MAPS.

The paper is organized as follows: Section 2 outlines the state of the art on SSDs,
while Section 3 presents a novel model of VIP mobility and overviews the TactiBelt and
F2T designs, the two components of the MAPS system. Section 4 presents the TactiBelt
detailed design (for its potential reproducibility). Section 5 outlines some preliminary
evaluations of the TactiBelt with VIP and blindfolded persons which confirm relevance
of MAPS for the target assistance. Finally, section 6 summarizes our ideas and discusses
future developments of the MAPS system

2. State of the Art on SSDs

Over the years, several researchers have approached the substitution of the visual
sense using the hearing or tactile senses [14,15]. For visual-to-audio SSDs, two of the most
popular devices are “the vOICe” [16–18] and “EyeMusic” [19].

The vOICe converts gray-level visual images by scanning them in video mode (from
left to right, from top to bottom). Each pixel is converted into a sound, based on its
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luminance and the pixel’s orthogonal coordinates in the image. High luminance pixels
present the sound louder than low luminance pixels. The pixels on the left of the visual
field are played before those on the right, and pixels at the top have a higher pitch than
those at the bottom [20]. The vOICe allows VIP individuals to access visual information
through hearing to recognize and localize the object after a long training [3].

‘EyeMusic’ transforms the entire scene visual parameters (shape, location, brightness,
and color) into sound. It uses different instrumental sounds to perceive brightness and color.

However, the interpretation of the output signals of these devices is difficult and
requires long training phases to understand the represented scene [21–23]. Space aware-
ness is difficult to acquire. Moreover, for navigational tasks, the constantly changing
perspective and distance while moving cannot be processed in real-time. A VIP has dif-
ficulty differentiating multiple objects, especially those vertically aligned, as they have
difficulty distinguishing between the pitches of the sounds that are played simultaneously.
Furthermore, such devices cover environmental audio cues.

To overcome these limits, tactile-visual sensory substitution systems were proposed.
The Brainport (or TDU, Tongue Display Unit) is one of the most popular SSD devices.
This device transforms visual images into a pattern of electrical stimulations delivered via
an electrode array that is placed on the tongue [1,24]. The users explore tactile patterns
representing a scene by using this electrode pad. Therefore, objects can be processed theo-
retically in parallel [25], and they do not have difficulty distinguishing between vertically
aligned objects.

With decades of research, despite ambitious aspirations and impressive achievements,
few devices have been accepted by the VIP in their daily life,and no one device has become
widespread as none effectively improve the life quality of the VIP [4,21,26]. Chebat et al. [27],
identified several drawbacks of the current forms of SSDs and proposed some promising
approaches that attempt to circumvent them. These are: learning, standardization of training,
temporal coherence, reduction of the cognitive load, orientation, depth, contrast, assisted
functions and costs and dissemination; they are shortly described in this paper.

The learning problem: With the current SSDs, the end users need a lot of time for practice
and training [7,8,24]. Learning skills with a new SSD that contradict received mobility
training could impair previously acquired mobility skills and discourage potential users
from using SSDs.

The standardization of training: In this field, many publications examine certain SSD ele-
ments, but each paper has a new protocol to fit its needs of methodology. The performance
of SSD devices are difficult to compare due to the lack of standardization. Optimizing the
learning processes and standardizing the performance would assist the perceptual training
and the guidance of potential users through steps needed to interpret the information
provided by a device. This would solve the learning problem.

The temporal coherence: For an SSD to be useful in navigation, the image of the user’s
surroundings needs to be presented and interpreted in real-time for a user’s possible
immediate processing. Some SSDs are designed based on audio which transfers the visual
information into sounds using the temporal flow. That can add a small delay in the delivery
of the 2D message to the user [28]. On the other hand, some SSDs are designed based
on touch, such as the TDU [7,8], which can transmit the visual information in real-time.
However, their interpretation is sometimes slow due to cognitive load induced by the
complexity of the tactile images.

