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Abstract

The book develops the fundamental ideas of the famous Kac-Rice formula for vector-
valued random fields. This formula allows to compute the expectation and moments of the
measure, and integrals with respect to this measure, of the sets of levels of such fields.

After a presentation of the historical context of the Kac-Rice formula, we give an
elementary demonstration of the co-area formula. This formula replaces the change of
variable formula in multiple integrals and a direct application of this formula gives the Kac-
Rice formula for almost all levels. We emphasize the necessity of having the formula for
all levels, because for some applications one needs, for example, the formula for level
zero.

The previous observation leads us to refine the analysis to show that the terms appearing
in the formula obtained from the co-aera formula are continuous functions. This leads us
to carefully use the results provided by the implicit function theorem. We prove the
continuity with respect to the level of the studied functional. This result is crucial to be able
to use the tools of measure theory to exchange the limit with the expectation. Then, the
other term of the equality, the one where the conditional expectation intervenes, requires
tools of the probability calculus to check its continuity with respect to the level.

The procedure indicated above applies to moments of order greater than two of the
functional. An important part of our work gives several applications. Some of them are
strictly probabilistic in nature, others are related to the study of the random sea, and still
others concern the roots of trigonometric and algebraic random polynomials. Finally, we
also make a small excursion into the theory of gravitational lenses.

We end the book with a novel study of the local time approximation of Gaussian fields by
measuring the set of levels of the regularized field by convolution with a kernel that
approximates the Dirac delta. From a technical point of view, this chapter is a bit more
demanding, but its inclusion reveals the power of the formulas and opens to the reader
some possible research directions.
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FOREWORD

To Enrique Cabana

In these notes, we study the behavior of the level set Cx(y) :== {& € D C
R?: X(x) =y} for a fairly smooth random field X : Q x D ¢ RY — RJ with
d > j. We are interested in establishing a formula for the expectation and for
the higher order moments of the (d — j)-area measure of the level set Cx(y),
ie., 04-j(Cx(y)), as well as formulas for level set functionals.

Let us give the historical context. The study of level sets of Gaussian random
processes began in the 1940s with two seminal papers by Mark Kac [35] and
Stephen 0. Rice [54], respectively. In both articles, a formula was established
to calculate the expectation of the number of zeros of a Gaussian process
X : QxR — R. It should be noted, however, that Kac was interested in the
asymptotic study of the number of roots of a random polynomial while Rice
sought such a formula for imperatively Gaussian models in communication
theory. Over the next decade, both works were generalized and deepened.
Kac’s work was extended to calculate the asymptotic variance of the number
of roots and a central limit theorem was also proved. Rice’s work was also
generalized. Cramér and Leadbetter began a fruitful collaboration on this
subject that resulted in their very famous book [23].

In 1957, M. S. Longuet-Higgins, in an article devoted to the modeling of
the sea as a random surface [44], gives for the first time a Kac-Rice formula
for Gaussian fields, X : Q x R? — R, which can be considered as a great
success. The work, while very ingenious, provided no formal mathematical
proof. Nevertheless, this article was intensely cited after its appearance and
its imprint on subsequent work for the study of level sets for random fields was
very important.

In the early eighties of the last century, three other key works were pub-
lished. The article entitled “Esperanzas de integrales sobre conjuntos de nivel
aleatorios” by E. Cabana, [21], that the reader will have the opportunity to
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revisit with these notes, a Springer Lecture Notes [61] written by M. Wsche-
bor “Surfaces aléatoires” and finally the Robert Adler’s book “The Geometry
of Random Fields” [1]. These three works deal with the extension of the ideas
of Kac and Rice to multidimensional random fields.

These themes, somewhat “exotic” for the time they were studied, have been
revived in the 21st century. We have seen the appearance of two books,[3] and
[10], that gave a new impetus to the subject.

The well-established Kac-Rice formulas in the 1980s have been proven again
and improved, revealing unsuspected connections. However, the most impor-
tant aspect of this recent revival is the application of Kac-Rice formulas in
several areas of pure and applied mathematics. With these notes, different in
its accent from the two aforementioned books, we want to introduce the reader
into an old and at the same time young field, highlighting a significant number
of applications.

These notes come from a course given by one of the authors at the XXX
Escuela Venezolana de Matemdtica that took place at Mérida, Venezuela in
September 2017. For this edition, they have been considerably expanded and
corrected.
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CHAPTER 1

SOME HISTORICAL REMARKS ABOUT
KAC-RICE FORMULA

The well-known change of variable formula in an integral of a real function
can be written as follows. Let G : R — R a monotone and differentiable
function and I = G([a,b]). If f is a continuous function, we have

b
/f(y) dy:/ FG®)|G'@®)] dt.
I a

A similar formula is also true when G is differentiable but not necessarily
monotone. In such a case, the formula must be modified by introducing the
number of crossings of the level y for the function G. We define the latter
quantity as follows:

Nigy(y) = #{t € [a,0] : G(¢t) = y}.

leading to the following formula

/f NG y(y dy—/ F(G()) |G (t)] dt.

This formula is known as the area formula and has a long history. Its first
proof is presented in an article by S. Banach [11].

This formula can be used to obtain another formula known as the Kac
counter [36]. In fact, if the function G is continuously differentiable and has a
finite number of crossings at the u level, then

1) NG = o [ s Gl )] as

Kac used this formula to obtain the expectation of the number of real roots
of a random polynomial. In fact, let {a;}}"_, be a set of independent standard
Gaussian random variables. Let us define for each n the following random
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polynomial
Xn(t) :=ap+ a1t + -+ - + a,t™.
Kac was 1nterested in the expectation of the random variable N:X [0.7] (0). Us-

ing the counter , knowing that the number of real roots of X, and X/, is
bounded by n, we see that almost surely, we have

Xn
Nio'r (0) %5%25/ (octa)(Xn(#) [ X ()] d,

and moreover, the right side is also bounded. The dominated convergence
theorem implies

Xn
[E[N[OT}( }I_I% 25/ / / |Z‘an X7 s)($ z)dzdxds

:/ /|z’an(s),X;L(3)(07Z)dZdS7
o Jr

where px., (s),x: (s) (T, 2) is the density of the Gaussian vector (X,(s), Xj,(s)).

This is the famous Kac-Rice formula. This name comes from the fact that
Rice, considering the zeros of random processes, also gives a proof of this result
for Gaussian processes [55]. Nevertheless, Rice’s interest was not in random
polynomials, but in problems related to random signals. In the case studied
by Rice, more work is needed because, in general, the processes are not almost
surely bounded.

In a historical article [53], the author claims that in fact, the formula was
obtained by Rice long before the publication of his articles [54] and [55], which
remain the main references to the first proof of the formula.

Rice’s proof, although original and very suggestive, was supplemented by [t6
in [34] who gives, for stationary Gaussian processes, a necessary and sufficient
condition for the number of crossings to be finite. The It6’s condition requires
the finiteness of the second spectral moment of the process.

In 1967, some time after the publication of the aforementioned works,
Cramér & Leadbetter’s book [23] was published. In this book, not only was
a general proof of the Kac-Rice formula given, but the higher moments were
also considered, establishing a formula for factorial moments of the number of
crossings for Gaussian processes. In addition, the theory has been enriched
and supplemented by an interesting series of applications.

Besides, in the text, a necessary condition was given to ensure that the
variance of the NV [fi 7] (0) was finite, X being a stationary Gaussian process. To
do this, the authors used Kac-Rice’s formula for the second factorial moment
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of NX

[0.7] (0). The condition was expressed as follows: 3§ > 0 such that

/5 (1) — (0)
0 t

dt < oo,

where r is the covariance function of X. A little later, D. Geman [29] showed
that this condition was also sufficient.

At that time, the study of level sets for random fields was not very popular.
A brilliant exception is the seminal work of M.S. Longuet-Higgins [44] appeared
in 1957 and in which, among several applications of the level crossings to sea
modeling, a Kac-Rice formula for the length of the level curve for a stationary
Gaussian random field X : R? — R was firmly established.

Apart from the article mentioned above, interest in the functional of level
sets for a random field only emerged in the last seventies and eighties of the last
century. For example, we can cite the founding article [2], where Adler and
Hasofer extended the notion of crossing levels using the Euler characteristic
of the excursion set from a Gaussian random field X : R?2 — R. Also, it is
important to mention the work of Benzaquén & Cabana [12], where for the first
time a Kac-Rice formula for the measure of the level set of a Gaussian random
field X : R — R was obtained, generalizing the result of the aforementioned
article [44].

In the eighties, two books dealing with the levels set for random fields were
published. The first book, written by R. Adler [1]], deals with problems related
to the geometry of random fields. The Euler characteristic of the excursion set
Au(X,S) :={s € 8 : X(s) = u} for a Gaussian random field X : R? — R
was introduced and a Kac-Rice formula for the expectation of this functional
has been proved. In addition, a formula for the expected number of maxima,
above the u level of X (t) for ¢ € S has been given. Subsequently, several
applications of the last mentioned formula were provided. In particular, the
author obtains an approximation of the tail of the distribution of the random
variable max;cg X (). The second book, is a Springer Lecture Notes written
by M. Wschebor [61] where the expectation of the Lebesgue measure of the
level set Cg x(u) := {s € S: X(s) = u} was computed. The results contained
in this book generalize those of the article [12], showing a Kac-Rice formula
for more general Gaussian fields, demonstrating a formula for higher moments
and also considering non-Gaussian processes.

The Kac-Rice formulas cited above are based on a geometric measurement
formula known as the coarea formula. This formula will be established and
proven at the beginning of this book. The coarea formula is one of the main
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tools in Federer’s work [26] and other mathematicians (the corresponding ref-
erences can be found in the bibliography of this latter book).

To facilitate understanding, we will give the formula and sketch an applica-
tion. Let G be a differentiable function G : D € R¢ — RJ,d > j, and D an
open set of R%. Let VG(+) denote its Jacobian. If f : R — R* then for a
Borel subset B C D,

| HG)@eV6@VEE@ ) dr = | )Mo (Cacl)dy

where H4_; is the Hausdorff measure in dimension d — j and Cp ¢ (y) := {z €
B : G(z) = y}. In the case we develop, we define j = 1, f = 14 for A a
Borel set of R and G = X a continuously differentiable Gaussian random field
and its gradient satisfies a Holder condition. In this case, Cp x(y) is almost
surely a differentiable variety of co-dimension one (see [61]) and the formula
is

/B xieay VX @) dz = /A o41(Cox () d.

Then, taking the expectation on both sides and assuming that for any
bounded Borel set A one of the two integrals is finite, using Fubini’s theo-
rem and duality, we get for almost all y

@) Eloart(Coxm) = /B E[IVX (@)l | X(2) = y]px(o)(v) d.

In [12] for stationary Gaussian fields and in [61] for more general and smooth
Gaussian fields, conditions are given for the formula to be true for all y. In
general, it is not trivial to switch from the formula to the formula given
for all y. Different strategies have been developed and the explanation of a
possible way is one of the main interests of this work.

The formula for d > j > 1 was studied by Cabana in [21]. The article
was written in Spanish and had not been widely distributed. In the more recent
book [10] a proof has been sketched, and in these notes, we will generalize and
complete these two nice initiatives.

In the twenty-first century, two books appeared [3] and [10] that gave new
impetus to the subject. New fields of application of the formulas have appeared
in the literature and the question has become a vast research field. Examples
include applications to the number of roots of random polynomial systems
(algebraic or trigonometric) and also to the volume of nodal sets for rectangular
systems.

The current literature is considerable. We can mention among others: [32]
and [8] for the study of random trigonometric real polynomials and [39] which
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considers the length of the set of zeros of the random trigonometric polynomial
in the torus T2, also [62], [10, Chapter 12] and [5] for the zeros of Kostlan-
Shub-Smale polynomials or systems and [40] for the study of zeros for more
general polynomials and also the zeros of other geometric objects. Kac-Rice
formulas are also a basic tool for studying sets of zeros of random waves and
it has been very important to prove or disprove Berry’s conjectures [14], see
[46] and the references therein.

One area of application where the formulas have been very useful is random
modelling of the sea. This domain presents the first application of Kac-Rice’s
formula for random fields in the nice article [44]. In addition, the Lund’s
School of probability has been very active in these areas, see for example
[43] and the references contained therein. The Kac-Rice formula is not valid
for random fields with non-differentiable trajectories. However, the study of
some level functionals for these fields as the local time, was implemented by
approximating the actual field by a regular field using a convolution with an
approximate Dirac delta. In addition, the Kac-Rice formula for a functional
level of the smoothed field makes it possible to approximate a level functional
of the original field. Thus, the random fields to which the level sets are studied
can have their domain in a finite-dimensional manifold; see [40] for example.

We have presented a panorama, perhaps a little fast, of the genesis and
development of Kac-Rice formulas and their deep imprint in the study of sets
of zeros of random functions. In these notes, we will try to make accessible to
postgraduate students and researchers in probability and statistics and related
fields the basic ideas for demonstrating the formulas. We will also insist on its
applications, both those of the first epoch and those of the present times. We
hope the reader will enjoy reading them as much as we did while writing them.






CHAPTER 2

A PROOF OF THE COAREA FORMULA

2.1. Preliminaries

As mentioned earlier, in these notes we study the Kac-Rice formulas dealing
with the expectation of the level set measure for random fields or processes.
In what follows, we describe the different parts of this work.

First, there are two variants of the change of variables formula for multiple
integrals that are very useful in integral geometry. The first one corresponds to
smooth and locally bijective functions G : R¢ — R? and the second one applies
to smooth functions G : R? — RJ with d > j, having a differential of maximal
rank. These formulas are called respectively area formula and coarea formula.
By applying these formulas to the trajectories of the random fields, then taking
the expectation, we obtain the well known Kac-Rice formulas. Recently and
mainly thanks to the publication of two excellent books ([3] and [10]), the
application of these formulas has aroused a growing interest in fields as varied
as: random algebraic geometry, the complexity of algorithms for solving large
systems of equations, the study of zeros of random polynomial systems, and
finally, applications in engineering. We now present the parts of this book.

1. In the first part, we give an analytical proof of the area and coarea for-
mulas. Such a proof, originally attributed to Banach and Federer [26],
uses elementary tools of vector calculus and measure theory in R

2. The above formulas are the basis for establishing the validity of Kac-Rice
formulas for random fields. They allow to compute the expectation of
the measure of the level sets

Cox(y):={tcQCcR: X(t) =y},
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where X : Q x R? — R is a random field and d > j. It should be
noted that one can obtain a Kac-Rice formula for almost any level using
the area and coarea formulas, Fubini’s theorem and duality. However, in
applications, the interest is directed towards a fixed y-level. For example,
the zeros in the study of the roots of a random polynomial. This precision
leads us to a delicate study to generalize the classical theorems of inverse
function and implicit function. For this part, we have based our approach
on two seminal works: on the one hand, an article by E. Cabana [21],
published in the proceedings of the II CLAPEM conference and on the
other hand, in the Lecture Notes of Mathematics by M. Wschebor [61].
The method we use also produces the Kac-Rice formula for the upper
moments of the level measure.

. These notes continue with several applications. We first show examples
where the hypothesis can be verified, then we use the Kac-Rice formulas
to obtain conditions on the finiteness of the first and second moments
of the level set measure. The very important case of Gaussian random
fields leads us to explicit calculations. Then, we study the number of
roots of trigonometric random polynomials. We highlight the asymptotic
behavior of the expectation and variance of the number of roots. We then
study the application of the Kac-Rice formula to the modeling of the sea
and to random gravitational lenses. Another topic we consider is the
nodal curves of the random wave system considered by Berry and Dennis
in [I5]. These curves are called dislocations in physics and correspond to
the lines of darkness in the propagation of light, or the threads of silence
in the propagation of sound (see [15]).

. After these applications, we pay special attention to systems of random
polynomials of several variables which are invariant under the action
of the group of rotations in R?. These polynomial systems are called
Kostlan-Shub-Smale, after the authors who first studied them and also
established the properties of the set of their zeros. We obtain an asymp-
totic formula for the variance of the measure of the set of zeros of these
systems. It is important to note that this result had already been ob-
tained by another method by Letendre and Puchol in [42].

. Finally, we consider a Gaussian random field whose trajectories are not
differentiable. If we approximate its trajectories using a convolution with
a sequence approximating the Dirac delta, the approximated fields have
smooth trajectories. We then study the approximation of the local time
of the original field by the length of the set of levels of the smoothed
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process. We obtain the convergence in L2(Q2) and also some results of
convergence in law.

2.2. Hypothesis and notations

Let D be an open set of R? and let j < d be a positive integer and G : D C
R? — RJ be a function.
The function G satisfies the hypothesis Hy:
Hy: G is continuously differentiable on D, that is G € C*(D,R7).
We denote by VG(+) its Jacobian.
For y € R7 we define the level set at y as:

Coly) i={zeD:Gx) =y} =G '(y),

and

Co.c(y) :=Caly) NQ,

where @ is a subset of R%,
If G satisfies Hy, we will denote by Dy, the following set

D¢ :={x € D:VG(z) is of rank j} .

Also CE" (y) (resp. Cng(y)) denotes the level set, CE" (y) := Ca(y) N D%, (resp.
CB5(y) = Co.c(y) N D).

From now on, o4 denotes the Lebesgue measure on R%. We use the symbol T
for the transpose operator. For a set A C R?, A€ denotes its complement on
R? and if A C D, A®" denotes its complement on D. The class of sets B(R?) is
the Borel o-algebra in R%. Also R is the set of positive real numbers including

+00, ||-|l; denotes the Euclidean norm in R,
For z € R B(z,r) (resp. B(x,r)), r > 0, is the open ball (resp. closed)
of center z and radius r, that is B(z,r) := {z € R, ||z —z||; < r} (resp.

B(z,r) :={z e Ry |z — x|, < r}).
N*={x e Z x>0}
An application f : (E,dg) — (F,dr) between two metric spaces is said to
be L-Lipschitz, L > 0, if dp(f(z), f(y)) < Ldg(z,y), for any pair of points
z,y € E.
We also say that an application is Lipschitz if it is L-Lipschitz for some L.

In the same way, an application f : (E,dg) — (F,dr) between two met-
ric spaces, is said to be locally Lipschitz, if for each x € FE, there exists a
neighborhood V,, of x such that the restriction of function f to V, is Lipschitz.
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£(R9,R7) denotes the vector space of linear functions from R? to R/ with
the norm ||-|[; ;. Also £2(R9,RY) is the vector space of continuous symmetric

linear applications from R? to R/ with the norm HH% If B is a matrix, Bjj
denotes the element that appears in the ¢th row and jth column.

For j € N*, S~ ! is the boundary of the unit ball of R7.

For any function f, supp(f) is its support.

C is a generic constant and its value can change within a proof.

2.3. Coarea formula

The two results below are known in the literature as the coarea formula, cf.
Federer [26], pp. 247-249] and Cabana [21I]. Our proof is based on the excellent
notes of Weizédcker & Geifsler from Kaiserslautern University [60].

Theorem 2.3.1. — Let f : R/ — R be a mesurable function and G : D C
R? — R7, j < d, be a function satisfying the hypothesis Hy where D is an
open set. For any Borel B subset of D, the following formula is true:

(3) /B £(G(2)) (det(VG(x)VG()T))? dw = /R T (CH o) dy,

provided that one of the two integrals is finite.

1/2

Remark 2.3.2. — If f is mesurable and positive the equality is true and
in this case the integrals can be infinite. °

Remark 2.3.3. — The additional assumptions that f is bounded and B is a
compact set imply that the left-hand side integral is finite and that the formula

is true. °

Corollary 2.3.4. — Let h be a mesurable function, h : R* x R — R and
G:D cCR?— R, j<d, be a function satisfying the hypothesis Hy where D
1s an open set. For all Borel set B subset of D, we have

1/2

(4) /Bh(x, G(:L“))(det(VG(x)VG(J:)T)) dz

— /Rj [/cm o h(z,y)dog—;(x)| dy,

B,G
provided that one of the two integrals is finite.

Remark 2.3.5. — If h mesurable and positive the equality is satisfied
and in this case the integrals can be infinite. °
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Remark 2.3.6. — The hypotheses that h is bounded and B is compact imply
that the left-hand side integral of is finite and the formula holds. .

Proof of Theorem and Corollary[2.3.7)
First, we will show, in the line of [60, pp.60-67], the following proposition.

Proposition 2.3.7. — Let g : R* = R7, j < d be a continuously differen-
tiable function defined on R?.
Then for any A € B(R?) we have

/(det(Vg(:n)Vg(x)T))1/2 do = /‘Ud—j(cfx),;(y))dy-
A R

J
Remark 2.3.8. — Proposition [2.3.7] remains true if one assumes that the
function ¢ is only locally Lipschitz on R¢ instead of being C' on R%. In this
case, the function ¢ is almost surely differentiable on R¢ and the measure Od—j
which appears in the right-hand side of the previous equality is replaced by

the Euclidean Hausdorff measure Hy—;. We invite the reader to consult [60)],
Theorem 4.12, p.61] for more details. o

Proof of Proposition[2.3.7.  As we have indicated, the proof is based on the
notes [60] pp.60-67|. First, we will prove the formula for affine functions g, then
we will consider the formula for sets A of null Lebesgue measure in R%, and
then we will consider sets A which are subsets of Dg. In order to accomplish
our task, we need to prove some lemmas.

Lemma 2.3.9. — Proposition [2.3.7] is true for surjective affine functions g,
that is if g(x) := a + ¢(x) where a € R7 is fizred and ¢ is a linear function of
mazimum rank j.

Proof of Lemma [2.53.9  Without loss of generality, we can always consider
a = 0. Indeed, on the one hand Vg(:) = Vi (+), so for any Borel set A of R?
the following equality is true:

/ (det(Vg(z)Vg(2)T)) " do = / (det(V(z)Ve(z) )2 da.
A A

On the other hand, because the mesure o; is translation invariant, we have:

1/2

/ 04-j(Cayly))dy
RJ
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Now let V' be the vector subspace of R? defined by V := ker . This space
is of dimension (d — j) because ¢ has maximal rank j. We denote by V= its
orthogonal complement which is of dimension j.

We will work with coordinate systems associated with these spaces, i.e. if
r € R, we will write z := (2,w) with 2 € V! and w € V. Then the Lebesgue
measure o4 on R? is the product measure o; @ oq_;.
Observe that ¢|y,1 is a one to one function since dim V+ = j. Let us denote
¥ the inverse function of this restriction, i.e. ¥ := (<p|VL)_1. We have po ¥ =
Idg; and Vo |1 = Idy ., where Idp; (resp. Idy 1) is the identity function
on R/ (resp. VJ-). Moreover, since ¢! maps R7 into V+ by definition of V, we
have:

Ul oWopopl =0T oyl = (@O\I’)T:Ide,

then:
(5) (det(p 0 p"))'/? = (det(¥" 0 W))™1/2 = |det(W)| ",

the last equality is a consequence of the fact that ¥ is an endomorphism of
R7.
Let A be a fixed Borel set of R%. Consider the function

h:V:t S RT

z2r— o4_j{w eV :(z,w) € A}

Observe that for y € R/ we have

e ) NA={(¥(y),w):weV}InA
and given that ¥(y) € V-,

(6) h(¥(y) = oa—j(¢~ (y) N A).

So, since the Lebesgue measure o4 is the product measure o; ® o4_;, we get

(7) oa(A) = [ h(z)do;(2).

vLi
Finally, since the function ¢ is a linear function and by using the equalities (|5)),
, the formula of change of variable for function ¥ which is a C' function

1

as well as 7+ as endomorphism in finite dimension and the equality @, we

obtain

[ @et(Te() Vol )2 do = [ (det(po o) da
A A

— 0a(A) [det(w)]
_ / (det(0)| ™" h(z) doy(2)
Vi
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- / (T (y)) dy
RJ

= /R ag-j(¢"H(y) N A) dy,
J
this completes the proof of Lemma for the affine functions. O

Lemma 2.3.10. — Let O an open set of R, A C O a Borel set of R* and
g:0 — RJ, j <d be a continuously differentiable Lipschitz function with
Lipschitz constant, Lip(g). Thus we have

r WjWd—j ;.
/ Od—j (Cfl),g(y)) dy < 22— LipJ (9)oq(A).
R Wy
Above, wy denotes the volume of the unit ball of R<.

Remark 2.3.11. — In particular, we obtain that Proposition [2.3.7] is true
for Borel sets A of null Lebesgue measure in R%.

To prove Remark [2.3.11] we need a lemma.

Lemma 2.3.12. — Let g : R — RJ, be a locally Lipschitz function. Then
the function g is Lipschitz on any compact set K of R?.

Proof of Lemma . Consider K a compact set of R¢ and z € K. Since g
is locally Lipschitz on R, there exists a constant L, > 0 and a radius 7, > 0,
such that, for all u,v € B(z,rz), [lg(u) — g(v)]|;
Since ¢ is locally Lipschitz on R?, it is continuous on R? and also on the
compact set K. We define M := sup,¢f [lg(u)l|; < .

< Ly [Ju = vl

Since K is compact, there exists m € N*, such that for any i« = 1, ..., m,
there exists z; € K, satisfying K C U™, B(x;,74,/2).
Also define L := max;=1 . m{Ly} and r := minj—y _ n{ry}.  Let

us prove that g is a Lipschitz function on K with Lipschitz constant
L := max{L,4M /r}.
Indeed, let us consider u,v € K.
If lu—v|,; <% there exists ¢ € {1,...,m}, such that u € B(z;,r,,/2). In
this case u,v € B(x;,ry,) and
lg(u) = g(W)ll; < La; lu —vllg < Lllu—wvlly-
If |u—vl[; > 5:
AM r
lg(u) = g()ll; <2M = == x5

This completes the proof of the lemma. O

< - Jlu—vllg < Llu—2|,-
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Proof of Remark . Since g is C' on R? then it is locally Lipschitz on
R?. By Lemma we know that function ¢ is then a Lipschitz function
on any compact of R%, an in particular on K, := [—n, n]d, Vn € N*. Thus,
let A be a Borel set of R? such that o4(A) = 0 and let A, := ]—n, n[?N A,
n € N*. By Lemma one gets

[ s (€2 )y =0,

By taking the limit when n — oo, Beppo Levi’s theorem implies that

[ oaseRnay=o
RJ
Remark 2.3.17] follows. O

Proof of Lemma . For § > 0, we will denote by Hi the Euclidean
Hausdorff pre-measure which defines the k-dimensional Euclidean Hausdorff
measure, denoted Hy, k € N*. The measure Hj, coincides with the Lebesgue
measure o, on R¥ with the Euclidean norm (cf. [60] p. 16]).

Let 0 := 1/, € N*. By definition of H, Lt , there exists a covering ((Uf)icr,)ren
of A of closed subsets of O such that for all 6

(8) = and — Z

where |U| denotes the Euclidean diameter U, or

<7'ld A) +

U] := sup [lz—yl,-

z,ycU
Moreover, by definition of Hcll/f ;» and given that (Uf)ier,)een covers A, we
have
207 1 . d—j
(9) Hi g N ANDY) <Y 1y W) = he(y).

w
d—j i€ly

Then from the inequality @, Fatou’s lemma and the fact that the measures
04—j and Hg4_; coincide, we get the following inequalities

- ey =2 [ Ha (R )
W /RJ O'd*]( A,g(y)) y= was Ju d,j< A,g(y)) Y
20-j
- : < [ liminf
Wd—j /Rj e—iﬁo%d ;(CRg (1)) dy /RJ ZH_?J:EO he(y) dy
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j

<liminf [ hy(y)dy = liminf ‘UZ dy
imint [ hefy) dy = imin /Z Town)®)
(10) - liminfz ‘Uﬂ o (g(UD).

l—~+00 “

The idea is now to establish a relation between o;(g(Uf)) and |Uf |. The
isodiametric inequality for the norms (cf. [60] p.14|) will allow us to obtain

this relation and thus to continue our proof. Let us recall this inequality.
Proposition 2.3.13. — Let C be a bounded Borel set of R7 then
Wi .
o;(C) < FlCt-

The function g is Lipschitz on O, so that the images g(Uf) are bounded sets.
We use the isodiametric inequality for these bounded sets and also that g is
Lipschitz with Lipschitz constant Lip(g), and finally inequality . In this
way ({10 gives us

20-j d—j

[ ast€Byn du < timint 3 |ot| ayt9(0)

l—
too i€ly

Wd—j
d—j w; J
< liminf U: —]’ Ut
~N 0= +00 o 7 2 g( 7 )
4

~

J

~

d—i (). )
<liminf Y |U! ]%Lip](g)‘Uf

l—
too i€ly

=

d s .
= liminf > |Uf| =LLip?
iminf > | |U;| o7 Lip?(9)
i€ly

2% (1 1
Wi -
hgl_ﬁnf Y L Lip’(g ) (7-[ (A) + f)

= 2" Lipd (g Ha(A)
Wd
= 24792 LipI (9)0a(A):
Wd
This completes the proof of Lemma [2.3.10] O

Lemma 2.3.14. — Proposition@ holds if A C Dy,.
Proof of Lemma [2.5.1].

We can always assume that A is a compact. Indeed, since A is a Borel set of
R?, it can be written, except for a zero measure set, as a nondecreasing union
of compacts.
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Remark following Lemma and Beppo Levi’s theorem allow us to
show Proposition [2:3.7 only in the compact case.

