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Abstract

In this paper we present an arbitrary-order fully discrete Stokes complex on general
polyhedral meshes. We enriche the fully discrete de Rham complex with the addition of
a full gradient operator defined on vector fields and fitting into the complex. We show
a complete set of results on the novelties of this complex: exactness properties, uniform
Poincaré inequalities and primal and adjoint consistency. The Stokes complex is especially
well suited for problem involving Jacobian, divergence and curl, like the Stokes problem or
magnetohydrodynamic systems. The framework developed here eases the design and anal-
ysis of scheme for such problems. Schemes built that way are nonconforming and benefit
from the exactness of the complex. We illustrate with the design and study of a scheme to
solve the Stokes equations and validate the convergence rates with various numerical tests.

Keywords: Discrete Stokes complex, Discrete de Rham complex, compatible discretiza-
tion, polyhedral methods, arbitrary order

MSC2010 classification: 65N30, 65N99, 76D07

1 Introduction.

The exactness of the divergence free condition plays an important role in the numerical resolu-
tion of incompressible fluid equations, [6] provides a detailed review. This kind of conservation
requires the discrete spaces to reproduce relevant algebraic properties of the continuous spaces.
Let Ω be a domain of R3. This exactness can be expressed by the following differential complex:

R H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω) {0}.iΩ grad curl div 0 (1.1)

Many discrete counterparts of the complex (1.1) have been developed. See [7] for a thorough
exposition and an extensive bibliography. Although many partial differential equations can be
expressed using the de Rham complex, the lack of smoothness causes issues for some equations,
in particular for the Stokes equations (see [3]). So a smoother variant more suited to the Stokes
equations (hence called Stokes complex) has been considered. In three dimensions the Stokes
complex is written:

R H2(Ω) H2(Ω) H1(Ω) L2(Ω) {0}.iΩ grad curl div 0 (1.2)
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The development of discrete counterparts of this smoother complex is much more complicated.
See [7, Chapter 8.7] for a history. Although such constructions exist (for example [5]) they
often have drawbacks. Recurrent problems can be a large minimal degree and thus numerous
unknowns as well as difficulties to enforce Dirichlet boundary conditions. The subject is very
active with many recent advances: [11, 12]. Another issue of these constructions is that they are
frequently constrained to conformal simplicial meshes, which is limiting for some geometries as
well as for the possibility of refinement or agglomeration. A construction of the Stokes complex
in virtual finite elements on general meshes has also been recently developed (see [13]).

Our construction works on general polyhedral meshes and for arbitrary polynomial degrees.
The discrete spaces consist of polynomial spaces on the elements of all geometric dimensions:
cells, faces, edges and vertices. Compared to the virtual finite element method, the basis
functions are explicitly known but do not live in a subspace of continuous functions. The
discrete differential operators are therefore necessarily different from the continuous operators.
They are constructed according to integration by parts formulae and in a sense converge with
the discrete spaces to the continuous operators (see the consistency results of Section 5). A
discretization of the de Rham complex (1.1) has been developed in detail by D. A. Di Pietro
and J. Droniou [14]. One can find in the introduction a very complete comparison of the
different methods leading to discrete de Rham complex on polytopal meshes. Our paper is
a continuation of [14]: Our construction is based upon it, and we add the necessary basis
functions required for the increased smoothness of the Stokes complex. We define and analyze
in detail the Jacobian operator while checking its compatibility with the complex.

More precisely we show the exactness of the complex, the existence of uniform Poincaré
inequalities and many consistency results as well as a discrete version of the right inverse for the
divergence for the discrete norm H1. Finally, we apply this to the Stokes equations: we show
well-posedness, give an error estimate and find an optimal convergence rate of order O(hk+1),
h being the size of the mesh and k ≥ 0 the chosen polynomial degree. We also explore other
choices of boundary conditions and validate numerically every result.

The remaining of the paper is organized as follows. In Section 2 we introduce the general
setting. We define the discrete spaces and operators (interpolators, differential operators and
norms) in Section 3. In Section 4 we show that our construction is indeed a complex which is
exact for contractible domains. In Section 5 we establish consistency properties, including pri-
mal and dual consistencies. The Stokes equations are defined in Section 6 and other boundary
conditions are studied in Section 7. We display our numerical results in Section 8. Finally we
prove technical propositions in the appendices: on polynomial spaces in appendix A and on
various lifts in appendix B.

2 Setting.

This section is dedicated to the introduction of the setting and various notations that will be
used throughout the paper. We follow the conventions of [14].

2.1 Mesh and orientation.

In the following we consider a polyhedral domain Ω ⊂ R3 and keeping the notation of [14],
for any set Y ⊂ R3, we write hY := sup{|x − y| : x,y ∈ Y } and |Y | its Hausdorff measure.
We consider on this domain a mesh sequence Mh = Th ∪ Fh ∪ Eh ∪ Vh parameterized by a
positive real parameter h ∈ H. Here Th is a finite collection of open convex polyhedra such
that Ω = ∪T∈ThT and h = maxT∈Th hT > 0, Fh is the collection of open polygonal faces of
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the cells, Eh is the collection of open polygonal edges, and Vh the collection of vertices. This
sequence must be regular in the sense of [10, Definition 1.9] with the regularity constant ρ. For
any cell T ∈ Th, we write FT the set of faces of this cell. Likewise for any face F ∈ Fh, we
write EF the set of edges of this face.

We take k ≥ 0 a fixed polynomial degree. In the following most inequalities hold up to
a positive constant. This constant depends only on some parameters, here on the chosen
polynomial degree k, on the regularity parameter of the mesh sequence ρ and on the domain
Ω.

We denote the inequality up to a positive constant by

A . B

meaning there exists C ∈ R∗+ depending only on some parameters (here usually only on k, ρ
and Ω) such that A ≤ CB. We also write

A ≈ B

meaning that A . B and B . A.
For any h, we set the orientation of any face F ∈ Fh and any edge E ∈ Eh by prescribing a

unit normal vector nF and unit tangent vector tE . For any face F ∈ Fh and any E ∈ EF we
also define the unit vector nFE normal to E lying in the plane tangent to F , and such that
(tE ,nFE ,nF ) is right-handed in R3. To keep track of the relative orientation we define for any
T ∈ Th and F ∈ FT , ωTF ∈ {−1, 1} such that ωTFnF points out of T , and for any F ∈ Fh,
E ∈ EF we define ωFE ∈ {−1, 1} such that ωFEnFE points out of F . We also define nΩ as the
outward pointing unit normal vector on the boundary ∂Ω. We note by ⊥ the rotation of angle
π/2 in the oriented plane F .

2.2 Polynomial spaces.

For any entity X ∈ {E,F, T}, we denote by Pk(X) the set of polynomials of total degree
at most k on X, by Pk(X) the set of vector valued polynomials, and by (Pk(X)ᵀ)3 the set
of triples of polynomials on X forming the rows of a matrix valued polynomial. We use the
conventions P−1(X) := {0} and P0,k(X) := {P ∈ Pk(X) :

∫
X P = 0}. We also define the

broken polynomial space

Pk(Xh) := {Ph ∈ L2(Xh) : ∀X ∈ Xh, Ph|X ∈ Pk(X)}, (2.1)

as well as its continuous counterpart

Pkc (Xh) := {Ph ∈ C0(Xh) : ∀X ∈ Xh, Ph|X ∈ Pk(X)}. (2.2)

Remark 1. Continuous polynomials can be characterized by their values at the interface and
their lower order moments on the elements. An explicit construction is deduced from Lemma
50. In the context of edges we can see the isomorphism between Pk+2

c (Eh) and Pk(Eh)× RVh .

For the sake of readability we quote two lemmas on discrete spaces: [10, Lemma 1.28 and
Lemma 1.32] (in a slightly more restrictive setting):

Lemma 2 (Discrete inverse Poincaré). Let X be an element of Th ∪ Fh ∪ Eh. Let a positive
integer l and a real number p ∈ [1,∞] be fixed. Then, the following inequality holds: For all
v ∈ P l(X),

‖∇v‖Lp(X) . h
−1
X ‖v‖Lp(X), (2.3)

with hidden constant depending only on ρ, l and p.
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Lemma 3. Let p ∈ [1,∞] be a fixed real number and l ≥ 0 be a fixed integer. Then for all
h ∈ H, all T ∈ Th (resp. F ∈ Fh), all F ∈ Fh (resp. E ∈ Eh), all v ∈ P l(F ),

‖v‖Lp(F ) . h
− 1

p

T ‖v‖Lp(T ) (2.4)

with hidden constant depending only on ρ, l and p.

We will also use Koszul complements (see [14, Section 2.4]). We consider for any face T ∈ Th
a point xT such that B(xT , ρhT ) ⊂ T . Then we define the following subspaces of Pk(T ):

Gk(T ) := gradPk+1(T ), Gc,k(T ) := (x− xT )×Pk−1(T ),

Rk(T ) := curlPk+1(T ), Rc,k(T ) := (x− xT )Pk−1(T ).
(2.5)

These spaces are such that:

Pk(T ) = Gk(T )⊕ Gc,k(T ) = Rk(T )⊕Rc,k(T ), (2.6)

however the sum is not orthogonal for the L2 scalar product.
Similarly, in 2 dimensions for any face F ∈ Fh, we define:

Gk(F ) := gradPk+1(F ), Gc,k(F ) := (x− xF )⊥Pk−1(F ),

Rk(F ) := rotPk+1(F ), Rc,k(F ) := (x− xF )Pk−1(F ).
(2.7)

We also have the following isomorphisms:

rot :P0,k(F )→Rk−1(F ), (2.8)

div :Rc,k(F )→ Pk−1(F ), div :Rc,k(T )→ Pk−1(T ), (2.9)

curl :Gc,k(T )→Rk−1(T ). (2.10)

We can deduce from Lemma 2 that |||rot||| . h−1, |||div||| . h−1, |||curl||| . h−1 and from [14,
Lemma A.9] that

∣∣∣∣∣∣(rot)−1
∣∣∣∣∣∣ . h,

∣∣∣∣∣∣(div)−1
∣∣∣∣∣∣ . h,

∣∣∣∣∣∣(curl)−1
∣∣∣∣∣∣ . h.

For X = {T, F} we define the local spaces of Nedelec and of Raviart-Thomas respectively
by:

N k(X) := Gk−1(X)⊕ Gc,k(X), RT k(X) := Rk−1(X)⊕Rc,k(X). (2.11)

These spaces are strictly contained between Pk−1(X) and Pk(X). Another important property
given in [14, Proposition A.8] is that for any cell T ∈ Th (resp. F ∈ Fh) and any face of this
cell F ∈ FT (resp. E ∈ EF ):

∀vF ∈N k(F ), (vF )|E · tE ∈ Pk−1(E),

∀wF ∈RT k(F ), (wF )|E · nFE ∈ Pk−1(E),

∀vT ∈N k(T ), (vT )|E · tE ∈ Pk−1(E),

∀wT ∈RT k(T ), (wT )|F · nF ∈ Pk−1(F ),

∀vT ∈N k(T ), (vT )|F × nF ∈RT k(F ).

(2.12)

In order to fix the notation we write

(Rc,k(F )ᵀ)2 =

(
Rc,k(F )ᵀ

Rc,k(F )ᵀ

)
, (Rc,k(T )ᵀ)3 =

Rc,k(T )ᵀ

Rc,k(T )ᵀ

Rc,k(T )ᵀ

 . (2.13)
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We take differential operators to be acting row-wise on matrix valued functions, and we use
the convention

∇

 v1

v2

v3

 :=

∂1v1 ∂2v1 ∂3v1

∂1v2 ∂2v2 ∂3v2

∂1v3 ∂2v3 ∂3v3

 .

We define the space Rc,k
(T ) by

Rc,k
(T ) := {W ∈ (Rc,k(T )ᵀ)3 : TrW = 0}. (2.14)

An explicit description of this space is given by Lemma 42. Let us now construct a complement
to this space. First noticing that Tr((Rc,k(T )ᵀ)3) = P0,k(T ), we can consider the inverse
operator PTr

k : P0,k(T )→ (Rc,k(T )ᵀ)3:

PTr
k :=

div−1

div−1

div−1

 ◦ grad, (2.15)

where div is the isomorphism from Rc,k(T ) into Pk−1(T ) given by (2.9). Then we define the
space:

Rk
(T ) := PTr

k P0,k(T ). (2.16)

Lemma 46 shows that the spaces Rc,k
(T ) and Rk

(T ) are complementary. A similar con-

struction of the spaces Rc,k
(F ) and Rk

(F ) holds in 2 dimensions, and is used in Appendix
C.

Remark 4. By construction, we have: ∇·Rk
(T ) = ∇·PTr

k P0,k(T ) = grad Pk(T ) = Gk−1(T ).

Remark 5. These spaces are hierarchical since Rc,k ⊂Rc,k+1
,Rk ⊂Rk+1

.

We define a matrix valued equivalent to the Raviart-Thomas space as follows

RT k
(T ) := Rc,k

(T )⊕Rk−1
(T )⊕ (Rk−1(T )ᵀ)3. (2.17)

Remark 6. For q ∈ Pk(T ), we have qI ∈ Rk
(T ) ⊕ (Rk(T )ᵀ)3. Indeed ∇· (PTr q − qI) = 0 so

PTr q − qI ∈ (Rk(T )ᵀ)3 by the isomorphism (2.9) and (2.6).

Lemma 7. For X ∈ {F, T}, ∇· is an isomorphism from Rc,k+1
(X) to Gc,k(X).

Proof. The proof for X = F is given by Lemma 44 for X = T in the appendix. The case
X = F is far easier and is provable with the same arguments.

We will often need to view 2-dimensional spaces as subspace of R3. In particular we
introduce two spaces related to the normal plane of an edge and to the tangent plane of a
face.

Definition 8. For any edge E ∈ Eh a natural 3-dimensional vector is tE . We can arbitrarily
complete it in an orthonormal basis of R3 (tE ,n1,n2). Assume that n1 and n2 are fixed once
and for all on each edge. We define the space

P̃
k

n,E(E) = {p1n1 + p2n2 : p1, p2 ∈ Pk(E)}. (2.18)
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Likewise for any face F ∈ Fh assume there is a F -dependent fixed basis (nF ,n1,n2) of R3.
We define the space

P̃
k
(F ) =

 ∑
i,j={1,2}

Vi,j ni ⊗ nj +
∑

i={1,2}

winF ⊗ ni :

V = (V )i,j ∈Rc,k
(F )⊕Rk

(F )⊕ (Rk(F )ᵀ)2,w = (w)i ∈ Pk(F )
}
.

(2.19)

We will implicitly write P̃
k
(F ) = (Rc,k

(F ) ⊕Rk
(F ) ⊕ (Rk(F )ᵀ)2) ⊕ (nF ⊗ Pk(F )) to

decompose it into its subcomponents. The last direct sum here is L2-orthogonal, hence this will

not cause any ambiguity in the scalar products. The space P̃
k
(F ) is isomorph to M3,2(Pk(F )).

When embedded in the space of 3 by 3 tensor, elements of P̃
k
(F ) are all orthogonal to nF on

the right.

3 Discrete complex.

We can now define the discrete complex. We start by giving the degree of freedom and the
interpolator of the discrete spaces. Then we define the discrete differential operators and give
some basic properties on them. To distinguish operators acting on scalar from those acting
on vector we use the notation grad for the operator acting on scalar fields and giving vector
fields, and ∇ for the operator acting on vector fields and giving a tensor field.

3.1 Complex definition.

We define five discrete spaces Xk
grad,h, Xk

curl,h, Xk
∇,h, Xk+1

L2,h
and Xk

L2,h. Diagram (3.1) sum-

marizes their connection with each other and with their continuous counterpart. Throughout
the paper we will use the notations introduced in this section to refers to the components of
discrete vectors.