The cognitive load: This problem is directly linked to the complexity of the algorithms
used to generate substituting stimuli, which ultimately need to be learned by the user. The
more complex the interpretation of SSD information, the more difficult the completion of
the sensorimotor loop presented in Figure 1. Therefore, the simultaneous interpretation
of the information provided by the SSD and accomplishment of a task requires important
cognitive burden. Finding the balance between minimal and necessary information which
should be provided by the SSD is fundamental.
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The orientation: This problem is closely related to the accurate (precise) localization
of objects in space using SSDs. The direction information provided by the SSD is often
confusing, and although participants can detect objects in the field of the sensor’s activity,
they often report being unable to tell exactly where the sensor points in the environment. To
localize an object in space accurately, the depth of the viewed scene should be as constant
as possible, and the relevant feedback must be provided. Proper training in remapping
must be optimal to achieve the appropriate distal attribution of the moving stimulus.

The depth problem: It is difficult to detect the distance to the obstacles, and avoid
them [7] if depth information is lacking. However, some recent devices can calculate
depth information. For example, with Eyecane the end-users can understand the depth
information through vibrations and sounds [22].

The contrast problem: Many SSDs can work well under optimal contrast conditions;
however, under different conditions or with any other settings, they may not work correctly,
such as the TDU.

The resolution problem: Downsampling of the image resolution resolves issues to use
another modality, but it reduces the resolution of data. That makes it harder to recognize
the details of a scene. Nevertheless, zooming in can improve this problem, for example
EyeMusic [29].

The cost problem: The cost of SSDs is still high because of the long research and
development phases. Some companies and laboratories can reduce the cost of SSDs by
developing their prototypes on the existing devices (ex. Smartphones). However, the high
price is still a problem to accept and provide to end users.

The dissemination problem: Many scientific journals are not always easily accessible to
the VIP, especially the 2D data such as graphs and figures. We should disseminate the
results of scientific research to all, including the VIP.

Although some attempts have been made to overcome the above listed problems, they
still have some limits. For example, the Eyecane is easy to use and requires little training
but has a low resolution. The vOICe and the EyeMusic offer a higher resolution, but they
comprise complex coding that makes them more difficult to use and they, consequently,
require many hours of training. Therefore, we propose the MAPS, a novel system for VIP
mobility assistance based on the journey approach implementation learned in mobility
classes. It offers a good compromise between conveying high-level information for nav-
igation, data resolution, and its usability. It uses two hardware cooperating devices, the
F2T, a tactile tablet for electronic (imaged) map accessibility based of the force–feedback
principle, and TactiBelt, a haptic belt providing real-time information on nearest obstacles
and on target to reach.

3. The MAPS, a Novel System for VIP Mobility Assistance

The MAPS system for VIP mobility assistance consists of three subsystems as shown
in Figure 2. Subsystem 1 assists the “Map space learning” using the tactile tablet F2T (Force
Feedback Tablet). The goal of this subsystem is to help the VIP memorize the map of the
environment where they will move. After preparing the journey, the VIP starts it (using
the white cane) and may benefit from the assistance provided by Subsystem 2: a shift from
“learned (memorized) map” into physical navigation using TactiBelt, its accessories (such
as a camera) and associated software (space perception control and journey control via the
mobility graph—a kind of VIP specific GPS). By providing the mobility graph built on a
map supporting the path integration navigation strategy, Subsystem 2 aims to help the
VIP move more independently and lower stress and cognitive load. During the journey, if
the users forget the map memorized information, they can use the information provided
by Feedback 3, which is a “consultation and updating map” displayed on the F2T. The
goal of this feedback is to help the VIP recall the map of its nearest space. Feedback 3,
a specific software running on the F2T, works similarly to the classic GPS (and is still
in development).
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Figure 2. Model of VIP mobility assistance.

The subsequent subsections provide overviews of the MAPS Subsystems 1 and 2.

3.1. Feedback 1: Map Space Learning

Today, map information has different media: thermoformed maps, concrete maps, and
magnet-based maps as shown in Figure 3. However, such media have their drawbacks:
their display is static and at a fixed scale, they have a fixed predefined (north-south) map
orientation, and their content is difficult to exploit during the journey.