Let us choose an element z € A. Consider the vector subspace of R? defined
by V :=ker Vg(z). It is of dimension (d — j) since Vg(z) has maximal rank j.
Let V= be its orthogonal complement which is of dimension j. Let us observe
that Vg(z)|y,. is one to one.

We will denote by 7y the orthogonal projection of R% onto V and define
the function h, : R — R% as

ha(a') =z +av(2') + (Vg(@)ly1) " g(z) - g()).

We want to prove that for any € > 0, there exists 6 > 0 such that if Bs(x) is
the set

(11) Bs(z) := B(x,6) N A,
then

</.0-d—j(CB§(a:),g(y))dy
RJI

1—¢

d
< (1 +8> (1 —E)j </B ( )(det(Vg(x/)Vg(x/)T))l/2 dx/+50d(B5(x))>-

To do this, let’s start by showing the following two things:
For any £ > 0, there exists § > 0 such that if 2/, 2” € Bs(z), we have:

13) A=)’ =2l < he(a) = hale)], < (L) | 2"
as well as
(14) ‘(det(VQ(x)Vg(ﬂ?)T))l/Q — (det(Vg(x')Vg(x’)T))lﬂ‘ <

The inequality is a consequence of the fact that Vg(-) is a continuous
function defined on RY.

To prove , notice that (Vg(z)|y, )"t is a finite dimensional endomorphism
and therefore continuous. Thus, we have H(Vg($)|vJ_)_1Hj,j < 00.
Furthermore, let’s define As(x) as

As(z) == sup lg(z") — g(a") — Vg(x) (@' — )],

' #a' x! x' € Bs(x) le - x”Hd ’
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remembering that Bjs(x) is defined by (11)).
Since g belongs to C', we can write the following first order Taylor expansion

ote!) =gty +( | Vol 1 AG o) 0 @' =),

getting
g(a) — g(a") — Vg(z)(a’ —a")
= (/Ol(Vg(w” + AMa" —2")) - Vg(z)) d)\> (2 — 2.
This implies, since Vg(+) is continuous, that for any € > 0, there exists § > 0,
such that
(15) As(x) <el|(Va@)lyo) ™ -

Let € > 0 be a fixed real number and 2/, z” € Bs(z). Since V = ker Vg(z), we
have

Vy(@)|ys(mys(a’ —2")) = Vg(z)(a' — ")
This implies
2" = " = (ho(z') — ha(a” Hd
= |lmyi(a’ = 2") = (Vg(a)ly )" g(a’) — g")]|,
= [[(Va(@)|y0) 7 (Vy(a) (@' —2") = (9(=") — g(="))]],
<Tg@ly) |, Aot Jo” - "],

<€HJ/‘/_I// o

the last inequality comes from . The proof of is thus completed.

Let T, : R¢ — RJ be the following affine function,

T.(z') := g(z) + Vg(z)(z' — z).
It is surjective because Vg(x) is of maximal rank j.
Moreover, it is certain that T, o h, = g.
Indeed, given that my (2') € V and (Vg(z)|,1) 1 (g(a’) — g(z)) € V1, we can
write
Tp(ha(2')) = 9(z) + V(@) (ha(a’) — @)

(z) +V ( )(mv (2") + V() (V) |yo) (g(z') — g()))
(@) + Vg(@)lyr (Vg(@)ly )" g(a') — g(@)))
(z) + ( ) 9(x)
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= g(a').

Furthermore, allows us to conclude that for fixed € > 0, h, is Lipschitz
on Bs(x), having a Lipschitz constant equal to (14 ¢). Since hy is an injective
function on Bj(z), h, admits an inverse function defined on h,(Bs(z)). The
inequality ensures that this inverse is also Lipschitz on h;(Bs(z)) with a
Lipschitz constant equal to (1 —¢)~!.

These two facts allow us to apply to h, and h,' the Lipschitz contraction
principle which we recall below (cf. [60] p. 18]).

Proposition 2.3.15. — Let E, F be two subsets of R™. We assume that
there exists a surjective Lipschitz function f : E — F with Lipschitz constant
L. Then

Hi(F) < L*H(E) for all k> 0.

Let us apply simultaneously this last principle on the one hand to the func-
tion f := hy for £ := Bs(x), F := hy(Bs(z)), L := (1 +¢) and k := d, and on
the other hand to f := h;! for E := h,(Bs(x)), F := Bs(z), L := (1 — &)1
and k := d. We obtain
(16) (1 —&)%0a(Bs(x)) < oalha(Bs(x))) < (1+¢) 04(Bs(x)).

Let G be a set such that G C h,(Bs(z)). Let us again apply simultaneously
the principle of contraction to the function f := h !, for £ := G, F := h;1(G),
L:=(1-¢)"tand k :=d — j, and then to f := h,, for E = h;}(G), F := G,
L:=(14¢)and k:=d— j, we get

(L+) " Hyj(G) < Haj(h (@) < (1 - )7y 4(G).
In particular, if we choose G := T}, *(y) N hx(Bs(x)), and observe that

Tyohy =g, Haj(hy' (T, (y) N ha(Bs(x)))) = 0a—j(g~" (y) N Bs(x)),
then we get
(17) (1 +e) oy (T (y) Nhe(Bs(2))) < 0a—i(9™ (y) N Bs(2))
< (1 =) oy (T, (y) N ha(Bs(x))

We can now prove ([12). To do so, we apply , then Lemma to the
surjective affine function T, for the Borel set A := h,(Bs(x)), also (16) and
finally , so we obtain

[ sl ) 0 Bata)

< (1—e)" @) ;0= (T, ' (y) N ha(Bs(x))) dy



2.3. COAREA FORMULA 19

1/2

~ (1= ) (det(VT,(2")VTn(2)T)) " da’

hz(Bs(z))

— (1— )"y (ha(Bs())) (det Vg(a) Vg(a)T) >

< (1— &) D(1 4 £)loy(Bs()) (det Vg(z) Vg(x)T)

d
< G f) (1-ey ( /B - (det(Vg(a')Vg(a)T))""* da’ + wd(Ba(x»)

In the same way
[ sl @) 0 Bata) ay
J

> (140) (@) /R 0T () N hal(Bs(a))) dy

1/2

—(+97 [ @V VL))
ha(Bs(x))

= (1+ &)~ g (hy(Bs(x)))(det Vg(m)Vg(w)T)1/2

> (1+)" (1 = e)04(Bs(2)) (det Vg(x) Vg (z)")

— ¢ d .
> G H) (1+¢) ( /B ( )(det(Vg(x')Vg(x')T))l/ i dw’—wd(Ba(fv»)-

1/2

The inequality follows.

To finish the proof of Lemma for fixed € > 0, using Vitali’s covering
theorem (cf. [60, Theorem 1.15, p.14]), the set A can be covered, except for
a set whose Lebesgue measure is zero, by a sequence of disjoint sets of the
type Bs(z). These are closed sets because A is closed since it is compact. By
Remark [2.3.T1] we can forget the null measure set. Then we take the sum on
this partition. By highlighting the fact that o4(A) < oo, A being a compact
set and by using , we obtain

<1 . i)d (L+ey ( /A (det(Vg(')Vg(e)"))* da’ 5ad(A)>

S/_Udj(CA,g(y))dy

RJ

< <1 * ‘E)d (1—¢) ( /A (det(Vg(a')Vg(a)T))"? da’ + wd(A)) .

1—=¢

Since € > 0 is sufficiently small, Proposition @ is satisfied if A C Dy, which

completes the proof of Lemma O
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To finish the proof of Proposition[2.3.7 we apply Lemma[2.3.14]to the Borel set
AN Dy. Noting that (Dp)¢ = {x € R4 det(Vg(x)Vg(z)T) = 0}, Proposition
follows. O

We can prove now Theorem and its corollary.

Let B be a Borel subset of D and A := BN G~Y(I), where I is a Borel set
of R7,

We consider Vn € N*, the closed sets

1
D, = {x e R d(z, D) > n} .

Since D is open, the sets (D,,),en+ are included in D. Whitney [56, Theorem
2| allows us to extend for n € N*, the C'-function G|p, to a function g, :
R — R7 still C* on RY.

By applying Vn € N*, Proposition to the C'-function g,, defined on R¢
and to the Borel set A, := AN D,, we obtain

/ (det(Vgu (@) Vgn(2)™) /2 da = / 0 (CE, (1) dy,
An RJ

and since g, = G on D, then on A,, we get
| 6@ (ve@ve@) " do = [ 1o (o, o) i
ND,, J

Moreover, when n tends to infinity, the sets (Dy)nen+ tend increasingly to-
wards D. Beppo Levi’s theorem implies that Theorem holds true for
functions f of the form f := 1;. By a standard approximation argument,
Theorem [2.3.1]is true for positive measurable functions. This leads to Remark
[2.3.2] and also to Theorem 2.3.1
Remark [2.3:3] is a consequence of the fact that if B is a compact set and the
function f is bounded, then

1/2

1/2

/B F(G@))] (det(VG@)VG()T)) 2 da

1/2

< C/ (det(VG(x)VG(x)T)) dz < oo,
B

since the function G is C' on D and B is a compact subset of D.

Remark allows us to prove Corollary

Indeed, applying this remark to the measurable and positive function f := 1;
and to the Borel set BN A where I (resp. A) is some Borel set of R7 (resp. R?),
and B is a Borel subset of D, allows to establish Corollary for functions h
of the form T 4. Still by a standard approximation argument, Remark
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and Corollary follow.
In the same way as for Remark [2.3.3] we obtain Remark [2.3.6]
This completes the proof of Theorem and of Corollary O

2.4. Kac-Rice formulas for almost all levels

In this section, X : @ x D €  x R? — RJ (j < d) denotes a random field
that belongs to C1(D,R7), Y : Q2 x D C Q x R? — R is a continuous process
and D is an open set of R%.

Let H be the operator

H:£(R4R/) — R
A — (det(AAT))V/2,

Recall that the random set D% is defined as D% = {« € D : rank (VX(z)) =
j} and for y € RY, the level set C2' (y) is CR (y) = Cx(y) N D%.
Let us consider the following hypotheses

— Hjy: For almost all » € D, the density of X (), i.e. px(y)(+), exists.
— Hy: The function

w—s E [/ V()] doay(@)| .
cR (w)

is a continuous function of the variable w.
— H3: The function

u+— E [O’d_j (CXT(u))} ,

is a continuous function of the variable w.
— Hj: The function

w [ o @ELY (@) HVX (@) X(@) = u] do.
D

is a continuous function of the variable w.
— H3: The function

U —> / Px () (w)E[H(VX (z)) | X (z) = u] da,
D

is a continuous function of the variable w.

Using the coarea formula and by duality, we will prove the following propo-
sition.
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Proposition 2.4.1. — 1. If X satisfies the hypotheses Hy and (H3 or
H3), then for almost all y € R,

(18)  E[oa—j(CX (v))] :/DpX(a:)(y)[E [H(VX (2)) | X(2) = y] da.

2. If X and Y satisfy the hypotheses Hy and (Hs or Hs), then for almost
ally € RY,

(19) E [/CDT( )Y(m) dad_j(x)]
y

~ [ P WE Y @H(VX ()| X (@) = y] do

Proof of Proposition[2.].1} Let us begin by proving part [T] of the proposition.
Applying Remark that follows Theorem to the function G = X and
f = 14 where A is a Borel set of R and to the Borel set B = D, we have

/D Ve H (VX (2)) do = /A oa_;(CR () dy.

By taking the expectation of each side of the equality, which is possible because
both terms are positive, and by applying Beppo Levi’s theorem, we obtain by
using the hypothesis H;

] Eloas@® ] dy= [ [ pxio/@E [HVX (@) | X(@) = 4] dody,

In this step of the proof, we need a duality lemma.

Lemma 2.4.2. — Let fi,fo : RI — @+ be two measurable functions such
that for any bounded set A € B(RY), [, fi(y)dy = [, fo(y)dy < oo, then
f1 = fa2 0j-almost surely.

Proof of Lemma [2.].9.  We start by proving the lemma for two measur-
able functions g1 et 92 taking values in R such that, for all B € B(RY),
Jz91(y dy = [p92(y)dy < oco. Consider the set B : {gg < ¢1}. Since
Jri 92(y)dy < oo, the hypothesis [5g1(y)dy = [5g2(y)dy implies that
Jri 18W)(91(y) — 92(y))dy = 0, and thus Tp(y)(91(y) — g2(y)) = 0 for
almost all y € RJ. Similarly, consider B’ := {g1 < g2} and conclude
Jei 18/ (W) (92(y) — 91(y))dy = 0 for almost all y € R7. Finally g1 = g,
oj-almost surely.

Now consider two functions fi and f, satisfying the assumptions of the lemma.
Let K be a compact set in R7. Since for any B € B(R7), A :== BN K is
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a bounded Borel set of R7, and if g1 := filx and gy := folx, we have by
hypothesis [ g1(y)dy = [592(y)dy < oo. The preliminary result that we
have shown implies that for any compact set K of R7, filg = fa1g, oj-almost
surely.

The proof ends by noting that, except for a set of zero measure, the set R7
can be written as a non-decreasing union of compact sets and applying Beppo
Levi’s theorem. 0
We apply here the lemma to the function fi(y) := E [04—;(C¥ (y))] and to
the function f2(y) := [ px (@) W)E [H(VX(2)) | X (z) = y] da.

The functions f; or fo are locally integrable by the hypothesis Hy or H3. This
completes the proof of the part [1| of the proposition.

Let us prove part 2] First, we assume that X and Y satisfy the hypotheses
Hy and H,. Applying Corollary to the function G := X, h(z,y) :=
1a(y) x Y(x) x Tp(x) where A is a bounded Borel set of R7 and to the Borel
set B := D, we almost surely have

20) [ Uxwea¥ @HX@)do = [ [ Loe Y<x>dad_j<x>] .

X

Indeed, the hypothesis Hsy implies

(21) [E(/A [/CDT@) V(@) dad_j(:E)] dy) < 0,

X

so almost surely [, [fcpr(y) Y (z)] dad,j(a:)} dy < oo, and applies. Note
X

that (20]) remains true if |Y| is substituted for Y. This last observation and

(21) imply

E [/DHX(:C)EA|Y(x)|H(VX(:v))dx] < 0.

We can take the expectation both sides of and from the hypothesis Hy,
we obtain that for any bounded Borel set A of R7

/AHE [/CQT(y) Y(x) dad_j(a:)] dy
-/ ( | px@WIE [Y @ HTX (@) | X () =] dm> ay.

Note that the last equality is still true replacing Y by |Y'| and the corresponding
integrals are finite.
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Let us now consider

fily) = [/CD’"( )Y(ﬂﬂ) dUd—j(x)]
y

X

and
foly) = /D Do) W)E [Y (2) H(VX (2)) | X(2) = y] da

A priori, the functions f; and fo do not take their values in R". How-
ever, a small modification of Lemma [2.4.2] can be made, by noticing that
Jalfiy) dy < oo and [, |f2(y))| dy < oo, for any bounded Borel set A of
R7, this implies f1 = f2, 04—j-almost surely.

This completes the proof of Proposition in the case where X and Y
satisfy the hypotheses H; and Hs. A similar proof can be made when X and
Y satisfy the hypotheses H; and Hs. O



CHAPTER 3

KAC-RICE FORMULA FOR ALL LEVEL

In this section X : Q@ x D € Q x R — RJ (j < d) denotes a random field
that belongs to C1(D,R7), Y : @ x D C Q x R? = R is a continuous process
and D is an open set of R

3.1. Rice formula for a regular level set

Let us specify that (18] and are true for almost all y € R/. However, in
applications, these formulas are needed for all y fixed in R/. We will establish
a theorem that gives assumptions on X and Y such that these formulas will
hold for all  in RJ. Specifically, we will assume continuity of both members
of and , restricting ourselves to the set D' and proving the equality
for any y fixed in R7. Before going any further, let us state two assumptions
that are useful for what follows.

These formulas are similar to the previous ones but without the absolute
value in the integrand.

— Hy,: The function

u—s E [/CDT(U) Y (x) dad—j(x)] ;

X

is a continuous function of the variable u.
— Hj: The function

s / Py (WELY (2) H(VX (2)) | X () = u] du,
D

is a continuous function of the variable w.
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Theorem 3.1.1. — 1. If X satisfies the hypotheses Hy, H3 and H?, then
Yy € RI,

(22)  E[0a-5(C¥ (v))] _/DpX(a:)(y)[E [H(VX (2)) [ X (2) = y] da.

2. If X and Y satisfy the hypotheses Hy, (Hy or Hs), Hy and Hs, then
Yy € RI,

(23) E [ /C b, Y dad_j(x)]
— /D P (0 W)E [Y (2) H(VX (2)) | X(z) = y] dz.

Remark 3.1.2. — If X and Y satisfy the hypotheses Hy, Hy and Hj3, then
Vy € RJ it holds that

E [ Lo, domx)]

— /D Py ®E [[Y ()] H(VX (2)) | X () = y] dx.

Proof of Theorem and of Remark[3.1.9. Let us start by proving (22)).
Since X satisfies the hypotheses Hy, H3 and HJ, as a consequence of part

of Proposition we know that for almost all y € RJ,

E [oa-;(CX ()] = /DPX(x)(y)[E [H(VX (2)) [ X (2) = y] da.

The hypotheses H3 and H? imply the continuity of each member of the equal-
ity and in consequence their equality Vy € R7.

By reasoning in a similar way, we can prove ([23]). This completes the proof
of Theorem B.1.11
Remark comes from the fact that the hypotheses Hy and Hs become the
hypotheses Hy and H3, replacing Y by |Y]. O

3.1.1. Checking the hypotheses. — In the previous section, we proved
by assuming mainly the continuity of its two members. Our goal in
what follows is to specify a large class of processes X and Y that satisfies
the hypotheses H;, i =1,...,5.

We first consider the hypotheses Hy and Hy. This leads us to prove Theo-
rem [3.1.3] which is needed to prove Proposition which follows. We must
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emphasize that the proof we are about to give is deeply inspired by Cabana
[21].

For a while, the functions X and Y will be assumed to be deterministic, i.e.
they are not random functions.

Theorem 3.1.8. — Let X : D C RY = RJ (j < d) be a function belonging
to CY(D,R7) such that VX is Lipschitz on D which is an open and convex set
of R, Let Dy be an open and bounded subset of D and Y : Dy C R = R a
continuous function such that supp(Y') C Dgflpl' Then the function

Y — /CDT Y (z)dog—;(x)

Dl,X(y)

s continuous with respect to the variable y.

Proof of Theorem . Just like Cabana, we will define an atlas of CQT (y).
Consider z¢ € D% fixed. Thus VX (z¢) has rank j.

If Ag:={1,2,...,d}, there exists A := ({1,0a,...,{;) € Afl, b <ly<---<
¢; such that

(M) —
JX (1’0) T det<8($£17$£2’ ey, Xy

X1, X))

We define A° the complementary index in Ag, ie. A® := (i1,42,...,i4—;) €
AZ_J, and i1 < ip < -+ < ig—;. If (e1,ez,...,eq) denotes the canonical
basis of RY, let V) := vect(es, €y, . . -y €iy_;) and V)\L be the corresponding
orthogonal subspace, i.e. V)\L := vect (e, , €pys - - - ,eg].). With these notations, if
d
x = (T1,T2,...,19) = > zie; € R we denote Ty := (24, Tiy, - - - ,$id7j).
i=1
Consider the function fy defined from D c R? into R? such that =

j
(@) = my (x) + Y (Xi(z) — yx)er,, where X, (resp. yj) denotes the com-
k=1

ponents of X (resp. y), k = 1,...,j, and where 7y, represents the projector
on V).

The Jacobian J¢, (xg) of this transformation evaluated at xzg is Jy, (x0) =
‘J)’\((xg)‘ # 0. By the inverse function theorem, there exists an open neigh-
borhood Ugc)‘0 of xp included in D, such that f,\(U;\O) is still an open set of R?
and such that the restriction f| U, has an inverse hy belonging to C* defined

from f)(Up)) onto U2 .
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Let us define the set R;‘O, by

d—j
Ri\o = {(mil,$12, .. ~al‘id,j) c R4 . Zmikeik € f)\(Ug?\O)} .

k=1

Since f)\(U3,) is an open set, the set R} is also an open set of R?J. Let us
denote hy := (hy,h3, ..., h}). We have the following sequence of equivalences

(x € Ugj\O,X(x) = y) = (a: € U;‘O,fA(x) = 7('\//\(.%)>

= (@) € A2 = ha(ms (2))

J
= (x = my, (x) + Z h@k (v, (z))er,, Ty € Ri‘())
k=1

d—j J d—j
A ~ A
<— (ac = E T4, €4, + E hzk (g mikeik> €0, Ty € Rm)
k=1

k=1 k=1

— s\ o A
— (x = ) 4 (T)), 7\ € Rm) ,

where we defined avy 4, : RQ)U‘O Cc R47 — R by

d—j J d—j
_ o A
(24) aAyxo(xil,xiz,...,xidfj) = g Tiy€ip + g hy, g Ti€i, | et -
k=1 k=1 k=1

This provides us with a local parametrization of the level set C)[()r (y), defined
by CTA) . Moreover, such a function belongs to C' defined over R;‘O.

Remark 3.1.4. — Furthermore, as a bonus, we get that C{" (y) is a differ-
entiable manifold of dimension (d — j).

We now decompose D% into the following form:
Dy = [J T,
\EB;

where Bj = {)\ = (51,52,...,ﬁj),6k € Ag, by < ly < ... < fj} and F()\) =
{z €D, J{(x) #0}.

Remark 3.1.5. — Forall A € B;, I'(\) = {z € D, VX(%)‘VAL is invertible} o

Remark 3.1.6. — Let us mention that if 9 € C¥ (y) NT(\), for A € By,
then oy 4, (Zo,n) = Zo. .
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Remark 3.1.7. — We could have proved a less general result than the one
established in this theorem. More exactly, we could have proved this theorem
under the following weaker hypothesis: Y : D% C R? — R is a continuous
function such that supp(Y’) C I'(A), for any A € B;. Indeed, it is this condition
that we finally need in the proof of Propositions [3.1.8] and [3.2.3] given later.
However, the result of the above theorem seemed interesting to us in itself

because we did not find it in the literature. Moreover, this general result has
the advantage that in the proof we expose in a neat way a partition of unity of
D7.. This construction will allow us later in the proof of Proposition to
decompose the function Y on this partition and thus to find ourselves in the
case where the function has its support included in I'(\). .

Let us prove Theorem |3.1.3|in the case where D = D;. That is, when D is
an open, convex, bounded set of R?, X : D ¢ R? — RJ (5 < d) is a function
in C'(D,R7) such that VX is Lipschitz and Y : D ¢ R? — R is a continuous
function such that supp(Y’) C D%. It suffices to prove the theorem in the case
where Y : D% C R? — R is a continuous function with supp(Y) C D%.

Let y be fixed in R7. We assume supp(Y) C I'(A), A € B;. We will
define the integral of Y on the level set CQT (y), i.e. we will give a meaning to
ch’“ z) dog—j(z).

Con51der xo € supp(Y') C I'(A\). For the previous facts, there exists an open
neighborhood U:?O of xg, such that

(ze Ul nCR W) = (v =Em@). 51 e R),).

Since Uy, 2 is an open set, one can choose a radius 7 , > 0 such that the closed
ball of Rd with center zo and radius 7, so B(zo,13,) C
Ua.

Since supp(Y’) is a compact set of IRd we can cover supp(Y') by a finite number
of balls, i.e. supp(Y) U™ B(xi,r3,) such that for all i = 1,...,m, we still
have: B(z;, 1)) C Uy

We will construct a partltion of unity for supp(Y’) which is a compact manifold
and denote it by {m1,..., T}

As in Wendell Fleming’s book [27], we define the real-valued function h of C*°

by

is Contalned in Ufc‘o,

-1
ex , || < 1
. p(l_xz) 2
0, 2] > 1
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Fori=1,...,m and for z € supp(Y) let W;(z) := h(||lz — il 4/r2,)-
Since supp(Y) C U™, B(z;,r),) by construction, we have that V& € supp(Y),

i=1
Fori=1,...,mand for x € supp(Y), let us define m;(x) := U;(z)/> ", ¥;(x).

The functions {71,...,m,} define a partition of unity for supp(Y’) because
1. mis C* over supp(Y), m; > 0,i=1,...,m;
2. supp(m;) = supp(¥;) C supp(¥Y) N Blai, 12,) C U
3.3 mi(x) =1, z € supp(Y).
The integral of Y on the level set y can be defined by

(25) /Cm Y (@) dog; (x Z /U . (2)Y (2) dou_j ()

Xy)

= Z /R . (e, (B1) Y (0, (Z2) (det(vo%xi(@)vam(@)T))l/Q Az

After defining the integral, we need to prove that it is a continuous function
of the level. As the level varies, we have to modify the procedure. We continue
by following the approach of Cabana.

Consider zg € I'(A) N CY' (y) fixed. We then construct Uy, and R} . Let us
define the function

G:R) xR x W) C R x R x RI — R,

by
J
G(/.'If\)\, 57 ’7) = X(a)\,:ro (/‘T\)\) + Zf)/k'eék) - Y- 57
k=1
where v := (v1,...,7), Tx = (Tiy, Ti, - - -, T4y_,) and ng\o is a neighborhood

of zero in R’ such that for any z, € R;‘O, m&,\) + Zf;:l ke, € D and
VX (OT:,;O> (z A)"‘Z{;:l ’}/kegk)|v)\1_ is invertible, which remains possible since I'(\)
is an open set of D and xo € T'()\).

Since X is C! and m is C! on R;}O, then G is C! on R)‘ x RI x WA
Moreover, by Remark we have G(Zp,0,0) = X(a,\,xo(x(),)\)) —y =
X (20) —y = Ogs.
More,

oG . J
(26) N ——(Ty,0,7) = VX (O‘)\,mo(x)\) + Z’Yk:eék>

k=1

€L
VA
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this implies
oG
aify(.f()’)\, 0, 0) = VX(.’EO)|V>\L,
which is invertible by Remark
The implicit function theorem can be applied. Thus there exists three neigh-
borhoods, first VIAO C Ri:o which we can choose equal to R;‘O, and two other
neighborhoods of zero in R7 which we denote by W£‘0 and Wfi‘o (we can also
choose this neighborhood equal to W:QO) and a function 7, 4, of class C* defined
from Réo X Waf‘g onto Wx)‘o, that is ) 4, : R;O X ng\o CRITxRI — Wz)‘o CRJ
such that
1. a0 (T, 0) = Ogy .
2. Y(Z),0) € Ri‘o X Wx)\m G(Zy, 9, 7)\,1:0(?5)\,5)) = Opj

3. Y(Zx,0,7) € R), x WA x W)\

o’
(G@n8.7) = Ors = 7 = ran (@2,9) ).

Moreover, by differenciating the expression G(Zy,d,vx z,(Zx,9)) = Ops with
respect to T, we obtain for all (Z),0) € Réo x WA

xo’
oG ~ ~ oG ~ ~ 87/\,:5 ~
Oj,d—j = 873:\)\ (SU)\, 5) 7)\71170 (I)\, 6)) + % (ﬂj‘)\, 67 ’y)\,wo (:C>\7 5)) X W)\O (ﬂf)\, 6) )

where O; 4_; is the null matrix with j rows and d — j columns.
From and since

oG

J
87?:,\(56\)" 8, Y20 (@, 0)) = VX (a)\,xo (@x) + D Ve (@r, 5)€ek) XV 56(Tr),

k=1

we finally obtain

5 -1
(27) T2 (3,,8) = -

J
VX (cz)\,:,;0 (@y) + Z’)/k,)\,xo (@, 5)€£k> ’Vj]

8:6)\ 1
J
x VX (W,xo (@) + ) Yo (@rs 5)%> X Vrae (Ty)-
k=1
Define
J
(28) QN 20,6 (EA) = )z (fk) + Z Yk zo (fkv 5)651@7

k=1
this function is a local parametrization of the level set C¥ (y + &). With this
new parametrization we can write as
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8’7}\,1‘0 -1

29 5,

(@r,0) = — [ VX (@ a0s (@) v
X VX(O()\7IO75(£/L‘\)\)) X VC&,\,IO(/%\)\).

In a similar way, by differentiating the equality G(Zx, 0, z,(Zx,0)) = Oy
with respect to d, this time, we obtain the equality

Vg~ N -1
(30) TS (50,0) = [ VX (@rans @)l | -
We should point out that if T, € Réo then G(Z,0,0) = X(0) 4 (Zy)) —y =

6Rj. By the previous point 3| we get vx z,(Zx,0) = 0, and since 7, 4, is a

continuous function on R;\O x W

7> first we obtain

lim a)\7$075(/$\)\) = Q) zg (/x\)\)v
6—0

the convergence being uniform on R;\O. Indeed, since vy 4, (Zx,0) = 0 and using
the mean value theorem and , we have

Ha%xoﬁ(@\)\) — Oz (fk) Hd

RN
= E E ZI5AT0 (@,Gké)él e,
, 09;
k=1 \i=1
J

= |12 (VX (@X 20006 @0))ly2) ™ (0))kaee,
k=1

<Visup |(FX @)™ D6l
ZGK dv]

d

d

where 0 < 6y < 1, for K = 1,...,j and K is a compact set of R defined
by K = Ga0(R),) + 30, Ve ray (By X W3, )eg, . Finally, let us recall that
(VX (z)\vkl)*lH 4,; remains bounded on this compact set. To show this, just
make the open sets Vx)g) and W:,;\O smaller. That is, choose V:E)(‘) such that V) C
R} and an open set F containing 0 on R’ such that F C Wy .