L2(Ω)

H2(Ω) H2 H1(Ω) L2(Ω)

Xk
grad,h Xk

curl,h Xk
∇,h Xk

L2,h

Xk+1
L2,h

Ik
L2,h

grad

Ikgrad,h

curl

Ik
curl,h

div

Ik
∇,h

∇

Ik
L2,h

Gk
h Ck

h Dk
h

∇k+1
h

(3.1)

Notice that the interpolators (defined in Section 3.2) require more smoothness than the spaces
shown in (3.1). Discrete spaces are defined by:

Xk
grad,h :={q

h
= ((Gq,V )V ∈Vh , (qE ,Gq,E)E∈Eh , (qF , Gq,F )F∈Fh

, (qT )T∈Th) :

Gq,V ∈ R3(V ),∀V ∈ Vh,

qE ∈ Pk+1
c (Eh),Gq,E ∈ P̃

k

n,E(E), ∀E ∈ Eh,
qF ∈ Pk−1(F ), Gq,F ∈ Pk−1(F ), ∀F ∈ Fh,
qT ∈ Pk−1(T ), ∀T ∈ Th},

(3.2)
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T : Pk−1(T ) RT k(T ) N k(T ) Pk(T )

F : Pk−1(F ) RT k(F ) Pk(F ) RT k+1
(T )

Pk−1(F ) Gk(F )⊕ Gc,k(F ) P̃
k+1

(F )

Pk−1(F ) Gk(F )⊕ Gc,k(F )

E : P̃
k

n,E(E) Pk+1(E)

Pk−1(E)
(Pk(E))2

Pk(E)
Pk+1(E) Pk+2(E)

V : R = Pk+1(V ) Pk+2(V ) Pk+3(V )

R3 = Pk+2(V ) Pk+3(V )

grad curl div

∇

grad rot

grad
grad⊥

Id

rot

∇

grad⊥

Id

grad

curl ∇

IdId Id

Id

Id

Figure 1: Usage of the local degrees of freedom for the discrete differential operators.

Xk
curl,h :={vh = ((Rv,V )V ∈Vh , (vE ,Rv,E)E∈Eh , (vR,F ,v

c
R,F , vF ,Rv,G,F ,R

c
v,G,F )F∈Fh

, (3.3)

(vR,T ,v
c
R,T )T∈Th) : Rv,V ∈ R3(V ),∀V ∈ Vh,

vE ∈ Pk+2
c (Eh),Rv,E ∈ Pk+1(E), ∀E ∈ Eh,

vR,F ∈Rk−1(F ),vcR,F ∈Rc,k(F ), vF ∈ Pk−1(F ),

Rv,G,F ∈ Gk(F ),Rc
v,G,F ∈ Gc,k(F ),∀F ∈ Fh,

vR,T ∈Rk−1(T ),vcR,T ∈Rc,k(T ), ∀T ∈ Th},
Xk
∇,h :={wh = ((wE)E∈Eh , (wF ,wG ,F ,w

c
G ,F )F∈Fh

, (wG ,T ,w
c
G ,T )T∈Th) :

wE ∈ Pk+3
c (E),∀E ∈ Eh

wF ∈ Pk(F ),wG ,F ∈ Gk(F ),wc
G ,F ∈ Gc,k(F ),∀F ∈ Fh,

wG ,T ∈ Gk−1(T ),wc
G ,T ∈ Gc,k(T ),∀T ∈ Th},

(3.4)

Xk+1
L2,h

:={W h = ((WE)E∈Eh , (W F )F∈Fh
, (W T )T∈Th) :

WE ∈ Pk+2(E), ∀E ∈ Eh,

W F ∈ P̃
k+1

(F ), ∀F ∈ Fh,W T ∈RT k+1
(T ), ∀T ∈ Th},

(3.5)

Xk
L2,h :={q

h
= ((qT )T∈Th) : qT ∈ Pk(T ),∀T ∈ Th}. (3.6)

Figure 1 summarizes the involvement of the various degrees of freedom with the differential
operators.

For a given cell T we define the local discrete spaces Xk
grad,T , Xk

curl,T , Xk
∇,T , Xk

L2,T and

Xk+1
L2,T

as the restriction of the global one to T , i.e. containing only the components attached

to T and those attached to the faces, edges and vertices lying on its boundary. We define in
the same way the local discrete spaces attached to a face F or an edge E.
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3.2 Interpolators.

In this section we define the interpolator linking discrete spaces to their continuous counterpart.
Since we project on objects of lower dimension (edges and vertices) we will need a somewhat
high smoothness for the continuous functions. For a vertex V ∈ Vh we define xV ∈ R3 to be
its coordinate. The interpolator on the space Xk

grad,h is defined for any q ∈ C1(Ω) by

Ikgrad,hq = ((grad q(xV ))V ∈Vh , (qE ,π
k
P,E(tE × (grad q × tE)))E∈Eh ,

(πk−1
P,F (q), πk−1

P,F (grad(q) · nF )F∈Fh
, (πk−1
P,T (q))T∈Th),

(3.7)

where for any edge E ∈ Eh, qE is such that πk−1
P,E(qE) = πk−1

P,E(q) and for any vertex V ∈ VE ,
qE(xV ) = q(xV ).

The interpolator on the space Xk
curl,h is defined for any v ∈ C1(Ω) by

Ikcurl,hv = ((curlv(xV ))V ∈Vh , (vE ,π
k+1
P,E((curlv · tE)tE + grad(v · tE)× tE))E∈Eh ,

(πk−1
R,F (vt,F ),πc,kR,F (vt,F ), πk−1

P,F (v · nF ),

πkG,F (nF × (∇v · nF )),πc,kG,F (nF × (∇v · nF )))F∈Fh
,

(πk−1
R,T (v),πc,kR,T (v))T∈Th),

(3.8)

where vt,F is the tangential trace of v on F , and where for any edge E ∈ Eh, vE is such that
πkP,E(vE) = πkP,E(v) and for any vertex V ∈ VE , vE(xV ) = v(xV ).

The interpolator on the space Xk
∇,h is defined for any w ∈ C0(Ω) by

Ik∇,hw = ((wE)E∈Eh , (π
k
P,F (w · nF ),πkG,F (wt,F ),πc,kG ,F (wt,F ))F∈Fh

,

(πk−1
G,T (w),πc,kG ,T (w))T∈Th),

(3.9)

where for any edge E ∈ Eh, wE ∈ Pk+3(E) is such that πk+1
P,E(wE) = πk+1

P,E(w) and for any
vertex V ∈ VE , wE(xV ) = w(xV ).

The interpolator on the space Xk+1
L2,h

is defined for any W ∈ C0(Ω)3 by

Ik
L2,h

W = ((πk+2
P,E(W tE))E∈Eh , (π

k+1

P̃,F
(W ))F∈Fh

, (πk+1
RT ,T

(W ))T∈Th). (3.10)

The interpolator on the space Xk
L2,h is defined for any q ∈ L2(Ω) by

IkL2,hq = ((πkP,T (q))T∈Th) (3.11)

3.3 Discrete operators

3.3.1 Gradient.

In the following sections we define the discrete operators starting with the discrete gradient
operator Gk

h. The operator Gk
h is the collection of the local discrete operators (3.18) acting on

the edges, faces and cells. For any edge E ∈ Eh we define the operator Gk
E : Xk

grad,E →Xk
curl,E

such that ∀q
E
∈ Xk

grad,E

Gk
EqE = ((0)V ∈VE ,vE ,vE

′ × tE), (3.12)

where vE is such that πkP,E(vE) = qE
′tE +Gq,E and ∀V ∈ VE , vE(xV ) = Gq,V . We write qE

′

the derivative of qE along the edge E (oriented by tE).
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For any face F ∈ Fh we define the operator Gk
F : Xk

grad,F → Pk(F ) such that ∀q
F
∈

Xk
grad,F , ∀wF ∈ Pk(F )∫

F
Gk
F qF ·wF = −

∫
F
qF divwF +

∑
E∈EF

ωFE

∫
E
qEwF · nFE . (3.13)

We also define G⊥kF : Xk
grad,F → Pk(F ) such that ∀q

F
∈ Xk

grad,F , ∀wF ∈ Pk(F )∫
F
G⊥kF q

F
·wF = −

∫
F
Gq,F rotwF −

∑
E∈EF

ωFE

∫
E

(Gq,E · nF )(wF · tE). (3.14)

The full operator Gk
F : Xk

grad,F →Xk
curl,F is defined to be the collection and projection of

the local operators. Explicitly for all q
h
∈ Xk

grad,F

Gk
F qF = ((Gk

EqE)E∈EF , (π
k−1
R,F (Gk

F qF ),πc,kR,F (Gk
F qF ), Gq,F ,π

k
G,F (G⊥kF q

F
),πc,kG,F (G⊥kF q

F
))).
(3.15)

The scalar trace γk+1
grad,F : Xk

grad,F → Pk+1(F ) is defined such that ∀q
F
∈ Xk

grad,F , ∀vF ∈
Rc,k+2(F ), ∫

F
γk+1

grad,F qF div vF = −
∫
F
Gk
F qF · vF +

∑
E∈EF

ωFE

∫
E
qE(vF · nFE). (3.16)

Remark 9. The relation (3.16) holds for all vF ∈ Rk(F ) ⊕ Rc,k+2(F ). This is the same
definition as for the discrete De Rham complex [14].

Remark 10. We can also define a tangential trace in the same manner as [14]. It is not required
thanks to the choice of norm (3.54) but should be considered to show consistency results for
Xk

grad,h.

For any cell T ∈ Th we define the operatorGk
T : Xk

grad,T → Pk(T ) such that ∀q
T
∈ Xk

grad,T ,

∀wT ∈ Pk(T )∫
T
Gk
T qT ·wT = −

∫
qT divwT +

∑
F∈FT

ωTF

∫
F
γk+1

grad,F qFwT · nF . (3.17)

Likewise we define the full operator Gk
T : Xk

grad,T →Xk
curl,T for all q

T
∈ Xk

grad,T by

Gk
T qT = ((Gk

EqE)E∈ET , (G
k
F qF )F∈FT

, (πk−1
R,T (Gk

T qT ),πc,kR,T (Gk
T qT )). (3.18)

The global operator Gk
h is obtained by gathering the local operators Gk

T , T ∈ Th. Since the
interpolators require taking the full gradient even on edges we must consider functions to be
defined in a small neighborhood E ⊂ OE open in R3. We also define X to be the polynomial
X(x) = x.

Lemma 11 (Consistency properties). The discrete gradients and trace satisfy the following
consistency properties for all E ∈ Eh, F ∈ Fh and T ∈ Th:

Gk
E(Ikgrad,Eq) = Ikcurl,E(grad q) ∀q ∈ C2(OE) (3.19)

Gk
F (Ikgrad,F q) = grad q ∀q ∈ Pk+1(F ) (3.20)

G⊥kF (Ikgrad,F (q X · nF )) = − rot q ∀q ∈ Pk+1(F ) (3.21)

γk+1
grad,F (Ikgrad,F q) = q ∀q ∈ Pk+1(F ) (3.22)

πk−1
P,F (γk+1

grad,F qF ) = qF ∀q
F
∈ Xk

grad,F (3.23)

Gk
T (Ikgrad,T q) = grad q ∀q ∈ Pk+1(T ) (3.24)
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Proof. Properties (3.20), (3.22), (3.23) and (3.24) are proven in [14, Lemma 3.3].
Proof of (3.19). The idea is to use integration by parts together with the continuity on ver-

tices to remove the projection. Let E ∈ Eh, q ∈ C2(OE), Gk
E(Ikgrad,Eq) := ((0)V ∈VE ,vE ,vE

′ ×
tE , qE as in (3.7) and wE ∈ Pk+2(E) such that πkP,E(wE) = πkP,E(grad q) and wE(xV ) =
grad q(xV ) for V ∈ VE . We have 0 = curl grad q(xV ), ∀V ∈ VE . We must show that
vE = wE and that vE

′ × tE = πk+1
P,E(((curl grad q) · tE)tE + (grad(grad q · tE) × tE)) =

πk+1
P,E((grad(grad q · tE)× tE)). Take a standard basis (e0, e1, e2) such that tE = (1, 0, 0) and

vE := (v0, v1, v2). For all r ∈ Pk(E),∫
E
vE · r =

∫
E
qE
′ r0 +

∫
E
πkP,E(∂1q) r1 + πkP,E(∂2q) r2

= −
∫
E
qEr0

′ + [qE r0] +

∫
E
πkP,E(∂1q) r1 + πkP,E(∂2q) r2

= −
∫
E
qr0
′ + [q r0] +

∫
E
∂1q r1 + ∂2q r2

=

∫
E

grad q · r.

We use that qE(xV ) = q(xV ), V ∈ VE to get the third line. Hence, πkP,E(vE) = πkP,E(grad q)
and since vE(xV ) = grad q(xV ) we have vE = wE . We conclude with the same argument for
r ∈ Pk+1(E) applied to vE

′ × tE .
Proof of (3.21). Let q ∈ Pk+1(F ). Since q does not depend on the coordinate in the nF

direction, we have grad(q X · nF ) · nF = q. The relevant parts of Ikgrad,F (q X · nF ) are

Gq X·nF ,F = πk−1
P,F (grad(q X · nF ) · nF ) = πk−1

P,F (q) and Gq X·nF ,E = πkP,F (grad(q X · nF ) −
(grad(q X · nF ) · tE)tE). Hence we have Gq X·nF ,E · nF = πkP,E(q) and for all w ∈ Pk(F ),∫

F
G⊥kF (Ikgrad,F (q X · nF )) ·w = −

∫
F
πk−1
P,F (q) rotw −

∑
E∈EF

ωFE

∫
E
πkP,E(q)w · tE

= −
∫
F
q rotw −

∑
E∈EF

ωFE

∫
E
qw · tE

= −
∫
F

rot q ·w.

3.3.2 Curl.

The operator Ck
h is the collection of the local discrete operators (3.35) acting on the edges

and faces. For any edge E ∈ Eh we define the operator Ck
E : Xk

curl,E → Pk+3(E) such that

∀vE = ((Rv,V )V ∈VE ,vE ,Rv,E) ∈Xk
curl,E

πk+1
P,E(Ck

EvE) = Rv,E − vE ′ × tE , Ck
EvE(xV ) = Rv,V . (3.25)

For any face F ∈ Fh we define the operators CkF : Xk
curl,F → Pk(F ) and Ck

F : Xk
curl,F →

Pk(F ) for all vF = ((vE ,Rv,E)E∈Eh , (vR,F ,v
c
R,F , vF ,Rv,G,F ,R

c
v,G,F )) ∈ Xk

curl,F such that

∀rF ∈ Pk(F ) ∫
F
CkFvF rF =

∫
F
vR,F · rot rF −

∑
E∈EF

ωFE

∫
E

(vE · tE) rF , (3.26)
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and ∀rF ∈ Pk(F )∫
F
Ck
FvF · rF =

∫
F
vF rot rF +

∑
E∈EF

ωFE

∫
E

(vE · nF )(rF · tE). (3.27)

The full operator Ck
F : Xk

curl,F → Xk
∇,F is defined as the collection and projection of the

local operators. Explicitly for all vF ∈Xk
curl,F

Ck
FvF = ((Ck

EvE)E∈EF , (C
k
FvF ,π

k
G,F (Ck

FvF ) +Rv,G,F ,π
c,k
G ,F (Ck

FvF ) +Rc
v,G,F )). (3.28)

Lemma 12 (Local complex property). For all F ∈ Fh it holds:

ImGk
F ⊂ KerCk

F . (3.29)

Proof. Let q
F
∈ Xk

grad,F , we have to show that Ck
F (Gk

F qF ) = 0. We define vF = Gk
F qF . It is

immediate to check for the edges since πk+1
P,E(Ck

EvE) = Rv,E − vE ′× tE with Rv,E = vE
′× tE

and Ck
EvE(xV ) = 0. Next in order to prove that CkFvF = 0 take any rF ∈ Pk(F ), then∫

F
CkFvF rF =

∫
F
πk−1
R,F (Gk

F qF ) · rot rF −
∑
E ∈EF

ωFE

∫
E
vE · tE rF

=

∫
F
Gk
F qF · rot rF −

∑
E ∈EF

ωFE

∫
E
qE
′ rF

= −
∫
F
qF · div(rot rF ) +

∑
E ∈EF

ωFE

∫
E
qE rot rF · nFE − qE ′ rF

=
∑
E ∈EF

ωFE

∫
E
qE rF

′ − qE ′ rF

=
∑
E∈EF

ωFE [qE rF ].