Figure 3. Map learning: (a) thermoformed map; (b) concrete map; (c) magnet-based map.

To overcome these limits, we propose an interactive tactile tablet based on the force–
feedback principle, hence its name F2T, force–feedback tablet (cf. a model design on Figure 4
and a current prototype on Figure 5). Our current prototype is activated by two small
gear motors moving a thumb stick controlled by an Arduino Nano board (ATmega328
microcontroller) communicating with a PC through a USB and a graphical interface dedi-
cated to haptic environment development and test, developed in Java. Detailed design and
prototyping of the F2T are provided in [30].

Figure 4. F2T model design (with the simplified map of Rouen Normandy University).
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Figure 5. F2T current prototype.

The general scenario of “map space learning” can be summarized as follows:
(1) The user selects the area to explore through audio commands and F2T buttons.
(2) The map is loaded from a GIS (geographic information system) provider and

automatically converted into its equivalent topological representation. The proposed
journey path is also provided, (cf. Figure 4 black line on the simplified map of Faculty of
Rouen Normandy University).

(3) The Points of Interest for Mobility (PIM), useful to both confirm journey progress
and lower independent mobility stress are added to the uploaded map (map annotation).

(4) Known PoIs (points of interest in the usual sense) are uploaded from GIS (roads,
fountains, building, shops,. . .) and converted into localized sound sources of the audio of
the MAPS system. This audio-enhanced journey path is accessed through the F2T which
allows the user to explore the map with the use of a thumb stick/joystick (controlled by a
force feedback mechanism).

The F2T provides the graphic content of images’ spatial information by 2D force
feedback. The displayed information can be explored by moving a mobile thumb stick
whose movements’ resistance levels vary depending on the basic information (e.g., slowing
down or stopping the user when trying to move over a wall). The F2T can provide passive
effects (textures and reliefs), active effects (dynamic scene), and actively guided movements
during the exploration. Passive and active feedback is used to convey information about
the map (space organization) during a free exploration, while active guidance is used to
provide direct guidance along a path. Examples of simple “tactile images” can be seen in
Figure 6, where colors represent different types of frictions used for feedback generation.

We divide the passive feedback into two basic categories based on the user’s actions
with respect to the functional map:

- Friction feedback: The F2T can simulate both solid and fluid friction, allowing different
textures to be presented.

- Elevation feedback: This effect can be used to simulate slopes and bas-relief elements.
A high elevation difference also allows edge simulations, making it possible to follow
the shape of an object.

Furthermore, we can create more complex tactile paths by combining passive and
active feedback. For example, we make “canyons” where the user is oriented to exit
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from either side. If the user tries to push his/her finger toward other directions, the force
feedback will simulate a slope to push the end user’s finger to the canyon bottom. This
canyon indicates the “walkable” paths or areas that allow the user to only move in some
directions.

Figure 6. Examples of color-coded representations of the haptic effects used to simulate image
properties. Red channel corresponds to fluid friction, blue channel to solid friction, and green channel
to the elevation of the shape.

3.2. Feedback 2: Effective Displacement Using TactiBelt

The memorized map is the basis for effective displacement with a cane via our original
TactiBelt (Figure 7). We designed a new prototype based on the recommendations of SSDs.
The TactiBelt is designed with vibrator motors and is worn around the waist. This kind
of interface is discreet, can be worn under a large pullover, and allows the end users to
perceive ego-centered spatial information. The belt has three layers of vibrators to encode
different information on distal obstacles (surface located (cane detectable obstacles and
over a distance of up to 5 m) and overhanging obstacles (the upper row)). This prototype
will add two front-facing cameras that are embedded into a pair of glasses. They are then
combined with an inertial unit to provide depth information about nearby obstacles. A
GPS/Galileo chip will provide absolute localization and ego-centered distance information
about nearby landmarks. Cartographic data will be collected from online services or from
buildings’ blueprints for indoor navigation. However, the first prototype (only TactiBelt)
will be tested in a virtual environment (Section 5).