Second, let us prove that Vm converges uniformly to vm on Rig}o Given
that VZy € R, X (anae(Fn)) =y, we get

VX (@52 (81)) X Vara (32) = Ojay.
By this last fact, and , we have the following sequence of inequalities:

H V2,6 (Tx) — Va2 (Tx) Hd,d—j

[ VX @@y | X VX (@ 5(@0) = VX (@ (7))
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— %~
X Va)\,xo (.CC)\)
d,d—j

X VX (0x 20,6 (%2)) = VX (@x a0 (T2) 4

~1

<H[VX(0A@0,5(@))|VA ‘
d,j

X [[Vaxzy (Zx)

la.a—;

<sup (VX (@)™ s VX (@ 3@0) - VX @ @)l
zeK dJ&AERé‘O 7

X sup ||Vaxz(Zy)
/.T\)\GR{L\,O

|’d7d_]"

The first term in the last inequality is bounded as explained above. The third
term is also bounded because V(Tm> is continuous on Rifc‘o which is a compact
set. In the same way, the second term tends to zero because we already know
that m uniformly converges to m on Rijt\o and VX is continuous on K,
a compact set.

We will show that

%i_r)r[l) - Y(z)dog—j(z) = /m Y (z)dog—;(z).

Cx (y+9) Cx W)

Using first that supp(Y’) is a compact subset of R? included in the open set
I'()\), we can prove that there exists an open set O contained in R? such that:
supp(Y) C O € O C T(N).
Then, let us notice that since O C I'(\) C D, the set ONCL" (y) is a compact
set of RY,
Let us build a partition of unity {71, ...,m,} for this compact manifold in the
following way.
Consider z € O NCR (y). Since z € O C I'(A), # € I'()\) it turns out that
J)(()‘) (z) # 0 and we can construct the open set U;. Since U, is open, we can
choose a real number ) > 0 such that the closed ball of R? of center x and
radius 7 is contained in U}, let B(x,r}) C Uj.
We know that ONCE" (y) is a compact set of R?, then we can cover ONCY’ (y)
with a finite number of these balls, that is O N CY" (y) € U, B(x;,73,) such
that for i = 1,...,m, we still have:

Bz, ) C Uf:‘i.

i
In the same way as on page we obtain a partition of unity of O N C)I?T (y),
ie. {m,...,mTm}, such that:

1. misC®onONCY (y), m>0,i=1,...,m;
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2. supp(m;) C 5(\@?(1/) ﬁE(xi,rfc‘i) - Ua?ﬁ

330 mi(z)=1,2€0NCY (y).

Moreover, the following sequence of inclusions is true
supp(Y) NCY (y) C ONCY (y) € ONCK (y)
CUL Uy, 2, €0NCY (y),i=1,....,m.

Let us use the fact that supp(Y’) is a compact set of R? and that O is open,
in the following way. Consider w € supp(Y). Given that supp(Y) C O C
I'()\), there exist two open sets U(w) and U(w) containing {w} and R, > 0,
U(w) C U(w) C O such that the restriction fk‘ﬁ(w) has an inverse on the open
ball B(fx(w), R, /2) and the restriction f)|y(,) has an inverse on the open ball
B(fa(w), Ry). It is also possible to have diam(U(w)) < infj—1,_m diam(wgg\i),
Ww)‘l being the neighborhood of zero in R7 used to construct the function 7y 4,
and also the local parametrization of the level curve at level y 4 4.

Since supp(Y) is a compact set in R?, it can be covered by a finite number of
such sets:

supp(Y) C UE_ U (wy) € U U(wy) € O
where wy € supp(Y), for £ =1,... k.

Let us chose § = (81,...,d;) € R7 such that [0]]; < infemy g R, /2.

We will prove that if § is small enough, any element of C¥" (y + &) N supp(Y)
belongs to M(Rg‘i), at least for one index ¢ belonging to 1,...,m.

Let us chose z € C¥ (y+9) Nsupp(Y). Since z € supp(Y), there exists
¢ =1,...,k, such that z € U(wy), and given that z € CR (y+9), fulz) =
TV, () + Z{czl Okeq, € B(fa(we), Rwe/2)'

It follows that v, (2) € B(fA(2),/0]l;) C B(fa(we), Rwy,). Thus there exists an
unique z € U(wy) C O, such that

So my, (2) = 7y, (z) and Zizl(Xk(:z:) —yp)eg, = 0, so X(z) = y. Since
r€0NCY (y) C U UL, = can be written as z = a4, (Z)),Zx € R, for
some ¢ = 1,...,m. Finally and since 7y, (z) = my, (x), the vector z can be
written as z = x + WVAL(Z — x). Moreover, WVAL(Z — ) :NZizl Yree, and
91l = HT['V)\J_(Z—IL‘)”d < Iz =zl < diam(U(wy)) < diam(W7)), because we
have

sup diam(U(wy)) < ilnf diam(ﬁfi‘i).
(=1,....k i=1,....m
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Using Property |3l of function G, we proved that z = m(EA),:’r\)\ € Ri‘i,
1=1,...,m.

Suppose that ¢,s € (U Uz ) N CR (y) are such that my, (t) = 7, (s) and
t # s. We can write s = (7TV>\J_ (t) + 007) + T, (), where o9 > 0, v € Vi- and
ll7ll; = 1. By defining h(o) := X (t + oy) we have h(0) = h(op) = y. Let us
specify that this function is well defined for 0 < o < 09, because D is a convex
open set and here is the only place where we use the convexity of the set D.
Moreover, Rolle’s theorem allows us to state that if b := (hq,...,h;), then for
all £ =1,...,7, there exists oy € (0,00) such that hy(op) = VX,(t + 07)(y) =
0. Moreover,

L= Jllg = [[(FX Ol @X Olr )|, < MIVX O

where

M::i sup

i=1z€U3,

(VX(a:)|VAL)*1Hd7j < .

To ensure that the last norm is finite it is sufficient to take the open sets U;\i
sufficiently small. Finally, using that ilg(o‘g) = 0 we obtain

1< MY |VX(t+ 007)(7) — VXe(t) (7)1
=1

J
< M2 (VX (t + o0y) — VX(B)1] 4 -

(=1
Assume VX is a Lipschitz function. Let L be its Lipschitz’s constant. We have

J
1< ML) "o} < jM?L%0%,
(=1

where o := maxy—y oy From this, we obtain

1
s—tl|l,=oo 20> ——:
= tla=o0> o> -
Let us prove that if z € CE (y+ &) Nsupp(Y), there exists a unique x €
U U NCR (), such that z = x+7TV)\L(Z—fL') and such that Hﬂvﬁ (z—2x)]l; <

(31)

infimy m diam(Wé\i) (note that it is always possible by taking the open sets
ng‘l to ensure that diam(Ww)‘i) <a/2).

Since z belongs to CR' (y + §) Nsupp(Y), we have shown above the existence
of this z. Let us now show the uniqueness. Assume that there exists another
vector 2’ € (U U2 ) NCY (y), ' # w, such that z = 2/ + WVAL(Z —2') and
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also that ”'/TV)\L<Z — )|, <infimr, . m diam(’qu‘i).
From (31]) we necessarily have ||z — 2’| ; > a. Furthermore, it holds
lz = a'lly < llw = 2llg+ [l = =]
= llmya(z = 2)llg + llmye (2 — 2)llg
P
2 2

We thus obtain a contradiction.
Let us now consider z € CR (y + ) Nsupp(Y), since z € ONCR (y) C
on CQT (y) and given that z)\ = ), we obtain the sequence of equalities

= (Z 7r2(ac)> xY(z)

mi(2) X Vizeva nepr @y X Y (2)

I

s
I
—

I
.MS

@
Il
R

7TZ(£L') X ﬂ{xzm(fk)} X ﬂ{i‘\AGRé‘i} X Y(Z)

Il
.MS

s
Il
—_

mi(axz (20) X Vomar @0y X Yzery ) X Y (2)

I
NE

(e (20) X Vomar a0y X Y@z s(3) X Vzery 1
1

~.
I

The last equality coming from the construction of the vector x from the vec-
tor z and from the uniqueness of the decomposition of z on the set (Ug’lonAi) N
C¥ ()-

We have the following equality and convergence as § tends towards zero

/ Y dous(2)
2" (y+9)
Z

/ (@ (3) X Y (@na 3 (3) dou_s(2)
{z=ax s, axz d(E0), ZNERY,}

i=

= Z:/A i@, (B0)Y (@nzr0(3))(det (Va5 (30 Var s 5 (2a)7)) 2 d2)
1 Rzi

o> [ m R E)Y @ () etV (3 Vars () )
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The last convergence comes from the uniform convergence of oy 4, 5 to a4
on R} and of that of Va4, 5 to Vay,, on Ry .
But

Z/A (@, (BA)Y (@, (22)) (det (Va2 (2a) Voo, (2a) 7)) /2 d2y
=1 Rzi
= Z/ FZ($)Y($) dad,j(x)
i—1 JUNCR (y)

_ / Y (2) dog;(z)
OOC)[()T (y)

=/ . Y(z)dog—;(),
cR ()

because supp(Y) C O.
In summary, we have proved the continuity of the function

y'—>/ - Y(z)dog—j(z),
CR" ()

under the hypothesis that Y : D C R? — R is a continuous function satisfy-

ing supp(Y') C I'(\).

Finally, we no longer assume that supp(Y’) C I'(A), just that supp(Y') C DY%.
Let us introduce two new functions. For A € B; and t € D, let

(32) = it Xl o)

Rl
J

and

@(t) := sup ¢a(t).

/\EBj

These two functions are Lipschitz and therefore continuous, with the same
constant L, as VX. Indeed, let us consider the first function. Considering two
points ¢ and ¢*, we have for any v € V)\J— satisfying ||v[|; = 1,

| @y )] = Iex @,
< NVX (@) = WX + [ VX @) ()]
Using that VX is Lipschitz, we obtain

[V @l 0] < Ll = 2+ |9 @)l ()]

)



38 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL

then
(33) OA(t) S LIt — ]| g + oA (7).
Since a symmetric inequality can be proved, we obtain finally
(oA (t) = OA(t")| < L[t — 17l
Let us now study the second function, ¢.
By we can write
o(t) < L[t =74+ ¢(t"),
and as before
[6(t) = ()| < L[t — 7|4
Let us prove that

(34) (A€ B; and teT(\) <= (dr(t) >0).

Let us consider ¢t € I'(A\) for A € Bj. By Remark that means that
VX(t)|V/\L has an inverse and moreover that ker(VX (t)|;-.) = 0|;,.. But there

exists Yo € Vi, [|7o]l, = 1 such that ¢y () = HVX(t)|VAL (70)

that ¢y (t) > 0.

To prove the other implication, let us suppose that for a A € B;, t ¢ T'(\),
ie. VX(t”V)\L has no inverse. Then there exists v € V&, ||y, = 1 such that
VX(t)|V)\J_ (7) = 0, and this implies ¢, (t) = 0.

Now let us prove that

., and this implies
J

(35) (t e D%) < (¢(t) >0).
Indeed, by , we have the following equivalences
(teDy) < (ANe Bj,teI'(\)) < (IX € Bj,¢x(t) >0) <= (¢(t) >0)

We will construct a partition of unity of D’ whose support intersected by
D% will be included in I'(X), VA € B;j. We will denote this partition by 7).
Let us first consider the function x(t) := (2¢x(t) — ¢(t))". Since ¢ and ¢ are
Lipschitz functions, it follows that 2¢) — ¢ remains Lipschitz. So, the function
X is also Lipschitz and a fortiori continuous.

Let us show that

(36) (teDx)= [ > xat)>0
A\EB;
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Consider t € D%. Let us suppose that > xi(f) = 0 and deduce a con-
AEB;
tradiction. Since )’ xa(t) = 0, then VA € B; we have x\(t) = 0, ie.
AEB;

oa(t) < %gb(t) It is indeed a consequence since this inequality is true VA € Bj,
that ¢(t) < 2¢(t) and ¢(¢) = 0, which is in contradiction with .
Let Vt € D',

(37) m(t) = xat) /Y xa),

)\EB]'

which is possible from . It is now easy to see that 7, is continuous on D'
since x is also continuous on D'.

It only remains to prove that the intersection of the support of this function
with D% is included in I'(\).

For all C' > 0, let us construct an open set O¢ including

L) n{te D,¢(t) > CH,
contained in the set
{t € Da X)\(t) = O}

More precisely, let us prove that for a given C > 0, if § < % (with L being
the Lipschitz constant of the function VX), then

(CA)M)sN{t e D:o(t) > C} C{t € D:xa(t) =0}

where for any set A we have defined the open set As := {z € R? : d(z, A) < §}.
Thus, let C' > 0 be fixed and t € ((I'(A)?)s N {t € D : ¢(t) > C}. Since
t € (T(X)))s, there exists ¢’ € B(t,d) such that ¢’ € (I'(\))** (and also such
that ¢ (t') = 0 as a consequence of ) Then we have, since ¢, is Lipschitz
with Lipschitz constant L that

OA(t) < |oa(t) — oA(t')| + oa(t)

<L|t-¢ <L6<€.

Hd 2

Therefore, 2¢,(t) < C < ¢(t), and this leads that x(¢) = 0. We have proved

that for all C > 0 and Vo < %, we have the inclusion

{t € Dx : xa(t) # 0} = {t € D : ma(t) # 0}
< (((PO)™),) N D% ) U{t € Dy = 6() < Ch.
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where we recall that the symbol ¢ denotes the complementary set with respect
to R%.
Noting that (((F(A))Cl)é)c is a closed set contained in I'(A) U D€, we have

supp(ny) C [(T'(A) U D) N D] U (Nesoft € D : 6(t) < C}),

that is

supp(ny) N D% C I'(A) U (Nesoft € D% : ¢(t) < C} N D).

To complete the proof, it is enough to show that Ncso{t € D : ¢(t) < C} N
D’ = (. Indeed, consider z € Ngso{t € D% : ¢(t) < C} N D%. Then z € D
and for all C' > 0, there exists a sequence of points 2z, c of D%, satisfying
¢(zn,c) < C which converges to z € D% . Since the function ¢ is continuous on
D and also on DY, it holds that ¢(z) < C. This last inequality is true for all
C > 0, then we get that ¢(z) = 0. From (35)) we easily obtain that z € (D% ).
But z € DY.
We have proven that

(38) supp(na) N D C T'(A).

In this form, for ¢ € D we have
= > mmY () =) Yat)
)\EB]' /\GBJ'
where we set for t € DY, Y)\(t) := m\ ()Y (2).

The function Y) is a continuous function on D' with compact support
included in I'(A), since supp(Y') C D% by hypothesis and from the inclusion
B9). |
We have Vy € R/

/7» Y (2)dog—;(
cR (v)

The continuity of the left-hand side integral as a function of the variable y is
a consequence of the continuity of each of the terms of the right sum. This
last fact is an application of the above procedure. This completes the proof of

Z/Dr z)dog—;(2).

AEB;

Theorem [3.1.3] in the case where we have chosen the bounded open set Dp of
R? equal to D convex (bounded).

Now suppose that D is a convex open set of R%, which can be unbounded. The
function X : D ¢ RY — RJ is a function of class C''(D, R7) such that VX is
Lipschitz and the function Y : D; ¢ R? — R is a continuous function defined
on Dy, an open and bounded subset of R? included in D such that supp(Y’) C
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T

[
In tlﬁils case, the function X restricted to the bounded open set D; i.e. X|p,,
is such that X|p, : D1 C R? — RJ is C'(Dy,R7) and such that VX |p, is
Lipschitz.
One can apply the previous procedure to these two functions X|p, and ¥ and
also to the open set Dy. It is possible that D{ is not a convex set, but this
is not a real problem. Indeed, if we refer to page [35] the only place where we
used the convexity of the open set, we realize that the important thing is to be
able to apply Rolle’s theorem to the function h which is defined there and to
use the fact that the function VX is Lipschitz. Since D; could not be convex,
we were not sure if we could do it, but this is not the case if we work on D
which is convex.
The proof of the theorem is finished. O

Now we are able to exhibit a class of processes X and Y satisfying the
hypotheses Hy and H,4 through the following assumption Ay and the following
proposition whose proof is based on the one given by Cabana [2I]. In what
follows, we will give a new proof slightly more general that the original one.

- Ap X :QxDCQxR?— RJ (j <d) is arandom field that belongs to
C'(D,R7), where D is a bounded open convex set of R?, such that for
almost all w € €, the process VX (w) is Lipschitz with Lipschitz constant
Lx (w) satisfying E [L%(-)] < 00. Also, Y : Q@ x D C QxR? - Risa
continuous process such I\ € Bj; such that supp(Y’) C I'(\). Moreover,
||(VX(.)|V)\J‘)_1||d7j7 Y(+) and [|[VX(-)[|; ; are assumed uniformly bounded
on the support of Y, the bounds not depending on w (€ ).

Proposition 3.1.8. — If X and Y satisfy the assumption Aq, then the hy-
potheses Hy and Hy are satisfied.

Proof of Proposition. For almost all w € € the field X (w) : D ¢ R? — RJ
(j < d) is C*(D,R7) and such that VX (w) is Lipschitz. The process Y (w) :
D Cc R? - R is a continuous function such that supp(Y(w)) € T'(A\)(w) C

D§<(w). The set D is an open and convex bounded set of R?. According to
Theorem the function

Y(w)(x)doi_i(x
yH/(%)(y) (@)() dog_j ()

is a continuous function of the variable y. The same is true for

/D? Y (w)(@)] dog—j().
c
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Let us find an upper bound for fC)[()r(y) |Y (z)| dog—j(x) which would be an
integrable random variable that does not depend on y. Then, according to the
dominated convergence theorem, hypotheses Hs and H, will be fullfilled.
Since supp(Y) C T'(A), we can construct a partition of unity of supp(Y’). As

on page |30| getting as in
L, Y@ dousia)
cor

x ()
3 "z o (7 —— %~ 1/2
- Z/m (@ (T2)) Y (a2 (T)) (det(va)\,mi(.’E)\)VO[)\@Z.(:E)\)T)) / dzy.
i=1 z;
Consider 7 fixed in R;‘i such that m(iﬁ)\) esupp(Y),i=1,...,m.
1/2

We have (det(VozA’xi (Zn)Var (fv\,\)T))
Let us uniformly bound |V . (Zy))
&z () € supp(Y).
For any Z), € R)

ZT;)

— %~ d
< ||VO5)\7QC,' (‘/L‘A) ||d><(d—j) .

||d7d7j, for all T, in R;}i such that

we have X (o ., (Zy)) = y. Taking derivatives in this
equality on the open set R;\i, we obtain

VX(OJ,\’IZ.CI‘\)\)) X VOJ)\@i(i/L‘\)\) =0.

Using and that ay . (Z)) € D(A), Yu € R4, w:= (uy,...,uq_j) we get

Vg, (@)(u)
. d—j d—j
= - [VX(m(fA)) \v;} (VX(OT,J(@)) va (Z Ukezk)) Y ukes.
k=1 k=1

Since H(VX(-)W)—lHd . Y(-) and |VX(-)|,, are uniformly bounded on
J ’
supp(Y’), and the bound does not depend on w, then we have

[, @) dos(o)
¢

X (v)

VA i=1

For w € Q and 7 € my, (D), we consider the set A defined by

A= {@H3 @) W), 5 € R (@)

and @, (Zy)(w) € supp(Y)(w),i=1,... ,m} :
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We partition the set A into equivalence classes. An equivalence class A;, for
iQ: 1,...,m, is

Ay = { @@ @), B € B, (@) N R, (@)

and @y (22) () = @nay (B2)(w) € supp(Y)(w), i = 1m}

By , page we have Y " mi(z) = 1, € supp(Y). Moreover, in each
class we bound the corresponding sum by one. It only remains to count the
maximal number of equivalence classes.

For counting the classes let us take two elements belonging to two different
classes. To fix the ideas, we will take for example

ti= g (ZT))(w), Ty € R;‘i (w) and oy 4, (Zn)(w) € supp(Y)(w)
and
5= axg: (Th)(w), ) € Ri‘j (w) and a4 (7)) (w) € supp(Y)(w),

i,j=1,...,m with ¢t # s.

It is clear that ¢t and s are two different elements of R¢, they have the
same projection on V) and belong to the level curve C)[()T (y). Repeating the
proof given on page 35| since ¢ € supp(Y)(w) and that H(VX(-)|VA¢)_1de is

uniformly bounded on supp(Y’) by a constant C, we get the following bound

J
1< C?Y (VX (@ (Ta) + 007) (w) — VX (@ (T2)) (@)]3 ;-
(=1

But for almost all w € 2, VX (w) is Lipschitz with Lipschitz constant Lx (w),
we get
1< jC Ly (w)o? (),

where o := maxy_; ;0.
As in , we finally obtain the following bound
> 1

\/j CL X (w)
The open balls of center ¢ and s and diameter a(w) do not intersect. We
have at most (diam(D)/a(w))? balls of diameter a(w) and thus at most
(diam(D)/a(w))? equivalence classes.
Finally, for almost all w € :

L, W@@ldo@<c [ (dnD)/at) dis
CQ(W)(y) TV (D)

Is = tllq = o0(w) = o(w) = a(w).
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< Coq—j(my, (D) (dlam \/C> LY (w
< CL% (w).

Since E[L%(+)] < oo,y +— E [fc)[(,r(y) Y(x)dog—; (x)} is continuous. The same

is true for E [fcm(y) Y ()] dad,j(x)}.
X
Then the hypotheses Hs and Hj have been verified. This completes the
proof of the proposition. O

Remark 3.1.9. — In Ay, we can replace the condition E [L% ()] < oo by the
following one: 3L > 0 > for almost all w € , supp(Y(w)) # 0 = Lx(w) <
L. In this case, the hypotheses Hy and H,4 hold.

Proof of Remark[3.1.9 It suffices to replace in the proof of the previous
proposition Lx (w) by L and a(w) by ﬁ In this case, for almost all w € €,

we have
L, W@l do @ <c.
C)D((w) (v)
and this implies the integrability. O

Remark 3.1.10. — We can generalize Proposition (resp. Remark
by assuming that D is an open and convex set possibly unbounded by main-
taining the same hypotheses on X. That is, assuming that X : Q x D C
Q x R? — R7 (j < d) is a random field which belongs to C*(D,R7), such that
for almost all w € ), the process VX (w) is Lipschitz with Lipschitz constant
Ly (w) satisfying E [L%(+)] < oo (resp. there exists L > 0 such that for almost
all w € €, the assumption supp(Y (w)) # 0 implies that Lx(w) < L). In this
case, we will assume that Y is defined on D1, a bounded and open set included
in D. Moreover, we will have to adapt the assumptions for Y to the open set
Dy instead of D and to X Dy - In this way, the assumptions Hy and H, will
still hold for X|p, and Y defined on D;. °

Proof of Remark[3.1.10, We prove this remark in the same way as Proposition
As in the proof of Theorem we use that the open set Dq is
contained in D which is convex. This allows us to apply, as on page Rolle’s
theorem and that VX is Lipschitz on D. O

In the following, we will study the hypotheses Hy, Hs and Hs. The last two
hypothesis deal with the continuity of the right-hand side term in the Kac-Rice
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formula. We will show the following proposition which is also deeply inspired
by Cabana [21].

We will exhibit a class of processes X and Y satisfying these assumptions. We
will therefore state some hypotheses concerning the processes X and Y.

To the first three assumptions A, A, and Ag, we will add the assumption
that Y can be written as a function G of X, VX and W : Q x D c R — RF,
k € N*, a continuous random field, where D is still an open set of R%. That
is, Vx € D

(39) Y(z) :=G(z,W(z), X(x), VX (x)),

where
G:D xRFxRI x &RERI) — R
($7Z,U’A) H G(l.?Z?u?A)?

is a continuous function of its variables on D x R¥ x R7 x £(R% R7) such that
V(z,z,u,A) € D x R¥ x RJ x £(R? RY),

G2, z,u, A)| < P(f(), |21y, h(w), [ All;0),

where P is a polynomial with positive coefficients and f : D — R™ and
h:RJ — RT are continuous functions.

— Aj: The process X : Q@ x D € Q x R — RJ (j < d) is Gaussian and
belongs to C1(D,R7), such that Ja € R, 0 < a, such that for almost
allz € D,0<a< inf”z”j:l V(X (z)) x 2[|;. Moreover, the first order
partial derivatives of its covariance I'xy are bounded almost surely on
the diagonal contained in D x D. Therefore, for almost all z € D,
the random field W (x) is independent of the vector (X (z), VX (z)), and
Vpe N, VneN, VleNand Vm € N

| P@EIWERIE[IVX @] E[IX (@)1 do < .
D

— Ay For all x € D, X(x) = F(Z(z)), where F : R — R7 is a bijec-
tion belonging to C*(R7,R7), such that Vz € R7, the Jacobian of F at
z, Jp(z) satisfies Jr(2) # 0 and the function F~! is continuous. The
process Z : Q@ x D C Q x R — RJ (j < d) is Gaussian and belongs
to C'(D,RY) such that Ja € R, a > 0, such that for almost all z € D,
0 <a < infj - IV(Z(z)) x z|;; the first order partial derivatives of
its covariance I'z are bounded almost surely on the diagonal contained
in D x D. Moreover, for almost any x € D, W(z) is independent of the
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vector (Z(x),VZ(z)), and Vp € N, Vn € N, ¥/ € N and Vm € N
/ PEENW @R E[192@)5 ] E[12@)7] do < oo.

Asz: For all z € D, X(x) = F(Z(z)), where Z : Qx D C Q x R? — R/
(j < j') is Gaussian and belongs to C*(D,R7"), with mean myz(-) =
E[Z(-)] bounded on D, and such that there exist real numbers a and b,
0 < a < b, such that for almost all x € D,
0<a< ”ziHntil IV(Z(z)) x 2||; < Hs”up1 IV(Z(z)) x z||; < b;

i 2=
the first order partial derivatives of its covariance I'z are bounded almost
surely on the diagonal contained in Dx D. Moreover, for almost all z € D,
W (x) is independent of the vector (Z(x), VZ(x)) and it is assumed that
the latter has a density denoted by pz) vz(x)(+,+). Finally, Vp € N,
Vn € N and V¢ € N

n ¢
[ P@EIW@IFIE[1VZ@)f,] do < o.
The function F' must satisfy the hypothesis F' which is
e (F) F: R — RJ (j < j) is C*(R/,R7). In addition, defining
Ay = {1,2,...,5'}, there exists X := ({1,0s,...,{;) € A;,, l <
ly < --- < {j, such that Vz € RJ',
a(Fy, ..., F;
IV () = det(a( CHIENED) )(z)> £ 0,
J

201y Rlgy -y Rl

For simplicity, let us assume that A = (1,2,..., ) and denote Jp(z)
instead of JI(;)‘)(Z).
Furthermore, Yo € R¥' =7 the function F, defined by
Fy:RI — R

u — Fy(u) := F(u,v),
is an invertible function whose inverse F, ! is assumed to be con-
tinuous at w.
Moreover, V¢ € N and Vi > 0, the function

T, R/ — RT
U +— Tg(u)

= 1 —ull=l3_; v (-1 ¢
“Jo T IVEES ), de
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is continuous.

— Ay For almost all (z,y,42) € D x R x R¥ and VYu € RJ, the density
PY (2),X (2),vX (z) (¥, u, ) of the joint distribution of (Y(z), X(x), VX (7))
exists and is continuous at wu.

Moreover

w [l v s () di dy
R xR

is continuous.

Remark 3.1.11. —  — It is interesting to note that hypothesis A; (resp.
Ay, resp. Ag) contains the case where the processes X and Y satisfy

Ve e D, Y(z) = G(x,X(x), VX(x)) and also the case where Y (z) is in-
dependent of (X (x), VX (x)) (resp. Y (x) independent of (Z(z), VZ(x))).

— Note also that hypothesis Ay is satisfied for example in the case where,
Vu € R7, there exists a neighborhood V;, of u and a function h, such that

/D/R R 9] Htzlj Wy, ) di dy de < oo,
X

and such that Vz € V, and for almost all (z,9,2) € D x R x R%,
PY (2),X (2),vX (2) (¥, 2, &) < hy(x,y,%). In fact, these hypotheses are the
required ones to apply Lebesgue’s dominated convergence theorem which
allows us to obtain the continuity of the function

we// 11 Py o0, o (10 8) iy

[ J
We are now able to exhibit a class of processes X and Y satisfying the
hypotheses Hy, H3 and H5 through the following proposition.

Proposition 3.1.12. — IfY satisfies @ and if X andY satisfy one of the
three assumptions Ay, As, Az or if X and Y satisfy assumption Ay, then the
hypotheses Hy, Hs and Hs are verified.