The last term is null since we integrate over a closed loop. It remains to prove Ck
FvF = 0. For

any rF successively in Gk(F ) and Gc,k(F ) it is immediate to check that
∫
F C

k
F (Gk

F qF ) ·rF = 0
since (3.27) and (3.14) are opposite.

We define the tangential trace γkt,rot,F : Xk
curl,F → Pk(F ) such that ∀(rF ,wF ) ∈ P0,k+1(F )×

Rc,k(F ),∫
F
γkt,rot,FvF · (rot rF +wF ) =

∫
F
CkFvF rF +

∑
E∈EF

ωFE

∫
E

(vE · tE)rF +

∫
F
vcR,F ·wF . (3.30)

This is almost the same definition as in [14]. As such we have almost the same properties.

Lemma 13 (Properties of the tangential trace). It holds

πk−1
R,F (γkt,rot,FvF ) = vR,F and πc,kR,F (γkt,rot,FvF ) = vcR,F ∀vF ∈Xk

curl,F , (3.31)

γkt,rot,F (Ikcurl,Fv) = πkP,Fv ∀v ∈N k+1(F ), (3.32)

πkRT ,F (γkt,rot,F (Gk
F qF )) = πkRT ,F (Gk

F qF ) ∀q
F
∈ Xk

grad,F . (3.33)
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Proof. The proof of [14, Proposition 3.3] almost works here, the sole difference being the
continuity of vE · tE in the boundary term: we will only have πkP,E(vE · tE) = qE

′ instead of
vE · tE = qE

′. This only affects the proof of (3.33), for which we must restrict ourselves to test
functions in P0,k(F )×Rc,k(F ) instead of P0,k+1(F )×Rc,k(F ). This explains the addition of
πkRT ,F since rotP0,k(F )⊕Rc,k(F ) ≈RT k(F ).

For any T ∈ Th we define the operator Ck
T : Xk

curl,T → Pk(T ) for all

vT = ((vF )F∈FT
,vR,T ,v

c
R,T ) ∈Xk

curl,T such that ∀rT ∈ Pk(T ),∫
T
Ck
TvT · rT =

∫
T
vR,T · curl rT +

∑
F∈FT

ωTF

∫
F
γkt,rot,FvF · (rT × nF ). (3.34)

The full operator Ck
T : Xk

curl,T →Xk
∇,T is such that, for all vT ∈Xk

curl,T ,

Ck
TvT := ((Ck

EvE)E∈ET , (C
k
FvF )F∈FT

,πk−1
G,T (Ck

TvT ),πc,kG,T (Ck
TvT )). (3.35)

3.3.3 Jacobian.

The operator ∇k+1
h is the collection of the local discrete operators (3.45). For all edge E ∈ Fh

we define the operator ∇k+2
E : Xk

∇,E → Pk+2(E) for all wE ∈Xk
∇,E by

∇k+2
E wE = wE

′. (3.36)

For all face F ∈ Fh we define the operator ∇k+1
F : Xk

∇,F → P̃
k+1

(F ) for all

wF = ((wE)E∈Eh , wF ,wG ,F ,w
c
G ,F ) ∈ Xk

∇,F such that ∀V F = V P,nF
+ V c

R,F
+ V R,F +

V R,F ∈ P̃
k+1

(F ),∫
F
∇k+1
F (wF ) :V F =−

∫
F
wc

G ,F · ∇·(V c
R,F

)−
∫
F
wG ,F · ∇·(V R,F )−

∫
F
wF div(V P,nF

)

+
∑
E∈EF

ωFE

∫
E
wEV FnFE .

(3.37)
We define the full operator ∇k+1

F : Xk
∇,F →Xk

L2,F by

∇k+1
F wF = ((∇k+2

E wE)E∈EF ,∇
k+1
F wF ). (3.38)

We prove a first commutative property:

Lemma 14. For all F ∈ Fh it holds:

∇k+1
F (Ik∇,Fw) = πk+1

P̃,F
(∇w), ∀w ∈ C1(F ). (3.39)
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Proof. For all w ∈ C1(F ) and all V F ∈ P̃
k+1

(F ),∫
F
∇k+1
F (Ik∇,Fw) :V F =−

∫
F
πc,kG,F (wt,F ) · ∇·(V c

R,F
)−

∫
F
πkG,F (wt,F ) · ∇·(V R,F )

−
∫
F
πkP,F (w · nF ) div(V P,nF

) +
∑
E∈EF

ωFE

∫
E
πk+1
P,E(w)V FnFE

=−
∫
F
wt,F · ∇·(V c

R,F
+ V R,F )−

∫
F

(w · nF ) · div(V P,nF
))

+
∑
E∈EF

ωFE

∫
E
wV FnFE

=−
∫
F
w · ∇·(V F ) +

∑
E∈EF

ωFE

∫
E
wV FnFE

=

∫
F
∇w :V F .

We used Lemma 7 and the definition (2.16) to remove the first two projections (πc,kG,F and πkG,F )
and integration by parts to conclude.

We define the trace operator γk+2
∇,F : Xk

∇,F → (Pk+2(F ))3 by the relation: ∀V F ∈ (Rc,k+3(F )ᵀ)3,

∀wF ∈Xk
∇,F ,∫
F
γk+2
∇,F (wF ) · ∇·V F = −

∫
F
∇k+1
F wF :V F +

∑
E∈EF

ωFE

∫
E
wEV FnFE . (3.40)

The isomorphism (2.9) ensures the well-posedness.

Remark 15. The relation (3.40) also holds for all V F ∈ (Pk+1(F )ᵀ)3. Indeed if V F belongs to
(Rk+1(F )ᵀ)3 then ∇·V F = 0 and the left-hand side of (3.40) is null. And since (Rk+1(F )ᵀ)3 ⊂
(Pk+1(F )ᵀ)3 ≈ P̃

k+1
(F ) we can apply (3.37) to show that the right-hand side is also zero.

Hence, the relation holds for all (Rk+1(F )ᵀ)3 ⊕ (Rc,k+3(F )ᵀ)3 ⊃ (Pk+1(F )ᵀ)3.

Lemma 16 (Consistency properties). For all F ∈ Fh the following relations hold:

γk+2
∇,F (Ik∇,Fw) = w, ∀w ∈ Pk+2(F ), (3.41)

πkP,F (γk+2
∇,FwF · nF ) = wF ,

πc,kG,F (γk+2
∇,FwF ) = wc

G ,F ,

πkG,F (γk+2
∇,FwF ) = wG ,F ,

∀wF ∈Xk
∇,F . (3.42)

Proof. Proof of (3.42). Let wF ∈Xk
∇,F and vF ∈Rc,k+1(F ). Remark 15 allows to write:∫

F
γk+2
∇,F (wF ) · nF div(vF ) =

∫
F
γk+2
∇,F (wF ) · ∇ · (nF ⊗ vF )

= −
∫
F
∇k+1
F wF :(nF ⊗ vF ) +

∑
E∈EF

ωFE

∫
E

(wE · nF )(vF · nFE)

=

∫
F
wF div(vF ).
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Since this holds for all vF ∈Rc,k+1(F ), inferring isomorphism (2.9) we have:

πkP,F (γk+2
∇,FwF · nF ) = πkP,F (wF ) = wF .

The other two equations are proven in the same fashion.
Proof of (3.41). Let w ∈ Pk+2(F ) and V F ∈ (Rc,k+3(F )ᵀ)3, it holds∫

F
γk+2
∇,F (Ik∇,Fw) · ∇·V F = −

∫
F
∇k+1
F Ik∇,Fw :V F +

∑
E∈EF

ωFE

∫
E

(wE)V FnFE

= −
∫
F
∇w :V F +

∑
E∈EF

ωFE

∫
E
wV FnFE

=

∫
F
w · ∇·V F .

We used Lemma 14 to write ∇k+1
F Ik∇,Fw = πk+1

P̃,F
(∇w) = ∇w since ∇w ∈ (Pk+1(F )ᵀ)3, and

wE = w since w ∈ Pk+2 ⊂ Pk+3 is continuous to remove the projections.

For all T ∈ Th we define the operator ∇k+1
T : Xk

∇,T → RT k+1
(T ) such that ∀wT =

((wF )F∈FT
,wG ,T ,w

c
G ,T ) ∈Xk

∇,T , ∀V T = V c
R,T

+ V R,T + V R,T ∈RT k+1
(T ),∫

T
∇k+1
T (wT ) :V T =−

∫
T
wc

G ,T · ∇·(V c
R,T

)−
∫
T
wG ,T · ∇·(V R,T ) +

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwFV TnF .

(3.43)
We also define the potential reconstruction operator P k+1

∇,T : Xk
∇,T → Pk+1(T ) by the relation:

∀V T ∈ (Rc,k+2(T )ᵀ)3, ∀wT ∈Xk
∇,T ,∫

T
P k+1
∇,T (wT ) · ∇·V T = −

∫
T
∇k+1
T wT :V T +

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwFV TnF . (3.44)

The global operator ∇k+1
T : Xk

∇,T →Xk+1
L2,T

is defined for all wT ∈Xk
∇,T by

∇k+1
T wT = ((∇k+1

F wF )F∈FT
,∇k+1

T wT ). (3.45)

Remark 17. Since ∇·(Rk(T )ᵀ)3 = 0 by Remark 6 and (3.42) we see that ∀q ∈ Pk(T ),∫
T
∇k+1
T (wT ) :(q I3,3) =

∫
T
wG ,T · grad q +

∑
F∈FT

ωTF

∫
F
q wF .

Remark 18. With the same argument as in Remark 15, (3.44) is valid for all V T ∈ (Pk+1(T )ᵀ)3.

Lemma 19. For all T ∈ Th it holds:

∇k+1
T (Ik∇,Tw) = ∇w, ∀w ∈ Pk+1(T ), (3.46)

P k+1
∇,T (Ik∇,Tw) = w, ∀w ∈ Pk+1(T ), (3.47)

πc,kG,T (P k+1
∇,T wT ) = wc

G ,T ,

πk−1
G,T (P k+1

∇,T wT ) = wG ,T ,
∀wT ∈Xk

∇,T . (3.48)

Proof. The proof of (3.46) is similar to the proof of Lemma 14, using (3.41) to remove the
projection on the boundary term. The proofs of (3.47) and (3.48) are the same as the proofs
of (3.41) and (3.42).
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3.3.4 Divergence.

Finally, we define the discrete divergence operator, for all T ∈ Th by:

Dk
T := Tr∇k+1

T ∈ Pk(T ).

As in the continuous case the divergence is the trace of the gradient, but we can also define
it by a formula mimicking the integration by parts. By Remark 17, ∀wT ∈ Xk

∇,T , Dk
T is such

that ∀qT ∈ Pk(T ),∫
T
Dk
TwT qT =

∫
T

Tr(∇k+1
T wT )qT

=

∫
T
∇k+1
T wT :(qT I3,3)

=−
∫
T
wG ,T · grad qT +

∑
F∈FT

ωTF

∫
F

(γk+2
∇,FwF · nF )qT

=−
∫
T
wG ,T · grad qT +

∑
F∈FT

ωTF

∫
F
wF qT .

(3.49)

We get the same definition as the one of the de Rham complex of [14].

3.4 Discrete L2-product.

We build scalar products on the discrete spaces. They are made of the sum of the L2 scalar
product on each cell and of a stabilization term taking the lower dimensional objects (edges,
vertices and faces) into account. Since we will not need their definitions on Xk

grad,T andXk
curl,T

to study the Jacobian operator, we will not write them down explicitly. They are quite similar
to the L2 product of Xk

∇,T but require the introduction of potential reconstruction operators

akin to those of [14]. First we define them locally for all T ∈ Th: For all vT ,wT ∈Xk
∇,T we set

(vT ,wT )∇,T =

∫
T
P k+1
∇,T vT · P

k+1
∇,T wT + s∇,T (vT ,wT ) , (3.50)

s∇,T (vT ,wT ) =
∑
F∈FT

hF

∫
F

(P k+1
∇,T vT − γ

k+2
∇,FvF ) · (P k+1

∇,T wT − γk+2
∇,FvF )

+
∑
E∈EF

h2
E

∫
E

(P k+1
∇,T vT − vE) · (P k+1

∇,T wT −wE).

(3.51)

For all V T ,W T ∈Xk+1
L2,T

we set

(V T ,W T )L2,T =

∫
T
V T :W T + sL2,T (V T ,W T ) , (3.52)

sL2,T (V T ,W T ) =
∑
F∈FT

hF

∫
F

(V ⊗t,F − V F ) :(W⊗t,F −W F )

+
∑
E∈EF

h2
E

∫
E

(V T tE − V E) · (W T tE −WE),

(3.53)
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where V ⊗t,F := V T − (V T nF )⊗nF . Global scalar products are then merely the sum of local
scalar product over every face T ∈ Th. For all vT ∈Xk

∇,T and W T ∈Xk+1
L2,T

the norm induced

by this scalar product is denoted by:

‖vT ‖∇,T = (vT ,vT )
1/2
∇,T , ‖W T ‖L2,T = (W T ,W F )

1/2

L2,T
.

We also define norms built from the sum over the objects of every dimension. For all
q
T
∈ Xk

grad,T we define∣∣∣∣∣∣∣∣∣q
T

∣∣∣∣∣∣∣∣∣2
grad,T

= ‖qF ‖2T +
∑
F∈FT

hF

(
‖qf‖2F + hF ‖Gq,F ‖2F

+
∑
E∈EF

hE

‖qE‖2E + hE ‖Gq,E‖2E +
∑
V ∈VE

h2
E |Gq,V |2

 .

(3.54)

For all vT ∈Xk
curl,T we define

|||vT |||
2
curl,T = ‖vR,T ‖2T +

∥∥vcR,T

∥∥2

T
+
∑
F∈FT

hF

(
‖vR,F ‖2F +

∥∥vcR,F

∥∥2

F
+ ‖vF ‖2F

+hF ‖Rv,G,F ‖2F + hF
∥∥Rc

v,G,F
∥∥2

F
+
∑
E∈EF

hE

‖vE‖2E + hE ‖Rv,E‖2E +
∑
V ∈VE

h2
E |Rv,V |2

 .

(3.55)
For all wT ∈Xk

∇,T we define

|||wT |||
2
∇,T = ‖wG ,T ‖2T +

∥∥wc
G ,T
∥∥2

T
+
∑
F∈FT

hF

(
‖wG ,F ‖2F +

∥∥wc
G ,F
∥∥2

F
+ ‖wF ‖2F

+
∑
E∈EF

hE ‖wE‖2E

 .

(3.56)

For all W T ∈Xk+1
L2,T

we define

|||W T |||
2
L2,T = ‖W T ‖2T +

∑
F∈FT

hF

‖W F ‖2F +
∑
E∈EF

hE ‖WE‖2E

 . (3.57)

And for all qT ∈Xk
L2,T we define

‖qT ‖2L2,T = ‖qT ‖2T . (3.58)

We show the equivalence between the norm induced by (3.50) and (3.56) in Lemma 24 and
the equivalence between those induced by (3.52) and (3.57) in Lemma 25.

We define the global norms over Ω as the sum of the local norms over every cell T ∈ Th,
i.e. |||vh|||

2
∇,h =

∑
T∈Th |||vT |||

2
∇,T .
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3.5 Results on discrete L2-products.