Figure 7. TactiBelt prototype (left, showing vibrator positions, and center, showing the complete
device) and type of used vibrator (right, RS DC minivibration motor).
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Some prototypes are designed using a vibrotactile system [31–33] or a commercially
available Sunu Band (https://www.sunu.com/, accessed on 23 April 2022), to enhance
the peripheral visual detection of the VIP. They transfer only the information of obstacles
to a vibration motor (distance, orientation, elevation). In addition to providing informa-
tion on obstacles, the TactiBelt can assist during physical (or virtual) displacement via
movement from point A to point B by a set of intermediate steps performed along the
adjacent segments, each segment linking two consecutive PIMs (Figure 8). The practical
implementation of this strategy is based on a mobility graph, extracted from the annotated
geographic map [34]. The physical displacement between adjacent nodes is supposed to be
performed straightforward. The path integration algorithm is based on our bio-inspired
indoor and outdoor mobility model [35].

Figure 8. Movement strategy from point A to point B through Points of Interest for Mobility.

While moving, thanks to vibrators, the TactiBelt provides to the VIP two types of
information on the 3D environment, virtual or real (cf. Figure 9): the nearest obstacle (blue
circles) and the next PIM of the mobility graph (green circles). A specific vibration indicates
the final journey PIM (“target is reached”). The position of the activated vibrator indicates
the ego-direction of the obstacle/PIM, while the amplitude of vibrations indicates the
distance to obstacles/PIM (knowing that the vibration amplitude is inversely proportional
to the distance). The continuous vibration pattern is used for nearest obstacle information,
and the discontinuous vibration pattern is used for the next PIM to reach. Section 4 will
present the TactiBelt hardware design.

Figure 9. TactiBelt combined with glasses (stereo rig): (a) working principle; (b) generated stimu-
lations. Green circles represent the next PIM to reach with a discontinuous vibration pattern. Blue
circles represent the nearest obstacles with a continuous vibration pattern.

4. TactiBelt Hardware Design

From a hardware point of view, the TactiBelt consists of a belt made of elastic fabrics
with 46 miniature vibrators (cf. Figure 7 right). It is driven by a unique microcontroller
(Arduino Mega, ATMega2560) and powered by an external “power bank” type battery. The
intervibrator distances are uniform at the waist which correspond to recent physiological
findings [36].

https://www.sunu.com/
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4.1. The TactiBelt Operative Part

The Arduino board is equipped with a custom shield developed to power vibrators
with an external battery. The control board is placed in a box in the front of the belt
and is connected to the belt (and thus to the vibrators) with two DVI cables to facilitate
maintenance of the device. These cables have 24 connected wires, allowing for a connection
of 46 vibrators (a wire is used for common VCC), although the shield can control up to
48 vibrators.

The belt has 46 vibrators distributed as follows: three rows of vibrators going around
the user’s waist (Figures 7 and 10). On the rows, the vibrators are spatially equidistant
which matches the known distribution of the human waistline mechanoreceptors. The
two upper rows have 16 vibrators, while the lower row has 14 vibrators. The current
distribution foresees on each row, 10 vibrators at the front and 6 or 4 vibrators at the back.
Indeed, the front part must allow a better discretization of the space (thus better obstacle
detection). The use of three rows allows the belt to localize the obstacles located above the
walking surface, at the chest level and difficult to detect with a cane (cf. Section 3.2). The
TactiBelt control system is presented in Section 4.2.

Figure 10. Vibrator distribution on the belt (the triangle provides the orientation of the user’s gaze).

4.2. The TactiBelt Control Part

The management of the vibrators is entirely performed by the Arduino board. The
vibrators can be controlled individually with the amplitude of the vibrations, the period,
and the width of the pulses. The microcontroller can also send a predefined number of
pulses to transmit a particular code.