Proof of Proposition [3.1.13.
1. Let us first assume that the processes X and Y satisfy assumption A;.
Let us show that the hypotheses H; and Hj are satisfied.
Since X is Gaussian and that for almost all z € D,

i IVOX@) 2l > a0,
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the distribution of the vector X (z) is not singular with density px ) (+)-
Moreover, u > px(y)(u) is continuous and it is bounded above, i.e. there
exists a real M such that for almost all z € D and Yu € R,

The hypothesis H; is verified.
Let us show that the hypothesis Hj is satisfied.
Since for almost all x € D,

Y(z) = Gz, W(x), X (z), VX (x)),

using the assumptions on G and since for all A € £(RY,RY), H(A) <
C Al 4, Yu € R/ we have

E[Y (2)H (VX (2)) | X (z) = u] = E[L(z, W (z), X (z), VX (2)) | X () = u],

(43)

(44)

where L is a continuous function of all its variables belonging to D x RF x
R/ x £(R% R7) and such that V(z, z,u, A) € D x R*¥ x R¥ x £(R%, R7),

’L('T’ 2, Uy A)| < Q(f(x)7 HZHk ’ h(u)v HA”j,d)a

where @ is a polynomial with positive coefficients and f : D — R™ and
h:RJ — RT are continuous functions.

For almost all x fixed in D, let us consider the regression equations: for
seD

X(s) = a(s)X(x) +£(s),

J
VX(s) = Z Va;(s)Xi(z) + VE(s),
i1

where (£(s), VE&(s)) is a Gaussian vector independent of X ().
In particular, o(z) = Id;.
A covariance computation gives

a(s) = Tx(s,z) x T (z,2),

where I'x is the covariance matrix of X.
Thus for alli,m=1,...,jand £ =1,...,d,

or _
(Vo) = (G 0) % T (o))
14 mi
In particular for almost all x € D, i,m=1,...,jand £=1,...,d,

(Vo)) = ( Gk o) x T3 o)

mi
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Since for almost all z € D, infj, [V(X(z)) x 2[|; 2 a > 0 and that
the first order partial derivatives of the covariance I'x are almost surely
bounded above on the diagonal contained in D x D, M € R such that
forall i =1,...,j and for almost all x € D we have

[V0u(a) ;4 < M.
For u € RJ, let
Gxalw)i= [ E[Y@H(YX ()] X(z) = u] pxioy () do
With the above notations, we obtain
Gxulw) = [ E[L@W(a), X(2). VX (@) | X (@) = u] pxo) () do:

Since for almost all x € D the random variable W (x) is independent of
the vector (X (), VX (z)), using (44), this yields that

Gx ()

:/D[E

We have therefore eliminated the conditioning appearing in the integrand.
Now since for almost all z € D, the function u — px (,)(u) is continuous
and the function L is also continuous then for almost all z € D, the

J
L (ac, W(z),u, Z Vai(z)(u; — Xi(z)) + VX(:J:))] Px(z)(u) dz.
i=1

function

J
u— L (w W (x),u, > Voy(z)(u; — Xi(x)) + VX(x)>pX(r) (u),
i=1
is continuous.

Moreover, using the bounds , and , we get that for almost
all x € D,

PX(x) (u)

L (m, W(z),u, Z Vai(z)(u; — Xi(z)) + VX(&:))
=1

< (4@ W @) . IX @) VX @)]4)

where S is also a polynomial with positive coefficients and £ : R — R*
is a continuous function.
It is clear that for almost all z € D, the function

u S(f(x)v W (@)l » €(w), [ X (@) HVX(w)Ilj,d> :
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is continuous. Furthermore, we know that for Vp € N, Vn € N, ¥/ € N
and Vm € N,

/fp E(IW (2)];) E (HVX )HN)[E(HX(:C)HT) dar < oo.

Thus, and since the function u — ¢(u) is continuous we obtain that the
function

uH/’ (@) W (@)l ), I X @) VX @), | dz,

is continuous.

A weak application of Lebesgue’s dominated convergence theorem allows
to conclude that the hypothesis Hj is true.

A similar proof can be made to show that the hypothesis Hj is also
satisfied. This completes the first part of the proof.

. Suppose now that the processes X and Y satisfy assumption As. Let us

prove that hypothesis H is satisfied.
In the same way as in part [1] of the proof, since Z is Gaussian and given
that for almost all z € D,
Bt IVZ) %21, > 0> 0,
the distribution of the vector Z(z) is non singular with density py,)(-).
The assumptions on the function F' imply that for almost all x € D
the vector X (z) has a density px(,)(-) given by Vu € R7:

Px(a)(u) = Mpz(x) (F~'(u)).

Let us show that the hypotheses Hs and Hp are satisfied.
Using the same notations of part |1} for almost all z € D and Yu € R7 we
have

E [L(z, W(2), X (2), VX (2)) | X (2) = u] px(a)(u)

= E [L(z, W(z), F(Z(x)), VF(Z(x)) x VZ(x)) | Z(z) = F~'(u)]
1
X pZ ( (u)) |JF( (’LL))|
—E [E(x, W(x), Z(x), VZ(2)) | Z(x) = F—l(u)}
1

X pz(x)(F_l(U)) X T (F i)’
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where the function L, Y(z,z,u,A) € D x RF x RJ x £(R? RY) is defined
by
L(z,z,u,A) := L(z, 2, F(u), VF(F~'(u)) x A).

It is clear, since F' belongs to C'(R7,R7) and F~! is continuous, that L
has the properties of L, i.e. L is a continuous function of its variables in
D x R*¥ x RJ x £(R? RY) and that

L.z, )| < QU 12l hlw). |41,

where @ is a polynomial with positive coefficients and h:RI— Rt is
a continuous function.
We have shown using the notations of 1) that Vu € R

w b
[T (=1 ()|

This leads us to the case considered in 1) where the process X is replaced
by the process Z. The continuity of the function u — Gx r(u) is a
consequence of the continuity of G 71 and the fact that the function F~!
is continuous and that F is C*(R7,R7). This ends the second part of the
proof.

3. Suppose that the processes X and Y satisfy the assumption Az. We need
to prove that hypotheses Hy, Hs and Hj are satisfied.
Let us first prove that for almost all x € D, the distribution of the vector
(X(z), VX (x)) has a density px(s)vx(z)(-;+), and let us compute this
density.

Gx,p(u) = Gy 7 (F " (u)

Consider the following notations.

The matrix s, = (Six) 1<i<o € L(RY, RY), defined by its generic element
1<k<u
sik, will be identified with the matrix s, , with row vector S(ou) € RV,

defined by

S(uu) = (81158215 -+ 5 Suly 8125822, + + + 5 Sv2y + + + 5 Slus S2us - - - » Svu)-
Using this notation, we can introduce the following function

K :RI xR x RIx RUD4 5 RI 5 RI™7 x RIT x RU'—9)d

tj1 Sj,d
(t ~ e = (tj’—j 1) SR (Sj’—j d))

> K(t5) = ((PO) Gyt (TFW) X )00 5601
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The Jacobian matrix Jx of this transformation satisfies: ¥(t,s) € RJ" x
RJ'e:

Jic(t,5) = (Jp (1)) #0,
by hypothesis.
Furthermore, since F' is C2(R7",R7) then K is C'(RJ' x R¥'4, R x R7'4),
Moreover, K is one-to-one and has an inverse K ! given by

KRR x RIx RUD 5 R x RI'T x RI4 x RO

tjr—j1 8j/—jd

-1

—1 -1
— <th,_].1(tj,1)=tj'—j,1a {VF(Ft]-/_j1(t]‘71)7t]"—j71)} )
’ ’ ‘]j

x <Sj,d - [VF (Ft;,l,m(tj,l),tj'fj,l)}jj_j x Sj'j,d> 7Sj/j,d> :

where for A € £(R7,R7), we denote, by [A] ;; the matrix A for which we
keep only the j first columns and by [A]
retain the (j' — j) last columns.

Since Vz € D

X(x)=F(Z(z)) and VX (z) = VF(Z(z)) x VZ(x),

Jil—j the matrix A for which we

we have
K(Z(x),VZ(x)) = (X (2), (Z(2))j—j1, VX (), (VZ(2)) j—j.a) -
We deduce that if for almost all x € D,

PX (2)(Z(2)) 5.1, VX (2),(2(@)) ;. (577 %)

=7, 3’ =j.d

denotes the density of the vector
(X (@), (Z(2))j-j1, VX (), (VZ(2))j—ja)
and py(z),vz (@) (+, ) that of (Z(z), VZ(z)) then
V(u, 2jr—j1, Sj.ds Sj1—jd) € RI X R 7 x R4 x RU'—9)4,
we have

pX(w),(Z(w))j/ijl,VX(m),(VZ(z))jlijd(u) Zj'—34,15 Sj.d> Sj'—j,d)

B 1
= P2(2).v2() (K (W 25— 1, 85,0 81— ) X 5 g
JF(FZ?/,]'J (U), Zj/*jyl)
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Finally, we get the density of the vector (X (z), VX (z)) by integrating
this last expression. Hence for almost all z € D and V(u, sj4) € R7 x RJ4

we have

1
(46)  Px(2),vX(2) (U 8j,4) :/

Ri' i xR’ —5)d ‘JF(FZ_I(U), 2) |d+1

X D7(2),V2(x) <(Fz Hw), 2)7( [VE(F (u),2)]

X <3j,d — [VF(Fz_l(u), Z)]jj’—j Sj’fj,d) 7Sj'*j7d> > de/,j}d dZ

Remark 3.1.13. — 1t is important to note that the results presented
above could be obtained using the coarea formula. We referred the reader
to Corollary 4.18 of [60] p.68]. However, we preferred explicit computa-
tions in order to obtain the exact expression of this density and also to
introduce some useful notations in what follows. °

Now, for u € R7, we define as in the part
Grxulw)i= [ EW@H(VX (@) | X(a) = ulpxo () do
= /D E[L(x,W(z), X(z), VX (x)) |X(x) = u]pX(m)(u) dz.

Since for almost all x € D, W(z) is independent of (X (z), VX (z)), we
get Yu € R7,

Gx,r(u) :/ - E[L(x, W (x), 4, 85,0)|Px (2),vX () (U 8j,d) dsj.a dz
DxRid

1
= X E[L(z, W(x),u,s;jq
/D/Rj’jxm(a"—j dxRid |JF(FZ_1(u),z)‘d+1 14 (&), 550)

X P2(2).v2(x) <(Fz_ H(u), 2) ( [VF(F; (u), 2)]

% (84 = [VF(F (u), 2)]j5-387-j.) » Sj’—jd)) dsjadsj—jqdzdz.

In the last integral where the integration domain is R/%, holding fixed
(8j1—jd %, x) € RU'—9)d » RI'~7 x D, let us make the following change of

variable

vpa 1= [VE(F (), 2)]55 % (850 — [VF(E (w),2)] 0, X $y—50)-
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We get

L EE G W (@), 53 lpz00, 70 (P2 (0,2 (VP ), 2

(870 = [VE(F (), 2)] 150 8j0-5.), 857—j.a)) dsja
_ /R LG W (a),u, [V (), 2)] % vy
HVF(F (), 2)]j5—5 % sj—ja)]

_ d
XPz(2),v2(@) (Fs (1), 2), (v, $5—j.a)) ¥ |Jp(F; (), 2)|" dvjq
[L 2, W(z),u, VE(F, (u ),z)( Vid ))}
Rad Sj'—jd
_ d
XPZ ((Fz 1 'U],d,sj —j,d ) X |JF(Fz l(u)’z)‘ dvj,d~

Finally, Vu € R7,

G
xzu //RJ J|JF u,z‘

(47)

x/ E [L(ac,W(a;),u, VF(F; ' (u),2) x ( Vid ))}
R —5)dxRid Sj'—j,d

_ v;
XDz (2),V7(z) ((Fz l(u),Z),< i >> dvjgdsj_jqdzde

Sj'—j,d
//RJ —j |JF u, ‘

/R],d [L(2, W (x),u, VE(F,  (u),2) X 8j1.4)]

XPZ(x),VZ(z) (F7 1 (u), 2), 8j,4) dsjr g dz da.

A slight modification of the beginning of the proof or the use of the
coarea formula given in [60, Corollary 4.18, p. 68|, shows that for almost
all z € D the vector X (z) has a density py(,)(+), for all u € R7, given
by:

1 _
Px() = /ijj T Ty, ] P (e () s

This implies the hypothesis H;. Moreover, this density is a continuous
function of the variable w.
Indeed, using the assumptions on Z, 3X > 0 such that for almost all
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z € D and for all (z,u) € R'~7 x R,

Pz (FH(u), 2) < Ce_””(Fz_l(“)’z)_mZ(“’)”j’
2

jl

< oM W)

2
< C€_>‘”lej/,j,

since the function my(+) is bounded on D.
Moreover, using the assumptions satisfied by the function F' and the
process Z, for almost all z € RJ'~7 and z € D, the functions

u X D) (FZ ' (u), 2),

{JF(F,;l(u), z)‘
and
1

T IR(F (), 2)]

2
U 67)‘”'2“]'/_]'

are continuous.

Using that the function u — Tp(u) is continuous for £ = 0 (see in
the hypothesis A3), Lebesgue’s dominated convergence theorem allows to
state that for almost all € D, the function u +— px(,)(u) is continuous.
Let us now return to the definition of Gx z(u) given by ([47). Since for
almost all z € D, W (x) is independent of (Z(z), VZ(z)), Gx,(u) can be
written as follows

= = (N
Gxat)= [ [ i < P 0 @)

x E[L(z, W(z),u, VE(F, ! (u), 2) x VZ(z)) | Z (z) = (F7 1 (w), 2)] dzda.

(49)

z

In the same way as in the part [I] of this proof, for any s € D we regress
Z(s) on Z(x) for almost all x € D so

Z(s) = a(s)Z(x) +&(s),
VZ(s) =Y Vai(s)Zi(x) + VE(s),
=1

where (£(s), V&(s)) is a Gaussian vector independent of Z(x).

Using the assumptions on the process Z, we obtain as in the part [1] of
this proof the following inequality: IM € R such that Vi € {1,...,5'}
and for almost all x € D we have

IVai()|ljr g < M.
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Moreover, for almost all x € D and since W(z) is independent of
(Z(2), VZ(2)), we get

G ol
XL //RLJ -3 ’JF ’LL 72 ‘ sz(x)( z (U),z)

L (x, W(x),u, VF(FZ_I(U)7 2)

xE

Z Vai(z) [(F Y (u), 2))i — Zi(2)] + VZ(2) dz dz.

As in part [T, we have thus eliminated the conditioning appearing in the
integrand and

Gx,o(u //R] ]/ Tr (P ), 2 ‘XPZ(I)(Fz_l(U)aZ)

L <:c, W(z)(w),u, VF(F;l(u), 2)

Zvaz S (W), 2)i = Zi(@)(w)] + VZ(2)(w) ¢ | dP(w)dzde

//R ]/fuwz:rd[lj’( )dz da.

By the hypotheses satisfied by Z and F and since L is a continuous
function, we obtain for almost all (w,z,2) € Q x R/'~7 x D, that the
function v — f(u,w, z, x) is continuous. Now let’s bound the expression
fu,w, z,x).

By using the bounds , and we get that for almost all
(w,z,x) € Qx RI'~J x D,

2

C ME @2
)
‘JF(FZ (u),z)|

x R( 1), W (@)(@), h(w), [ VF(ES (@), )],
|F2 @), )] I92@) @) g 125 )

f(u,w, 2, 2)| <

where R is a polynomial with positive coefficients and h : R/ — R7 is
a continuous function.
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Using the fact that Vn € N, 3M,, > 0 such that Vy € RJ’,

>\/2Hy\|] % ||?JH M,,

we get that for almost all (w, z,2) € Q x R '~ x D,

C
JF(FZ_I(u),z)
IVEE @), ), IVZ@) @ 12

= g(uawv Z, .%'),

|f (u,w, 2,2)] < |

|eunzu§f_j % S(f(@), W @) (@)l » hlw),

where S is again a polynomial with positive coefficients and = A/2 > 0.
It is clear that g is a continuous function of the variable u for almost all
(w,2,2) € XX RI'T x D,

On the one hand, using the hypotheses on Z and the hypothesis we
have that Vp € N, Vn € N, ¥/ € N and Vm € N,

[ s )HZ][E[HVZ(UC)W/C[}[E[HZ(x)H;?}] e
c/ FP (@) E[|[W( )HZ][E[||VZ(;1:)H§,7d} da < oo

In addition, it should be noted that

//R / (1, w, 2, 7) dP(w) dz dz

c 2l
_/R] y ‘JF - l(u)7z)‘e i'=i
< [ E[s(s@. W@l hw.

(7 @), )]
IVZ2@)ly.a. 12()])] dzdz.

On the other hand, since for all £ € N the functions h and Ty are contin-
uous at u, the same is true for

u»—>// /g(u,w,z,ac)dﬂj’(w)dzdx.
D JRi'=i JQ

By applying a weak version of Lebesgue’s dominated convergence theo-
rem, we deduce that the hypothesis Hjy is true.

A similar proof can be done to verify the hypothesis Hs. This com-
pletes the third part of the proof.
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4. Now suppose that the processes X and Y satisfy the assumption A4. Let
us show that the hypothesis Hy holds true, since the hypothesis H; is
clearly satisfied.

For u € R7,

| EV@HTX@) | X(@) = ulpxey () da

—// YH(2)Py (), X (2),VX (2) (Y5 u, ©) i dy dz.
D JRxR%

Using the hypotheses on the density py (2) x(z),vX () (y,u, &), we obtain
that the function appearing into the integral is a continuous function of
u for almost all (x,y,%) € D x R x RY.

Moreover, since for any A € £(R4 R7), H(A) < CHAH;:,w we easily
obtain the following bound: Yu € R’ and for almost all (z,y,#) € D x
R x RY,

[yl H(Z)Py (), X (2),vX (z) (> U, T)
< Clyl 12117 Py (2),x (), 9% () (Y, ws &) 2= g(z, Y, u, ).
It is easy to see that for almost all (x,7,4) € D x R x R¥, the func-

tion u — g(x,y,u, &) remains continuous. Furthermore, we made the
hypothesis that the function

u»—>// g(z,y,u,2)didy dz
D JRxRY

is continuous. These facts and a weak version of Lebesgue’s dominated
convergence theorem allow to verify hypothesis Hy. The same is true for
the hypothesis Hj.

This ends the proof of Proposition [3.1.12]

3.2. Rice’s formula for all level

We have previously given conditions for certain classes of processes X and
Y satisfying the hypotheses (Hs, Hy), or (H;y, Hs, H5).
We will now provide a class of processes satisfying the hypotheses H;, i =
1,...,5 simultaneously and prove Proposition [3.2.3] and Theorem giving
conditions on X and Y allowing the validity of the Rice formula for all level. We
should recall that Proposition was proved in 1985 by Cabana [21]. Our
proof is deeply inspired by this work. The hypothesis Hs and H, are difficult to
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verify. We will use the tools already developed to prove the required continuity.
For this purpose, i.e. in order to exhibit a class of processes verifying hypotheses
H, and H,4, we resort to the only tool we have provided before, namely the
use of Proposition Our goal is then to construct a class of processes Y
satisfying the hypothesis Ay, i.e. such that Y is a continuous process for which
there exists A € B; such that supp(Y) C I'(\), H(VX(')‘V)\J_)_lde, Y(:) and

[VX ()|l 4 being uniformly bounded on the support of Y.

These assumptions being very demanding, the idea is, given a process
Y, satisfying assumptions A;, ¢ = 1,...,4, and thus by Proposition |3.1.12
verifying the hypotheses Hy, H3 and Hjs, approximating the latter for fixed
n € N*, by a process Y™ defined as Y := Z)\ij Y/\(n). The process Y/\(n)
still verifies hypotheses Hy, Hs and Hy and above all assumption Ag.

In this form, by applying Theorem for n € N* fixed we will propose a
Rice formula for processes X and Y™ and for any level y € R7. Then, we
will make n tend to infinity to obtain a Rice formula for X and Y.

For this purpose, let X : Qx D C QxR - RJ (5 < d) be a random field in
CY(D,R7) where D is an open set of R andlet Y : Qx D C QxR =R a
continuous processes. In the same way as in Section [3.1.1] we define for fixed
A € Bj and z € DY, Yy(x) := n\(z)Y (), where n)(t) has been defined in
(37)-

For n € N*, let Y(") be

Y (@)= Y v{P(a),

/\EBJ‘

for x € D , where Y)fn) is

Y (@) = Yo (@) ful@) U (Y (2) /) U (| VX (2)] ;.4 /0)

< U (L/(npaA(2)) gy @)>0p + 2V (43 (0)=0}) 15 (@),
where the function ¢, has been defined in , and W is a continuous even
function on R, decreasing on R™ such that

(1) = {(1), :

and (fy)nenaturals is the sequence of functions defined from R? to [0,1] as
follows

t<1
t

N IN

d(z, D*)
d(z, D) + d(x, D)’

fn(x) =
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where the closed sets D?" and D™ are

D" = {x e R%, d(z, D% < 2171} and D™ .= {m e R%, d(x, D% > :L} .

We will see later in the proof of Lemma that the functions (f,)nen+ are
well defined, continuous and such that the support of f, p is contained in D
for each n € N*. In Lemma we will prove that (fy,)nen is a sequence of
nondecreasing functions tending to one when n goes to infinity.

Let us explain a little more the choice of the terms composing the expression

of an):

— Ya(@) fu (@) (1) (1A ()T {4y 2)>0) + 2V 45 (2)=0}) cnsures that Y™ (x)
will tend to Y)(z) when n tend to infinity for z € D', as we will show by
using the fact that f,(x) tends to one when n tends to infinity. Then for
z € D%, Y (z) will tend to ZAij Y\(z) = Y(x). Furthermore, this
implies since ¥n € N*, supp(fn|p) C D, that supp(YA(")) cI'(N).

- \IJ((l/n¢>\(x))ﬂ{¢>\(x)>0} + 2ﬂ{¢>\(x):0}) ensures that Vn € N*,
H(VX(-)|VAL)_1Hd _is uniformly bounded on the support of Y)fn).

J

— U(Y(x)/n)fn(x) ensures that Y/\(n) is uniformly bounded on D since

fulz) < 1.
= U(||VX (2)]; 4 /n) ensures that Vn € N*, [[VX(-)[|; ; is uniformly bounded

on supp(Y)f")).

We can now establish the following lemmas.

Lemma 3.2.1. — Let X : Q@ x D C Qx R? — RI (j < d) be a random
field belonging to C*(D,R7), where D is an open, convex and bounded set of
R?, such that for almost all w € €, VX (w) is Lipschitz with Lipschitz constant
Ly (w) satisfying E [L%(-)] < oo. LetY : QxD C QxR% — R be a continuous
process. Then, on the one hand, forn € N*, X and Y"") satisfy the hypotheses
Hs and Hy. On the other hand, if Y satisfies (@) and if X andY satisfy one
of the three assumptions A;, i = 1,2,3 orif X and Y satisfy the assumption
Ay, then Vn € N*, X and Y™ satisfy the hypotheses Hy, Hs and Hs and a
fortiori the hypotheses H; ,i=1,...,5.

In this form we have provided a class of processes X and Y™ satisfying
simultaneously the hypotheses H;, i = 1,...,5. Then, by Theorem [3.1.1], we
get that Vn € N* and Vy € RJ

M) (N doa_(x

X
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= | pxo@E [y @Y @) X(@) = o] do

The idea consists to make n tends to infinity. More precisely we can show the
following lemma.

Lemma 3.2.2. — Let X : Qx D C Qx R4 - RJ (j < d) be a random
field belonging to C1(D,R7), where D is an open, convexr and bounded set of
R?, such that for almost all w € §, VX (w) is Lipschitz with Lipschitz constant
Ly (w) satisfying E [L%(+)] < co. LetY : Q@xD C QxR% — R be a continuous
process. If Y satisfies (@) and if X and Y satisfy one of the three assumptions
A;,i=1,2.3 orif X and Y satisfy the assumption Ay, Yy € RI,

_E [ /C R dad_j(x)]

n—-+oo

lim E [ / YO (2) dog_, (x)
cl(y)

and

tim | pxeoW)E YO @H(VX (@) | X(2) =y | do

n—-+00
= | P @E Y@ H(VX ()| X() = y] do
Finally, we can establish the following proposition.

Proposition 3.2.3. — Let X : Qx D C QxR? = RJ (j <d) be a random
field belonging to C*(D,R7), where D is an open, conver and bounded set of
R?, such that for almost all w € €, VX (w) is Lipschitz with Lipschitz constant
Lx(w) such that E [L%(-)] < oco. LetY : @x D C @xR? — R be a continuous
process. If Y satisfies (@) and if X and Y satisfy one of the three assumptions
A;, i =1,23 orif X and Y satisfy the assumption Ay, then for all y € RJ
we have

- [/sz"(y)y(m) doa-j <m)] = /Dpxczs)(y)[E Y (2)H(VX(2))| X (z) = y] da.

Remark 3.2.4. — In the same way as in Remark we can generalize
this proposition considering D an open and convex set not necessarily bounded.
[ ]

Proof of the Lemma . Let X : Qx D C Qx R?— RJ be a random field
in C1(D,R7) such that for almost all w € 2, VX (w) is Lipschitz with Lipschitz
constant Ly (w) such that E [L%(+)] <ocoandlet Y : Q@ x D C Q x R? —» R
be a continuous process.
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Let us show that Vn € N*, the processes X and Y (%) satisfy the hypotheses
H2 and H4.
Consider for n fixed in N* and for A fixed in B; the process Y/\(n). We will now
prove that the processes X and Y)En) satisfy the assumption Ay (see page .
Thus, we will deduce by using Proposition [3.1.8] that these processes satisfy
the hypotheses Hy and Hjy.
Let us verify that Y;") is continuous on D, which is a non-trivial fact due to the
presence of 1pr (z) in the definition of this function. Let us first notice that
since the sets (D?"),en+ and (D(”))neN* are closed, the functions (f,)nens
are well defined and continuous on R¢ and then on D. Consider now z €
(D%)° and a sequence (x,,)pen+ of points in D which converges to x as p tends
to infinity. We have Y/\(n)(x) = 0. Suppose that there exists a subsequence
(@p, )wen+ of (zp)penx, such that Y;n)(xpk) # 0, for all k£ € N*. In this case,
necessarily ¢y (xp, ) > % for all £ € N*, and since the function ¢, is continuous
on D, it turns out that ¢y(z) > ﬁ Property implies that x € T'(\) C
D7, which leads to a contradiction. All the points, except perharps a finite
number, of the sequence (z,)pen+, are such that Y)\(n) (zp) = 0. The sequence
(an) (2p))pen+ then converges to zero. Moreover, using a reasoning similar to
the previous one, we can prove that the function

z = W(1/(ndx(2)) Vg, (2)>01 + 214, (2)=0})
is continuous on D and then on D’,. The function Y/\(n) is continuous on D',
which leads to the continuity of an) on D.
Let us now prove that ¥n € N*, the support of this function is contained in
T'()), ie supp(Y\”) € T(N).
To prove this inclusion, we will first prove that we have Vn € N*, supp( In| p) C
D.

Indeed, since ¥n € N* the set D?" is closed, we have

supp(fn|p) = {z € D,d(z,D°) > 1/(2n)} C D.

The last inclusion is a consequence of the continuity of the distance function
and the fact that D is an open set.
Therefore

supp(Yy") € {2 € D, ¢a(w) > 1/(2n)} N D C {w € D, pa(x) > 1/(2n)} .

The last inclusion comes from the fact that function ¢, is continuous on D.
Finally, from we have supp(Y)fn)) c I'(N).

Let us see that Y/\(n) is uniformly bounded on its support.
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We only need to prove that an) is uniformly bounded on D. Consider x € D
such that Y)En) (z) # 0. Then necessarily we have |Y (z)| < 2n. Since we have
f(z) < 1and mz)lgepry < 1, ’Y)En) (x)‘ < |Y(x)|. It is therefore true that

‘Y/\(n)(x)’ < 2n and we get the result.
Let us show that H(VX (-)|VA¢)*1Hd ~is uniformly bounded on the support
’]

of Y)\(”). We have seen that supp(Y)fn)) C {x € D,ox(z) = %} Then for
T € Supp(Y/\(n)), we have H(VX(w)]VAL)_lHd - < 2n. Therefore, the result is
J

true.
Let us finally show that ||[VX ()|, ; is uniformly bounded on the support of

Y/\(n). This follows from the following inclusion:

supp(Y™) ¢ {x € D,|VX (@), 4 < 2n} nDc {x € D, |VX(2)],4 < 2n}.

The last inclusion comes from the fact that X is C1(D,R7).

Finally the processes X and Y)fn) satisfy the assumption Ay and thus the hy-
potheses Hy and Hy.

Using that V() = ZAij Y/\(n) and that ‘Y(”)‘ = ZAij |Y)fn)|, it is clear that
X and Y™ satisfy also the hypotheses Hy and Hy.

Now suppose that Y satisfies and that X and Y satisfy one of the assump-
tions A;, i = 1,2,3. Let us then prove that X and Y™ satisfy the hypotheses
H 1, H3 and H5.