We show some results to justify the choice of discrete norms.

Lemma 20. For all F ∈ Fh and all wF ∈Xk
∇,F it holds:∥∥∥∇k+1

F wF

∥∥∥
F
. h−1

F |||wF |||∇,F .

Proof. This is a direct consequence of Lemma 2 and 3 to the definition (3.37) with V F =
∇k+1
F wF .

Lemma 21 (Boundedness of the local trace). For all F ∈ Fh and all wF ∈Xk
∇,F it holds:∥∥∥γk+2

∇,FwF

∥∥∥
F
. ‖wG ,F ‖F +

∥∥wc
G ,F
∥∥
F

+ ‖wF ‖F +
∑
E∈EF

h
1
2
E ‖wE‖E .

Proof. For any wF ∈ Xk
∇,F , let V F ∈ (Rc,k+3(F )ᵀ)3 be such that ∇·V F = γk+2

∇,FwF . From

the estimate on the isomorphism (2.9) it holds ‖V F ‖F . hF

∥∥∥γk+2
∇,FwF

∥∥∥
F

. Then from (3.40)

and (3.37) we write:∫
F
γk+2
∇,FwF · ∇·V F = −

∫
F
∇k+1
F wF :V F +

∑
E∈EF

ωFE

∫
E
wEV FnFE

.
∥∥∥∇k+1

F wF

∥∥∥
F
‖V F ‖F +

∑
E∈EF

h
1
2
E ‖wE‖E h

−1
E ‖V F ‖F .

We used the discrete trace inequality Lemma 3 on the boundary term, and we conclude with
Lemma 20.

Lemma 22 (Inverse Poincaré inequality). For all T ∈ Th and all wT ∈Xk
∇,T it holds:∥∥∥∇k+1

T wT

∥∥∥ . h−1|||wT |||∇,T .

Proof. Let T ∈ Th and wT ∈ Xk
∇,T . The proof hinge on the bound of isomorphism (2.9)∥∥∥∇·∇k+1

T wT

∥∥∥ . h−1
∥∥∥∇k+1

T wT

∥∥∥ to show that:∫
T
∇k+1
F wT :∇k+1

T wT .
∥∥wc

G ,T
∥∥ h−1

∥∥∥∇k+1
T wT

∥∥∥ + ‖wG ,T ‖ h−1
∥∥∥∇k+1

T wT

∥∥∥
+
∥∥∥γk+2
∇,FwF

∥∥∥
F
h−

1
2

∥∥∥∇k+1
T wT

∥∥∥
T

. h−1
∥∥∥∇k+1

T wT

∥∥∥ (
∥∥vcG ,T∥∥ + ‖vG ,T ‖ +

∑
F∈FT

h
1
2

∥∥∥γk+2
∇,FvF

∥∥∥).

We conclude with Lemma 21.

Lemma 23 (Boundedness of the local potential). For all T ∈ Th and all wT ∈Xk
∇,T it holds:∥∥∥P k+1

∇,T wT

∥∥∥ . |||wT |||∇,T (3.59)
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Proof. Let T ∈ Th, wT ∈ Xk
∇,T and let V T ∈ (Rc,k+2(T )ᵀ)3 such that ∇·V T = P k+1

∇,T wT .
From the definition (3.44) we have∥∥∥P k+1

∇,T wT

∥∥∥2
=

∫
T
P k+1
∇,T wT · ∇·V T

≤
∥∥∥∇k+1

T wT

∥∥∥ ‖V T ‖ +
∑
F∈FT

∥∥∥γk+2
∇,FwF

∥∥∥
F
‖V T ‖F

.

hT ∥∥∥∇k+1
T wT

∥∥∥ +
∑
F∈FT

h
1
2
F

∥∥∥γk+2
∇,FwF

∥∥∥
F

∥∥∥P k+1
∇,T wT

∥∥∥
T
.

We conclude with Lemma 21 and 22.

Lemma 24. It holds, for all T ∈ Th

‖wT ‖∇,T ≈ |||wT |||∇,T , ∀wT ∈Xk
∇,T .

Proof. We apply the trace inequality to the definitions (3.50) and (3.51) to write:

‖wT ‖2∇,T ≤
∥∥∥P k+1
∇,T wT

∥∥∥2

T
+
∑
F∈FT

hF

(∥∥∥γk+2
∇,FwF

∥∥∥2

F
+
∥∥∥P k+1
∇,T wT

∥∥∥2

F

)
+
∑
E∈ET

h2
E

(
‖wE‖2E +

∥∥∥P k+1
∇,T wT

∥∥∥2

E

)
.
∥∥∥P k+1
∇,T wT

∥∥∥2

T
+
∑
F∈FT

hF

∥∥∥γk+2
∇,FwF

∥∥∥2

F
+
∑
E∈ET

h2
E ‖wE‖2E

. |||wT |||
2
∇,T .

We conclude with Lemma 23 and 21.
Conversely, to prove |||wT |||∇,T . ‖wT ‖∇,T we begin to write

‖wE‖2E .
∥∥∥wE − P k+1

∇,T wT

∥∥∥2

E
+ h−2

E

∥∥∥P k+1
∇,T wT

∥∥∥2

T
,∥∥∥γk+2

∇,FwF

∥∥∥2

F
.
∥∥∥γk+2
∇,FwF − P k+1

∇,T wT

∥∥∥2

F
+ h−1

F

∥∥∥P k+1
∇,T wT

∥∥∥2

T
.

Then we conclude with consistency properties (3.48) and (3.42) which allow us to bound

‖wG ,T ‖T ,
∥∥∥wc

G ,T

∥∥∥
T

, ‖wG ,F ‖F ,
∥∥∥wc

G ,F

∥∥∥
F

and ‖wF ‖F . For example
∥∥∥wc

G ,F

∥∥∥
F

=
∥∥∥πc,kG,Fγk+2

∇,FwF

∥∥∥
F
≤∥∥∥γk+2

∇,FwF

∥∥∥
F

.

Lemma 25. It holds, for all T ∈ Th

‖W T ‖L2,T ≈ |||W T |||L2,T ,∀W T ∈Xk+1
L2,T

.

Proof. The same proof as Lemma 24 works.

4 Complex property.

In this section we study the following sequence:

Xk
grad,T Xk

curl,h Xk
∇,h Xk

L2,h.
Gk

h Ck
h Dk

h (4.1)

We will show in Theorem 27 that (4.1) is indeed a complex, but first we show that the in-
terpolators form a cochain morphism from a continuous de Rham complex into the sequence
(4.1).
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Lemma 26 (Local commutation properties). It holds for all T ∈ Th,

Gk
T (Ikgrad,T q) = Ikcurl,T (grad q), ∀q ∈ C2(T ), (4.2a)

Ck
T (Ikcurl,Tv) = Ik∇,T (curlv), ∀v ∈ C1(T ), (4.2b)

∇k+1
T (Ik∇,Tw) = Ik

L2(T )
(∇w), ∀w ∈ C1(T ), (4.2c)

Dk
T (Ik∇,Tw) = πkP,T (divw), ∀w ∈ C0(T ) ∩H1(T ). (4.2d)

Proof. Proof of (4.2a). We already have proved the relation on edges (3.19). Let q ∈ C2(T ),

we will show that the relation holds for G⊥kF . The proofs for Gk
F and Gk

T are almost the same.
For all wF ∈ Pk(F ),∫

F
G⊥kF (Ikgrad,F q) ·wF = −

∫
F
πk−1
P,F (∂nF q) rotwF −

∑
E∈EF

ωFE

∫
E
πkP,E(∂nF q) wF · tE

= −
∫
F
∂nF q rotwF −

∑
E∈EF

ωFE

∫
E
∂nF q wF · tE

= −
∫
F

rot(∂nF q) ·wF .

(4.3)

We conclude applying (4.3) for wF ∈ Gk(F ) and wF ∈ Gc,k(F ) since nF × (∇(grad q) ·nF ) =
− rot(∂nF q).
Proof of (4.2b). Let v ∈ C1(T ) and vT = Ikcurl,Tv. We will show the property for Ck

E and

πc,kG,FC
k
F +Rc

v,G,F , the other components are easier and similar. The same proof as (3.19) shows

that vE
′ = πk+1

P,E(∂tEv). Let us choose an arbitrary basis (x0,x1,x2) such that tE = (1, 0, 0)
and write v = (v0, v1, v2). In this basis we have

πk+1
P,E(Ck

EvE) = Rv,E − vE ′ × tE
= πk+1

P,E [(curlv · tE)tE + grad(v · tE)× tE ] + πk+1
P,E(∂0v)× tE

= πk+1
P,E

 ∂1v2 − ∂2v1

0
0

+

 0
∂2v0 − ∂0v2

∂0v1 − ∂1v0


= πk+1

P,E(curlv).

Now let us take another basis such that nF = (1, 0, 0). By the same argument we have
CkF (Ikcurl,Fv) = πkP,F (rot v0) so

πc,kG,F (CkFvF ) +Rc
v,G,F = πc,kG,F

 0
∂2v0

−∂1v0

+ πc,kG,F

 0
−∂0v2

∂0v1


= πc,kG,F (vt,F ).

Proof of (4.2c). This is an immediate consequence of (3.36), (3.39) and (3.46).

Proof of (4.2d). Let w ∈ C0(T ) ∩H1(T ). For all qT ∈ Pk(T ), since grad qT ∈ Gk−1(T ), we

19



have: ∫
T
Dk
T (Ik∇,Tw) = −

∫
T
πk−1
G,T (w) · grad qT +

∑
F∈FT

ωTF

∫
F
πkP,F (w · nF ) qT

= −
∫
T
w · grad qT +

∑
F∈FT

ωTF

∫
F

(w · nF ) qT

=

∫
T

divw qT .

Theorem 27 (Complex property). It holds:

Ikgrad,hR = KerGk
h, (4.4a)

ImGk
h ⊂ KerCk

h, (4.4b)

ImCk
h ⊂ KerDk

h, (4.4c)

ImDk
h = Pk(Th). (4.4d)

Proof. Proof of (4.4a). The inclusion Ikgrad,hR ⊂ KerGk
h follows directly from (4.2a). Con-

versely if q
h
∈ Xk

grad,h is such that Gk
hqh = 0 then since Gk

EqE = 0, (3.12) implies Gq,V = 0,
∀V ∈ Vh, Gq,E = 0 and qE

′ = 0, ∀E ∈ Eh. So qE is constant on every edge, however qE is also
continuous and Ω has a single connected component. Thus, there is C ∈ R such that ∀E ∈ Eh,
qE ≡ C. From (3.13) and (3.15) we have ∀wF ∈Rc,k(F ),

0 = −
∫
F
qF divwF +

∑
E∈EF

ωFE

∫
E
CwF · nFE =

∫
F

(C − qF ) divwF .

Since div : Rc,k(F ) → Pk−1(F ) is onto we must have qF ≡ C, ∀F ∈ Fh. Likewise, since
Gq,E = 0, (3.14) and (3.15) give

−
∫
F
Gq,F rotwF = 0, ∀w ∈ Pk(F ).

Once again we must have Gq,F = 0, ∀F ∈ Fh. The same argument gives γk+2
∇,F qF ≡ C and

qT ≡ C, ∀T ∈ Th. Thus KerGk
h ⊂ Ikgrad,hR.

Proof of (4.4b). We already have ImGk
F ⊂ KerCk

F by Lemma 12. Let q ∈ Xk
grad,h. For any

T ∈ Th, since we project on Gk−1(T )⊕Gc,k(T ) in (3.35) it is enough to show
∫
T C

k
T (Gk

T qT )·rT =
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0, ∀rT ∈N k(T ). Starting from (3.34) we write∫
T
Ck
T (Gk

T qT ) · rT =

∫
T
πk−1
R,T (Gk

T qT ) · curl rT +
∑
F∈FT

ωTF

∫
F
γkt,rot,F (Gk

F qF ) · (rT × nF )

=

∫
T

(Gk
T qT ) · curl rT +

∑
F∈FT

ωTF

∫
F

(Gk
F qF ) · (rT × nF )

= −
∫
T
qT div(curl rT ) +

∑
F∈FT

ωTF

∫
F
γk+1

grad,F (q
F

)(curl(rT ) · nF )

+
∑
F∈FT

ωTF

−∫
F
qF div(rT × nF ) +

∑
E∈EF

ωFE

∫
E
qE(rT × nF ) · nFE


=

∑
F∈FT

ωTF

∫
F
qF [curl(rT ) · nF − div(rT × nF )]

−
∑
F∈FT

ωTF
∑
E∈EF

ωFE

∫
E
qE rT · tE .

We used curl rT ∈ Rk−1 (2.5) and rT × nF ⊂ RT k(F ) (2.12) along with (3.33) on the first
line. Then we used (3.17) and (3.13) on the second line and (3.23) on the last. We conclude
inferring curl(rT )·nF = div(rT ×nF ) and

∑
F∈FT

ωTF
∑

E∈EF ωFE
∫
E qE rT ·tE = 0. The last

sum is zero since each edge shares exactly two faces on ∂T with opposite orientation. Hence
we are counting each term twice, with a different sign each time.
Proof of (4.4c). The same proof as [14, Theorem 20] works.
Proof of (4.4d). See Lemma 34.

The complex is exact if and only if the inclusions (4.4b) and (4.4c) are in fact equalities.
We can show that this is the same as asking for Ω to be contractible. The proof is a slight
adaptation of [9, Section 4.3] and will not be duplicated here.

Theorem 28 (Exactness). If Ω is contractible then

ImGk
h = KerCk

h, (4.5a)

ImCk
h = KerDk

h, . (4.5b)

Proof. Proof of (4.5a). Let vh ∈ Xk
curl,h be such that Ck

hvh = 0. We want to find q
h
∈

Xk
grad,h such that Gk

hq = v. Starting from the proof of [14, Theorem 3.1], if Ω is contractible

and Ck
hvh = 0 then we can find q ∈ Pk+1

c (Eh) such that ∀E ∈ Eh, q′ = πkP,E(vE). Let

Gq,E := πkP,E(vE) and Gq,V = vE(xV ). Since Ck
EvE = 0 =⇒ Rv,E = vE

′× tE and Rv,V = 0

we have vE = Gk
E(q

E
). We must also have Rv,G,F = −πkG,F (Ck

FvE) hence ∀rF ∈ Gk(F )∫
F
Ck
Fv · rF =

∫
F
vF rot rF +

∑
E∈EF

ωFE

∫
F

(vE · nF )(rF · tE),

−
∫
F
G⊥kF (q) · rF =

∫
F
Gq,F rot rF +

∑
E∈EF

ωFE

∫
F

(Gq,E · nF )(rF · tE).

Thus we can take Gq,F := vF . We construct qF and qT exactly as in [14, Theorem 3.2].
Proof of (4.5b). Let wh ∈ Xk

∇,h be such that Dk
hwh = 0. We want to find vh ∈ Xk

curl,h
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such that Ck
hvh = wh. If Ω is contractible then [14, Theorem 3.2] provides vR,T ∈ Rk−1(T ),

vcR,T ∈ Rc,k(T ), vR,F ∈ Rk−1(F ), vcR,F ∈ Rc,k(F ) and a normal component (along tE) of

vE such that CkFvF = wF and πk−1
G,T (Ck

TvT ) = wG ,T , πc,kG,T (Ck
TvT ) = wc

G ,T . It remains to show

that Ck
E and Ck

F are onto without using the above-mentioned degrees of freedom. Let Rv,E :=

vE
′ × tE +wE , vF := 0, Rv,G,F := wG ,F − πkG,F (Ck

FvF ) and Rc
v,G,F := wc

G ,F − π
c,k
G,F (Ck

FvF )

(this makes sense since Ck
F does not depend on Rv,G,F nor on Rc

v,G,F ). It is easily checked

that this choice gives Ck
hvh = wh.