Each vibrator is designated by an identifier (“spatial coordinates” on the belt). A
vibration is identified with four parameters:

- The power “p”, characterizing the amplitude of the vibrations, controlled with a
high-frequency PWM;

- The duration “t1”, corresponding to the duration at the high state of the pulses;
- The duration “t2”, characterizing the duration at the low state of the pulsations. Note

that if t1 = 0 or t2 = 0, the vibration will be continuous;
- The parameter “n”, specifying the number of pulses; if n = 0, the pulsation will

not stop.

The vibration power is defined by pulse width modulation (PWM). The pulse period
is 8.4 ms. Note that this maximum power corresponds to 50 % of the maximum power of
the vibrators. This limitation makes it possible to avoid discomfort related to significant
vibrations while reducing the consumption of the device.

The durations t1 and t2 allow the definition of a pulsation. If t1 or t2 is null, the
vibration will be continuous. The pulsation has a period t1 + t1, with a high state of
duration t1 and a low state of duration t2.

The vibrator signal data are provided in Figure 11. The parameter “n” allows the
specification of a finite number of pulses (1 to 9 pulses). The vibrator stops after the number
of pulses specified by n. If n = 0, the signal will not be interrupted.
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Figure 11. Signal of a vibrator. On this schema, PWM and pulse periods are not represented with the
same scale. The signal corresponds to the parameters p = 45%, t1 = 0.3 s, t2 = 0.3 s, n = 3. The vibrator
stops after 3 pulses (n = 3). The red signal is the signal carrying period 0.6 s.

5. Experimental Evaluation of TactiBelt

Our system consists of two devices: F2T and TactiBelt. The evaluation of the F2T was
presented in [30]. Collected results indicate that the F2T can be used to convey graphical
information to blind users through force–feedback. This paper presents the preliminary
evaluation of TactiBelt only.

The first experiments using TactiBelt were organized in two phases:
(1) Strength of the stimuli and perception of direction (Section 5.1);
(2) Navigation in a simulated environment (a serious game) (Section 5.2).
These experiments involved seven blindfolded participants (three women and four

men), grouped into two age groups: below 30 years old (four participants) and above
30 years old (three participants). This last subdivision is suggested by the user’s experience
related to the usage of haptic/tactile technologies. Therefore, gender and age are two
variables in our experiences, and the collected results will be analyzed using them. Table 1
gives the ages of the seven participants to our tests. The age of the participants varies from
22 to 68 with an average of 35.85.

Table 1. The gender and age of the participants of our tests.

Subjects Gender Age

1 F 24
2 M 22
3 M 25
4 F 24
5 F 68
6 M 48
7 M 40

5.1. Perception of Direction and Strength of the Stimuli

The goal of these tests is twofold: (1) check the technical quality of generated stimuli
(Section 5.1.1), and (2) learn the mapping (spatial perception) (Section 5.1.2).

5.1.1. Check the Technical Quality of Generated Stimuli

The evaluation of the quality of tactile stimuli generated by vibrators confirms the
technical specifications of the vibrators (amplitude and frequency) and allows selecting
the amplitude of the vibrations the most suitable for each participant for the subsequent
experiments (part of the user profile for the MAPS system).

5.1.2. Perception of Direction
Task

During the learning of the mapping, the participants tested the tactile stimuli of the
TactiBelt vibrators by a pointing task–indication of a 3D point ego-direction, the source of
their tactile stimulation.
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Experimental Platform

This task used an ego-directional calibration map representing a set of nine concentric
circles of growing radii (cf. Figure 12). The vibrators were activated more or less strongly to
simulate the orientation and distance of a 3D point (supposed to be the source of vibrating
stimuli). The concentric circles define the distance from the user and therefore the power of
the considered activated vibrator (from one to nine). Each circle represents the strength of
the stimuli, the closest circles to the center create the most powerful stimuli to represent the
obstacle or the target that is near the person. The outer circles create less powerful stimuli
to show the gradual, inversely proportional, distance of the obstacle or the target.