For almost all z € D, we have
(50) Y(z) = Gz, W(x), X(x), VX (),

where G is a continuous function on D x R* x R7 x £(R? R/) and such that
V(z,z,u,A) € D x R¥ x RV x £(R? RY),

|G(z, z,u, A)| < P(f(2), [|z[l » h(uw), Al 4)-
VneN*and z € D

YW (@) = Y m@)Y (@) fu(2) U (Y (2)/n)U(|VX ()] ,4 /n)

AEB;
x W(1/(nor(2)) 114, (2)>01 + 216, (2)=0}) VD7, (2).
We deduce that Vn € N* and almost surely Vz € D,

(51) Y (2) = My(,Y (x), VX (2)),
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where Vn € N*, M,, is a continuous function defined on D x R x £(R% R7).
The proof of this last statement can be done in a similar way to that used to
prove the continuity of Y/\(n) on D. Moreover, ¥(z,y,A) € D x R x £(R?% RY),

| My (z,y, A)| < Clyl-
By , we have Vn € N* and for almost all x € D,
Y™ () = My, (z, Gz, W (2), X (), VX (2)), VX (2))
= Gp(z,W(z), X(x), VX (x)),
where Vn € N* and V(z, z,u, A) € D x R¥ x RJ x £(R% RY),
Gn(z,z,u, A) = My (x,G(z, z,u, A), A).

It is clear that G,, inherits the properties of G and M,; that is G,, is a contin-
uous function on D x R* x R/ x £(R%,R7) and is such that

V(z,z,u,A) € D x R¥ x R/ x &(R? RY),

Gn(z,2,u, A)| < C|G(z, z,u, A)| < CP(f(x), [|2]ly , h(w), [|A]l; 4)
= QUf () 21y, » hl(w), [|All5,0),
where ) and P are polynomials with positive coefficients and the functions
f:D—R"and h: R/ — RT,

are continuous.

Finally Y™ satisfies and X and Y™ satisfy one of the three assump-
tions A1, Ao or As. Using Proposition [3.1.12] we proved that the hypotheses
H,, H; and H; hold for X and Y™ Using the first part of this lemma we can
conclude that the hypotheses H;, i = 1,...,5, are satisfied by X and y ™.
Now suppose that X and Y satisfy the assumption A4. Let us prove that
Vn e N*, X and Y™ satisfy H,, Hs and Hs.

Since for almost all (z,y,#) € D x R x R¥ and Yu € RJ, the density
DY (2),X (2),VX (z) (¥, u, ) of the joint distribution

(Y (2), X (2), VX (2))

exists (and is a continuous function of w) then for almost all z € D and
Vu € R/, the density py(y)(u) of X (z) exists and H} is true.
Now using , we have ¥n € N* and Vu € R,

Lu(w) = [ EYV @) H(VX @) X (@) = ulpx(0) da

~ [ EM.o.Y (@), X @) H(VX (@) | X (2) = ulpxey ) d
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= [ LY (@), VX @) | X(0) = ulpxey () de,

where L, is a continuous function on D x R x RY and since for all A €
£(RYRY), H(A) < C||Al} 4> we have ¥n € N* et V(z,y,4) € D x R x
£(RY, RY),

|Ln(2,y, A)| < Cly| [|A]l5 -
Finally, ¥n € N* and Vu € R7,

Ln(u):// Ln (%, Y, 2)Py (2), X (2),9X () (¥ u, ©) A dy dv.
D JrxR®

In the same way as in the proof of Proposition [3.1.12} (item |4 page , a weak
version of Lebesgue’s dominated convergence theorem implies that Vn € N*|

the function u — L, (u) is continuous. Then the hypothesis Hj is true. We
can also obtain in the same way the hypothesis H3. This completes the proof
of this lemma. 0

Proof Lemma[3.2.9 Let us first prove that Yy € R,

im ) (2)dog_i(z)| = x)dog_i(x)| .
(52 an[E[/cgr(y)Y (x) doa_y >] [E[/cgr(y)mddj( >]

Recall that Vn € N* and Vo € D we have

Y(2) = 37 (@)Y (@) fo(@) U (Y (2) /n) (| VX ()] 4 /7)
AEB;
X U(1/(noa(2)) Vg, (2)>0y T 21 ¢y (x)=0}) 1 Dy ().
Notice that Vy € R/ and Vz € D,

e lim Y(")(x)ﬂc)gr(y)(ff) :Y(x)]]c)]?r(y)(x)

n—-+00
 [YO@) oy (@) < Y (@) Tegr (@)

° Y . ‘“C)[()T(y) = Ll(do'd,j &® dP)
Let us establish the first statement, by proving first that for = € D,
lim f,(z) =1
n—oo

Consider z € D. Since D¢ is closed, we have that d(xz, D¢) > 0, and 3ng €
N* such that d(z, D¢) > nio Thus for n > ng, we have d(z, D) > 1, which
implies for n > ng, € D™, Consequently Vn > ny, d(:c,D(”)) = 0 and
fa(z) =1Vn = ne.
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Finally, the first statement is a consequence of the inclusion , ie. VA € Bj

we have supp(ny)ND% C I'(A). Indeed, this last inclusion implies that VA € Bj;,

Vo € D NT()), na(z) = 0 and then VA € Bj, Vo € D%, lim Y™ (z) =
n——+o0o

(@)Y (2) so that Vo € Dy, Tim Y0 (2) = (Syep, (@)Y () = V().

The last statement can be proved in the following way. Using Lemma [3.2.1] X
and Y (") satisfy H; , i =1,...,5 and in particular H;, Hy and Hs3. Remark
2| allows us to obtain that Vn € N* and Vy € RY,

L. o) dod_m)]
Cx )

/pX(x HY )H(VX )| X (2) }da:.

By noticing that the sets (D?"),en+ and (D™),cn+, which define the se-
quence (fpn)nen+, are respectively decreasing and nondecreasing sequences, we

E

obtain that the sequence (fy)nen+ is nondecreasing. Since the function ¥ is
an even function on R and decreasing on R, the sequence (‘Y(")’)%N* is
non-decreasing.

We can apply Beppo Levi’s theorem and we have Vy € RJ

/ ]Y(n ’dad i(@ )] —E [/Cg(y) Y ()] dadj(x)] .

Similarly, Yy € R/,

nngT/pX Y(”)( )’ﬂD;((x)H(VX )| X (2) }dx

lim 1E

n—-+oo

- /D P () WE [[Y (@) 1 ps (2) H(VX (2)) | X () = y] da

= [ P @E V@I HVX (@) | X(@) = 4] do
The last equality comes from the fact that Vo € D we have
Ipy (2)H(VX(2)) = H(VX(z)).
We then obtain Vy € R/

(53) E [ / N dadm)]

— /D Px (W) [V (@) H(VX(2)) | X (2) = y] dz < oc,
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since X and Y satisfy one of the four assumptions A;, Ay, A3 or A4 and by
Proposition [3.1.12] satisfy the hypothesis Hj.
We have shown that Y- Topr(,) € L'(doy—j ® dP). Then using Lebesgue’s

dominated convergence theorem, we can deduce .
Let us show that Yy € R7,

(54)  lim | px@®)E [Y< (@)H(VX (2)) | X (z) ]da;

n—-+o0o D
:/me)(y) [V () H(VX(2)) | X (2) = y] da.

In the same way as before, we notice that Vy € R7 and for almost all = € D,
o lim Y (@) H(VX (@))px o) (y) = Y () H(VX (2))px ) ()

o |Y)(2)| H(VX2))px((y) <Y (z )|H(VX($))10X(:C)(?/)
o E[|Y(2)| H(VX (2))px (@) () | X (z) = y] < 00

and the finiteness of the last expression results from that of the second integral

in (53).
Lebesgue dominated convergence theorem allows to write Yy € R7 and for
almost all z € D,

'ngrfoo[E[Y( N(2)H(VX(2)) | X (2) ]px( ) (¥)
=E[Y(2)H(VX(2)) | X(2) = y] px(2) ().

Moreover, Vy € R7 and almost surely Vo € D,

[E[Y(”)() (VX(2))| X(z —y]pxm( )‘
E[|Y(2)| H(VX (2)) | X(z) = y] px(s)(v) € L'(D, da).

The last statement comes from the fact that the second integral in is finite.
Lebesgue’s dominated convergence theorem allows to obtain (54]). This com-
pletes the proof of Lemma and consequently the proof of Proposition
.23 O
We can now state Theorem [3.2.5] which follows. It allows us to weaken assump-
tions A;, i = 1,2,3. More precisely, we want to avoid assuming the existence
of uniform lower (or upper) bounds for the variance of the Z process appearing
under these assumptions.

In the first three assumptions B, By and Bs, we will assume that Y can be
written as in the . Let D be an open set of R%,
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—Bi: Let X : QxDcC QxR RI (j < d) be a Gaussian random
field belonging to C'(D,R7), such that Vz € D, the vector X(x) has a

density. Moreover, for almost all z € D, the field W (x) is independent of
the vector (X (z), VX (z)), and Vn € N,

[ EIW @R dz < .
D

— By: Vo € D, X(z) = F(Z(x)), where F : R/ — R/ is a bijection

belonging to C'(R7, R7), such that ¥z € R/, the Jacobian of F in z, that
is Jp(z) satisfies Jp(z) # 0 and the function F~! is continuous.
Let Z: QxD C QxR? = RJ (j < d) be a Gaussian process belonging to
CY(D,R7) such that Vo € D, the vector Z(z) has a density. Moreover,
for almost all z € D, W (x) is independent of the vector (Z(z), VZ(x)),
and Vn € N,

[ EIW @R dz < .
D

— Bs: Forall z € D, X(z) = F(Z(z)), where Z : @ x D € Q x R* — RJ’
(j < j') is a Gaussian random field belonging to C' (D, R7") such that Vz €
D, the vector (Z(z),VZ(z)) has a density. Moreover, for almost all
x € D, W(zx) is independent of the vector (Z(x),VZ(z)). Finally,
Vn e N

[ EW @R d < .
D

The function F' verifies assumption (F') given in assumption As.
— By: Is the same assumption Ay.

Let us now state the hypothesis Hg.
— Hg: Yy € Rj,

| P @E V@I HVX@) | X(@) = y] do < .
We are now ready to formulate the following theorem.

Theorem 3.2.5. — Let X : Qx D C Q@ x R4 = RJ (j < d) be a random
field belonging to C1(D,R7), where D is an open and bounded convex set of
R?, such that for almost all w € €, VX (w) is Lipschitz with Lipschitz constant
Lx(w) such that E [L%(+)] < co. LetY : QxD C @xR% — R be a continuous
process.

If Y satisfies (@) and if X and Y satisfy one of the three assumptions B;,
1 = 1,2,3 and the hypothesis Hg or if X and Y satisfy the assumption By,
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then Yy € R7 we have
E [/ - Y(2) dadj(w)] = / Px@WE [Y(2)H(VX(2)) | X (z) = y] da.
c¥ () D

Remark 3.2.6. — Under the same hypotheses as in Theorem [3.2.5] elimi-
nating the condition E [Lgl(()] < oo and the hypothesis Hg, we obtain the
following inequality Vy € R/

[E[/C;?Wy) Y {z)} doay(2) g/DPX(ac)(y)[E [[Y ()| H(VX (2)) | X () = y] dz.

Remark 3.2.7. — As in Remark [3.1.10] we can generalize the theorem and
the Remark by considering that D is an open and convex possibly un-
bounded set. °

Proof of Theoremm Let us consider Vn € N*, the sets

D, = {x e R4 ,d(x, D) }
vn € N*, D, is an open set included in D. Now cons1der the restrictions X|p,
and Y|p, . It is clear that if Y satisfies and if X and Y satisfy one of the
three assumptions B;, ¢ = 1,2,3 then Vn € N*, Y|p_ satisfies and X|p,
and Y|p, satisfy one of the three assumptions A;, i = 1,2,3, where we have
replaced the open set D by the open set D,. Indeed, it suffices for this to
point out that Vn € N*, D,, C {a: € R, d(z, D¢) > 1} which is a compact set
contained in D.
The set D,, may not be convex but D,, C D, and the latter set is convex.
We apply Remark |T_ﬂ| which follows Proposition @ to X|p, and to Y|p,
(resp. |[Y]p, ). We get: Vy € R7 and Vn € N*,

E [/CD W Y (x) dgd—j(ﬂﬁ)] :/ Px(x)WE [Y(2)H(VX(2)) | X (2) = y] du,

Dp,X n

and also Vy € R7 and ¥n € N*,
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Knowing that D is an open set of R%, lim, ;o T Dn, = D, Beppo Levi’s
theorem leads to, Yy € R7,

E [ / ] dod_jcc)]

- /D Py W)E [|Y ()| H(VX (2)) | X () = y] da < oo,

by using the hypothesis Hg.
We can apply Lebesgue’s dominated convergence theorem to get, Vy € RJ,

E| [ Yo @) = [ pxmWE Y @HEX@)| X@) =y] do
cR () D
If X and Y satisfy the assumption B4 which is nothing else than the assump-
tion Ay, the above equality is trivial since already settled in Proposition [3.2.3

The proof of Theorem [3.2.5] is finished. O

Proof of Remark[3.2.6. In the same way as in the proof of Lemma let
us define Vn € N*, the random variable Z(™ by Z("(z) := ZAij Z\"(z) for

x € D, where we have defined for X fixed in B; the random variable Z /(\n) by

Z\" (@) = V" (2)¥(Lx(-)/n),

where we recall that we have defined the random variable YA(n) by

" (@) = Ya(@) ful@) U (Y (@)/m)U(|VX @) ;4 /n)
X U (1/(nor(@)) Vg, )0y + 2V o5 @)=01) TDg (2)-

Note that we cannot work as in Lemma[3.2.T] since we are not able to show
that Z gn) verifies hypotheses H3 and Hjs. In fact, we cannot apply the results
of Proposition , since we cannot verify that Zg\n) verifies assumptions A;,
1=1,...,4. Indeed for z € D, Z&n) (z) depends on the whole trajectory of the
X process via the term W(Lx(+)/n).
The processes X and Z /(\n) satisfy the hypotheses of Remark and therefore
X and Z /(\n) satisfy Ho. As in the proof of Lemma we deduce that X
and Z(" satisfy Ho.
Moreover, assuming for the moment that Y satisfies and that X and Y
satisfy one of the three assumptions A, As, A3 or that X and Y satisfy Ay,
Proposition [3.1.12] allows us to deduce that H; is satisfied.
By Proposition we obtain that for almost all y € RJ
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- [/cfz ) ‘Z(n) (x)‘ dad_j(w)]
~ [ pxwWE[|27@)] HVX@)| X(@) = y] =
D

thus for almost all y € RJ

- [/cfz ) 20w dad_j(x)]

< / Px (o) WE [IY (@) H(VX (2)) | X (x) = y] da.
D

By Proposition the processes X and Y satisfy Hj. Since X and Z(™
satisfy Ho, we deduce that the right and left terms of the last inequality are
continuous in terms of the variable y. Then the inequality is true Vy € R7.

In the same way as in the proof of Lemma [3.2.2] using Beppo Levi’s theorem,
we obtain Yy € R/

- () ol |
im 1E [ /C o 20 @)] dou., (x)] _E [ /C [V d0@)

We have shown that Vy € RJ

E [ Lo dod_j<m>]
< / Py WE [|Y (@) H(VX (2)) | X (z) = y] da,
D

this completes the proof of this remark whenever Y satisfies and that X
and Y satisfy one of the three assumptions A;, for ¢ = 1,...,3 or that X and
Y satisfy the assumption A4 and then the assumption By.
In the case where Y satisfies (39) and X and Y satisfy one of the three as-
sumptions B;, for ¢ = 1,...,3, in the same way as in the proof of Theorem
we apply Vn € N* the above inequality to X|p, and Y|p, which satisfy
one of the three assumptions A;, for i = 1,...,3. Letting n tends to infinity
and applying Beppo Levi’s theorem, we get the desired result. Let us remark
that the right-hand side term is not necessary finite because we do not assume
the hypothesis Hg. O
Our goal in this step of these notes is to propose a Rice’s formula which is
true for any level but without the assumption E [Lgl(()] < oo which was given
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in Theorem We will propose in the following a little better than the in-
equality appearing in Remark [3.:2.6] To do this, we will replace in this theorem
one of the assumptions B;, ¢ =1,...,4 by a slightly stronger assumption B;.
In the first three assumptions By, B3 and B3, we will assume that Y can be

written as in .
More precisely, let D be an open set of R? and consider the following assump-
tions:

— B7: It is the assumption By, plus the following hypothesis: for almost
all (z1,z2) € D x D, the density of the vector (X (z1), X (x2)) exists.

— B3: It is the assumption Bs, plus the following hypothesis: for almost
all (z1,z2) € D x D, the density of the vector (Z(x1), Z(x2)) exists.

— Bj3: It is the assumption Bs, plus the following hypothesis: for almost
all (z1,22) € D x D, the density of the vector (Z(x1), Z(x2)) exists.

— Bj: It is the assumption By, plus the following hypotheses:

1. The function

u'—>// P UE Py (@), x (). 9% (o) (U 0 &) A dy dar
D JRxR%

is continuous.
2. For almost all (z1,z2,%1,42) € D x D x R¥ x RY and for all
(u,v) € R7 x RJ, the density
DX (21),X (22),VX (21),VX (22) (Us U, T1, T2),

of the vector(X (x1), X(x2), VX (z1), VX (22)) exists.
3. Moreover, Yy € RJ, the function

(u,v) — / / gl 2l PX @)X (@2), VX (1), 9 () (5 V5 B, 2)
DxD JR% xR%
dil di’g d:El dQTQ
is bounded in a neighborhood of (y,y).
Let us express now the hypothesis Hg.
— H}: Vy € R/, the function

(U,U) — pX(m),X(J:z)(uv’U)
DxD

x E [H(VX (21))H (VX (22)) | X (1) = u, X (x2) = v] day day
is bounded in a neighborhood of (y,y).

Finally we can state the following theorem.
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Theorem 3.2.8. — Let X : Qx D C Qx RY — RJ (j < d) be a random
field in C*(D,R7), where D is an open and convexr bounded set of R, such
that for almost all w € Q, VX (w) is Lipschitz. LetY : Qx D C Q@ x R - R
be a continuous process. If Y satisfies (@) and if X andY satisfy one of the
three assumptions B}, 1 = 1,2,3 and the hypotheses Hg and H{ or if X and
Y satisfy the assumption B, then for all y € R7 we have

' [/Cé?"(wy(x) A= (:”)] - /DPX(:s)(y)[E [Y(z)H(VX(2)) | X () = y] da.

Remark 3.2.9. — In the same way as in Remark |3.1.10] this theorem can
be generalized to the case where D is an open and convex set not necessarily
bounded. °

Proof of Theorem [3.2.8 For any z € R, with the same notations as in the
proof of Lemma and Remark we have Vn € N*,

e/ /
cR"(2) cL(2)

V()] (1= W(Lx () /) dad_m)] .

Z(”)(:L")‘ dad_j(az)] —E

_E /
cR"(2)

X

v (z) dad_j(aj)] ‘

Let us assume for the moment that if Y satisfies then X and Y satisfy
one of the three assumptions A;, ¢ = 1,2, 3.

By Lemma [3.2.1] and Proposition [3.1.12] since X and Y satisfy one of the
four hypotheses A;, i = 1,...,4, Vn € N*, X and Y™ satisfy the hypotheses
H, and Hj3 (and also Hs). By Proposition we then have for almost all
z € RJ and ¥n € N*

/CQT(z)

E

Y ()| dad_j<x>]

:/pX(w)(z)[E [y )| HvX @) | X (@) = 2] s,
D

and a similar formula is true for thejr gandom variable Y (),
Yy

For simplicity, let us denote / f(x) dz the following multiple integral
y—9

y1+6 yj+o
/ . / f(x) da,
y1—6 y;—§
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where 6 > 0, ¥ := (y1,¥y2,...,¥;) and f is a positive or integrable real valued
function defined over []/_;[y; — 6, y; + d].
With this notation and using the Schwarz inequality we obtain Vn € N*, Vy €

RJ and V§ > 0:
: [ /
' (z)

(55) <215>j /y ié

/pX(m)(z)[E HY(")(x)‘H(VX(a:)) | X () :z} da
D

70(a)| dad_j@c)] -

dz

<(E[(1 = U(Lx(-)/n))1])

() 7| so] )
<[ E {(215) -/y-fadjw?(z»dz}

Let us consider the second term of the product in the right-hand side of the

2

last inequality.

For that, let us notice that if Y satisfies , and if X and Y satisfy one of
the three assumption A;, i = 1,2,3, or if X and Y satisfy the assumption Bj,
it is easy to prove, as in Proposition that X and Y? still satisfy the
hypothesis H; and Hsj.

By Proposition and since Vn € N*, Vo € D, ‘Y(") (z)| < [Y(2)|, we get
the following inequalities, Vn € N*, Vy € R/,

1 J y+0
limsup<> / E / (Y™ ()2 dog_j(z)| dz
550 \20 y—5 b (2)

1 J y+6
< lim sup() / E / YV2(z)dog_j(z)| dz
50 \20 y—5 ch" (2)

X

1 J y+6
< hr;lj(l)lp<25> -/y-_(S /DPX(:c)(Z)[E [Y2(2)H(VX(2)) | X(2) =z] dodz

S /D Px (0 @)E [Y2@) H(VX(2)) | X(2) = y] dz < .

The last convergence comes from the fact that X and Y? satisfy the hypothesis
H3. We will now study the third term of the product on the right-hand side
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of .

By Remark [2.3.2 following Theorem [2.3.1] if we apply the coarea formula to

the functions G := X and f := “{Hj (s —6,5+0]} > 0 and to the Borel set
=119 'JI

B := D, Yy € R/, we obtain

y+o .
./‘y.(S O'dfj(C)? (Z)) dz = /D ]]{X(x)el_[g:1[yi_é’yi-i-&]}H(VX(ﬂf)) dax.

If Y satisfies and if X and Y satisfy one of the three assumptions A;,
¢ = 1,2,3, the hypothesis in assumption B}, ¢ = 1,2,3, ensures that for
almost all (x1,22) € D x D, the density of the vector (X (z1), X (x2)) exists.
To be convinced of this, it is enough to calculate the density in the same way
as in the proof of Proposition to establish . Note that we can also
use the formula given in [60, Corollary 4.18, p. 68].

Moreover, if X and Y satisfy the hypothesis B}, it is clear that the density of
the vector (X (z1), X (x2)) exists for almost all (z1,z2) € D x D.

Finally, Vy € R’ using the hypothesis H or using the fourth assumption
appearing in B} and using the same notational conventions as above, we obtain

1 J y+6 , 2
limsup E <> / 04—;(CR (2))dz
550 26 y—5

1\% y+o y+o
= limsup| — / / / i (.
5H0p<25) y—5 y—b DXDpX( 1),X( 2)( 1 2)
xE[H(VX (1)) H(VX (22)) | X (21) = 21, X (x2) = 22] day dws dz1 dzy

<C.

Before taking the limit when ¢ tends to zero in , let us observe that as in

the proof of Remark X and Z™ satisfy the hypothesis Hy (and Hy).
Moreover, we saw in the beginning of this proof that ¥n € N*, X and Y™

satisfy the hypothesis H3 (and H).
Taking the limit when § tends to zero, it turns out that Vn € N* and Vy € R/

- Ucé?%m 20w dad_j(x)]

- [ pxWE [y @] HOX (@) | X@) = 4] dz
D

N

< C(E[(1 = W(Lx()/n))*])
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D=

([ pxeE [V HVX (@) | X(0) =) a)

The idea now is to take the limit when n tends to infinity in the last inequality.
First, by using Lebesgue’s dominated convergence theorem,

lim E[(1 —®(Lx(-)/n))"] =0

n—-+o00

Hence Vy € R7:

limsup |E / ’Z(" ‘dod j(z )]
n—+o0o
/pX(z HY ‘H(VX(&:)) | X (x) :y] dz| = 0.
Moreover, using Beppo Levi’s theorem, Vy € R7,
it o [t 70 0]

- /D P WE [V (@) H(VX(2)) | X (z) = y] dz < co.

Proposition [3.1.12] ensures that the last integral is finite.
Beppo Levi’s theorem also implies that, Yy € R7,

lim 1TE / 70 (N dos ()| = E / V(o) doa ()]
n——+o0 [ C}D{T‘(y) ‘ ( )‘ d J( ) C)D(r(y)| ( )| d ]( )
Then, Vy € R7,

(56) E [ Lo @ dad_xx)] < oo,

X

and also for Vy € R/,

E [ Lo, @ dad_xx)]

- /D P oy W)E [V (@) H(VX (2)) | X (z) =] da.

In the same way as in the previous proof, replacing ‘Z (")| by Z (") and ‘Y(”)‘
by Y we obtain Vy € R:

M) (N doa_(x
[E[/Cm(y)z (2) doa_s >]

X

lim sup
n——+0o0
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~ [ pxe WE YO @HEX @) [ X@) = y] e 0.
D

By , Lebesgue’s dominated convergence theorem implies, Yy € RJ

im M ()Y doa ()] = Ndor ()]
nL—l—oo[E [~/C)L()T(y)Z ( )d d J( )] E [/C)D(r(y)Y( )d d J( )]

Also Vy € R7,

lim [ px(@)E YO @) H(VX(2) | X(2) = y | da

n—+oo Jp
— /D P (eyW)E [Y () H(VX () | X (z) = y] da.

This completes the proof of the theorem in the case where Y satisfies ,
and X and Y satisfy one of the three assumptions B}, ¢ = 1,2,3, where we
replaced in the assumption B} the assumption B; by A;. If X and Y satisfy
the assumption BJ, the theorem is true.

Now suppose that Y satisfies and X and Y satisfy one of the three as-
sumptions B}, ¢ = 1,2,3. We will proceed as in the proof of Theorem
Let us consider Vn € N*, the sets D {x c R4, d(x, D°) }

For any n in N*, D,, is an open set contamed in D. We con51der the restrictions
X|p, and Y|p . It is clear that if ¥ satisfies and if X and Y satisfy one
of the assumptions B}, i = 1,2,3, then Vn € N*, Y|p  satisfies and X|p,
and Y|p, satisfy one of the assumptions B}, i = 1,2,3. In B} the assumption
B, is replaced by A;. Also, X|p, and Y|p, satisfy the hypothesis Hg, where
the open set D is replaced by the open set D,,.

We apply Theoremto X|p, and to Y|p, (resp. |Y| \Dn) and obtain Vy € R/
and Vn € N*|

E [ /c - ¥ (2) dadj(x)]

— [ px@WE Y@ H(TX @) X(@) =] d,
similarly replacing Y by |Y|.
The hypothesis Hg allows, when n — oo, to apply Lebesgue’s dominated
convergence theorem in the above equality.
This ends the proof of the theorem. O
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3.3. General Rice formulas for all level

3.3.1. Preliminaries for the general Rice formula. — The following
two propositions proved by Azals & Wschebor [10] p. 178-179] will provide the
arguments to obtain a general Rice formula for a random field. Our goal is
to obtain a Rice formula for any level y € R, the level not necessarily being
regular.

Proposition 3.3.1. — Let Z : Qx W C Q x R — R™* (m € N,k € N*),
be a random field in C*(W, Rm+k), W an open set of R, J a compact subset
of W whose Hausdorff dimension is less or equal to m and zy € R™* is fized.
We assume that Z satisfies the following assumption: Yt € J, the random
vector Z(t) has a density py)(v) such that 3C > 0, and a neighborhood Vy,
of zo such that Vt € J and for allv € V,, pz(v) < C.

Then almost surely there is no point t € J such that Z(t) = 2.

Proof of Proposition [3.3.1. Let zp € R™** fixed. For T, a Borel set of R*
contained in W, let

R, (T)={weQ:FxeT, Z(x)(w) =2}

Let J be a compact set contained in W whose Haussdorff dimension is less
than or equal to m. Since k € N*, the Euclidian Haussdorff measure of J
of dimension m + k is zero, that is Hy,+x(J) = 0 (cf. definition in [60]). By
definition of the Haussdorff Euclidian pre-measure of J which defines H,, 1 (J),
i.e. HY ., (J), we have

Hyp () = 0 = lim Hp ().

Consider € > 0 and n > 0 fixed. There exists d. > 0 such that V§ < é., there
exists a countable set I and (7;);er, 0 < r; < J, Vi € I such that

J C UB(xi,ri) and Zr?”k <e.
icl icl

Moreover, since W is open in R Vy € J C W, there exists ry >
0 such that B(y,2r,) C B(y,2r,) C W.

Given that J C UyesB(y,ry) and that J is compact, there exists a finite
covering (B(yj,ry,))j=1,n satisfying J C UJ_1B(y;,ry;), y; € J for all
Jj=1,...,n. Consider r := inf;—; 7y, and C the compact set defined by
C = U?Zlg(yj,%yj) cW.