5 Consistency results.

The last things we need to show in order to efficiently use this complex are consistency re-
sults. First we show primal consistency results, controlling the error made when we use the
interpolators. Then we show some Poincare type results useful to show stability, including a
discrete counterpart to the right inverse for the divergence Lemma 34. Finally we show adjoint
consistency results, which control the error made when we perform a discrete integration by
parts.

Lemma 29 (Primal consistency). For all T ∈ Th it holds:∥∥∥P k+1
∇,T (Ik∇,Tw)−w

∥∥∥ . hk+2 |w|Hk+2 , ∀w ∈Hk+2(T ). (5.1)

Proof. For all T ∈ Th, (3.47) shows that P k+1
∇,T I

k
∇,T is a projection on Pk+1(T ). Thus we just

have to show that
∥∥∥P k+1
∇,T (Ik∇,Tw)

∥∥∥ . ‖w‖+h ‖w‖H1 +h2 ‖w‖H2 to conclude with the lemma

on approximation properties of bounded projector [10, Lemma 1.43]. Starting from (3.59) we
have∥∥∥P k+1

∇,T (Ik∇,Tw)
∥∥∥ . ∣∣∣∣∣∣∣∣∣Ik∇,Tw∣∣∣∣∣∣∣∣∣∇,T
.
∥∥∥πk−1

G,Tw
∥∥∥
T

+
∥∥∥πc,kG,Tw∥∥∥

T
+
∑
E∈ET

hE

∥∥∥πk+1
P,Ew

∥∥∥
E

+
∑
V ∈VE

h
3
2
E |w(xV )|

+
∑
F∈FT

h
1
2
F

(∥∥∥πkP,F (w · nF )
∥∥∥
F

+
∥∥∥πkG,Fwt,F

∥∥∥
F

+
∥∥∥πc,kG,Fwt,F

∥∥∥
F

)
. ‖w‖T + hT |w|H1(T ) + h2

T |w|H2(T ) ,

where we used the continuous trace inequality [10, Lemma 1.31] and the boundedness of L2

projectors.

Lemma 30 (Stabilization forms consistency). For all T ∈ Th it holds:

s∇,T

(
Ik∇,T w, I

k
∇,T w

)1/2
. hk+2 |w|Hk+2(T ) , ∀w ∈H

k+2(T ). (5.2)

sL2,T

(
Ik
L2(T )

W , Ik
L2(T )

W
)1/2

. hk+1 |W |Hk+1(T ) , ∀W ∈Hk+1(T ) ∩C0(T ). (5.3)
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Proof. Proof of (5.2). For all zT ∈ Pk+1(T ) we have P k+1
∇,T (Ik∇,TzT ) = zT by (3.47) and

γk+2
∇,F (Ik∇,TzT ) = zT by (3.41) so for all vT ∈Xk

∇,T ,

s∇,T

(
Ik∇,TzT ,vT

)
=

∑
F∈FT

hF

∫
F

(P k+1
∇,T I

k
∇,TzT − γk+2

∇,F I
k
∇,TzT ) · (P k+1

∇,T vT − γ
k+2
∇,FvF )

=
∑
E∈EF

h2
E

∫
E

(P k+1
∇,T I

k
∇,TzT − zT ) · (P k+1

∇,T vT − vE) = 0.

Hence

s∇,T

(
Ik∇,TwT , I

k
∇,TwT

)
= s∇,T

(
Ik∇,T (wT − πk+1

P,T ), Ik∇,T (wT − πk+1
P,T )

)
. ‖Ik∇,T (wT−πk+1

P,T )‖2∇,T .

We conclude by the norm equivalence Lemma 24 and [10, Theorem 1.45].
Proof of (5.3). Let W ∈Hk+1(T ) ∩C0(T ), we have:

∑
F∈FT

hF

∥∥∥∥πk+1
RT ,T

(W )
⊗t,F
− πk+1

P̃,F
(W )

∥∥∥∥2

F

≤
∑
F∈FT

hF

∥∥∥(I − πk+1
RT ,T

)W
∥∥∥2

F

≤
∑
F∈FT

hF (
∥∥∥W − πkP,TW

∥∥∥2

F
+
∥∥∥πkP,TW − πk+1

RT ,T
W
∥∥∥2

F
)

. h2(k+1) |W |Hk+1 +
∥∥∥W − πkP,TW

∥∥∥2

F
.

Here the second equality comes from RT k+1
(T )⊗t,F ⊂ P̃

k+1
(F ) and we used the approxi-

mation properties on traces [10, Theorem 1.45 and Equation 1.75] on the first term and the
discrete trace inequality [10, Lemma 1.32] on the second term to get the last equality. Likewise,
we have:∑

F∈FT

hF
∑
E∈EF

hE

∥∥∥πk+1
RT ,T

(W ) tE − πk+2
P,E(W tE)

∥∥∥2

E
.
∑
F∈FT

∑
E∈EF

hF

∥∥∥(I − πk+1
RT ,T

)W
∥∥∥2

F
.

We conclude with [10, Theorem 1.45 and Equation 1.74].

5.1 Poincaré inequality.

We begin by stating two lemmas which will be useful to prove the Poincare inequality.

Lemma 31. For all T ∈ Th, F ∈ FT and all wT ∈Xk
∇,T it holds that∥∥∥∇ γk+2

∇,F wF

∥∥∥2

F
+
∑
E∈EF

h−1
E

∥∥∥γk+2
∇,F wF −wE

∥∥∥2

E
.
∣∣∣∣∣∣∣∣∣∇k+1

F vF

∣∣∣∣∣∣∣∣∣2
L2,F

,

∥∥∥∇P k+1
∇,T wT

∥∥∥2

T
+
∑
F∈FT

h−1
F

∥∥∥P k+1
∇,T wT − γk+2

∇,F wF

∥∥∥2

F
.
∣∣∣∣∣∣∣∣∣∇k+1

T vT

∣∣∣∣∣∣∣∣∣2
L2,T

.

(5.4)

Proof. The proof is a simple adaptation of [14, Lemma 5.7].

Lemma 32 (Poincaré inequality). For all wh ∈ Xk
∇,h such that

∑
T∈Th

∫
T P

k+1
∇,T wT = 0 it

holds that
|||wh|||∇,h .

∣∣∣∣∣∣∣∣∣∇k+1
h wh

∣∣∣∣∣∣∣∣∣
L2,h

. (5.5)
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Proof. The proof is a simple adaptation of [14, Theorem 5.3].

Remark 33. When k ≥ 1 the assumption
∑

T∈Th
∫
T P

k+1
∇,T wT = 0 translates to

∑
T∈Th

∫
T wT =

0 by (3.48). However this does not hold when k = 0.

Lastly we show that the fully discrete divergence is onto Dk
h : Xk

∇,h → Xk
L2,h. The main

difficulty is to show the boundedness of the inverse with the discrete norms.

Lemma 34 (Right-inverse for the divergence). For all p
h
∈ Xk

L2,h there is wh ∈ Xk
∇,h such

that Dk
hwh = p

h
and |||wh|||∇,h +

∣∣∣∣∣∣∣∣∣∇k+1
h wh

∣∣∣∣∣∣∣∣∣
L2,h
. ‖p

h
‖L2,h.

Proof. Existence. Let p
h

= (pT )T∈Th ∈ Xk
L2,h. Lemma 51 provides p̃ ∈ C1(Ω) such that ∀T ∈

Th, p̃|T ∈ Pk+maxh,T∈Th (2|FT |)(T ), πkP,T p̃ = pT and ‖p̃‖L2(Ω) ≈ ‖ph‖L2,h. Under the assumption
on the regularity of the mesh sequence we have maxh,T∈Th(|FT |) . 1 ([10, Lemma 1.12]) so
that the maximum degree is bounded independently of h. Since p̃ is a piecewise polynomial,
continuous, of continuous derivative and of trace zero on the boundary, p̃ ∈ H2

0 (Ω). We apply
Theorem 54 to find u ∈ H3(Ω) such that divu = p̃, ‖u‖H3 . ‖p̃‖H2 , ‖u‖H2 . ‖p̃‖H1 and

‖u‖H1 . ‖p̃‖L2 . We build wh ∈Xk
∇,h by wF = Ik∇,F (u), ∀F ∈ Fh, wc

G ,T = πc,kG,T (u), ∀T ∈ Th,

and ∀qT ∈ P0,k(T ):∫
T
wG ,T grad qT := −

∫
T
pT qT +

∑
F∈FT

ωTF

∫
F
γk+2
∇,F (Ik∇,Fu) · nF qT .

Hence by construction, ∀T ∈ Th, ∀qT ∈ P0,k(T ),
∫
T D

k
TwT qT =

∫
T pT qT . It remains to show

the equality for qT ∈ P0(T ), and using (3.42) we have∫
T
Dk
TwT =

∑
F∈FT

ωTF

∫
F
γk+2
∇,F (Ik∇,Fu) · nF

=
∑
F∈FT

ωTF

∫
F
πkP,F (u · nF )

=

∫
T

divu =

∫
T
pT .

Thus we have Dk
hwh = p

h
.

Boundedness. Many bounds follow directly from the L2-boundedness of the interpolator. In-
deed, we make use of the continuous trace inequality [10, Lemma 1.31] to get

‖u‖Hk(F ) . h
− 1

2 ‖u‖Hk(T ) + h
1
2 ‖u‖Hk+1(T ) ,

‖u‖Hk(E) . h
−1 ‖u‖Hk(T ) + ‖u‖Hk+1(T ) + h ‖u‖Hk+2(T ) .

Inferring the estimate on ‖u‖Hk(T ) and Lemma 2 we get

‖u‖Hk(F ) . h
min{0, 1

2
−k}‖p

h
‖L2,T ,

‖u‖Hk(E) . h
−k‖p

h
‖L2,T .

(5.6)
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This allows to bound all terms of |||wh|||∇,h but wG ,T . This one is also easily bounded, for all

T ∈ Th, let qT ∈ P0,k(T ) be such that grad qT = wG ,T . We have ‖qT ‖ . hT ‖wG ,T ‖ and∫
T
wG ,T grad qT = −

∫
T
pT qT +

∑
F∈FT

ωTF

∫
F
γk+2
∇,F (Ik∇,Fu) · nF qT

. ‖pT ‖ ‖qT ‖ +
∑
F∈FT

h
1
2

∥∥∥γk+2
∇,F (Ik∇,F u)

∥∥∥
F
h−1 ‖qT ‖T

. ‖pT ‖ ‖wG ,T ‖ .

It remains to estimate
∣∣∣∣∣∣∣∣∣∇k+1

h wh

∣∣∣∣∣∣∣∣∣
L2,T

≈
∑

T∈Th

∥∥∥∇k+1
T wT

∥∥∥
T

+
∑

F∈Fh
hF

∥∥∥∇k+1
F wF

∥∥∥
F

+∑
E∈Eh h

2
E

∥∥∥∇k+2
E wE

∥∥∥
E

. Lemma 14 and an easily proved variation of (3.19) and (5.6) give

h2
∥∥∥∇k+2

E Ik∇,Eu
∥∥∥
E
. h2 ‖u‖2H1(E) . h

2(h−1)2‖p
h
‖L2,T ,

h
∥∥∥∇k+1

F Ik∇,Fu
∥∥∥
F
. h ‖u‖2H1(F ) . h(h−

1
2 )2‖p

h
‖L2,T .

To estimate
∥∥∥∇k+1

T wT

∥∥∥
T

let V T := ∇k+1
T wT and take qT ∈ P0,k(T ) such that grad qT =

∇·V R,T with ‖qT ‖ ≈
∥∥∥V R,T

∥∥∥. Starting from its definition (3.43) we write∫
T
∇k+1
T (wT ) :V T = −

∫
T
wc

G ,T · ∇·(V c
R,T

)−
∫
T
wG ,T · ∇·(V R,T ) +

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwFV TnF

= −
∫
T
πc,kG,T (u) · ∇·(V c

R,T
) +

∫
T
pT qT +

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwF (V T − qT I3,3)nF

= −
∫
T
u · ∇·(V c

R,T
) +

∫
T
pT qT +

∑
F∈FT

ωTF

∫
F
u(V T − qT I3,3)nF

=
����������
−
∫
T
u · ∇·(V c

R,T
) +

∫
T
pT qT +

∫
T
∇u :(V T − qT I3,3) +

������������∫
T
u · ∇·(V T − qT I3,3)

. ‖pT ‖ ‖qT ‖ + ‖∇u‖ ‖V T − qT I3,3‖

. ‖pT ‖
∥∥∥∇k+1

T wT

∥∥∥ .
We used that RT k+1

nF ⊂ Pk(F ) (from (2.12)) with (3.42) and Lemma 7 on the second line,
an integration by parts on the third and that∇·(V T−qT I3,3) = ∇·V T−∇·V R,T = ∇·(V c

R,T
)

to cancel the terms in the fourth line. The result follows from the Cauchy-Swartchz inequality
and the estimates on u.

Remark 35. We can easily adapt Lemma 34 to require
∑

T∈Th
∫
T P

k+1
∇,T wT = 0. Defining

w′
h = wh−Ik∇,h

(
1∫
Ω 1

∑
T∈Th

∫
T P

k+1
∇,T wT

)
, it is clear from (3.47) that

∑
T∈Th

∫
T P

k+1
∇,T w

′
T = 0,

from Lemma 26 that Dk
hw

′
h = p

h
and from (3.59) that the estimate of Lemma 34 on the norm

of w′
h still holds.

5.2 Adjoint consistency.

We define the adjoint consistency error for all V ∈ C0(Ω) ∩H1
0(Ω) and all wh ∈Xk

∇,h by:

Ẽ∇,h(V ,wh) =
∑
T∈Th

((
Ik
L2(T )

V ,∇k+1
T wT

)
L2,T

+

∫
T
∇·V · P k+1

∇,T wT

)
. (5.7)
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Theorem 36 (Adjoint consistency for the gradient). For all V ∈ C0(Ω) ∩H1
0(Ω) such that

V ∈Hk+2(Th) and all wh ∈Xk
∇,h, it holds:∣∣∣Ẽ∇,h(V ,wh)

∣∣∣ . hk+1
(
|V |Hk+1 + |V |Hk+2

)(
|||wh|||∇,h +

∣∣∣∣∣∣∣∣∣∇k+1
h wh

∣∣∣∣∣∣∣∣∣
L2,h

)
. (5.8)

Proof. Remarks 18 and 5 show that ∀V h ∈ (RT k+1(Th)ᵀ)3, ∀T ∈ Th,∫
T
P k+1
∇,T wT · ∇·V T +

∫
T
∇k+1
T wT :V T −

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwFV TnF = 0.

Let γ̃k+2
∇,F

c

wF be the continuous polynomial given by Lemma 51 such that πk+2
P,F (γ̃k+2

∇,F

c

wF ) =

γk+2
∇,FwF , (γ̃k+2

∇,F

c

wF )|E = 0, (∇ γ̃k+2
∇,F

c

wF )|E = 0 and

∥∥∥∥γ̃k+2
∇,F

c

wF

∥∥∥∥
F

≈
∥∥∥γk+2
∇,FwF

∥∥∥
F

. It holds that∑
F∈FT

ωTF
∫
F γ

k+2
∇,FwFV TnF =

∑
F∈FT

ωTF
∫
F γ̃

k+2
∇,F

c

wFV TnF . Moreover, since V · nΩ = 0

on ∂Ω and since the γ̃k+2
∇,F

c

wF are single valued we have

∑
T∈Th

∑
F∈FT

ωTF

∫
F
γ̃k+2
∇,F

c

wFV nF = 0. (5.9)

Hence we can write:

Ẽ∇,h(V ,wh) =
∑
T∈Th

(∫
T

(V − V T ) :∇k+1
T wT +

∫
T
∇·(V − V T ) · P k+1

∇,T wT

+
∑
F∈FT

ωTF

∫
E
γ̃k+2
∇,F

c

wF (V T − V )nF + sL2,T

(
Ik
L2(T )

V ,∇k+1
T wT

)
.
∑
T∈Th

(‖V − V T ‖ + ‖∇·(V − V T )‖)
(∥∥∥∇k+1

T wT

∥∥∥ +
∥∥∥P k+1
∇,T wT

∥∥∥)
+ sL2,T

(
Ik
L2(T )

V , Ik
L2(T )

V
)1/2

sL2,T

(
∇k+1
T wT ,∇k+1

T wT

)1/2

+
∑
F∈FT

ωTF

∫
F
γ̃k+2
∇,F

c

wF (V T − V )nF .

