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ABSTRACT

Protoporphyrin IX (PpIX) is a fluorophore now used to identify tumoral tissues. The tissue is usually excited at
one wavelength, e.g., 405 nm, and the fluorescence signal generated by this molecule and other fluorophores (the
baseline) is used to estimate the amount of PpIX. However, fluorophores too close to PpIX impair the estimation
and resulting classifications. Thus, we handle this issue by suggesting an efficient multi-excitation wavelengths
method, free from any a priori on the baseline. Our method aims to distinguish healthy tissues from tumor
margins, while being more robust to baseline variability. It keeps an ability to distinguish healthy from tumor
tissues up to 87% in cases where existing methods’ability drops near 0%.
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1. INTRODUCTION

Still hardly curable today, diffuse gliomas account for more than fifty percent of primitive brain tumors. Most
studies commonly consider two separate groups having different biological, molecular and tissue properties: High
Grade Gliomas (HGG) are mainly malignant tumors and Low Grade Gliomas (LGG) are begnin tumors. All
subtypes of gliomas share the same highly infiltrative behavior of individual tumor cells. However surrounding
infiltrated tissue often resemble normal tissues. Pre-operative MRI combined with neuro-navigation is currently
used to localize surgical tools and tumour cells in the operating theater but it shows strong limitations.

As a complementary method to pre-operative MRI, fluorescence microscopy has shown its relevance in neuro-
oncology1–5 and 5-aminolevulonic acid (5-ALA) induced fluorescence of protoporphyrin IX (PpIX) is currently
used through surgical microscopes.6 This technique is the current clinical standard for PpIX-based surgical
assistance. However, its sensitivity is still limited when applied to low density infiltrative parts of HGG or to
LGG. Thus, many 5-ALA induced PpIX spectroscopy methods arise to tackle this issue.7 The accuracy of this
fluorescence spectroscopy methods remains limited by the presence of other non 5-ALA induced fluorophores such
as NADH, FAD, flavins or lipopigments. These fluorophores and their high variability can lead to important
crosstalks with PpIX.8–10 To avoid crosstalk, the overall approach is to model the baseline with everything
that is not due to 5-ALA-induced PpIX. Existing approaches are effective when the emission spectral band of
the baseline is far from the one of the PpIX.8,11–13 The baseline is modeled by a Gaussian function,14,15 or
expert dependent weighted sum, which contain a finite number of fluorophores whose fluorescence spectral shape
is assumed known.8,16 However, fluorophores that overlap with PpIX spectral emission band are difficult to
consider. These important crosstalks largely impact specificity.

In this work, we introduce a novel approach to estimate the PpIX fluorescence-related biomarkers contribution.
As opposed to state of the art, several excitation wavelengths are used. This additional input enables to be free
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from any a priori on the baseline shape. We apply our method in the case of the two forms of PpIX (PpIX620,
PpIX634) using a numerical phantom calibrated on real data.14,15,17 Our method improves the robustness of
the estimation of PpIX contributions. We compare the performance of our method against state of the art by
studying confusion matrices of the classification task between healthy tissues and tumor margins.

2. MATERIALS AND METHOD

The fluorescence emission spectrum used in this study relies on multiple excitation wavelengths. At each excita-
tion wavelength λe, the fluorescence spectrum Sλe

can be written :

mλe
= α1η1(λe)S1 + α2η2(λe)S2 + γ(λe)b , (1)

where all quantities indexed by 1, resp. 2, refer to PpIX620, resp. PpIX634, with Si the normalized emission
spectrum, ηi the quantum yield at excitation wavelength, αi the contribution of the given PpIX form, and
b, named baseline, represents other endogenous fluorophore emission spectra. If we consider two wavelengths
λe, λ′

e, we can then write:

m = α1η1S1 + α2η2S2 + b and m′ = α1η
′
1S1 + α2η

′
2S2 + γb (2)

where m, m′, S1, S1, η1, η2, η
′
1 and η′2 are given.

We define the interest parameter vector α = (α1, α2)
T

and the measurement vector m̃ = (m,m′)
T
. To

estimate values of α, we define different models. Baseline Free Model (BF) considers that b = 0 and γb = 0.
Gaussian Baseline Model (GB) suggests that b = AG(µ, σ) and γb = A′G(µ, σ) where G is a Gaussian lineshape
with mean µ and standard deviation σ. Estimated Baseline Model (EB) has no a priori on b and γb, but it
requires to additionally fit γ and b parameters.

In our experiments, we use a digital phantom parameterized from in vivo data.14,15 We consider two excitation
wavelengths λe =385 nm and λ′

e =405 nm; the quantum yield ratio for PpIX620 is ρ1 = η′1/η1 = 1.62; and for
PpIX634 it is ρ2 = η′2/η2 = 0.76.17 To have a more realistic digital phantom, we decided to model acquisition
noise. Therefore, we model a noise with two components: a Poisson noise P mimics photon noise and an additive
Gaussian white noise N mimics electronic noise. This leads to the following function representing the generated
spectrum :

m = P [α1η1S1 + α2η2S2 + b(λe)] +N , where b(λe) = γ(λe)A
2

πσpara

1

1 +
(

λ−λpara
σpara

2

)2 . (3)

All results given in this work have been computed over 105 draws of α couples, equally tesselled into 100x100
bins to map a part of the (α1,α2) diagram also called α plane. Each region of the plane is associated with a
pathological status, refer to Alston et al.14,15 We focus on the boundary between healthy and tumor tissues,
which corresponds to an area of this plane. We used seven baseline datasets which correspond to different
scenarios for the application of our method in clinical practice. The simulation parameters are given in Table 1

Name Parameters

General

A = Γ(4.102, 82.6840) u.a.