Let R., := inf(0,7/2,41/(2n)) where p is the constant defining the neigh-
borhood of zy, where the density of Z is bounded. This latter neighborhood
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satisfies that Vt € J the random vector Z(t) has a density p((v) satisfying
pz@t)(v) < C, for v such that |lv — 20|, < p-
Thus there exists a countable set I and (7;)ier, 0 < r; < Reyy Vi € I satisfying

J C UB(azi,n) and Zr?”k <e.
el i€l
We have

P(R(J)) < P(sup [VZ(E)l g0 > 1)

teC

+ ({5 1920 10 < 0} 0 Re(Blair 1),

iel teC
Let i fixed in I. If B(x;,r;) NJ = 0, then R, (B(x;,r;) NJ) = 0 and
P({suprec IVZ(8)l;4 < 0} N Reg (Blai,rs) 010)) = 0. 1 Blay,ri) 07 # 0,
let us fix z € B(w;,r;) NJ.
For w € {suptec IVZ(O)l ke < 77} N R, (B(zi, i) N J) there exists x €
B(zi,r;) N J such that Z(z)(w) = 2o.
Let us remark that there exists j = 1,...,n such that x and z belong to the
ball B(y;,2r,,), this entails that for all A € [0, 1}, Az + (1 - X)z € C.
Indeed, since x € J, there exists j € {1,...,n}, such that x € B(y;,ry,). We
have the following inequalities
12 = wjll, < llz = mill + llz — =l + = — y;ll,

Furthermore, since Z is C*(W,R™*) it is also C*(B(y;, 2ry, ), R™**). Since
the ball B(y;,2r,,) is an open convex set, we have

Z(2)(w) = Z(z)(w) = Z(2)(w) — 20
= [/01 VZ(Ax + (1= X)z)(w) d)\] (z — x).
Consequently, as VA € [0, 1] we have Az 4 (1 — X\)z € C then
12(2)(w) = 20/l pire < 1 llz =2l < 20ri < 2Ry < pie
Hence
P({igg IVZ(O)l ke < 77} N R, (B(xi,mi) N J)>

<SP, [1Z(2)(w) = 20l 41 < 2073)
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N /Rm+k U0l p<2nr1P2() (V) dv < C Dy g (i)™ .

Finally, we have shown that Ve > 0, Vn > 0,

P(R.y(J)) < P(sug 120l rs > 77) Dy Y g
te iel

< P(su;c) ||VZ(t)||m+k,e > 7)> + CDm,knmJ“ks.
te

By taking limits when ¢ tends to zero then when 7 tends to infinity, in this
order, we get P(R,,(J)) = 0. O
We are now in a position to state the second proposition.

Proposition 3.8.2. — Let X : Qx D C QxR? = RJ (j <d) be a random
field in C%(D,R7), where D is an open set of R? and let Dy be a compact of
R? contained in D. Lety € RI fired. We assume that X satisfies the following
assumption (S):
— (8) ¥(z,)\) € Dy x S771 the random vector
(X(x),A- VX (2)),

has a density px (z).\vx(z) (u,w), such that there exists a constant C > 0,
a neighborhood V, of y and a neighborhood Vﬁd of Opa, such that Vx € Dy
and Y\ € ST71 Vu € V,, and Vuw € VG, PX (@) \VX () (U, w) < C.

Then

P{we Q: 3z e Dy, X(z)(w) = y,rank VX (z)(w) < j} = 0.

Proof of Proposition[3.3.3 Let us define the random field Z by

Z:OxDxRICOxRIxRI — RI x R?
such that

Z(x, ) = (X(z),\ - VX(2)).

Consider the set W := D x RJ which is an open set of RY, where £ := d + j.
The field Z is C1(W,RJ x RY), since X is C?(D,R7), and takes its values in
R™* where m :=j+d — 1 and k := 1.
Consider J := Dy x S7~! a compact set contained in W. Its Haussdorff mea-
sure is less or equal to m. Let zp := (y, Oga) € R™¥ be fixed.
Since Y(z,\) € Dy x S7=1 the random vector (X (z), A\- VX (z)) has a bounded
density px(z)\vx(z) (% w), for v in a neighborhood of y and w in a neigh-
borhood of Oga then V¢ € J the random vector Z(t) has a density Pz@t)(v)
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satisfying pz () (v) < C, for v in a neighborhood of z.
By Proposition [3:31]
P{we Q:3(x,N) € Dy x 971 (X (2)(w), - VX (2)(w)) = (y,0ga)} =0
then
P{w e Q: 3z € Dy, X(z)(w) = y,rank VX (2)(w) < j} = 0.

This completes the proof of the proposition. O
We now have all the ingredients to prove Rice’s general formula for all levels.

3.3.2. The general Rice formula. — In this section Theorem [3.3.3| pro-
vides a general Rice formula for any level, not necessarily regular. Note that
Theorem 6.10 of [10] gives the same result but in this book, the proofs are
only sketched.

The proof of Theorem [3.3:3| will be based on the proof of Theorem [3.:2.5] There-
fore, its proof will require more general assumptions than those denoted by B;,
1 =1,...,4, which appear in this last theorem. Let us therefore state the fol-

lowing hypotheses Cj, i = 1,...,4 with the same previous convention. For the
three first assumptions C;, ¢ = 1, ..., 3, the process Y will be expressed using
(39)-

In what follows we have the assumptions:
— C1: It is the assumption B plus the following hypothesis: Vo € D the
vector (X (x), VX (x)) has a density.
— C5: It is the assumption By plus the following hypothesis. Vx € D, the
vector (Z(z), VZ(x)) has a density.
— Cj: It is the assumption Bs plus the following hypothesis: the function
F verifies assumption (F'F), i.e.
e (FF) Vy € R7, 3C > 0, there exists a neighborhood Vj, of y such
that Vi > 0 and Vu € V,, we have
/ 1
Ri'— ‘JF(F;l(u),z)]dJr1

— Cjy: It is the assumption By plus the following hypothesis: the process
X verifies the assumption (S) of Proposition [3.3.2}

Theorem [3.3.3] states the general Rice formula for all level.

Theorem 3.3.3. — Let X : Qx D C QxR? — RJ (j < d) be a random field
in C%(D,R7), where D is a bounded convex open set of RY. We assume that
for almost all w € Q, VX (w) is Lipschitz with Lipschitz constant Lx(w) such
that E [L%(+)] < oo. Let Y : Qx D C Q x R? = R be a continuous process.

eI | VR (), )|V

dz < C.
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If Y satisfies (@) and if X and Y satisfy one of the three assumptions Cj,
t = 1,2,3 and the hypothesis Hg or if X and Y satisfy hypothesis Cy then
Yy € RJ we have

) [/Cx(y)Y(x) dadj(‘”)] - /DPX<x)(y)[E Y (2)H(VX (2)) | X(2) = y] da.

Remark 3.3.4. — We can replace the hypothesis: “for almost all w € €,
VX (w) is Lipschitz with Lipschitz constant Lx(w) having a moment of order
d”, with the assumption:

d
[E[<21€111_))HV2(X(3:))H§2) ] < o0.

Indeed, if X is C? on D, the Taylor formula on D convex and open set allows
to conclude that, since almost surely

Lx :=sup HVZ(X(m))HESG){ < 00,
z€D ’

then VX is almost surely Lipschitz with Lipschitz constant L x. °
Remark 3.3.5. — We can generalize this theorem and the remark to the
case where D is an open convex set not necessarily bounded. °

Proof of Theorem [3.3.5 By Theorem we already know that Vy € R7

E [/CDT(y) Y(z)dog—;(x)

X

= [ pxe E V(@ (VX ()| X(2) = y] do.

Let us check that the assumption S holds. That is, let us prove that if Dy is
a compact set contained in D and if X and Y satisfy one of the assumptions
Ci,i=1,...,3 then V(z,)\) € Dy x S7~! the random vector (X (), \- VX (z))
has a density px () \vx(z) (%, w) such that Vy € R there exists a constant
C > 0, there exists a neighborhood V, of y and a neighborhood Vﬁd of
Opa such that Vo € Dy and YA € S~ Vu € Vy and Vw € Vg it is true
that px (2)\vx(2) (U, w) < C.

Note that the last conclusion is true when the processes X and Y satisfy the
assumption Cy.

In this case, using Proposition [3.3.2], we will deduce that for any compact set
Dy contained in D and Vy € R7,

P{we Q: 3z e Dy, X(x)(w) =y, rank VX (z)(w) < j} = 0.
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By choosing the compact Dy := D™ = {:): € R, d(z, D) 1} C D we will
deduce, since D™ tends in a nondecreablng way towards D, when n — oo,
that Vy € R7,

P{weQ:3zr € D, X (z)(w) =y, rank VX (z)(w) < j} = 0.
We will then have shown that Vy € R7,

E [ /C Y@ dadj(a:)] _E [ /C b dadj(:r)]

— /D Px (o) W)E [Y () H(VX (2)) | X (z) = y] da,

that will end the proof of this theorem.

Let us check that the hypothesis S is verified, in the case where X and Y
satisfy one of the conditions C;, i =1,...,3.

Let Dy be a compact set contained in D. For all z € Dy and YA € S71, in the
case where Y satisfies (39) and X and Y satisfy one of the assumptions Cj,
i=1,...,3, in a first step we will study the density px () r.vx(z) of the vector
(X(z),A\-VX(x)). We will express the latter in terms of the density px () vx(a)
of the vector (X(x), VX (z)) which exists by the proof of Proposition
(cf. ) Thus, let us consider A € S771 X\ := (A1,...,Aj). There exists

ke {1,...,7} such that |[A\gz| > % We will assume for example k := j and
that || > 1 thls will imply |/\—1‘ <47
J
If u —(ul, u;) € R’ and
5= (511, 8215 vy 85155125522, -+ 352, S1ds S2ds - - -, Sjd) € R4,

let us do as in the proof of Proposition [3.1.12f (third part) the following change
of variables. Let K be the function defined by

K:RI xR — RI xR x RU-DE
J
(u,s) — K(u,s) ::< Z)‘Sll’z)‘sﬁ””’z)‘isid’
i=1

511,521« -5 85j—11,512, 8225 - -+, Sj—-125- -+, 51d> S2d> - - - » 5j—1d> .

The Jacobian Jy of this transformation is such that V(u, s) € R7 x R4
i (u, 5)| = Al # 0,

by hypothesis.
Thus, K is a C'(R7 x RI% R x R? x RU~19) one-to-one mapping, as well as
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its inverse K~! given by
K1 R xR x RU-DI 3 I x RI?
(u, Sjl, Sjg, ey de; S11, 821, - - - 73j—117

512,822y« -+ 8j-12,---,51d, S2d5 - - - » ijld)

1 [ 2
— <U78117821,---78j—11,X [— E Aisi1 + 851
J

» 8125 8225+ -+, Sj—12;

i=1
1 [ &
x [— D Nisiz + 852
J i=1
For any A € S7~!, Vo € Dy we have
K(X(x),VX(2)) = (X (2), A - VX (2), (VX (2))(j-1)a) -

1 [ 2
v S1dy 82d5 -5 Sj=1ds 3 [— Z AiSid + Sjd
J i=1

where if s € R/ we denoted S(j—1)d by

S(j—1)d = (811,821, - - - y8j—11, 812, 8225 - - -, Sj—125 - - -, S1d, S2d; - - - ;ijld) .
With these notations, if DX (), A-VX (2),(VX (2)) ;1) denotes the density of the
vector (X (z), A - VX (2), (VX (2))j—1)4), we have: VX € SI1 V& e Dy,
V(u,s) € RI x RI4,

1 -1
px(x),/\-VX(ac),(VX(ac))(j,l)d(ua 5) = WPX(JU),VX(JC) (K (u, 5)) .
J
We deduce that

V)\ESJ I,VZ'ED(),\V/(U,’LU) ER] x R , W 1= (wl,wg,...,wd),
LY PX(z)N\VX (z)\U, W 1Y )| U, S11,8215.-.,S55—11,

1 &
py [— Z Aisi1 + w1
1=1
) ds(j-1)a

We now need find an upper bound for this density. For this purpose, let us

7j—1
1
) 512,522, -+ 5 8j-12, 1~ —E AiSi2 + wo
J .

1 [ 2
$2ds -5 8j=1ds 1 | E AiSid + wq
J i=1

consider each of C;, i = 1,...,3 assumptions.
— If X and Y satisfy the assumption Ci, then Vx € Dg the vector
(X (x),VX(x)) has a non singular density and since X is a process of
class C? the covariance matrix of this vector is strictly positive on the
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compact set Dg. Then there exist real numbers a,b > 0 such that
Vo € Dy, 0 < a < infllZ\lj(d+1>=1 V(X (2), VX (2)) X 2| j(g41) < b. In the
same way as we obtained the equality , and with the same notations,
we prove the existence of a number p > 0 and a number C' > 0, such
that V(z,u,s) € Dy x R x R
2
PX(@).9x (@) (1 8) < Ce I
< CeHlsla
2
< Ce_‘u'Hs(j—l)d”(jfl)d'
Using the equality , we obtain the following bound: VA € S/,
Yz € Dy, V(u,w) € RI x RY,
e
) u,Ww) < — e G=DdllG-1d dg,.
DX (2),A-VX (2) (U W) 1 S (-1)d
<C,
the last inequality comes from the fact that 1/ |)\j\d < (V)
The assumption (S) is satisfied.
— If X and Y satisfy the assumption Cs, then Vx € Dy the vector
(Z(x),VZ(x)) has a non-degenerate density. In the same way as in the

first part, we show the existence of a number y > 0 and of a number
C > 0 such that V(z,u,s) € Dy x R x RY,
- 2
P2z(2),v2(2)(u; 8) < Ce #slsa
Moreover, the equality proved in the third part of the proof of Propo-
sition [3.1.12 and applied to j := j’ shows that the density of the vector
(X (z), VX ()), for all (z,u,s) € Dy x R x RY is given by:
B 1
- _ d
[T (=1 ()|
X D7)z (F (), (VF(FH(u) ™" xs).

We deduce that there exists a constant p > 0 such that V(z,u,s) €
Dy x RI x RY,

PX (2),vX (2) (Us 8)

< c o o PV EE @) s,
[T (F = ()
Let y now be a fixed vector in R/. Since the function F is C'(R7,R7)

and F~! is continuous, the Jacobian Jp(F~!) is continuous on R’ and
nonzero everywhere. Let V}, a compact neighborhood of y, then 3C >

PX(2), VX () (u,s)
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1
0 such that Vu € V;, we have T ) <C.

Moreover, Yu € R, (VF(F~(u)))™! € £(R7,R/) and thus for all s €
R4,
”Sde

IV EE )™ sl > 5m =i ()

Iy

Since F is CYR/,R7) and F~! is continuous, the operator
VF(F~Y(+)) is a continuous function of R’ into £(R’,R7). There
exists a constant C' > 0 such that Vu € V,,, we have

IVE(FH(u)]|,, < C.
We deduce that Vs € R/% and Vu € Vi,
[(VEE ()™ x 8], = Cllslljq-

Finally, we conclude that Yy € R/, there exists a constant C > 0, a
neighborhood Vj, of y and a constant 1 > 0 such that Vo € Dy, Vu € Vj,
and for all s € R/ we have

PX(2),VX(z) (u,s) < Cef“HSH?d_

Then in the same way as in the first part of the proof of this theorem, we
deduce that Yy € R/, there exists a constant C > 0, a neighborhood of
y, (let say V;), such that Vo € Dy and VA € S9!, Vu € V,, and Vw € R,

PX(@)Avx(2) (U, w) < C

Assumption (S) is satisfied.

If X and Y satisfy the assumption Cs, in the same way as before and
since Dg is a compact set, there exist constants y > 0 and C > 0 such
that V(z,u,s) € Dy x R7 x RY",

2 2
full?) —slslZg.

P2() vz (U, 5) < Ce ™

The equality proved in the third part of the proof of Proposition
shows that the density of the random vector (X (z), VX (z)) exists.
Using the same notations and , we can prove that the latter density
is bounded in the following form, for all (:1:, U, s(jjd)) € Dy x R x RY,

1

sz,VX:v(u’S"d)gc/ /
(z) (z) (J,d) Ri'—i JRG —i)d |JF(FZ_1(U)7Z)‘d+1

2
i

2
Xe_UHZHJ -i X e_MHS(]'/—j»d)H(j/_j)d
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~ul[VFE @), 2 || x| [s5.0= [TFE @),2)] sy .dH2
e 7 ' 3i'=3 770 ja ds(j’—j,d) dz.

We deduce that V(z,u, s¢;4)) € Do x R7 x RY,

1
x )W, S5 < C
PX(2).7X (@) (1 5) /[Rj'j /[R(j/j)d | T (F2 (u)

2
) B | ool |

Z) ‘d—‘rl

)

2

—MH[VF(FZ_I(U)%)MJH;fXHSj—l,d [VF(F (u), Z)]J LT ]dHO 1

X e

ds(jr—j.a) dz,
where the matrix s;_; 4 is the matrix s; 4 from which we deleted the j-
th row and [VF(F; (u),z)]. ,_; Is the matrix [VF(F;l(u),z)}jj,_j

Jj—1j
from which we deleted the j-th row.

Using, we get:
3C > 0,3 > 0,Vz € Do, YA € 771, V(u,w) € RI x R,
1

PX (@) \VX () (U, w) < C
(I) ($) X RG-DdxRi —i xR G —i)d |JF(F;1(U),Z)‘d+1

e M “Hs(j'*jv@”?j’—j)d

— -2 1 2
VEET @2 | fssmra- [VFE @Dy,

ds(jr—j,a) dz ds(j—1,4)-

We perform the following change of variables in the integral on RU—1d.
Sj—1,d — [VF(Fgl(U), z)]j—lj’—j Sjr—j.d = H[VF(F;I(U), z)]]JH]] “Vj—1d-
We get: 3C > 0, 3u > 0, Vo € Dy, YA € S771 V(u,w) € RI x RY,

1
pX(x),)\-VX(z)(uaw) < C/ v / / L 1
RG-1d JRi'—i JRG'—5)d ‘JF(FZ

we bl o o M”S(j’*j'd)H?j’—ﬂd

Z) |d+1

)

2
—ul||(vsi_ ) — 1)d
xXe HlCs—ollGona [[VE(F (u), 2 JJH(j ds(jr—j.a) dz dv(j—1,9)

~1)d

e ||V F(F (), 2)] dz

jojj

)

1 _ 2 1)d
< c/ I |y PR G-
R’ ‘L]F(Fz_l(u),z)\cprl Ve H

1
< c/
R’ 3 ’JF(Fz_l(u) z)‘dJrl
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The C3 assumption allows to obtain that Vy € R7, there exists C > 0,
a neighborhood V,, of y, such that Vo € Dy, VA € SI=L vy € Vy, and
Vuw € R, we have

PX(2)AVX (2) (0, w) < C.
The hypothesis (S) is then verified. This ends the proof of the theorem.

O
In the same way as in Theorem [3.2.8 we can get rid of the assumption that
E [Lgl(()] < oo in Theorem m If one of the assumptions C;, Csy, C3 or
C} is replaced by C7, C3, C35 or C7, the Rice’s formula is still true. In the
first three assumptions C7, C3 and C3, we make the hypothesis that Y can

be written as in .

More precisely

— Cf: It is the assumption C', plus the following hypothesis: for almost
all (z1,22) € D x D the density of the vector (X (z1), X(x2)) exists.

— C3: It is the assumption C plus the following hypothesis: for almost all
(x1,22) € D x D the density of the vector (Z(z1), Z(z2)) exists.

— C3: It is the assumption C3 plus the following hypothesis: for almost all
(x1,m2) € D x D the density of the vector (Z(z1), Z(z2)) exists.

— CJ: It is the assumption B} plus the following hypothesis: the process
X verifies assumption (S).

Theorem [3.3.6| summarizes all the results obtained previously. This is a new
result.

Theorem 38.3.6. — Let X : Q x D C Q@ x R — RJ (j < d) be a random
field in C?(D,RY), where D is a convex open bounded set of R, such that for
almost all w € Q, VX (w) is Lipschitz. Let Y : Q x D C 2 x RY — R be a
continuous process. If Y satisfies (@) and if X andY satisfy one of the three
assumptions CF, i = 1,2,3 and the hypotheses Hg and Hg or if X and Y
satisfy the assumption C}, then Vy € R7 we have

- [/Cx(y)Y<x) doa-j (x)] - /Dpxu)(y)[E [V(2)H(VX (2)) | X (2) = y] da.

Remark 3.3.7. — In the same way as in Remark [3.3.4] one can replace in
the theorem the hypothesis “for almost all w € Q, VX (w) is Lipschitz”, by
the hypothesis “almost surely Lx := sup,cp HVQX (ac)HgsU)l < o0”, since almost
surely the process VX will be Lipschitz with Lipschitz constant Lx. °
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Remark 3.3.8. — We can generalized this theorem in the case where D is
a convex open not necessarily bounded.In what follows, we discuss only the
second moment, but see Remark [3.3.12| for the k-th moment. °

3.3.3. Rice formula for the k-th moment. — Theorem [3.3.3] will allow
to state a general Rice formula for the second moment.

Let us assume D;, i = 1,...,4, where in the first three D, Dy and D3, we
also assume that Y can be written as in (39).
We denote A := {(z1,22) € D x D,z = 25} C R?? where D is an open set
of R%. Let us state the following hypotheses D;, i =1,...,4.

— Dy: It is the assumption E1, plus the following hypothesis: V& € D, the
vector (X (x), VX (x)) has a density.

— D5: It is the assumption FEs, plus the following hypothesis: Vz € D, the
vector (Z(x), VZ(zx)) has a density.

— Ds: It is the assumption F3, plus the following hypothesis: the function
F verifies assumption (F'F) appearing in assumption Cs.

— Dy It is the assumption Ey, plus the following hypothesis: the process
X satisfies the assumption (S).

The assumptions E;, i = 1,...,4, are the following;:

— Ey: The process X : Q x D € Q@ x R = RJ (j < d) is Gaussian and
is C?(D,R’) on D, such that for all (z1,22) € D x D — A, the vector
(X (z1), X (z2)) has a density.

Moreover, for almost all (z1,z2) € D x D, the vector (W (xy1), W(z2)) is
independent of the vector (X (z1), X (z2), VX (z1), VX (22)), and ¥n € N,

[ EIW @R dz < .
D

— Ey: Vz € D, X(z) = F(Z(x)), where F : R — R/ is a bijective
function in C?(R7,R7), such that ¥z € R?, Jp(z), the Jacobian of F' in
2, is such that Jg(2) # 0 and the function F~! is continuous. The process
Z:QxDcCQxRY— R (j <d)is Gaussian and is C?(D,R7), such
that for all (z1,22) € Dx D—A, the vector (Z(x1), Z(x2)) has a density.
Moreover, for almost all (z1,z2) € D x D, the vector (W (x1), W (x2)) is
independent of the vector (Z(z1), Z(x2), VZ (1), VZ(22)), and ¥n € N,

[ EIW @R d < .
D

— E3: Vo € D, X(z) = F(Z(x)), where the process Z : Q x D C Q x R —
R7 (j < j') is Gaussian and is C?(D,R7"), such that V(x1,z9) € D x D —
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A, the vector (Z(x1), Z(x2),VZ(x1),VZ(x2)) has a density. Moreover,
for almost all (z1,x2) € D x D, the vector (W (z1), W (z2)) is independent
of the vector (Z(z1), Z(z2), VZ(x1), VZ(x2)).

Also, Vn € N,

[ EW @R d < .
D

The function F verifies assumption (F') appearing in assumption As.
— Ey: For almost all (z1,22,v1,y2,41,42) € D x D x R? x R¥ x RY and
Yu € R7, the density

Py (z1),Y (z2),X (21),X (22),VX (z1),VX (z2) (yl, Y2, Uy Uy T1, :t2)>

of the joint distribution of (Y (z1), Y (z2), X (x1), X (z2), VX (x1), VX (22)),
exists and is continuous in the variable w.
Furthermore

v | L |l (|22l
/Z‘DXD /[RQ><R2dj dj dj

XDY (21),Y (22),X (21),X (22), VX (21),VX (22) (Y1, Y2, U, U, T1, T2)
X di1 ddo dy; dys dzq dxo,
is continuous.
Let us state the hypothesis H7.
— Hy: Yy € RY,

[ Y@l Y @) HOX @) HX ) | X01) = X(a2) = ]

X DX (21),X (z2) (Y5 ¥) dz1 dg < 00.
We are ready to prove Theorem |3.3.9]

Theorem 3.3.9. — Let X : Qx D C Qx RY — RJ (j < d) be a random
field in C?(D,R7), where D is a bounded, convex open set of R, such that for
almost all w € Q, VX (w) is Lipschitz with Lipschitz constant Lx(w) such that
E [L¥(-)] <o0. Let Y : Q@ x D C Q2 x RY = R a continuous process.

If Y satisfies (@) and if X and Y satisfy one of the three assumptions D,
1 = 1,2,3 and the hypothesis Hy or if X and Y satisfy the assumption Dy,
then Yy € R7 we have

2
E (/Cx(y) Y (x) dad_j(ac))
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(59) = /DXD [E[Y(:cl)Y(xg)H(VX(xl))H(VX(wg)) ‘X(xl) = X(z2) = y]

XPX (21),X (2) (yv y) dz; dzs.

Remark 3.3.10. — As in Remark we can replace in the theorem
the hypothesis that for almost all w € Q, VX(w) is Lipschitz with Lip-
schitz constant Lx(w) such that E [L3¢(-)] < oo by the hypothesis that

E [(supxeD HV2X(;U)H§.2>M] < oo .

Remark 3.3.11. — Under the same assumptions as in the theorem or those
of Remark formulated later, for j = d, one obtains a result similar to
that given in . We just have to replace

2
E </Cx(y) Y(x) dadj(x)>

2
()] — 2(x)dog_j(x
E (/Cx(y)Y(x)dad_J( )) /Cx(y)Y( )dog—j(x)

in (59). The right-hand side remains unchanged. However, it should be noted
that in this particular case, oy is the counting measure. °

Remark 3.3.12. — Under the same type of hypotheses as those given in the
theorem, or later in Remark one can propose a general Rice formula
for the moments of order k of the process Y integrated on the level set of the
random field X, and this Yy € R/, °

Remark 3.3.13. — Theorem [3.3.9and also Remarks[3:3.11] [3.3.12|and [3.3.14
can be generalized to D, a convex open set R? not necessarily bounded. Re-
mark [3.1.10] arguments can be followed mutatis mutandis. o

Proof of Theorem [3.53.9.  The idea is to apply Remark according to

Theorem [3.2.5] for the convex and open set D x D and the bounded open set

Dy =D x D — A, to the processes X and Y as
X:QxDxDcCQxR* — RY

2 = (01,22) — K(a) i= (X(a1), X(22)),



92 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL

and
Y:OxDxDcCQxR* R

z = (21,22) — Y (x) := Y (21) X Y(x2).

Since X is a random field in C2(D,R7), then X is a random field in
C%(D x D,R%) and D x D is a convex open set of R??. Also {/|D><D7A is still
continuous on D x D — A, an open bounded set of R2? contained in D x D.
Since for almost all w € Q, VX(w) is Lipschitz with Lipschitz constant
Lx (w) such that E[L3¢(-)] < oo, then for almost all w € €, VX (w) is Lips-
chitz with Lipschitz constant L z(w) = Lx(w), such that [E[L??(-)] < 00.
Then under one of the assumptions C;, ¢ = 1,...,3, since Y is written as
a function G of X and of VX and of the variable W : Q x D ¢ R? — R¥,
k € N*| in the following form, for almost all x € D:

Y(z) = Gz, W(zx), X (z), VX (x)),

where ' '
G:D xR xR7 x &(R? RY) — R
(x,z,u, A) — G(z, z,u, A),

is a continuous function of its variables on D x R¥ x R/ x £(R? R7) and such
that V(z, z,u, A) € D x R¥ x R/ x £(R%,R7),

‘G(JZ,Z,U,A” < P(f(l‘), HZHk ) h(u)v HA”j,d)y

where P is a polynomial with positive coefficients and f : D — R™ and
h:RJ — RT are continuous functions, it is the same for Y. More precisely,
for almost all = := (z1,22) € D X D,

Y(z) = Gz, W(z), X (), VX(z)),
where
W:QxDxDcCQxR¥ R
= (21,29) — W (@) = (W (21), W(12)),

G : D? x R* x R¥ x B(R* RY) — R
A 0
(2= raahs =Gz = ). (5 3))

— é(x,z,u, (61 g)) = G(z1, 21,u1, A) X G(x2, 22,u2, B),
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where B (R4, R?) is the vector subspace of £(R??, R?/) of the matrices of the

form C := <61 g) where A, B € £(R%4 RY).

It is clear that G remains a continuous function defined on
D? x R%* x R¥ x B(R%* RY),
and such that V(z, z,u, C) € D? x R?* x R% x B(R%, R),
G, 2,u,0)| < (), Il (), 1A])
X P(f(22), 22llg » h(u2), [| Bl ;. 2)
< P(@) 2l 2, 1C 20

where fis N
f:D?* —R"

r = (z1,22) —> f(z) := f(z1) + f(z2),
while £ is N
h:R¥ — RT
u = (u1,u2) —> h(u) == h(uy) + h(us).

They are continuous functions and Pisa polynomial with positive coefficients.

It is easy to verify that X and 17|D><D7A satisfy the hypotheses B;, i =
1,...,4, of Remark following Theorem respectively for the convex
open set D x D and for the open and bounded set D x D — A contained in
D x D.

Moreover, if X and Y satisfy the hypothesis H7 then X et ?|D><D—A satisfy
the hypothesis Hg, since Ve € D x D,

(60) H(VX(z)) = H(VX(21)) x H(VX(x2)).