Figure 12. Test pattern for direction perception with a TactiBelt (calibration chart): the colored circles
represent the space around the user. When moving the computer mouse on the circles, the vibrators
are activated ; a vibrator characterizes the ego-orientation and ego-distance of the pointed 3D spot.
Each circle corresponds to a precise amplitude of the vibration, from the greatest (level 9) to the
lowest (level 1).

Experimental Protocol

The experience leader moved the computer mouse between the circles. A vibrator
was powered more or less strongly and generated stronger or weaker tactile stimulation on
the TactiBelt worn by the participant. The position of the vibrator indicated the potential
ego-direction of the 3D elements in the space (e.g., an obstacle). Two kinds of information
were expected to be given by a participant:

(a) To point on the TactiBelt, the spot where the generated tactile stimulation was per-
ceived, and indicate the direction of the potential 3D point which induced this stimulation;

(b) To assess its growing or lessening power of the stimuli (distance estimation to a 3D
point).

Collected Data

The blindfolded participants proved an accurate perception of the 3D ego-direction of
the tactile stimuli. The interpretation of the stimuli was intuitive and effortless; the reaction
to the stimuli was very rapid.

The perception of stimuli power (cf. Figure 12) was tested by all the participants with
the ascending and descending staircase procedure. A vibration was perceived very lightly
with the ascending method at level two and confirmed by all the participants at level three.
With the descending method, all participants confirmed the perception of the vibrations
until level three. The differences in vibration power levels were observed for levels 9-7,
7-5, and 5-3. A difference of the minimum two levels were perceived by all. This last
observation is useful to interpret the distance to the obstacle while moving an avatar in the
simulated environment (cf. Section 5.2)

Discussion

From the collected data, it could be deduced that there are no differences linked to the
gender or the age. This confirms that the stimulations are well perceived by any person
and means that the TactiBelt may be effectively accepted by everybody showing that it is
an inclusive device.
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5.2. Navigation in the Simulated (Virtual) Environment
Task

The goal of this experiment—a serious game– was to test the efficiency of the TactiBelt
to provide along a path without/with an obstacle data on the obstacle and to allow space
awareness emergence. The tested hypothesis claims that TactiBelt assists the navigation
toward a goal (final PIM) by providing vibration data as an indicator of the information
(PIM, obstacles) for a VIP and blindfolded participants.

Experimental Platform

The second test was performed in a simulated environment (a maze). This simulation
environment allowed testing the belt with several types of information simultaneously: the
presence of obstacles (e.g., walls), the directions of the target, etc. This serious game used a
simulated environment, a kind of labyrinth (cf. Figure 13 left).

Figure 13. Simulated maze. On the left: the initial position of the avatar (“a bird”) in the labyrinth.
The next targets (PIM1, PIM2, and PIM 3) to reach are represented by a violet circle. PIM 3 is the
destination. On the right: the representation of the environment on the TactiBelt matching the
avatar’s initial position: in black, the presence of nearby obstacles; in blue, the direction of the target
to reach (colors represent different patterns of vibrations); the avatar is in the TactiBelt center.

The environment perceived by the avatar’s vision system (cf. Figure 13), thus by the
avatar, was simulated. it used a polar (ego-)reference frame and generated (via the power of
the signal) the distance to obstacles within the field of view of 360° and angular resolution
of 1°. This information was used to localize the TactiBelt vibrator and its vibration level
(which encodes the distance).

Experimental Protocol

The experiment had two levels of difficulty: (1) Without obstacle (Figure 14a), to vali-
date the hypothesis of the navigation possibility toward a goal using TactiBelt stimulations;
(2) With an obstacle between the avatar and the target (Figure 14b) to validate that the
vibrations of the PIM are distinguishable from the vibrations of obstacles. This experiment
aimed to confirm the movement strategy from point A to point B through PIMs (Figure 8).
This test had four paths: Path 1 was from starting point to PIM1, Path 2 was from PIM1 to
PIM2, Path 3 was from PIM2 to PIM3, andthe final path was from PIM 3 to the final point
(Figure 14); the positions of the starting point, PIMs, and the final point were the same for
two levels.