µpara = U(590, 650) nm
σpara = U(0, 25) nm
γ = U(0.1, 1.125)

Amplitude (A) A = Γ(4.102, 826.684) u.a.

Width (σpara) σpara = U(0, 50) nm

Name Parameters

Outside
µpara = U(550, 590) nm

γ = U(0.1, 3.00)

Inside
µpara = U(620, 640) nm

γ = U(0.1, 3.00)

Inner γ = U(1, 1.2)
Across γ = U(0.6, 0.8)

Table 1: Parameters used for the simulation of the seven baseline datasets. Only changes from ”General” are
given for the six other datasets.



where U(a, b) is a uniform distribution between a and b, and Γ(k, β) is a gamma distribution with shape factor
k and scale factor β.

To determine the pathological status of each sample according to the estimated parameters α∗, we use a
bayesian classifier. It splits LGG from HGG and uses a priori knowledge on categories given by Alston et al.15

We apply this classifier on simulated glioma images which contains a tumor and a healthy region. To have a
more realistic experiment, we account for the spatial point spread function of the probe: results are convolved
with a Gaussian kernel of size 30x30 pixels.

B
F

1

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

E
st

im
at

io
n 

E
rr

or

G
B

1

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

E
st

im
at

io
n 

E
rr

or

B
F

2

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

E
st

im
at

io
n 

E
rr

or

G
B

2

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

E
st

im
at

io
n 

E
rr

or

E
B

2

0.5 1 1.5

1

0.5

1

1.5

2

0.5 1 1.5

1

0.5 1 1.5

1

0.5 1 1.5

1

0.5 1 1.5

1

0.5 1 1.5

1

0.5 1 1.5

1

0

0.1

0.2

0.3

0.4

E
st

im
at

io
n 

E
rr

or

General Amplitude Width Outside Inside Inner Across

Figure 1: Map of (α1, α2) absolute estimation Error for each estimation method in row : Baseline Free (BF),
Gaussian Baseline (GB), and Estimated Baseline (EB). Each column represent the same baseline dataset defined
in Table 1. Each map has been computed by 100000 drawings equally split in 100x100 bins. The more red is
the color, the greater the absolute error of estimation and the greener the color, the lower the absolute error of
estimation.

3. RESULTS AND DISCUSSION

In Fig. 1, one can see the map of α estimation error by each model for all the baseline parameters sets. At first
sight, one can notice that EB2 has a small error for each baseline set except Across. Considering Amplitude,
Width and Inside datasets, one can see that EB2 has the lowest error compared to other models. It highlights the
robustness to the baseline’s variability of EB2 compared to state of the art models (BF1, GB1) even extrapolated
at two excitation wavelengths (BF2, GB2). Looking at the Outside dataset, one notice that EB2 has a greater
error than other models, however this dataset refers to a clinical case which is no more an issue. Comparing
Inner with Across datasets, we notice that the error of state of the art models remains constant while the one
of EB2 increases a lot. This is due to the EB2 instability when γ is close to ρ1 or ρ2. Because the final aim
is to determine the boundary between healthy tissues and margins, we simplify the classification task into two
categories: tumoral and healthy.

In Fig. 2, one can see confusion matrices in LGG and HGG for General and Amplitude datasets accounting
for the measurement probe. In each confusion matrix, the bottom right corner corresponds to the correctly
predicted tumoral category and the top left corner to the correctly predicted healthy category. One can notice
that the classification task is an ill-posed problem because anti-diagonal terms of the confusion matrix associated
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(a) LGG Case
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Figure 2: Confusion matrices of healthy/tumoral classification on images of simulated glioma accounting for the
spatial point spread function of the probe. In the case of LGG and HGG, each row corresponds to a specific
baseline dataset referring to Table 1 and each column to an estimation model. Inside each confusion matrix,
each row corresponds to the true class while each column to the predicted class.

to Ground Truth are not zero. In LGG and HGG, for both baseline parameters sets, all models are as performant
as the GT for predicting truly tumoral samples. In the General dataset, BF1 is unable to correctly predict truly
healthy samples, and EB2 has the closest percentage value to GT. Considering Amplitude dataset in both LGG
and HGG, only EB2 is able to correctly predict truly healthy samples. In HGG, only 1.62% of healthy samples
are predicted as tumoral with EB2, while it is totality with other models. The classification error of EB2 may
be caused by its instability when γ is close to ρ1 or ρ2. The classification error of other models highlights the
lack of robustness to the baseline’s variability of models with an analytic a priori on the baseline.

To conclude, this work proposed an estimated baseline model whose robustness to the baseline variability has
been demonstrated in terms of parameters estimation error and healthy/tumoral classification.
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