Applying (5.3) and Lemma 25 gives:

sL2,T

(
Ik
L2(T )

V , Ik
L2(T )

V
)1/2

sL2,T

(
∇k+1
T wT ,∇k+1

T wT

)1/2
. hk+1 |V |Hk+1(T )

∣∣∣∣∣∣∣∣∣∇k+1
T wT

∣∣∣∣∣∣∣∣∣
L2,T

.

Using the approximation properties of the spaces RT k+1(T ) given by a slight adaptation of
[14, Lemma 6.8] we can find V T ∈ (RT k+1(T )ᵀ)3 such that

‖V − V T ‖ + ‖∇·(V − V T )‖ . hk+1
(
|V |Hk+1(T ) + |V |Hk+2(T )

)
By (3.59) we see that∥∥∥∇k+1

T wT

∥∥∥ +
∥∥∥P k+1
∇,T wT

∥∥∥ . ∣∣∣∣∣∣∣∣∣∇k+1
T wT

∣∣∣∣∣∣∣∣∣
L2,T

+ |||wT |||∇,T .
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Lastly we use Theorem 52 to find RwT
∈H1(T ) such that∑

F∈FT

ωTF

∫
F
γ̃k+2
∇,F

c

wF (V T − V )nF =
∑
F∈FT

ωTF

∫
F
RwT

(V T − V )nF

=

∫
T
∇RwT

:(V T − V ) +

∫
T
RwT

· ∇·(V T − V ).

Hence∣∣∣∣∣∣
∑
F∈FT

ωTF

∫
F
γk+2
∇,FwF (V T − V )nF

∣∣∣∣∣∣ . (‖V − V T ‖ + ‖∇·(V T − V )‖)
(∥∥∇RwT

∥∥ +
∥∥RwT

∥∥) ,
and we conclude with Theorem 52 which gives the boundedness of RwT

.

We can sharpen the estimate (5.7) when V is the gradient of some field. Indeed, if were to
take V = ∇ v in Theorem 36, we would see that a norm over Hk+3 appears in the estimate,
which is not optimal.

We define the adjoint consistency error for all v ∈ H2(Ω) such that ∇v · nΩ = 0 and all
wh ∈Xk

∇,h by:

Ẽ∆,h(v,wh) =
∑
T∈Th

(∫
T

∆v · P k+1
∇,T wT +

(
∇k+1
T Ik∇,Tv,∇k+1

T wT

)
L2,T

)
. (5.10)

Theorem 37 (Adjoint consistency for the Laplacian). For all v ∈ H2(Ω) ∩C1(Ω) such that
∇v · nΩ = 0 and v ∈Hk+2(Th) and for all wh ∈Xk

∇,h, it holds:∣∣∣Ẽ∆,h(v,wh)
∣∣∣ . hk+1 |v|Hk+2

∣∣∣∣∣∣∣∣∣∇k+1
h wh

∣∣∣∣∣∣∣∣∣
L2,h

. (5.11)

Proof. For any T ∈ Th, (4.2c) gives:(
∇k+1
T Ik∇,Tv,∇k+1

T wT

)
L2,T

=

∫
T
πk+1
RT ,T

∇v :∇k+1
T wT + sL2,T

(
Ik
L2(T )

∇v,∇k+1
T w

)
.

With an integration by parts and since
∫
T π

k+1
RT ,T

∇v :∇k+1
T wT =

∫
T ∇v :∇k+1

T wT we have:

Ẽ∆,h(v,wh) =
∑
T∈Th

(∫
T
∇v :(∇k+1

T wT −∇P k+1
∇,T wT ) + sL2,T

(
Ik
L2(T )

∇v,∇k+1
T w

)

+
∑
F∈FT

ωTF

∫
F
P k+1
∇,T wT ∇v nF

 .

Since we assume ∇v · nΩ = 0 we have∑
T∈Th

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwF ∇v nF = 0. (5.12)

By Remark 18 it holds ∀vT ∈ Pk+1(T ),∫
T

∆vT · P k+1
∇,T wT +

∫
T
∇k+1
T wT :∇vT −

∑
F∈FT

ωTF

∫
F
γk+2
∇,FwF ∇vT nF = 0,
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so ∫
T
∇vT :(∇k+1

T wT −∇P k+1
∇,T wT ) +

∑
F∈FT

ωTF

∫
F

(P k+1
∇,T wT − γk+2

∇,FwF )∇vT nF = 0.

This allows us to write for any vh = (vT )T∈Th ∈ Pk+1(T ),

Ẽ∆,h(v,wh) =
∑
T∈Th

(∫
T
∇(v − vT ) :(∇k+1

T wT −∇P k+1
∇,T wT ) + sL2,T

(
Ik
L2(T )

∇v,∇k+1
T w

)

+
∑
F∈FT

ωFE

∫
F

(P k+1
∇,T wT − γk+2

∇,FwF )∇(v − vT )nF

 ,

∣∣∣Ẽ∆,h(v,wh)
∣∣∣ . ∑

T∈Th

(
‖∇(v − vT )‖T

∥∥∥∇k+1
T wT −∇P k+1

∇,T wT

∥∥∥
T

+
∑
F∈FT

∥∥∥P k+1
∇,T wT − γk+2

∇,FwF

∥∥∥
F
‖∇(v − vT )‖F +

∣∣∣sL2,T

(
Ik
L2(T )

∇v,∇k+1
T w

)∣∣∣) .
Applying Lemma 31 we get∥∥∥P k+1

∇,T wT − γk+2
∇,FwF

∥∥∥
F
‖∇(v − vT )‖F .

∣∣∣∣∣∣∣∣∣∇k+1
T wT

∣∣∣∣∣∣∣∣∣
L2,T

h
1
2 ‖∇(v − vT )‖F .

Furthermore (5.3) and Lemma 25 give∣∣∣sL2,T

(
Ik
L2(T )

∇v,∇k+1
T w

)∣∣∣ . hk+1 |∇v|Hk+1

∣∣∣∣∣∣∣∣∣∇k+1
T wT

∣∣∣∣∣∣∣∣∣
L2,T

.

Hence, applying Lemma 31 we write:

∣∣∣Ẽ∆,h(v,wh)
∣∣∣ . ∑

T∈Th

∣∣∣∣∣∣∣∣∣∇k+1
T wT

∣∣∣∣∣∣∣∣∣
L2,T

(‖∇(v − vT )‖T +
∑
F∈FT

h
1
2 ‖∇(v − vT )‖F )


+ hk+1 |v|Hk+2

∣∣∣∣∣∣∣∣∣∇k+1
T wh

∣∣∣∣∣∣∣∣∣
L2,T

.

We conclude by taking vT = π1,k+1
P,T v the elliptic projection on T (see [10, Definition 1.39]),

then [10, Theorem 1.48] gives:∥∥∥v − π1,k+1
P,T v

∥∥∥
H1(T )

. hk+1 |v|Hk+2 ,

h
1
2

∥∥∥v − π1,k+1
P,T v

∥∥∥
H1(F )

. hk+1 |v|Hk+2 .

6 Stokes equations.

Finally, we illustrate this complex with the design of a scheme for the Stokes equations. For
the sake of simplicity we use Neumann boundary conditions over the whole boundary, that it
to say with a free outlet condition. More general conditions are not difficult to enforce and
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are discussed in Section 7. The solution is determined only up to a constant vector field. This
leads to the introduction of a new space:

Xk
∇,h,? := {vh ∈Xk

∇,h :
∑
T∈Th

∫
T
P k+1
∇,T vT = 0}. (6.1)

This is the discrete counterpart of H1(Ω) ∩ L2
0(Ω).

Let µ be a constant viscosity, we define the symmetric bilinear form ah(vh,wh) ∈ Xk
∇,h ×

Xk
∇,h → R on all vh,wh ∈Xk

∇,h by

ah(vh,wh) := µ
(
∇k+1
h vh,∇k+1

h wh

)
L2,h

. (6.2)

We also define the bilinear form bh(vh, qh) ∈Xk
∇,h×Xk

L2,h → R on all vh ∈Xk
∇,h, qh ∈X

k
L2,h

by

bh(vh, qh) :=
∑
T∈Th

∫
T
Dk
TvT qT . (6.3)

Then we define the bilinear form Ah((vF , ph), (wh, qh)) ∈ (Xk
∇,h,? × Xk

L2,h) × (Xk
∇,h,? ×

Xk
L2,h)→ R by

Ah((vh, ph), (wh, qh)) = ah(vh,wh)− bh(wh, ph) + bh(vh, qh). (6.4)

We define a suitable Sobolev-like norm on our discrete spaces such that ∀vh ∈Xk
∇,h,

‖vh‖µ,∇,1,h :=
(
‖vh‖2∇,h + ah(vh,vh)

)1/2
. (6.5)

And for f ∈ L2(Ω) we set Lh : Xk
∇,h,? → R such that ∀vh ∈Xk

∇,h,

Lh(vh) :=
∑
T∈Th

∫
T
P k+1
∇,T vT · f. (6.6)

We define the discrete problem:
Find (vh, ph) ∈Xk

∇,h,? ×Xk
L2,h such that for all (wh, qh) ∈Xk

∇,h,? ×Xk
L2,h,

Ah((vh, ph), (wh, qh)) = Lh(vh). (6.7)

We show well-posedness in Lemma 39.
We consider the following Stokes problem:

Find u ∈H2(Ω) ∩L2
0(Ω), p ∈ H1

0 (Ω) such that

−µ∆u+ grad p = f, on Ω,

divu = 0, on Ω,

∂u

∂nΩ
= 0, on ∂Ω.

(6.8)

Let (u, p) solves (6.8) and let (vh, ph) solves (6.7). We assume that the continuous solutions

u and p have the additional smoothness u ∈ Hk+2(Th) and p ∈ Hk+2(Th). We deduce the
following error estimate.

29



Theorem 38 (Error estimate for Stokes). Under the smoothness assumption on u and p it
holds that

‖vh−Ik∇,hu‖µ,∇,1,h+‖p
h
−Ik

L2,h
p‖L2,T . h

k+1
(
|u|Hk+2(Th) + |p|Hk+1(Th) + |p|Hk+2(Th)

)
. (6.9)

Proof. The proof is a direct application of the third Strang lemma (see [8]) to the estimates
given by Lemma 39 and 40.

Lemma 39 (Well-posedness). For any (vh, ph) ∈Xk
∇,h,?×Xk

L2,h there is (wh, qh) ∈Xk
∇,h,?×

Xk
L2,h such that ‖wh‖µ,∇,1,h + ‖q

h
‖L2,T . ‖vh‖µ,∇,1,h + ‖p

h
‖L2,T and

Ah((vh, ph), (wh, qh)) & ‖vh‖2µ,∇,1,h + ‖p
h
‖2L2,T .

Proof. Let (vh, ph) ∈Xk
∇,h,? ×Xk

L2,h, we have

Ah((vh, ph), (vh, ph)) = ah(vh,vh) & ‖vh‖2µ,∇,1,h, (6.10)

where the last inequality comes from Lemma 32. Moreover by Remark 35 there is w′
h ∈Xk

∇,h,?
such that Dk

hw
′
h = −p

h
and ‖w′

h‖µ,∇,1,h . ‖ph‖L2,T . Hence

Ah((vh, ph), (w′
h, 0)) = ah(vh,w

′
h) + ‖p

h
‖2L2,T

≥− 1

2
‖vh‖2µ,∇,1,h −

1

2
‖w′

h‖2µ,∇,1,h + ‖p
h
‖2L2,T

&− 1

2
‖vh‖2µ,∇,1,h +

1

2
‖p
h
‖2L2,T .

(6.11)

We conclude summing (6.10) and (6.11).

We define the consistency error Eh : Xk
∇,h,? ×Xk

L2,h → R by

Eh((wh, qh)) = Lh(wh)−Ah((Ik∇,hu, I
k
L2,h

p), (wh, qh)). (6.12)

Lemma 40. For all wh ∈Xk
∇,h,?, qh ∈X

k
L2,h, it holds

Eh((wh, qh)) .hk+1
(
|u|Hk+2(Th) + |p|Hk+1(Th) + |p|Hk+2(Th)

)
×
(
‖vh‖µ,∇,1,h + ‖p

h
‖L2,T

)
.

Proof. Let wh ∈Xk
∇,h,?, qh ∈X

k
L2,h, then

Eh((wh, qh)) =
∑
T∈Th

∫
T
P k+1
∇,T wT · f − µ

(
∇k+1
T Ik∇,Tu,∇k+1

T wT

)
∇,T

+

∫
T
Dk
TwT I

k
L2,h

p−
∫
T
Dk
T (Ik∇,Tu) qT

=
∑
T∈Th

∫
T
P k+1
∇,T wT · grad p+

∫
T
Dk
TwT I

k
L2,h

p

− µ
(∫

T
P k+1
∇,T wT ·∆u+

(
∇k+1
T Ik∇,Tu,∇k+1

T wT

)
∇,T

)
= Ẽ∇,h(p I3,3,wh)− sL2,T

(
∇k+1
T wT , I

k
L2(T )

(p I3,3)
)
− µẼ∆,h(u,wh)

≤
∣∣∣Ẽ∇,h(p I3,3,wh)

∣∣∣ +
∣∣∣sL2,T

(
∇k+1
T wT ,∇k+1

T wT

)∣∣∣1/2
+
∣∣∣sL2,T

(
Ik
L2(T )

(p I3,3), Ik
L2(T )

(p I3,3)
)∣∣∣1/2 + µ

∣∣∣Ẽ∆,h(u,wh)
∣∣∣ .
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The second equality comes from f = − µ ∆u + grad p, (4.2c) and divu = 0, and the third
equality comes from (5.7), (5.10) as well as:∫

T
Dk
TwT π

k
P,T p =

∫
T

Tr(∇k+1
T wT ) p =

∫
T
∇k+1
T wT :(p I3,3) =

∫
T
∇k+1
T wT :πk+1

RT ,T
(p I3,3).

We conclude inferring the estimates of Theorem 36, 37 and the consistency (5.3).

7 Alternative boundary conditions.

In this section we show how to extend the results of Section 6 to Dirichlet boundary conditions
on Xk

∇,h. This is useful for common condition such as the no slip condition or forced inlet
condition and does not require much change.

7.1 Dirichlet boundary conditions.

We introduce the space

Xk
∇,h,0 := {vh ∈Xk

∇,h : vF ≡ 0, ∀F ∈ Fh, F ⊂ ∂Ω}. (7.1)

Since the pressure is only defined up to a constant value, we introduce the natural space:

Xk
L2,h,? := {q

h
∈Xk

L2,h :
∑
T∈Th

∫
T
qT = 0}. (7.2)

Then we define the bilinear form: Ah((vh, ph), (wh, qh)) ∈ (Xk
∇,h,0 × Xk

L2,h,?) × (Xk
∇,h,0 ×

Xk
L2,h,?)→ R by

Ah((vh, ph), (wh, qh)) := ah(vh,wh)− bh(wh, ph) + bh(vh, qh). (7.3)

With ah and bh defined by (6.2), (6.3), we also keep the same definition (6.6) of the source
term Lh. So the discrete problem is:
Find (vh, ph) ∈Xk

∇,h,0 ×Xk
L2,h,? such that for all (wh, qh) ∈Xk

∇,h,0 ×Xk
L2,h,?,

Ah((vh, ph), (wh, qh)) = Lh(vh). (7.4)

The continuous Stokes problem becomes:
Find u ∈H1

0(Ω) ∩H2(Ω), p ∈ H1(Ω) ∩ L2
0(Ω) such that

−µ∆u+ grad p =f, on Ω,

divu =0, on Ω.
(7.5)

Theorem 41. Under the same assumptions as those of Theorem 38, the problem (7.4) is
well-posed and converges toward the continuous solution of problem (7.5) with the same error
estimate as in Theorem 38.