Sensors 2022, 22, 3316 13 of 19

Figure 14. Simulated environment: (a) without obstacle; (b) with an obstacle between the avatar and
the target (the blue circle).

Only tactile information generated by the TactiBelt could be used to navigate in the en-
vironment. This tactile information was built from vision data provided by the (simulated)
vision system. The tactile information was translated into a physical displacement of an
avatar using a PC numeric keypad as shown in Figure 15. Key 4 was to rotate left, Key 5
was to go forward, Key 6 was to rotate right, Key 2 was to go back, and Key 1 and Key 3
were to go to the left and to the right, respectively. All these operations were performed in
avatar ego-centered reference frame.

Figure 15. Mapping of the keys of the numeric keypad to direct the avatar. This key mapping was
selected as num-5 key usually has an ergot making it easier to recognize.

Our experiment was preceded by a training. It let the participants familiarize them-
selves with TactiBelt before starting the experiments, as learning rates differ between
participants [37]. During the learning stage, blindfolded participants could try the TactiBelt
in the simulated environment to get familiarized with the numeric keypad to move the
avatar and with the target signal which is a regular repeating signal easy to identify
(Figure 16).
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Figure 16. Navigation of a VIP in a simulated environment using the TactiBelt.

Collected Data

Figure 17 presents the detailed time of each participant to complete the four paths,
reaching successively targets PIM1, PIM2, PIM3, and the final point. Overall, the partici-
pants had no difficulties moving the avatar toward the PIMs without the obstacle. With
the obstacle, most participants (five of seven participants) took more time on Path 2 (from
PIM1 to PIM2). This can be explained by the presence of an obstacle on this path.

Figure 17. Navigation times from starting point to final point of each subject with and without an
obstacle for four paths.

To complete the data from Figures 17 and 18 shows the mean time of each participant
with and without an obstacle. The overall average time to touch the target PIM without
an obstacle was 28.1 s (SD = 13.9 s), and the average time with an obstacle was 61.5 s
(SD = 26.4 s).
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Figure 18. Mean time to touch the target PIM of each participant without (blue) and with an obstacle
(red).

Discussion

For the tests with an obstacle, participants had to differentiate the vibrations of the
obstacle from the repeating signal of the target. The participants said that the signal of the
obstacle was perceived very distinctly as the signal was continuous and was very different
from the signal of the target (PIM). When the avatar was getting closer to the obstacle, the
vibrations could be felt more and more powerfully, and the participant needed more time
to move the avatar.

Sometimes, the signal of the obstacle could be in the same direction as the target. In
this case if the participant was close to the obstacle, the signal of the obstacle was more
powerful than the signal of the target. Therefore, the participants found a procedure to
make a distinction between an obstacle and the (final) PIM: they moved the avatar around
the obstacle to perceive more powerfully the target and to approach it.

The two age groups (less than 30 years old, and more than 30 years old) were chosen
according to the use of tactile and touch stimulation technologies in Figures 17 and 18. We
observed that younger participants reacted quicker than the older participants to handle
the numeric keypad due to their use of video games. Women performed slightly better
than men for the task without obstacles. This last observation confirms the results obtained
by other authors [38]. Future studies with a larger group of participants will provide data
on the effect of age and gender due to trends noted in our data.

The obtained results with navigation to a target in the absence of an obstacle show
that previous usage of tactile/touch stimulation technologies (thus some habit to inter-
pret the tactile stimuli) positively impacts the speed of tactile navigation. This point is
encouraging data for our MAPS system’s future appropriation by the VIP. However, as
seen in Figures 17 and 18, overall younger participants found as much difficulties as older
participants in the presence of an obstacle. It is to be noted that the learning process of the
navigation system only involved tasks without obstacles.

The tests were applied only once to see the usability and perception of the TactiBelt
stimulations. This is a limitation since repeated trials would have provided data that could
determine if there were learning effects beyond the initial practice period. Future works
will analyze learning effects with and without obstacles.