It turns out that X and 17|DX p_n satisfy the hypotheses of Remark
following Theorem [3.2.5)

Now the hypotheses satisfied by X and Y make these two processes verify
the hypotheses C;, i = 1,...,4, contained in Theorem [3.33] and those of

Proposition [3.3.2 Therefore, in the same way as in this theorem, we obtain
that Yy € R7,

(61) P{w e Q:3x € D, X(z)(w) = y,rank VX (z)(w) < j} = 0.
One can deduce Vy € R7,
(62) P{weQ:3ze D xD,X(z)(w)=(y,y), rank VX (z)(w) < 2j} = 0.
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Indeed, using , Yy € RY,
P{weQ:3ze D xD,X(z)(w) = (y,y), rank VX (z)(w) < 25}
<SP{weQ:3zre D, X(z)(w) =y, rank VX (2)(w) < j} = 0.

Remark applied to X and }7‘ DxD—A With and allow to write

Vy € RJ,

E Y (z) doya—j)(z)

DT
CDfoA’;((y,y)

(L

N /DXDAP)}(m)(y,y)[E [Y(a:)H(V)Z(q;)) ’)Af(x) = (y,y)} dz

37(37) doad—j) (1‘)]

D><D—A,)~((y7y)

N /D><D E[Y (21)Y (22) H (VX (21))H (VX (22)) | X (1) = X (22) = ]

XPX (21),X (22) (s ¥) dz1 A2
The last equality is justified by the fact that o9q(A) = 0.
Moreover, we know, using Remark and (61)) that Vy € R7, almost surely
C2 (y) = Cx(y) and C¥’ (y) is a differentiable manifold of dimension (d — j).
Thus Vy € R/, almost surely the set A = {(z,2) € D x D, X(x) = y} is a
differentiable manifold of dimension (d — j). Thus, since j < d, almost surely
UZ(d—j)(A> = 0. So, Yy € Rj,

|

Y (z) d02(d—j)(x)] =E /C Y (z) de(d—j)(x)]

DXD—A,)?(yﬂU) DXD’)?(yyy)

2
_E </Cx(y)Y(:r) dad_j(:r)>

The last equality comes from the fact that Vy € R7,

Cowpx®y) = Cx(y) x Cx(y).

This completes the proof of this theorem. O

Proof of Remark|3.53.11. Under the same hypotheses as in Theorem but
for j = d, we do the same proof as before. We obtain Yy € R/,
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F [ / ¥ (@) dosas (@)

DxD—A,)Z(y»y)
N /D><D [E[Y(xl)Y(xQ)H(VX(xl))H(VX(@)) ‘X(xl) = X(z2) = y]

X DX (21),X (w2) (¥> ¥) dz1 d2o.
In the same way, the set A is still almost surely a differentiable manifold and
since Yy € RJ
CD><D7)~((ZU7 y) =Cx(y) x Cx(y),

we can write, recalling that in this case o4_; is the counting measure,

E [ / ¥ (@) dosaey <x>]

DxD—A,)?(y’y)

—F / Y (z) doy(g—j (x) — / Y?(x) dUdj(ﬂf)]
L/ Coxp,.x¥:Y) Cx(y)
i 2
_E ( / Y (x) dad_j(ac)> - / Y2(x) dog_; (x)
Cx(v) Cx(v)
This completes the proof of this remark. O

Remark 3.3.14. — In the same manner as in Theorems and we
can weaken the hypothesis [E [L%g()] < 0o in Theorem More precisely,
we can make the hypothesis that for almost all w € Q, VX (w) is Lipschitz or

as in Remark [3.3.10, demander la quasi finitude de sup,cp HVQX(:L‘)HES; It
will suffice to replace in Theorem the hypotheses D; by the following D}
assumptions, ¢ = 1,...,4, keeping the hypothesis H7 and adding the following
hypothesis H7.

— D7: It is the assumption D;, plus the following hypothesis: for al-
most all (x1,z2,73,74) € D*, the density of the vector (X (x1), X (x2),
X(x3), X (z4)) exists.

— D3: It is the assumption Dy, plus the following hypothesis: for al-
most all (z1,72,23,74) € D* the density of the vector (Z(z1), Z(x2),
Z(x3), Z(x4)) exists.

— D3: It is the assumption Ds3, plus the following hypothesis: for al-
most all (z1,72,23,74) € D* the density of the vector (Z(z1), Z(x2),
Z(x3), Z(x4)) exists.

— Dj: It is the assumption Dy, plus the following hypothesis: the function
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2,2 (5 (1J SNV
U, U ) —— xT | .
( b 2) /l)xl) /R2>< R2dj y1y2 H lHd] H QHdJ

X DY (21),Y (w2),X (21),X (22),VX (21),VX (w2) (Y1, Y2, U1, U2, T1, 2)
di‘l di’g dy1 dyg d{L‘l dl’g

is a continuous function.
For almost all (21,2, 23, T4, &1, Lo, &3, 24) € D* x R and for all ¢ :=
(u1,uz,v1,v2) € RY the density

DX (1), X (22),X (23),X (24), VX (21),VX (22),VX (23),VX () (¢, T1, T2, T3, T4),
of the vector

(X (1), X (x2), X(x3), X(24), VX (21), VX (22), VX (23), VX (24))

exists. Moreover, Yy € R7, the function

NI 1T a1 {1 11T
A /D 4 /R PREACAERCAE AN
X DX (21).X (22). X (25), X (24),9X (1), VX (22). VX (5), VX (22) (4 T1, T2, 3, 4

d.i‘l dfCQ d.ii?g dii‘4 dxl dl‘Q d.%'g diL'4

is bounded in a neighborhood of ¢ := (y,y,y,y).
Let us state the hypothesis H.

— H3: Vy € R/, the function

q'—>/D4pX(zl),X(m),X(m),X(m)(Q)[E[H(VX(331))H(VX(HC2))

X H(VX (w3)) H (VX (24)) | (X (21), X (22), X (23), X (24)) = q]
d.%'l dm'g d.%'3 d.734,

is a bounded function in a neighborhood of ¢ := (y,¥,y,y).



CHAPTER 4

APPLICATIONS

The main reason for having well-fitting Kac-Rice formulas is that they pro-
vide tools for explicitly doing calculations that involve roots of functions as well
as functionals of other levels. Below we will present some of these applications.

Let us first mention the possibility for getting conditions in which the level
functional has some moments. This is a non-trivial task that has only been
completely solved in some special cases. Furthermore, Rice’s formulas have
been also applied in physical oceanography and in the theory of dislocations of
random waves propagation. Two other applications deserve to be studied: first
the theory of random gravitational microlensings and second the study of the
zero sets of random algebraic systems invariant under the orthogonal group,
known in the literature as Kotlan-Shub-Smale systems. In the following, the
reader will find a brief description of each of them.

4.1. Dimensions d=j5=1

Classically, the study of the Rice formula began with the seminal papers
by Kac [35] and Rice [54]. The first considered the number of roots of a
random polynomial with standard and independent Gaussian coefficients and
the second developed formulas to study the crossovers of stationary Gaussian
processes. In this subsection, we will revisit these two old problems. First,
we will give, using the formulas obtained earlier, the necessary and sufficient
conditions for the existence of the first and second moment of the number
of crossings of a stationary Gaussian process. Second, Kac’s research will be
extended to consider random trigonometric polynomials.
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4.1.1. Necessary and sufficient conditions for the first two moments
of the number of crossings. — Let X : QxR — R be a real and stationary
Gaussian process with zero mean. Let us denote its covariance function by r
and its spectral measure by p which is assumed not to be purely discrete. We
have

r(t)—/Reit’\d,u()\).

The spectral moment of order p is defined as follows

%:Avmm.

Fory € R and t > 0, let N[é(t] (y) the number of crossings of the level y by the
process X on the interval [0, t]. We have the following theorem.

Theorem 4.1.1. —  — The Rice formula of the first order holds if and only
if Ao <00, and Vy € R and t > 0 we have

v
[qNﬁﬂw}:%VX%SM”

— Moreover, in this case, E [(N[OX’t] (y))ﬂ < o0 if and only if for some § > 0
we have
(1) — r"(0)

- e LY([0, 6], dr).

Remark 4.1.2. — The first result was proved by K. It6 in [34]. In this work,
the author generalizes the previous proofs providing a definitive result. The
second is the famous result of Geman [28]. He considers only the case y = 0.
In [38] the result has been extended for all y. o

Proof of Theorem[{.1.1. Remark following Theorem [3.3.3] gives the valid-
ity of the first formula whenever X is C2([0,t],R). However, the result is valid
with great generality as shown by It6 in [34]. For the sake of completeness, we
will outline his proof. It is first proved in [34] that if A2 < oo the process has
absolutely continuous trajectories. And besides, it is true that

.1t
Nigg(y) < hf{i{)lfg(g/o T{1x(s)—yl<o} | X' (s)] ds.

Using Fatou’s lemma and the fact that X is Gaussian and stationary, we get
by denoting ¢ for the standard Gaussian density on R

X A/
E[Njo.g ()] < liminf o<E[T(px(0)yi<s} [X(0)]
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¢ t y+o 4 z Z
= limin / /z<p< )4,0( )dzdz
§=0  20v/XoA2 Jy—s Jr VAo VA9

fming /y+5 < z ) doo 222
= 11min — z E—
§—0 264/ Ao ) 7 v Ao s

2
7V Xo

Concerning the other inequality, in [34], it is proved that the following inequal-

ity (monotonic limit) is true
2n
Nigg®) > Hm Y e 1ye/om)—y)ix (kt/2m)—y)<0}-

n—-+o0o 1
Therefore, using the monotone convergence theorem, we obtain
E[Np4(y)] > S 2°E[Ti1x(0) )X (1/2) ~s) <0}

The expectation on the righthand side can be written as follows

E[V(x -y xt/2m)-y)<0}]
= 1y y00) (KO/VR0) Yy (X250
FE[1 0 00) (X/2/V/30) 1) KO/ VA0)]

For ease of notation, let \y = 1. Thus if Z,, stands for a standard Gaussian
random variable independent of (X (0), X (¢/2")) we have

E [Ty, 4+00) (X (0)) T—oo,y) (X (/2™))]
—F {ﬂ(y7+oo)(X(0)) Tcooy) (r(t/2”)X(0) +/1- r2(t/2”)Zn>}

0 (yf 17r2(t/2")z> Jr(t)2m)
[ etas | () da.

—00 y

thus
0 y—+/1—=r2(t/27)z ) /r(t/2™) /
2”/ p(z)dz /( ) o(r)de —— tﬁe*ly2
oo y n—oo 2T

We can proceed in the same way for the second term. Finally obtaining for all

Ao
t Ay _1.2
[E[N[fiﬂ(y)} > ;,/)\70@ 392/ X0
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The above procedure can also be used to prove that if As = +oo then
E [N[fit] (y)} = +00. And all results are valid.

To prove the second statement of the theorem, one can use Remarks [3.3.10]
and following Theorem for the case d = j = 1, thus assuming that
X is C%([0,t],R). Thus the formula for the second factorial moment holds
provided that the integral appearing in the equation is finite. Note that
the assumption that X has C? trajectories implies that the covariance r is C*
and then Ay < oco. However the case Ay = 400 remains an interesting case.
This is the reason why we will follow the more general way given by [23] and
[28]. In [23] it is shown that

Ma(y, 1) = E| NS g ) (NS g (9) = 1)]

t
(63) = 2/ (t - 7—) /2 ’I'1| ‘¢2‘p7(y7i’17y7j}2) d‘rl de dT7
0 R
where p;(x1, &1, 2, T2) is the density of the vector
(X(O),X/(O),X(T),X/(T)) ,

which is non-singular for 7 > 0, since the spectral measure p is not purely
discrete. Moreover, we show that if one of the terms in is infinite, so is
the other one. In this way, we give a necessary and sufficient condition for the
right-hand side of the formula to be finite. Without loss of generality we can
assume that 7(0) = 1 and since Ay < oo that r is twice differentiable.

We will start by showing the result for the y = 0 level which is the original
Geman result. Let us write M(y,t) in another way using a regression model.
We have

(64) Ma(y,t) = Q/Ot(t = 7)pr (y, ) E[| X (0)X'(7)] | X (0) = X (1) = y] dr,
where p; (21, x2) stands for the density of the vector (X (0), X (7)). The follow-
ing model will be useful

X'(0) = & + o (1) X(0) + a2(7) X (7)

X'(1) =& + Bu(r)X(0) + B2(7) X (7),
where (£, &%) is a Gaussian centered vector independent of (X (0), X (7)), and

' (1))?
Var(€) = Var(€") = o%(r) = —1"(0) - 1(—(7«2%)

_ Cov(§,6) _ —r"(n)(A —r*(r)) = ("'(7))*r(7)
—.

(
P = = —7(0)(1 = r2(r)) = ("(7))
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Moreover ) (r) /(r)
I G H S e )
Bu(r) = —aa(r);  B2(7) = —au(7).

In this form, we have

Mﬂ&ﬂ=2A@—Tm4&®HKKWdT

B l t o 0.2(7_)
A )a—ﬂvwmq

Using the Cauchy-Schwarz inequality, we get

§

o(7)

é‘*

a(T)

| ar

t [t o?(T
MQ(O,t)gﬂ/o (1—7“2((7)))1/2(17'

So if the integral on the righthand side is finite then M>(0,t) < co. But the
integral converges if for § > 0 we have

0 2

o*(7)

7 dT < o0,
/0 (1 —r2(r)1/2

because the integrand is continuous in [d,¢]. Denoting reciprocally by agj the

coefficients of the function |z| in the orthogonal Hermite basis (Hy(x))gen of
L2(R, ¢(x)dz), i.e.

Hy(x) = (=1)%" (2)—F

Mehler’s formula gives (see [20])

m (
2 J a?(r

The proof is complete in this case if we can prove that
() =0 [
————F— > L ([0,4], d7) <= —_—
0o = Tz

But this is the purpose of Lemma [£.1.3] proved below.

We will now consider the case where y is any real number. Let us define
/

m(T) := y )

1+ 7r(7) o(r)

dr < .
-

)
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and introduce the expression
é‘*
o(7)

§

a(T)

|

t
My(y.t) =2 /0 (t = 7)pr(y, 9)0*(r) A(m, p, 7) d.

A(m, p,7) = [E[

—m(7)

+ m(7)

Using and regression, it turns out that

By applying the Cauchy-Schwarz inequality, we obtain

e <[E K’(i) ) m(T)ﬂ " [(fm ¥ m<r>>1 ) |

(65) =1+ m?(7).

Let us now prove that the function m(7) is bounded in a neighborhood of
7 = 0. For this purpose, let us consider the asymptotic behavior of 7/'(7) /o (7).
Two cases must be considered depending on whether A4 is finite or not. In
the first case, a Taylor expansion of order 4 of (7')2(7)/0?(7) easily gives that
r'(1)/o(T) = —2X2/y/A1 — A\3. Now suppose that Ay = +o00. Given that

oo

) =) =2 [ 1= cos(rAN du),

we have by Fatou’s lemma

.. () —=1"(0)) too . 1—rcos(TA) .,
-~ 7 > -~ 7
hgn I(I)If = > /0 hgn 1(1;1f TVZ)2 At dp(N)

= /OO A du() = +oc.

0
Moreover
("2(0) A3
o2(1) (1 —=7*(1) = (")3(1)’
4
and

Xa(1—72(1)) = r(r) = 20 (1~ r(r)) — () + O(r*).

Moreover, using L’Hopital’s rule, we obtain

i 222(1 — T(T)4) — (7)) _ PL%(_ZY» (T”(T)T—QT”(O)> — oo,

T—0 T
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since we know that —r/(7)/(27) — A\a/2. Thus v/(7)/o(7) = 0
Theses calculations lead us to conclude that

-2y
m(r) — A — )\%
0 otherwise.

if Ay < o0;

In both cases, we have then shown that the function m(7) is bounded.
In this form, by using , we easily obtain

t
My(y,1) < Ct / pr(y,y)o?(r) dr,
0

and by Lemma [£.1.3] this integral is finite under Geman condition.
To prove the other implication assume that Mas(y,t) < co. Thus

4
Malynt) 2 [ (¢ = 7)p(3.9)0%(7) Alm.p.7)

We will study A(m, p, 7).
Since the function m(7) is bounded the following expansion is valid

[e.e]
& —m(7)| = ar(m(r))Hy(x),
k=0
where deleting the variable 7 in m, the coefficients are

ap(m) = m[2®(m) — 1] + 2p(m)
aj(m) =1—2®(m)

2
ag(m) = @Hé—2(m)¢(M),f > 2,

where @ represents the Gaussian distribution of ¢.
Using that function ag(m) is even if k is even and odd otherwise, the Mehler’s
formula gives

A(m, p, 7 Z ap(m —m(7))k!p"(7)

- Z agy,(m(7))(2k Z 021 (m(7)) (2 + 1)1 (p(7)) %+
k=0

But by defining the odd projection as Moaa(z, m) := 3(|z — m|— |z + m|), we
have

Moaa(z,m) Za2k+l ) Hoppi1 ().



104 CHAPTER 4. APPLICATIONS

Then
‘[E [Modd ((Tfﬂ,m(f)) Modd<f(7),m(7>)] ‘
Z 031 (m(7)) (2K + 1)!(p(7)) %!
e
_ /R(;(p; —m(r) = & + m(r))? p(x) dz
< m?(7)
Thus

A(m, p,7) Z ag(m(r)) — m*().
2

m
Now it is easy to see that if —mg < m < mg then ai(m) — m? >

V2/m(ag(mg) — mg) > 0.
Since the function m(7) is bounded in a neighborhood of zero, this implies
that A(m, p,7) > C for 7 sufficiently small. Then

+oo > Mas(y,t) C’/ (t—1)p(y,y) C’/ 1—7‘2 1/2d

and we end up evoking again Lemma [£.1.3]

Lemma 4.1.3. — There exists 6 > 0 such that

r"(r) — r"(0)

o?(t
e LY([0,0], dr) <:>/ 1_712(()))1/2d7'<oo.

Proof of Lemma[f.1.3 Let us consider the integral

')
| ey

For 7 small enough, we have

o(7) N( 1 )—r"<o><1—r2<r>>—<r'<¢>>2
(L—r2(r)i2 — \ N3 73

9

thus integrating by part

/5 —(O)(1 = (1) = (1)
0

73

T
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O =)+ CEOR L [P ) () — 1)

- 272 0+/0 T < T >dT
' (0)(1 — r2(§ 7 (8))2 STy, r(rt) —1

OO P [ (11 o,

Finally, since
/ —1
7‘<T><7’<T>> ~ N5 € L1([0,6], dr),

T T
and —r/(7)/7 — Ao, the above integral is finite if and only if

/06 r"(r) —"(0)

T

dr < oo.

|

4.1.2. Numbers of roots of random trigonometric polynomials. —
In the following, we will study the asymptotic behavior of random Gaussian
trigonometric polynomials. For any N € N* and for two independent sequences
of 1.i.d. standard Gaussian random variables {a,}22; and {b,}7°; these func-
tions are defined as

N
1
Xn(t) = Nidi Z(an sinnt + by, cosnt).
n=1

The number of zeros of such a process has been extensively studied lately (see
[32] for example). The process Xy is an infinitely differentiable stationary
Gaussian process of mean zero. We can define as before IV, [f{ ]\Q’W[(y) as the num-
ber y-level crossings of these trigonometric polynomials on the time interval
[0, 27r[. The smoothness of these polynomials implies that the Rice’s formula
holds. The necessary ingredients for its application are

al (N +1)(2N + 1)

EXRO] =1 E[(Xn(0)] =5 ) n' = 5 :

n=1

Hence

e v’/2 2
EIN, ()] = 2m\BIOX 0]y 2 = — \/ (N+DEN+1) 2

Yielding
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To calculate the variance and its asymptotic value we need to consider the
rescaled process: Yy (t) := Xn(%). Since the covariance function of Xy is

N 1
1 1 (N + 1)t sin(3Nt)
t) = — cosnt = — cos
rx () N Z "EN ( 2 ) sin ¢
n=1 2
we get
sint
T‘YN (t) — T'X(t) = T
Similar results can be obtained for the first and second derivative of ry,.
The above result leads us to consider the sine cardinal process which has as co-
variance the function rx. In [8] was proved that by constructing the processes

Ynx and X in the same probability space and if we define

By :=E [{(N 0.57(0) ~ EING 35 O)]) = (N ar (0) = EING, 2 0)) }2]

it turns out that By/N ——— 0. This result entails that
N—ro0
lim — Va (NXN (0)) — lim —Va (NX (0))
Ngnoo N ' [0, 27 N Ngnoo N : [0, 27N ’
and the last quantity is

[ E[X'OX(D| X0 =X()=0] 1)
0 .

—=+2
V3 1— (sin7/7)2 3

4.2. Sea modeling applications

In this section, we give some theoretical justifications to the work of
Podgorski & Rychlik [51]. This paper presents several applications to random
sea waves. Like these authors, let us consider two random fields

X :R? - R(withd>j=1)and V: R? - R,

The latter is defined as V(z) := (X (x), VX (x)). This is the argument of the
function G in but removing the explicit dependence on z and also on the
field W, i.e. Y(z) :== G(X(z), VX (x)).

Moreover, for sea applications either the X field is Gaussian and models the
sea surface or it is the envelope field (defined below).

We will first discuss the case where the stationary Gaussian field of zero
mean X is C?(D,R) with 02 := Var[X(0)] = E[X?(0)] > 0. Then Remark
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applies and we have for all y € R

E [/cx(y)Y(x) dUdl(fL')] Z/DPX(x)(y)[E[ (@) |VX (@), | X () = y] do

__1_
(&} 202y

= 04(D)E[Y (0) [ VX (0)|, | X(0) = y]

ono

The following notion is also introduced in [5I]. We define the distribution of
V over the level set by first taking G(z) := 14(z) for z € R%*! and A a Borel
set of R¥1. We have Y (z) = 14(V(z)) and setting

E oy 14(V (@) do ()]

[fcx dog—1( )}
E [14(V(0)) [|VX (0)] 4] X(0) = y]

P{V(z) e A|X(z) =y} :=

E[VX(0)],]
(66) E [14(y, VX (0)) [ VX (0) ]
EIVXON]

To apply the formula to sea wave modeling, we set d = 3. Let us use the sea
modeling notation from [51]. We have a zero-mean stationary Gaussian field
X(t,p) :=C((t,x,y),p := (x,y), which models the sea surface. To introduce it,
let M (A1, A2, w) be a random spectral Gauss&an measure, restricted to the airy
manifold A := {]| % ||2 = w?/g%} where T = = (A1, A2). We define

C(tv xz, y) = / ei()\lx—i_/\Qy—H’Jt) dM()‘la )\2> CU).
A
In this way, by restricting the stochastic integral to the set
%
ti= {()\1,)\2,(,0) tw 20, || k H2 = w2/g},
using polar coordinates, we can write

((tay) =2 / / cos(|[ % [l cos(®)z + | & ||, sin(0)y + wt) de(w. 6),
0 -

where ¢ is a random measure with independent Gaussian increments.
The covariance function results

I'(t,p) := E[¢(0,0,0)¢(t, z,y)]
-9 /00 /“ Cos(”?IIQ cos(f)x + H?H2 sin(0)y + wt) S(w, ) dw dé,
0 -7

where 25(+, -) is the physical spectral density.
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To establish the following results, it will be necessary to digress on the
ergodic theory. The following text has been taken from [9]. For a given subset
D C R? and for each t > 0, let us define A; := o{X(7,p) : 7 > t,p € D} and
consider the o-algebra of t-invariant sets A := [, A;. Moreover, assume that
I'(t,p) == 0, for all p € D. It is well known that under this condition, the

o-algebra A is trivial, that is, it only contains events having probability zero
or one (see e.g. [23] Chapter 7).
Now for each t > 0 and y € R we define the level set

C5(t,y) == {pe D:((t,p) =y}

and the following functional
Z(t) == / Y (t,p)doi(p).
Ch ()

Furthermore, in the following, we assume that

Y(tap) = G(C(t7p)7 VPC(t7p))7

where V), is the gradient operator with respect to the space variables x,y. The
process {Z(t) : t € R} is strictly stationary, of finite mean and Riemann-
integrable. The ergodic theorem gives

T
7| 20a s Eslzo)]

where B is the o-algebra of t-invariant events associated with the process
Z(t). Since for each ¢, Z(t) is A;-measurable, it follows that B C A so that
Eg[Z(0)] = E[Z(0)]. Thus

Es[Z(0)] =E [/ Y(0,p)doy (p)]

5 (0,y)
e—%y2/>\000
V2100

where A\goo := E[¢?(0,0)]. The above formula can be used to obtain the velocity
distribution as defined in (cf. [9]).

Next, we will consider the case where the observed field, denoted E(t,p), is
the envelope field of X (¢, p). First, let us define the Hilbert transform of ¢ as
the Gaussian field

A co [ — —
C(t,a,y) =2 / / sin(|[ % [l cos(8)z + [| K ||, sin(0)y + wt) de(w, 6).
0 —7

= a3(D)E [Y(0,0) [[V,¢(0,0)]1,£(0,0) = y]
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The real envelope E(t,z,y) is

E(t,p) = \/C2(t,l‘,y) + éQ(tvajvy)'

We can write the process F in the following form. Let

~

Z(t,p) = (C(tv T, y)v C(ta €, y))
Then, if F(z) := ||2||, then E(t,p) = F(Z(t,p)). The function F satisfies
condition B3 except for z = 0, but this does not matter because P{Z(0,0) =
0} = 0. Furthermore, a straightforward calculation shows that the process X
verifies assumption (S) in Proposition m Then we can apply Remark

with condition B3 and hypothesis (S) replacing condition Cs.
Moreover, the density of E(0,0), at the point y > 0, is the Rayleigh density

(y/ag)e_%yz/ag, that exists and is continuous if O'g := Var(¢(0,0)) > 0.
For each ¢ > 0 and y > 0 we define the level set
CE(t,y):=={pe D:E(t,p) =y}

and the functional
W= [, Y dnE)
CE(ty)

Invoking again the ergodic theorem, we obtain
T
Jo ZE#®)dt as  E[Y(0,0)[[V,E(0,0)]l, [ £(0,0) = y]

(67) ) a
Jo Zh(tydt T=ee E[[V,E(0,0)]l, | £(0,0) = y]

But
E[|[V,E(0,0)], | £(0,0) = y]
- ;[E [Hg(o, 0)V,¢(0,0) + £(0,0)V,C(0, 0)”2 | E(0,0) = y} .

Thus conditioning and defining
J

Faly,z1) = [ 2V,C(0,0) £ /3% — 22V,6(0,0)
we get

E[IV,E(0,0)], [ £(0,0) =y] = ;/y (f+(y, 21) + - (¥, 21))Pc(0,0) (1) dz1
-y

where p¢ (g 0)(21) is the density of ((0,0) at z;.
Given that CA has the same distribution as —é we finally have

Y
E[[IV,£(0,0)ll, | £(0,0) = y] = 5/ f+(y, 21)p¢(0,0) (21) dz1.
-y
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Consider the numerator in the right-hand side of the expression @,
E[Y(0,0) [[VE(0,0)ll, | E(0,0) = y]
- ;rE [G <y ;(cm, 0)V,¢(0,0) + £(0,0)7,¢ (0, 0)))
< [¢(0,00%,¢(0,0) + £(0,0)9,¢(0,0) | | £(0,0) = y] .
The same argument as above gives
E[Y(0,0) [ V,E(0,0)], | E(0,0) =y ] / F (Y, 21)Pc(0,0)(21) dz1,

where

Fily,m)=E [G (y, : (zlvp«o, 0) + /o — 29,80, o>))
21VpC(0,0) + 4/ y? — zlvpC(O 0)

Therefore, the right-hand side term of becomes equal to

Yy Yy
/ Fi(y, Zl)Pc(o,o)(Zl) dzy // f+(y721)p¢(0,0) (z1)dz1 .
—y ~-y

In some important cases, this term can be calculated explicitly using only the

X

J

spectral moments of the processes (, f, V¢, VpCA.

4.3. Berry and Dennis dislocations

In this part of the work, we will give an overview of the applications of the
Rice formula to some physics notions known as random wave dislocations. This
study is motivated by the seminal paper by Berry and Dennis, [15], several
new concepts were introduced on physical grounds.

We consider two independent isotropic Gaussian random fields of mean zero
belonging to C2(D,R). Let &,7: Q x R? — R, defined trough their spectral
representation

éla) = [ cosllon ) (UR)/0) dWa(k)
— [ sinl{e ) (110k) /1) AW

and

n(x) = /R2 cos((x, k) (TI(k) /K)* dW:(k)
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+/ sin((z, k)) (IL(k)/k)2 AW (k),
RQ

where (-,-) stands for the scalar product in R? and k = (k1, k2), k := | k|,
II(k) is the isotropic spectral density and W := W;+iWs is a standard complex
orthogonal Gaussian measure on R%. Without loss of generality, we can assume
that E [¢%(0)] = E[n*(0)] = 1.

Defining the complex wave ¢(x) := {(x) + in(x), the dislocations is the set of
zeros of 1, i.e.

Np(0) == #{z : ¥(x) = 0} = #{z : &(z) = n(x) = 0}.