Proof. The proof is similar to the proof of Theorem 38. We need a suitable version of Lemma
34, and we can expect vh ∈ Xk

∇,h,0 if p
h
∈ Xk

L2,h,? by substituting the use of Theorem 54
by Theorem 55 in the proof of Lemma 34 (see Remark 56). The consistency errors 36 and 37
require respectively W ∈ H1

0(Ω) and ∇w · nΩ = 0. However we can check that this is only
used to get (5.9) and (5.12) both of which also hold if vh ∈ Xk

∇,h,0 instead, so that vF ≡ 0,
∀F ⊂ ∂Ω. Finally, we relied on Lemma 32 to show that Ah is weakly coercive. This too can be
readily adapted if we use [10, Lemma 2.15] instead of [10, Theorem 6.5] in the proof of Lemma
32. With these three results we can proceed exactly in the same manner as we did for Theorem
38.
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7.2 Mixed boundary conditions.

We can also use Dirichlet conditions on a subset of the boundary and Neumann conditions
elsewhere. Let ΓD be a relatively closed subset of ∂Ω with a non-zero measure and ΓN =
∂Ω \ ΓD. Furthermore assume that each boundary face ∂Ω ⊃ F ∈ Fh is either contained in
ΓN or in ΓD but not in both (i.e. either F ⊂ ΓD = ∅ or F ∩ ΓD = ∅). We also require that ΓD
and ΓN contain at least one face (else we degenerate to pure Neumann or pure Dirichlet). The
continuous Stokes problem is:
Find u ∈H2(Ω), p ∈ H1(Ω) such that

−µ∆u+ grad p = f, on Ω,

divu = 0, on Ω,

u = 0, on ΓD,

∂u

∂nΩ
= 0, on ΓN ,

p = 0, on ΓN .

(7.6)

We introduce the discrete space Xk
∇,h,D := {vh ∈ Xk

∇,h : vF ≡ 0, ∀F ∈ ΓD} and define:

Ah((vh, ph), (wh, qh)) ∈ (Xk
∇,h,D ×Xk

L2,h)× (Xk
∇,h,D ×Xk

L2,h)→ R by

Ah((vh, ph), (wh, qh)) = ah(vh,wh)− bh(wh, ph) + bh(vh, qh). (7.7)

The discrete problem becomes:
Find (vh, ph) ∈Xk

∇,h,D ×Xk
L2,h such that for all (wh, qh) ∈Xk

∇,h,D ×Xk
L2,h,

Ah((vh, ph), (wh, qh)) = Lh(vh). (7.8)

8 Numerical validation.

The Stokes complex was implemented within the HArDCore C++ framework (see https:

//github.com/jdroniou/HArDCore), using the linear algebra facilities from the Eigen3 li-
brary (see https://eigen.tuxfamily.org) and the linear solver from the Portable, Extensi-
ble Toolkit for Scientific Computation PETSc (see https://petsc.org). An implementation
of the spaces and operators defined in this paper as well as a Stokes solver can be found at
https://github.com/mlhanot/HArDCore3D-Stokes. The numerical validation is done with
a constant viscosity µ = 1. We measure the rate of convergence toward an exact solution for
various polynomial degrees k ∈ {0, 1, 2, 3}. The error is computed as

‖uh − Ik∇,hu‖µ,∇,1,h + ‖p
h
− Ik

L2,h
p‖L2,h

‖Ik∇,hu‖µ,∇,1,h + ‖Ik
L2,h

p‖L2,h

.

We expect the error to decrease at a rate O(hk+1) thanks to Theorem 38 and 41. We also
validated the 2-dimensional variation detailed in appendix C. These tests are done on various
mesh sequences. One mesh of each sequence is shown in Figure 3 for the 2-dimensional cases,
and a cross section of the 3-dimensional meshes is shown in Figure 2. The results are given in
Figure 4 in 2 dimensions and in Figure 5 in 3 dimensions. We always obtain results consistent
with the theory. In 2 dimensions, we can see that the method is robust and the convergence is
barely impacted by the various features of the meshes. In 3 dimensions, arbitrary polyhedra can
be much wilder than arbitrary polygons. We can see that, while the expected convergence rate
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(a) ”Cube” mesh. (b) ”Prysmatic” mesh. (c) ”Hexahedra” mesh.

(d) ”Tetgen cube” mesh. (e) ”Voro” mesh. (f) ”Voro tets” mesh.

Figure 2: Families of mesh used in 3 dimensions, sliced for visualization.

is asymptotically obtained, some combinations of degree and mesh exhibit better properties.
On the coarsest meshes with the lowest polynomial degree we notice a drop in the convergence
rate. These meshes are too coarse for the solution sought and the problem disapears when
refining or increasing the polynomial degree.

A Results on polynomial spaces.

We begin by showing a few results to complete the introduction of spaces (2.14) and (2.16).
Let T ∈ Th be any cell. We assume without loss of generality that xT = 0, where xT ∈ T is
the point given by (2.5). We identify the coordinate with three variables x, y and z, and we
define Pk[X,Y ](T ) = {P ∈ Pk(T ), degZ(P ) = 0}. By (2.5) we can write:

(Rc,k(T )ᵀ)3 =

xP1 yP1 zP1

xP2 yP2 zP2

xP3 yP3 zP3

 , Pi∈{1,2,3} ∈ Pk−1(T ). (A.1)

Lemma 42. Keeping the notations of (A.1), the subset Rc,k
(T ) = {W ∈ (Rc,k(T )ᵀ)3 :

TrW = 0} is characterized by:

P1 = yzC1 + yγ − zβ
P2 = xzC2 − xγ + zλ
P3 = xyC3 + xβ − yλ

,
λ ∈ Pk−2[Y,Z], β ∈ Pk−2[X,Z], γ ∈ Pk−2[X,Y ],

Ci ∈ Pk−3[X,Y, Z], C1 + C2 + C3 = 0.
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(a) ”Hexa” mesh. (b) ”Square” mesh. (c) ”Square 2” mesh.

(d) ”Tilted” mesh. (e) ”Tilted 2” mesh. (f) ”Hexa anisotropic” mesh.

Figure 3: Families of mesh used in 2 dimensions.

Proof. The proof relies on repeated use of Euclidean division. When we append x (resp. y, z)
as subscript we mean that the polynomial does not depend on x (resp. y, z). We write:

P2 = xQ2 +R2
x,

P3 = xQ3 +R3
x.

Then the condition TrW = 0 becomes xP1 +yP2 +zP3 = x(P1+yQ2 +zQ3)+yR2
x+zR3

x = 0.
Looking at the degree in X, we must have P1 + yQ2 + zQ3 = 0 and yR2

x + zR3
x = 0. Hence

there exists λ ∈ Pk−2[Y, Z] such that

R2
x = zλ, R3

x = −yλ.

On the other hand, writing P1 = yA1 +zA1
y +A1

y,z, we have yA1 +zA1
y +A1

y,z +yQ2 +zQ3 = 0.
Looking at the degree in Y and Z we must have A1

y,z = 0. Let us write Q3 = yB3 + B3
y , we

have y(A1 + Q2 + zB3) + z(A1
y + B3

y) = 0. The degree in Y shows that A1
y + B3

y = 0. Thus

there exists β ∈ Pk−2[X,Z] such that

A1
y = −β, B3

y = β.

Let A1 = zC1 +C1
z and Q2 = zC2 +C2

z . We are left with A1 +Q2 + zB3 = z(C1 +C2 +B3) +
C1
z + C2

z = 0. Once again the degree in Z shows that C1
z + C2

z = 0 and C1 + C2 + B3 = 0, so
there exists γ ∈ Pk−2[X,Y ] such that

C1
z = γ, C2

z = −γ.

We conclude by writing B3 := C3 and substituting back each term in the development of
Pi.
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(a) ”Hexa” mesh.
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(b) ”Square” mesh.

10−1.5 10−1 10−0.5

10−5

10−4

10−3

10−2

10−1

100

101

1

1

1

2

1

3

1

4

(c) ”Square 2” mesh.
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(d) ”Tilted” mesh.
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(e) ”Tilted 2” mesh.
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(f) ”Hexa anisotropic” mesh.

Figure 4: Absolute error estimate in discrete norm ‖ · ‖µ,∇,1,h + ‖ · ‖L2,h vs. mesh size h in 2
dimensions.
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(a) ”Cube” mesh.
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(b) ”Prysmatic” mesh.
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(c) ”Hexahedra” mesh.
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(d) ”Tetgen cube” mesh.
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(e) ”Voro” mesh.
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(f) ”Voro tets” mesh.

Figure 5: Absolute error estimate in discrete norm ‖ · ‖µ,∇,1,h + ‖ · ‖L2,h vs. mesh size h in 3
dimensions.
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Remark 43. In 2 dimensions the expression becomes (see Appendix C):

Rc,k+1
(F ) =

(
−(x− xF )(y − yF )Q −(y − yF )2Q

(x− xF )2Q (x− xF )(y − yF )Q

)
, Q ∈ Pk−1(F ).

Lemma 44. For any T ∈ Th, ∇· is an isomorphism from Rc,k+1
(T ) to Gc,k(T ).

Proof. By the definition (2.5) the space Gc,k is characterized by:

Gc,k(T ) =

yQ1 − zQ2

zQ3 − xQ1

xQ2 − yQ3

 , Q1, Q2, Q3 ∈ Pk−1(T ). (A.2)

Let W =

xP1 yP1 zP1

xP2 yP2 zP2

xP3 yP3 zP3

 ∈ Rc,k
(T ), with Pi given by Lemma 42. A direct computation

gives

∇·W =

yzC1′ + yγ′ − zβ′
xzC2′ − xγ′ + zλ′

xyC3′ + xβ′ − yλ′

 , (A.3)

with Ci
′

= (5 + x∂x + y∂y + z∂z)C
i, γ′ = (4 + x∂x + y∂y)γ, β′ = (4 + x∂x + z∂z)β, λ′ =

(4 + y∂y + z∂z)λ. Each of these transformations is a linear automorphism, hence we can drop
the ′ in (A.3) without loss of generality. We must show that there is a one to one correspondence
between the Qi of (A.2) (more precisely their sum, since different Qi give the same expression)
and the Ci, γ, β, λ of (A.3).

Let us write Q1 = γ+R1, Q2 = β+R2 and Q3 = λ+R3 for some R1, R2, R3. The system
becomes:

yzC1 + yγ − zβ = yQ1 − zQ2

xzC2 − xγ + zλ = zQ3 − xQ1

xyC3 + xβ − yλ = xQ2 − yQ3

⇐⇒
yzC1 = yR1 − zR2

xzC2 = zR3 − xR1

xyC3 = xR2 − yR3
.

When can check that xyz(C1 +C2 +C3) = xyR1 − xzR2 + yzR3 − yxR1 + zxR2 − zyR3 = 0.
Hence given Q1, Q2, Q3, the Euclidean divisions Q1 := γ+zS1, Q2 := β+yS2 and Q3 := λ+xS3

give suitable C1, C2, C3, γ, β, λ for C1 = S1−S2, C2 = S3−S1 and C3 = S2−S3. Likewise,
given C1, C2, C3, γ, β, λ, the system

C1 = S1 − S2

C2 = S3 − S1

C3 = S2 − S3

is solvable since C1 + C2 + C3 = 0 and Q1 := γ + zS1, Q2 := β + yS2, Q3 := λ + xS3 give
suitable Qi.

Lemma 45. For any T ∈ Th, it holds Rc,k
(T ) ∩Rk

(T ) = {0}.

Proof. This is a direct consequence of Lemma 44 and Remark 4.

Lemma 46. For any T ∈ Th, it holds (Rc,k(T )ᵀ)3 = Rc,k
(T )⊕Rk

(T ).
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Proof. Lemma 45 already shows that Rc,k
(T ) ∩Rk

(T ) = {0}. It is enough to compare the
dimension of these spaces:

dimRc,k
(T ) = 3 dimPk−2[X,Y ] + 2 dimPk−3[X,Y, Z]

= 3
k!

2!(k − 2)!
+ 2

k!

3!(k − 3)!
=

2k3 + 3k2 − 5k

6
,

dimRk
(T ) = dimP0,k(T ) =

(k + 3)!

3!k!
− 1 =

k3 + 6k2 + 11k

6
.

The sum of both is

3
(k + 2)!

3!(k − 1)!
= 3 dimPk−1(T ) = dim (Rc,k(T )ᵀ)3.

Next we show some lemmas on convex polytopes.

Lemma 47. Let T ∈ Th, xT defined as in (2.5), if B = B(xT , hB) ⊂ T with hB & hT and
Q ∈ Pk(T ) then ‖Q‖L∞(B) ≈ ‖Q‖∞.

Proof. Let ho ∈ R∗+ such that T ⊂ B(xT , ho) and ho . hT (ho exists by the regularity
assumption on the mesh sequence Mh). Let v by any vector such that ‖v‖ = 1, then ∀α > 0
such that xT + αv ∈ T ,

Q(xT + αv) =
k∑
i=0

∂ivQ(xT )

i!
αi,

so

|Q(xT + αv)| ≤
k∑
i=0

∥∥∂ivQ∥∥L∞(B)

i!
αi.

By the discrete Poincare inequality Lemma 2 we have ∀i,
∥∥∂ivQ∥∥L∞(B)

. h−iB ‖Q‖L∞(B). More-

over xT + αv ∈ T so α < ho and |Q(xT + αv)| . ‖Q‖L∞(B) h
i
oh
−i
B . Since ho . hB we can

conclude that ‖Q‖∞ . ‖Q‖L∞(B).

Any T ∈ Th is a convex, open polyhedron. Let (Fi)i≤|FT | be the set of its faces, each of

normal vector nF . For all Fi there exists Pi ∈ P1(R3) such that Fi ⊂ Ker(Pi), moreover we
can normalize Pi such that x ∈ T =⇒ Pi(x) > 0 (since T is convex) and |∂nFPi| = 1.

Lemma 48. Let P =
∏
i≤|FT | Pi, x0 ∈ T such that B0 = B(x0, hT /2) ⊂ T and B =

B(x0, hT /4) then infx∈B P (x) >
(
hT
4

)|FT |
and ‖P‖L∞(T ) . h

|FT |
T .

Proof. For any i ≤ |FT |, the value Pi(x) at any point x is the distance between x and the
plane tangent to Fi and is positive on T . For any x ∈ B, x is a least at a distance hT /4 of any
face since B0 ⊂ T . We obtain the lower bound taking the product over all faces. Conversely,
using the mesh regularity we can find ho > 0, ho . hT such that T is inscribed in a ball of
diameter ho. Then ∀i ≤ |FT |, ∀x ∈ T , it holds 0 < Pi(x) < ho . hT . Again we conclude by
taking the product over all faces.

Remark 49. Lemma 48 also holds for P =
∏
i≤|FT | P

2
i , substituting |FT | by 2 |FT |.
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Lemma 50. For any T ∈ Th and q ∈ Pk(T ) there is P ∈ Pk+|FT |(T ) such that P|∂T = 0,

πkP,TP = q and ‖P‖ ≈ ‖q‖.