Conclusion of Two Experiences

Collected data validated the proposed architecture of the TactiBelt and its hardware
implementation. The information provided by TactiBelt can be correctly interpreted and
allowed the participants to navigate toward the target (in the absence and the presence of
an obstacle) in a simulated environment.

Moreover, this test helps us answer some problems that were presented in Section 2.
First, the information about the learning and training phase are important to improve our
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training protocol which can make the use of our system easier. In addition, the users felt
the feedback (audio, tactile) with no noticeable delay and could react instantly (solution
to the temporal coherence). In the first prototype, we tested our system with a virtual
environment and found that our algorithm works efficiently with no delay and no extra
cognitive load (solution to the cognitive load problem). In the near future, we will test
it in a real environment with our cameras and evaluate this problem. Concerning the
orientation problem, our system provides the direction information of nearest obstacle and
next PIM. The users confirmed that they quickly recognized this information (solution to
the orientation problem).

Furthermore, we are completing our system which includes two front-facing cameras
combined with an inertial unit to provide stable orientation-aware depth information about
nearby obstacles. A GPS/Galileo chip will be added to provide absolute localization and
ego-centered distance information about nearby landmarks (next PIM). Based on that,
cartographic data will be collected from online services. This design will solve the depth,
the contrast, and the resolution problems. In addition, our system can help a VIP access
independently open source literature (article, 2D graphics . . . ). Then they can give us
feedback to improve our system (solution to the dissemination problem).

6. Conclusions

Autonomous navigation is one of the biggest challenges for a VIP. This paper intro-
duces a new system for the assistance of the VIPs’ mobility.The MAPS is composed of
two original digital subsystems: F2T-TactiBelt. The originality of the proposed approach
comes from the MAPS ability to assist the VIP’s real-time displacements. This system
assists different subtasks of the mobility process and is especially useful for target reaching,
namely:

- To learn a map and thus to construct the mental map of the environment where the
VIP will navigate (using F2T);

- To transfer the “learned map” into a physical displacement (using the TactiBelt and its
accessories).

The preliminary results of the experimental evaluation of the TactiBelt with the VIP and
blindfolded participants in a simulated environment show that TactiBelt provides relevant
data for secure and independent moving toward a target in a static environment. The
provided data can be easily interpreted by the VIP, which signifies the probable acceptance
of the MAPS.

Future work will focus on improving the MAPS systems with more reliable hardware
and software. The spatial distribution of TactiBelt vibrators should be precisely investigated
using touch senses physiology. The F2T should be designed as a frame to be clipped on
classic PC screens, which will be used as the control of a MAPS system and lead to a
truly portable device. The simulated stereo apparatus, a part of Feedback 2, must be
replaced by a “real vision system”, a stereo apparatus embedded in a pair of glasses, and
associated with an inertial measurement unit (IMU) (for various obstacles detections and
for balance sense simulation). This system will be enhanced with a GPS (or a Galileo) chip
for efficient outdoor tracking and reinforcement of our bio-inspired indoor and outdoor
mobility model [35]. Cartographic data necessary for navigation in real environments
(indoor and outdoor) will be collected from online services or building blueprints for
indoor navigation.

We will also investigate the use of audio effects to generate interactive multimodal
representations of the map. Finally, additional serious games should be designed with
more complex topologies than the considered virtual environment and corresponding to
real configurations while navigating indoors and outdoors.

New tests will be carried out to measure the difference between a controlled virtual
environment with and without typical distractions. To this effect, in the future we want to
add nonstatic obstacles and other types of distraction that can occur outdoors to test our
prototype. We will extend our testing population to elderly subjects.
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Our first evaluations involved navigation in a virtual world, but it is important to
note that since the proposed prototype is to be used in a real outdoor situation, it will be
necessary to conduct the evaluation of the system, with the addition of other sensors, to
determine preliminary efficacy of the prototype with the lead users,the VIP.

It is also to be noted that the first evaluation of the prototype involved blindfolded
sighted people, conducted in a simulated environment. As such, it does not reflect the
possible performance of actual VIPs. This is why we are getting in contact with some
charities with VIPs to conduct next evaluations.
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