Proof. Let P = ΠQ with Π given by Lemma 48 and Q ∈ Pk(T ). The application

Pk(T ) 3 Q→
(
λ→

∫
T
Pλ

)
∈ Pk(T )′ (A.4)

is linear and between two spaces of same dimension, thus it is enough to check that it is injective.
Let Q ∈ Pk(T ) such that ∀λ ∈ Pk(T ),

∫
T ΠQλ = 0; in particular

∫
T ΠQ2 = 0. However since

Π > 0 on T , we can define the function
√

Π ∈ L2(T ) and have
∫
T

(√
ΠQ
)2

=
∥∥∥√ΠQ

∥∥∥2
= 0.

This implies
√

ΠQ ≡ 0, so Q ≡ 0 and (A.4) is injective. Thus there is a polynomial P ∈
Pk+|FT |(T ) such that P|∂T = 0 and πkP,TP = q. Let us show that P also satisfies the norm
equivalence: In particular we must have∫

T
(P − q)Q = 0,∫

T
ΠQ2 =

∫
T
qQ,∥∥∥√ΠQ

∥∥∥2
≤ ‖q‖ ‖Q‖ . ‖q‖ |T |

1
2 ‖Q‖∞ .

Therefore the discrete Sobolev inequality [10, Lemma 1.25] gives∥∥∥√ΠQ
∥∥∥2

∞
≈ |T |−1

∥∥∥√ΠQ
∥∥∥2
. |T |−

1
2 ‖Q‖∞ ‖q‖ .

On the other consider B = B(x0, hT /4) given in Lemma 48, it holds infx∈B
√

Π(x) & h
|FT |/2
T .

Thus by Lemma 47:∥∥∥√ΠQ
∥∥∥
∞
≥
∥∥∥√ΠQ

∥∥∥
L∞(B)

& h
|FT |/2
T ‖Q‖L∞(B) ≈ h

|FT |/2
T ‖Q‖∞ .

Hence h
|FT |
T ‖Q‖2∞ . |T |

− 1
2 ‖Q‖∞ ‖q‖, ‖Q‖∞ . |T |

− 1
2 h
−|FT |
T ‖q‖ and

‖ΠQ‖ ≈ |T |
1
2 ‖ΠQ‖∞ ≤ |T |

1
2 ‖Π‖∞ ‖Q‖∞ . |T |

1
2 h
|FT |
T ‖Q‖∞ . ‖q‖ .

We can use the same proof with Remark 49 to enforce the continuity of derivatives.

Lemma 51. For any T ∈ Th and q ∈ Pk(T ) there is P ∈ Pk+2|FT |(T ) such that P|∂T = 0,

(gradP )|∂T = 0, πkP,TP = q and ‖P‖ ≈ ‖q‖.

B Trace lifting.

In order to prove consistency results we often need functions of Sobolev spaces with suitable
properties. We construct them in this section.

Theorem 52. For all vT ∈Xk
∇,T there is RvT

∈H1(T ) such that

RvT
= γ̃k+2

∇,F

c

vF on ∂T,∥∥RvT

∥∥
T

+
∥∥∇RvT

∥∥
T
. |||vT |||∇,T +

∣∣∣∣∣∣∣∣∣∇k+1
T vT

∣∣∣∣∣∣∣∣∣
L2,T

.
(B.1)
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This lift is built upon [2, Theorem 18.40]: Let Ω ⊂ RN , N ≥ 2 be an open set whose bound-
ary ∂Ω is uniformly Lipschitz continuous of parameters ε, L and M (see [2, Definition 13.11]).
Then for all g ∈ B1/2,2(∂Ω), there is c ∈ R depending only on N and a function u ∈ H1(Ω)
such that Tr(u) = g,

‖u‖L2(Ω) ≤M
1/2ε1/2 ‖g‖L2(∂Ω) (B.2)

and

‖gradu‖L2(Ω) ≤ cM(1 + L)3+N/2ε−1/2 ‖g‖L2(∂Ω) + cM(1 + L)2+(N+1)/2|g|♦
B1/2,2(∂Ω)

. (B.3)

With the Besov seminorm defined by (see [2, Definition 18.36]):

|g|♦
B1/2,2(∂Ω)

:=

(∫
∂Ω

∫
∂Ω∩B(x,ε)

|g(x)− g(y)|2

‖x− y‖N
dydx

)1/2

. (B.4)

Proof of theorem 52. We apply the above-mentioned theorem [2, Theorem 18.40] to Ω = T and

g a component of γ̃k+2
∇,F

c

vF . Here N = 3 and the mesh regularity [10, Definition 1.9] allows
us to take an open cover of ∂T making it uniformly Lipschitz continuous in the sense of [2,
Definition 13.11] with L = 1, M ≈ 1 and ε ≈ hT .

Let RvT
be such that Tr(RvT

) = γ̃k+2
∇,F

c

vF and that RvT
satisfies (B.2) and (B.3). Let

g be a component of γ̃k+2
∇,F

c

vF and u be given by (B.2) and (B.3). Without loss of generality

we assume that
∫
∂T g = 0: Else we take instead g =

∫
∂T g and u = g so that gradu = 0

and ‖u‖L2(T ) ≈ h
3
2
T |g|, ‖g‖L2(∂T ) ≈ hT |g| and u, g satisfy (B.1). Hence we reduce to the case∫

∂T g
′ = 0 for g′ = g − g.

Equation (B.2) with Lemma 21 gives
∥∥RvT

∥∥
T
. |||vT |||∇,T since ε ≈ hT . Let AF :=

1
|F |
∫
F g|F and AT :=

∑
F∈FT

|F |AF . By assumption AT = 0, and for all F ∈ FT ,∑
F∈FT

∥∥g|F∥∥F ≤ ∥∥g|F −AF∥∥F + ‖AF −AT ‖F

. hF

∥∥∥∥∇ γ̃k+2
∇,F

c

vF

∥∥∥∥
F

+ h
1
2
F |||vT |||∇,T .

We used the Poincaré-Wirtinger inequality on each face on the first term in the right-hand
side and the same proof as Lemma 31 (see [14, Equation 5.12]). Hence, Lemma 31 gives

‖g‖L2(∂T ) . h
1
2
T |||vT |||∇,T , and

‖gradu‖L2(Ω) . h
− 1

2
T ‖g‖L2(∂T ) + |g|♦

B1/2,2(∂Ω)

. |||vT |||∇,T .

We concluded with the estimate on the Besov seminorm Lemma 53.

Lemma 53. Keeping the notations of the proof of Theorem 52, it holds

|g|♦
B1/2,2(∂Ω)

. |||vT |||∇,T . (B.5)

Proof. We know that g ∈ C1(FT ), hence by the mean value theorem, ∀y ∈ B(x, ε), ∃c ∈]0, 1[
such that

g(y) = g(x) + grad g((1− c)x+ cy) · (y − x),
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thus

|g(x)− g(y)|2

‖x− y‖3
=
|grad g((1− c)x+ cy)|2 ‖x− y‖2

‖x− y‖3
. ‖grad g‖2L∞(F ) |(x− y)|−1 .

Switching to polar coordinates gives∫
B(x,ε)

|g(x)− g(y)|2

‖x− y‖3
. ‖grad g‖2L∞(F )

∫ ε

0

1

r
r . ‖grad g‖2L∞(F ) ε.

Lemma 2 and a Poincaré-Wirtinger inequality show that∥∥∥∥∇ γ̃k+2
∇,F

c

vF

∥∥∥∥
F

. h−1
F

∥∥∥∥γ̃k+2
∇,F

c

vF −
1

|F |

∫
F
γ̃k+2
∇,F

c

vF

∥∥∥∥
F

≈ h−1
F

∥∥∥∥γk+2
∇,FvF −

1

|F |

∫
F
γk+2
∇,FvF

∥∥∥∥
F

.
∥∥∥∇ γk+2

∇,FvF

∥∥∥
F
.

Hence the discrete Lebesgue embedding [10, Lemma 1.25] and Lemma 31 give

‖grad g‖2L∞(F ) ≈ h
−2
F ‖grad g‖2L2(F ) . h

−3
F hF

∥∥∥∇ γk+2
∇,FvF

∥∥∥2

F
. h−3

T |||vT |||
2
∇,T .

Inferring ε ≈ hT and |∂T | ≈ h2
T we find

|g|♦
B1/2,2(∂Ω)

.

(∫
∂T
ε ‖grad g‖2L∞(F )

) 1
2

.

(
hTh

−3
T |||vT |||

2
∇,T

∫
∂T

1

) 1
2

. |||vT |||∇,T .

Theorem 54. If p ∈ H2
0 (Ω) then there is u ∈ H3(Ω) such that divu = p, ‖u‖H3 . ‖p‖H2,

‖u‖H2 . ‖p‖H1 and ‖u‖H1 . ‖p‖L2.

Proof. Let B be a smooth bounded extension (at least C3,1) of Ω. For all function g ∈ H−1(B),
following [4, Theorem III.4.1], there is a unique solution f ∈ H1

0 (B) to the equation ∆f =
g in B. Moreover this solution satisfies ‖f‖H1 . ‖g‖H−1 and [4, Theorem III.4.2] shows that
if B is Ck+1,1, k ≥ 0 and g ∈ Hk(B) then ‖f‖Hk+2 . ‖g‖Hk . Since p ∈ H2

0 (Ω) we can extend
p by zero and define p̃ ∈ H2

0 (B) with ‖p̃‖Hk(B) = ‖p‖Hk(Ω) ([1, Theorem 3.33]). Hence, since

p̃ ∈ H2(B), if we take f ∈ H1
0 (B) such that ∆f = div grad f = p̃ we get f ∈ H4(B) with

‖f‖H2(B) . ‖p‖L2 , ‖f‖H3(B) . ‖p‖H1 , and ‖f‖H4(B) . ‖p‖H2 . Let u = grad f|Ω then we have
divu = p in Ω and the expected bounds.

We can adapt the theorem to cover other boundary conditions. However, we still need a
smoother domain, and if we want to enforce a condition on the boundary of Ω we can no longer
consider a larger domain. Instead, we take a smaller domain, and we will have to do some work
to recover the correct values on Ω.
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Mh

Mh'

B

Figure 6: Construction of the smooth subdomain.

Theorem 55. If B ⊂ Ω is C2,1, p ∈ H2(B) such that
∫

Ω p = 0 then there is u ∈ H3(B) ∩
H1

0(B) such that divu = p, ‖u‖H3 . ‖p‖H2, ‖u‖H2 . ‖p‖H1 and ‖u‖H1 . ‖p‖L2.

Proof. Since
∫
B p = 0 we can use [4, Theorem IV.5.2 and Theorem IV.5.8] to get u ∈Hk+1(B)

such that divu = p in B, u = 0 on ∂B and ‖u‖Hk+1 . ‖p‖Hk , k ∈ {0, 1, 2}.

Remark 56 (Adaptation of Lemma 34). The continuous (for the Sobolev norm) extension of
a function in H1

0 is not necessarily by zero. However, we only need to take L2-orthogonal
projections, hence we can afford to use a smaller domain B. Let B ⊂ Ω be a C2,1 domain
containing all interior elements and most of the elements next to the boundary. Formally we
want B such that ∀X ∈Mh, X∩∂Ω = ∅ =⇒ X ⊂ B and X∩∂Ω ( X =⇒ |X ∩B| ≥ |X| /2.

To adapt Lemma 34 we take another meshM′h with the same interior elements asMh and
with elements crossing ∂B collinear to those of Mh but cut before. This way, the domain on
which M′h is defined lies inside B. Figure 6 illustrates the construction.

Given p
h
∈ Xk

L2,h,? we construct p′
h
, a piecewise polynomial on each cell of M′h with the

same degree and moments as p
h

has on the corresponding cell of Mh. We can now proceed
as done in the proof of Lemma 34, with p′

h
(extended by zero on B) instead of p

h
and with

a slightly different interpolator. The modified interpolator is the same on interior elements,
and on elements X ∈ Mh crossing ∂B of corresponding element X ′ ∈ Mh we substitute the
L2-orthogonal projector by π such that∫

X
(πP f) g :=

∫
X′
f g, ∀f ∈ L2(X ′),∀g ∈ P.

One can check that the proof still works since u ∈H1
0(B).

C 2-Dimensional complex.

The Stokes complex also exists in 2 dimensions. Let Ω be a domain of R2 instead of R3. The
differential complex now reads:

R H1(Ω) H(div,Ω) L2(Ω) {0}.iΩ rot div 0 (C.1)
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F : Pk−1(F ) Gk−1(F )× Gc,k(F ) Pk(F )

E : Pk(E) RT k+1
(F )

Pk−1(E) Pk(E) Pk+1(E)

V : R = Pk+1(V ) Pk+2(V )

R2 = Pk+2(V )

rot div

∇

Id

rot ∇

Id

Figure 7: Usage of the local degrees of freedom for the discrete differential operators in 2
dimensions.

We can construct a discrete complex similar to the complex in Figure 1. However the
construction is not merely the restriction of the 3-dimensional complex to 2-dimensional objects.
It is in fact much simpler.

Discrete spaces.
The 2-dimensionnal complex only needs four discrete spaces Xk

rot,F , Xk
∇,T , Xk+1

L2,T
and Xk

L2,T .

They are defined by:

Xk
rot,h :={vh = ((Rv,V )V ∈Vh , (vE , Rv,E)E∈Eh , (vF )F∈Fh

) :

Rv,V ∈ R2(V ),∀V ∈ Vh, vE ∈ Pk+1
c (Eh), Rv,E ∈ Pk(E), ∀E ∈ Eh,

vF ∈ Pk−1(F ),∀F ∈ Fh},
(C.2)

Xk
∇,h :={wh = ((wE)E∈Eh , (wG ,F ,w

c
G ,F )F∈Fh

) :

wE ∈ Pk+2
c (E), ∀E ∈ EhwG ,F ∈ Gk(F ),wc

G ,F ∈ Gc,k(F ), ∀F ∈ Fh}, (C.3)

Xk+1
L2,h

:={W h = ((WE)E∈Eh , (W F )F∈Fh
) :

WE ∈ Pk+1(E), ∀E ∈ Eh,W F ∈RT k+1
(F ),∀F ∈ Fh}, (C.4)

Xk
L2,h :={q

h
= ((qF )F∈Fh

) : qF ∈ Pk(F ),∀F ∈ Fh}. (C.5)

Figure 7 is the 2-dimensional equivalent of Figure 1.
The interpolator on the space Xk

rot,h is defined for any v ∈ C1(Ω) by

Ikrot,hv = ((vE , π
k
P,E(rot v · tE))E∈Eh , (rot v(V ))V ∈Vh , (π

k−1
P,F (v))F∈Fh

), (C.6)

where for any edge E ∈ Eh, vE is such that πk−1
P,E(vE) = πk−1

P,E(v) and for any vertex V ∈ VE ,
vE(xV ) = v(xV ).

The interpolator on the space Xk
∇,h is defined for any w ∈ C0(Ω) by

Ik∇,hw = ((wE)E∈Eh , (π
k−1
G,T (w),πc,kG ,T (w))F∈Fh

), (C.7)

where for any edge E ∈ Eh, wE is such that πkP,E(wE) = πkP,E(w) and for any vertex V ∈ VE ,
wE(xV ) = w(xV ).
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The interpolator on the space Xk+1
L2,h

is defined for any W ∈ (C0(Ω)ᵀ)2 by

Ik
L2,h

W = ((πk+1
P,E(W · tE))E∈Eh , (π

k+1
RT ,T

(W ))F∈Fh
). (C.8)

The interpolator on the space Xk
L2,h is πkP,Fh

, the piecewise L2-orthogonal projection on

spaces Pk(F ), F ∈ Fh.

Operators and properties.
The discrete operators are defined similarly to the faces operators in Section 3.3. Thus all
properties of the 3-dimensional complex still appliable hold. Furthermore, the complex property
Theorem 27 holds (barring the missing operator Gk

h and equation (4.4b)). The consistency
results proven in Section 5 also hold substituting the faces for the edges and the cells for the
faces.
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