In [I5] (see formulas (2.7) and (4.6)), the expected number of dislocation points
by unit of area is defined by

_ El#{z € D : y(x) = 0}]
- o2(D)

_n [E[ £:(0)n,(0)  &,(0) n.(0)

(2m)? Va2 Vg Va2 Vg

where &;, &, 7, and 7, stand for the derivatives of first order of { and n and
A2 = E[€3(0)] = E[&5(0)] = E[n2(0)] = E[1;(0)] .
Here, we will also study the length of the set of zeros of each coordinate process
(length of nodal curves)

ds :

o’

o1(Ce(0)) £ a1(Cy(0)).

We thus have the definition of the length of the nodal curves for the surface
unit:
El01(Ce(0))] _ Elo1(Cy(0))]

o2(D) o2(D)

In [15], other notions have been defined related to the following two integrals

L=

/ Y (x) dog(x) = > Y(x) and / Y (z) doy ().
{@€Dx)(x)=0} ze{zeD:y(2)=0} Ce(0)
For the first one, we must recall that o is the counting measure. For instance
in [15] the dislocation curvature is introduced. In what follows, we will consider

instead the curvature of one of the nodal curves, defined using for example &.
The curvature of the nodal curve {(x) = {(z,y) =0, is

_ (@& (@) — 260y (@) ()€ () + 4y (@) ()|

W) IVE@)[2
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For the interval [0, x1] defining Y (x) := 1o ,)(k(x)), one obtains a particular
case of the function Y (x) = G(V&(x), V2E(x)), where the operator V2 denotes
the second order differential. For these functions, in a manner similar to that
of Theorem [3.3:3] we can prove a Rice formula obtaining

E [/Cf(o) Tjo,,) () doy (w)]

=U2(D)[E[“[o,m]( (0)) IV&(0 "2‘5 —0]1)&(0)(0)
O'Q(D)

= T E 10, ((0) [ VEO)]; | £(0) = 0].

The independence between V&(0) and (£(0), V2£(0)) allows writing a re-
gression model that simplifies the last expression. Moreover,

) [ [20) g0
V2or A2 A2

_ mﬁ(D)lf” /27r 2o dodp = Y2202D)
2r Jo Jo 2

V2r

Elo1(Ce(0))] =

As a bonus, we get £ = \/A2/2.
Furthermore, in order to obtain an interpretation for the distribution of x
over the level set of &, we take the ratio of the two last expectations obtaining

[E[/Cg(o) ﬂ[o,m](%(w))dal(w)] /[E[Cfl(Cg(U))]

f\f 0,51] (1(0)) [ VE(0) |, | £(0) = 0] .

Using independence, we can write it as

27
\/7/ / [op\ﬁ,ﬂ] (|fm~ cos? f — 2€,4(0) cos O sin 0

,L
2

(68) +&,,(0) sin®0]) | £(0) :o] X pts— dpdo.

A regression model shows that the following relationship is true

[€42(0) cos® § — 2&,,,(0) cos @sin 6 + &,/ (0) sin® 6 | £(0) = 0]
é N(Oa 02(9, )‘43 >\227 >\2))7
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where
Ay = E[67,(0)] = E[¢,(0)]
Agg 1= [E[f:%y(o)]
and
—A2 = E[£(0)&:2(0)] = E[§(0)&,,(0)].
Then
T 1V A20/0(0,24,M22,)2)
—k1VA2p/0(0,A1,\22,\2

21 PRIV p/U(G,/\4,)\22,)\2)
= / / / pPe P22 dpdg du
s
0 0

= K:(h;l).
The density of this distribution is

2
d /C( \/7/ / P /O’ 9 )\4,/\22,)\2)6 p/2

dﬂl
e 31V Aep/a(0a222.02)) 4 g

2 9 Ady A22, A2) et
2 /2 dy de
/ / 9 /\4,)\22,)\2) + K )\2) ¢ v
Q\ﬁ /27r 3(6, A1, A2, A2) a0,
9 )\4,)\22,)\2) + :‘ilAQ)

The last part of this subsection aims at computing some second-order Rice
formulas. Let us first introduce the correlation of dislocations at distance R
defined as g(R) in [15]. To define this quantity, we first consider the second
factorial moment of the random variable Ng(O) that is

E[#{z € D:¢(x) = 0}(#{x € D : ¢(x) = 0} —1)]

= // A(T1, 2)Dy(a1) o (a2) (0, 0) Ay dea,
DxD
where using Rice’s formula, we get
A(z1,22) = E[|det Vip(1)| |det Vip(z2)| [(21) = ¢(22) = 0].
Using invariance with respect to rotations and translations, it turns out that

A(:I:b :132) = A((Ov 0)7 (||331 - m2||2 > 0)) = A((O’ 0)7 (R’ 0)) = g(R)
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In the last equality we have set R := ||x1 — x2], .
Moreover, by dropping the absolute value of the determinant of the Jacobian
of ¥ we can introduce

B(wmy,@2) := E[det Vip(x1) det Vip(z2) | ¢ (x1) = ¢(@2) = 0].
Thus, the charge correlation function (cf. [15]) is defined as

gQ(R> = B((Ov 0)7 (R7 O))

A elementary closed expression for g(R) was obtained in [9), I5] using an
expression for the absolute value function as a Fourier integral. Nevertheless,
the computation is not trivial. The interested reader can consult these refer-
ences . Also, the function gg(R) can be written as the conditional expectation
of a sum of products of four standard Gaussian random variables. Consider
for example the first term, i.e.

E[£:(0,0)ny(0,0)&:(R, 0)ny (R, 0) | 1(0,0) = ¢ (R,0)) = 0] .

Then, the random variables representing the derivatives are regressed on the
vector (1(0,0),9(R,0)). An elementary Gaussian calculation gives the result.

4.4. Gravitational stochastic microlensing

In this section, we only sketch an application to gravitational cosmology.
The main reason to present it is that the Rice formula used is shown for a
non-Gaussian process. However, it is more an illustration than a real formal
mathematical development.

It should be noted that all of the material corresponding to this subsection
comes from the article by Peters et al. [49]. In addition, for background, this
work had to be supplemented by the book [50].

Let {&} be g independent random variables identically distributed on the
disk of radius R in R%. They are considered as the positions of the stars. We
can define the following random field

g
1 21,02 2 2
Yoe) = e Jall3 = (et = a3) +m Do — 12,
j=1
where x := (z1,x2) and k., 7 are physical constants and m represents the
mass of the stars. Outside of the random points {&;}7, the potential v, is
C>*(R2,R). The following random function is known as the delay function for
the gravitational lens systems

Ty(x) = %Haz - y”% - ¢g(x)-
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The lensing map is defined as

n(x) :=VTy(z) +y=x— Viy(z).

Given the definitions, we easily obtain

n(x) = (1 = ke + )21, (1 = ke —7)22) = mznx e
J 112

A lensed image is a solution z* of the equation VT (x) = 0. That is

n(z") =y.

These images correspond to the stationary points of the function 7} and are
classified as local maximum, local minimum and saddle point whenever the
image is not degenerated. Otherwise, we say that they are degenerate. We are
interested in computing the number of non-degenerate images with positive
parity Ny which are defined as Ny := Npax + Nuin. It is easy to show that
in these images, the Jacobian of 7, i.e. det(Vn(x)), is always positive.

It is interesting, for gravitational studies, to calculate the expected number
of N4 generated for a point source y. The number of such images on a set
D cCR?is

Ni(y) :==#{z € D : n(x) = y,det(Vn(z)) > 0}.
Consider f : R?> — R a continuous function with bounded support, then by
the area formula we obtain

/ fly (y)] dy = /D[E[f(n(w))det(Vn(w))ﬂ}o,+oo[(det(Vﬁ(ﬂf)))] dz

- / f(w) / E [det (V7(2)) Vo, 400y (det V() | 1(2) = 4] pyey () da- .
R2 D

Although the function 7 has singularities in the positions of the stars &;
these are infinite singularities. That is lim,_¢, ||n(z)||, = +o00. Therefore, if
we observe only those y that are in the bounded support of f, we have that
the domain of n for each w is restricted to an open set that does not contain
the points &;. This implies that the function 7 restricted to this set is a C'
function. Then the hypothesis for applying the area formula holds.

Moreover, we get for almost all y

[E[N+(y)]Z/D[E[det(vn(fﬂ))ﬂ]o +oo[(det(Vn(2))) [ n(z) = y] Py (y) dz.

Using the definitions and some non-trivial work, it can be shown that the
above formula holds for all y. Moreover, in [49] the formula is used to obtain
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its asymptotic when the number of stars g tends to infinity. An interesting but
still open problem is to get the same asymptotic for the variance of N, (y).

4.5. Kostlan-Shub-Smale systems

Consider a rectangular system P = 0 of j homogeneous polynomial equa-
tions in d > j variables.
We assume that the equations have the same degree n > 1.

Let P := (Xy,...,X;), we can write each polynomial X, in the form

Xo(t) := Z ag)tz,

|z|=n

where

1. z:=(21,...,24) € N? and |z| := Zi:l 2k;

2. a(zg) = ag’?_,_zd eER, 0=1,....7,|z| =n;

3. t:=(t1,...,tq) and t* := [[{_, 3.

We say that P has the Kostlan-Shub-Smale (KSS for short) distribution if
the coeflicients a(ze) are independent random variables of zero mean normally
distributed with variances

|
Var(ag)) = (n) = nil

z

4.5.1. Expectation of the volume. — We are interested in the set of zeros
of P and we denote this set by Cp(0) and its volume by £, (Cp(0)) if d—1 > j.
Its cardinality is N;F’ if d—1 = j. Shub and Smale [57] showed that if d—1 = j
then E [Nf] = 2n(4=1/2_ In [10, Chapter 12], this result was obtained by using
the Kac-Rice formula. Letendre in [40] tackled the case d —1 > j, i.e. the case
of homogenous polynomials of degree n in d variables, obtaining the following
result first shown by Kostlan in [37]

E[L4(Cp(0))] = 20727 @/2 [T(5(d — j)] ,

where I' is the Gamma function.
Following Letendre’s method and making some simplifications, we will obtain
this result using the Kac-Rice formula.

FEach X, is homogeneous, and the zero set of P is the intersection of the
zero sets of Xy. Then the set Cp(0) is a subset of the real projective space
RP4—1-7,
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Standard multinomial formula shows that for all s,t € R? we have
rn(s,t) i = E[X(8)X((t)] = (s,8)",

where (-, -) is the usual inner product in R,

Consequently, we see that the distribution of the system P is invariant under
the action of the orthogonal group in R%. We also see that the distribution
depends of course on n and this will be omitted for P for ease of notation. Let
us observe that the parameter ¢ can be considered in the unit sphere of R,
that is S%1.

In the following, we must consider the derivative of Xy, £ =1,...,7.

Since the parameter space is the unit sphere S%~1, the derivative is taken in
the sense of the sphere, that is, the spherical derivative X;(t) of X,(t) is the
orthogonal projection of the free gradient on the tangent space t of S¢1 at
t.

The k-th component of X/ (t) with respect to a given basis of the tangent
space is denoted by X/, (t).

We will use Rice’s formula slightly modified to make it valid on S?1. As
the process P satisfies the hypotheses of Remark according to Theorem
3.3.3] we obtain

E[£n(Cp(0))]
- /gd—1 E [(det(VP(t)Vp(wT)); ‘P<t) = 0] PP(t)(O)Udfl(dt),

where pp(;)(0) represents the density of P(t) in 0.

Since E[X2(t)] = 1, P(t) and VP(t) are independent, which allows to release
the conditioning into the expectation. Moreover, since pp()(0) = 1/+/(27),
if VP(eg) represents the generic element matrix X, (0), we finally obtain

_0g-1(STT) T
E[a(Cp(0))] = 220 E | (det(V P(eo) T P(en)T))
(2m)2
d—1
O-dil(gj )[E :| )
(2m)}
where Vz(eg) is N(0, [(q—1);) and I(4_y); represents the (d —1)j x (d —1)j
identity matrix.
A Gaussian calculation [40, Lemma 5.4. p.3077|) gives

jj20d-1-(ST )
O'dfl(gd_l) ’

N|=

D=

J
= N2

[(det(Vz(eo)VZ(GO)T»

E (det(Vz(eo)Vz(eo)T))é] — (2m)
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yielding
E[£,(Cp(0))] = n//20q_1_;(ST179) = 2027 4=D/2 JT[L(d - j)] .

We now calculate the variance of this random variable. Note that it has also
been computed by Letendre in [41] and Letendre and Puchol in [42].

4.5.2. Asymptotic of the volume variance. — Letendre in [41] p.4 and
Letendre and Puchol in [42] p. 3] studied the asymptotic variance of the volume
of the zero set when the degree n goes to infinity and in the case where d—1 > j.
This result is sketched in [6]. We will consider this problem using a different
method, the case where d — 1 = j being treated in [5].

Let us start with some remarks on notation. Recall that we denote by S%1
the unit sphere in R%. Let us denote by x4 the hypervolume of the (d — 1)-
dimensional unit sphere.

The variables s and t denote points on S and ds and dt denote the corre-
sponding geometric measure.

Hyperspherical coordinates: For 6 := (01,...,04_9,04_1) € [0, W[d_z x [0, 27|
we write 2(4=1(9) := (a;gd_l)(ﬁ), . ,mgld_l)(ﬁ)) € S 1 in the following way
k-1
H sin(6;) - cos(by), k<d-—1
d—1 i
2 0) = 7
[ sin6;), k=d
j=1

with the convention that H(l] =1
We will use several times in the following that for A : [-1, 1] - R a contin-
uous function, it turns out that

(69) /S R h((s,t))dsdt = Kakg_1 /0 ’ sin?2(0)h(cos(6)) do.

The proof consists in the use of a reference system with hyperspherical coor-

dinates.
For £ =1,...,7, we define the standardized derivative as
— X'(t — . —
(70) X,(t) := LG P(t) == (X1(t),..., X;(1)),

n

where Y/E(t) is a row vector. For t € S9!, we also define

/

Z(t) = (Z)(t),..., Z;(t)) == (P(t), P (t)).
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The covariances
pre(8,t) :=E(Zx(8)Ze(t)), k,0=1,...,7d,
are obtained by routine calculations. They are simplified using the invariance
under isometries. For instance, if k =¢ < j
pre(s,t) = (s,t)" := cos™(0), 0 €0, 7|,

where 6 is the angle between s and .

When the indices k or £ are larger than j, the covariances involve derivatives
of ry,.

In fact, we can prove that Z is a vector of jd standard normal random
variables whose covariances depend upon the quantities

(71) A(0) := —/ncos™ () sin(6),
B(#) := cos™(0) — (n — 1) cos™2(0) sin?(8),
C(0) := cos™ (),
D(0) := cos" 1 (6).

Thus, we can write the variance-covariance matrix of the vector

<Xg(8),Xg(t), X\é/(ﬁs)v X\é/(ﬁtj)> ’

in the following form

where,
1 C O 0 ... 0 A0 ... 0
A“'_{c 1}"412'_[—,4 0 ... 0]’A13'_[0 0 ... o]’
and Agz := diag([B,D,...,D])g—1)x(d-1), Where diag([a1,az,...,ax])kxk

stands for the k-square diagonal matrix with the generic element a; on its
diagonal.

Moreover, when dealing with the conditional distribution of (ﬁ/(s),ﬁ/(t))
given that P(s) = P(t) = 0 the following expressions appear for the common
variance o2 and the correlation p depending on 6

A2(0) B(0)(1 — C*(0)) — A*(0)C(0)

(72) o2(0) :=1— m; p(0) := 1—C2(9) — A2(0)
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After scaling 6 := z/1/n, we obtain the following bounds using the definitions
given above. The proof is elementary and the reader can consult the article
[5] for details.

Lemma 4.5.1. — [5]. There exists 0 < a < % such that for n sufficiently
large and z/\/n < 7/2 it holds that

A < zexp(—az?),

Bl < (1+ 22) exp(—az2),

C| < |D| < exp(—az?),
and for z = zg,

0<1-02<C2exp(—2a2?),
o] < C(1+ 2%) exp(—az?).

All functions on the left-hand side are evaluated at 6 = z/+/n.
Lemma 4.5.2. — [5]. It is easy to show using the definitions that the fol-

lowing limits hold

cos® (z/y/n) — exp(—2%)

A — exp(—22/2)

B —— (1-2%)exp(—2%/2)

n—oo

Cand D —— exp(—2%/2)

n—o0

02(2/\/5) 1 — (1+ 2%)exp(—22)

n—so0 1 — exp(—22)
exp(—22/2)(1 — 22 — exp(—2?))
P(z/\/ﬁ) oo 1—(1+ 22)exp(—22) '

Let us apply the Rice formula for the second moment of the zero set volume
by writing the variance as

Var [£,(Cp(0))] = E[£}(Cp(0))] — (E[£a(Cp(0))))*.

In the expression above, we have already computed the second term and for the
first, we apply Rice’s formula for the second moment with a slight modification
as before to make it valid on S9! (see [10]).

E[£7(Cp(0))]

- /Sdlxgdl E {(det(P (£)P'()7))? (det(P'(s)P'(s)"))? |P(t) = P(s) = 0
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X pP(t),P(s)<Ov 0) dt ds,
where ppt) p(s)(-,-) is the density of the vector (P(t), P(s)).

By independence, we can write

1
(2m)i (1 — (t, )71/

J
pp(t),p()(0,0) = [ [ Pxut),x(5)(0,0) =
=1

Moreover, let P'(t)P’(t)T = (a;,). Thus, using the homogeneity of the deter-
minant, we have n~7 det(P’(t)P’(t)T) = det(a;;/n). Obtaining in this form
that all the entries of the matrix (a;;/n) have variance one.

Furthermore, we have

(73) E [(det(P'(t)P'(wT))%(det(P'(s)P'(s)T))% |P(t) = P(s) = 0}
— nIE [(det(P/(t)P/(t)T)> *(aet(P'(s)P'(s)7)) * |P(t) = P(s) = 0] ,

where P’ is defined by .
Let us introduce the following function f7

f](yllla te ’yadflv ce aygla s 7y3'd71) = fj(y,) = \/ det(y/y,T)a

where y' == (Y11, Yig 15 Yj1o-- - ,y;.d_l) € R7*(@=1) Furthermore, for
any v > 0 let us define
B = F i ias - a1V Yha1s VWi Yia1)-
For v =1 we have f7 = ff.
The conditional distribution of (F’(t),?%s)) given that P(t) = 0 and

P(s) = 0 is a Gaussian distribution of dimension 2j x (d — 1) of mean zero
and covariance

Bu_ Bip
Bia : Bao
where
Bi1 = By = diag([0?,1,. .., 1])j@a—1)xj(d—1)
and

By := diag([0?p, D, ..., D)) j(a—1)xj(d1)
where these quantities are defined by and .
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This result allows us to write the conditional distribution using the joint
distribution of the following two (j x (d — 1))-dimensional vectors

(My,...,Mj):= (M,...,Myg_1,Mo1, ..., Mag_1, -+, Mj1,...,Mjq_1)
Wiyeo o, W)= Wity oo o, Wig1, Wary oo, Wag1, -+, Wity oo, Wig—1)

where the My (resp. Wy) are independent standard Gaussian random vari-
ables and

(74)  E[Moyky Wesks] = V0=t k1=ko=1} + DV jt1—t5 by =k >1}-

Using these notations we readily obtain that is equal to
nj[E[fg(Ml, . ,Mj)fg(Wl, N ,Wj)] .

This implies that we can write

(75) E[L3(Cp(0))]

= nj / [E[fg(ﬁly N ,Mj)fg(Wl, N ,Wj)] pP(t),P(s)(O, 0) dtds.
Sd-1xS§d-1

As in Section we denote by (Hg(z))ken the Hermite polynomials.
Moreover, if (Z, W) is a centered Gaussian vector with Var(Z) := Var(W) :=1
and E(ZW) := w, the following bi-dimensional Mehler’s formula holds

E[Hy(Z)Hy(W)] = 61 0" k.
Moreover, since ( f%l)2 is a polynomial this fact implies that
f’g € u—2<Rj><(d71)790j><(d71)(y/) dy’),

where ¢y (g—1) is the Gaussian standard density on R7*(@=1)  Using that the
tensor Hermite polynomials form an orthogonal basis for this space we obtain

(76) B =Y fHs),
B
where
B = (Bit,---sBra—1s-- -5 Bjrs -5 Bid—1),
Fﬁ(y/) = Hﬁn(ylll) te H51d—1(y£d71) cee H,le(yé'l) cee Hﬁjd—1(y;'d71)7

and

] 1 i INTT / / /

0= [ e 050 )
j d—1

with B! := H H Bux.

{=1k=1
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By Parseval’s equality, we have

Lo BGOP e @) dy' = S )P < o

Remark 4.5.3. — Note that for j = d — 1, f(y') := fHy') = |dety/] is
true. Here 3y is the (d — 1) X (d — 1) matrix whose columns are the vectors
(Yp1s- > Ypg_q) for £=1,...,d— 1. Furthermore, applying the homogeneity of
the determinant we have fgil(y' ) = vf(y’). The lack of this property when
j < d — 1, implies that we need a different approach to the one of [5] for
obtaining the asymptotic variance. °

Let us calculate the conditional expectation .

The expansion , the two-dimensional Mehler’s formula and equality

give
nj[E[fg(Ml, . ,Mj)fg(Wl, . ,Wj)]
=1l (f5(0((t,5)))? BUD((t, ))) IPI=2e=r B) (p( (8, 5))) =1 B

B
= nlH((t,s)),

J d—1

where |3| := ZZBM.

(=1 k=1

Some conclusions follow from this last expression. The first one is that the
expectation in depends on t, s through (¢, s) only. Then using we

obtain

i ! sin?—2
(2m)7 (1- COSQ”(H))% (040

1 e
(1_Cos2n<z/\/ﬁ))% sin Q(Z/ﬁ)dz_

The second stems from the form of the integrand. Indeed, we know that

. 2 j 2 A
E ‘fé(’y)’ 16' /jx(dl) ‘f'y(mﬂ %]X(d—l)(w) de
2j]

E[(£n(CP(0)))?] = Aarias /0 " H(cos(6)

!
nl”2

Vnm
= mdﬁd,lm /0 H(cos(z/v/n))

Xix(eo)
NLD

< (d— 1)j(7 Vv 1)2j[E [1<£< 'Slu<%<d 1
), IR A—
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Since o2 cos((z/y/n)) < 1 and p is a correlation (and |p| < 1), then

(77) S| toteost/van| o < €.
B

Therefore, since d — 1 > j, we can interchange the series with the integral
obtaining

(78) E[(L.(Cp(0)))%

ni=3 vnm sin?2(z//n
= nd/{d_lwz:/o Ha(cos(z/v/n)) (2/v/n) - dz,
B

(1~ cosn(z/y/m))?
where
Hpa(cos(z/v/n)) = ‘ f3(o(cos(= /\/ﬁ)))r B1(D(cos(z/m))) (B =i )
% (plcos(z/y/n))) ha P

First of all, it should be noted that

E[£,(Cp(0))])* (d-1)/2 2
( [nj(dpg)/z] _ n(%)j <3| )
(d-2)/2 . Nz
= n(QT)j/@d“d—l ‘f(])(l)f/o sind_2(z/\/ﬁ) dz.

Thus, using the above results and normalizing we obtain

ar vnm o (d=2)/2
\W = Kdlid—l/o (Z ’Hg(cos(z/\/ﬁ)))

(2m)J
1B8>1

X

1 . —
(1 — cos?(z//n))I/2 sin?~?(z/v/n) dz

w0 e [ (oo - sl

2
sin?=2(z/y/n)
A= oo/

Vvim o (d=2)/2 2 1
Franacs [ [0 ((1 o (N )
x sin?~2(z/+/n) dz.
To apply the dominated convergence theorem, we have to look for a uniform

bound. The following lemma gives us the solution. The prove is postponed to
the end of this section.
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Lemma 4.5.4. — FEach term appearing in the integrands of the sum (@ 18
bounded by a Lebesgue integrable function on [0, oo of the variable z.

So we can take the limit under the integral sign. Moreover, let us show that
we can interchange limit with the sum sign. We have

=S|pefe= [ @ () do
B

Since the function ‘ fi (:1:)‘ is a polynomial and has v as a coefficient, we can
prove by using the dominated convergence theorem applied to the formula
on the right, that G is a continuous function then if v, —— v we have

n—oo

Jim S| 8= |0 8
B B

The exact expression of the limit is obtained using the results of Lemma [4.5.2]
Let us define

1 2
; — 2?) exp(—22)\ 2
Ja(z) = fé <<1 (11__‘_6){}))(_52() )> ) B! (exp(—22/2))|[3|
(1 — exp(—2?) — 22) ;;’B“
50 (i)
It yields

. ['n(CP(O))
niiiR, Var [nj/2—<d—1>/4

_ Rgkg— 1 1 d—2 Py
o <ﬁz Talz ) e
1\ (2
kaka—1 [ || [1— 1+ 22)exp(—22)) 2 YNE:
+ (27[.)]'1 /0 f0<{ 1—exp(—22) } )‘ - ‘fo(l)‘
Zd_2
U= ep(—2)

+/€d/‘€d1‘f0 ‘/ [1_expé 22))3/2_1] L2 g,

Finally, we have proved the following theorem.

dz
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Theorem 4.5.5. —

(81)  lim Var {

n—-+00

=l |20

18]=0

ni/2—(d-1)/4

2924z,

j 2
(1 —exp(—22))i2 ‘fO(l)‘

This is the same result that Letendre [41] obtained before using another
method.
Finally , we give the proof of Lemma |4.5.4

Remark 4.5.6. — The symmetrization argument used in step 3 of Section 3.2
of [5] gives that the integral over [\/n%, \/nn] of each term in the expansion
is equal to the integral of the same term on |0, \/ﬁg] except for a multiplication
by (—1)=DIAI,

In this form, the uniform bound obtained for applying the dominated con-
vergence theorem in the latter interval is also used for the former. °

Consider the first term of the sum .

Using the lemma it turns out that there exists ng such that for z/y/n <
™

5 with n > ng and for 2z > 29, which implies

Ip| < C(1 + 2%) exp(—az?) and D < exp(—az?).
According to Remark it is enough to work in the interval [0, \/n5]. In

that way we get, for z > z

> ]fg(a(cos(z/\/ﬁ)))’2 BI(D(cos(z/+/n)))1BI= 2zt Ber)

1B|=1

 (pleos(z/y/m))) == 70

<O | X [Foteostz/vm)| 8 | 1+ =) exp(~az?)
18]>1
< C(1+ 2%) exp(—az?).

Above, we used .



4.5. KOSTLAN-SHUB-SMALE SYSTEMS 127

It remains to consider the integral over the interval [0, zp]. But now the
integrand can be bounded on [0, zp] by

C ! n(@=2/26in?"2(3/\/n) < C ! 2372

(1 — cos2n(z//n))3 (1 — exp(—2a22))?
and the function on the right-hand side is integrable whenever j < d — 1. In
this way, applying the dominated convergence theorem, we obtain

. n(d=2)/2
lim Kgkg—1

vnm
n—-+oo (27r)j /0 Z ’Hﬁ(COS(z/\/ﬁ))

1B1>1

1 e 1 _
— /id/id—l(zﬂ_)j/o Z Ja(z) a —exp(—zQ))j/ZZd 2dz.

1B|=1

The exact expression of the function Jg(z) (see (80)) is obtained using Lemma
4.0.2)

To complete the proof of the lemma, we need to consider the remaining
terms in . First, let us consider

(d=2)/2

W /Oﬁﬂ Ufé(a(cos(z/\/ﬁ)))‘2 — ‘f(J)'(l)H
1
X (1 — cos?™(z/y/n))

Ly == Kakd—1

7 sin?=2(z/y/n) dz.
But

| Btoteostrvin|” - | B’

2
= ‘(/ _ F®)@jx(a-1) (@) de)
RJ X (d—1)
' 2
([, @)
RJ X (d—1)

/ @y (@) de /  P@)pen (@) de
RJx(d—1) RJx(d—1)

<C

< Cﬂ{z<20} +C

/  H@e () dz
RJ*x(d—1)

(82) - / P @ (@) de| Ty,
RJ X (d—1)
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To find an upper bound for the second term of the last sum, we use the
following general result.

Let G : RM — R be a function such that |G(x)| < C ||z||™, m € N*, where
without loss of generality we take ||| := sup, |z;|. Consider two sequences of
positive numbers {o;}, and {7;}£, and denote ||o| := sup, o; and |v|| :=
sup, 7. Also consider W := (Wy, ..., Wyy) £ N(0, Ins). We have

||E[G(O-1W17 02W27 cee )GMWM) - G(V1W1772W27 s 7’YMWM)”

7

M
0, — Vi myy &
< OVaI(o v Il Y 2 e,
i=1 '

where the symbols V and A denote the supremum and infimum respectively.
Applying this result to the second term of the last sum in and using
that o(cos(z/y/n)) < 1 and |1 — o| < Cexp (—2az?) for z > zy, we obtain

|Rtoteostevmn| = [BOf | < Cliea + Coxr (2010,

Now, the dominated convergence theorem can be applied and again by the
results of Lemma [4.5.2 we get

P ({ 1— (14 22) exp(—22) }

o
lim 7, = “4l /
nstoo T (2m) 1 — exp(—22)

V)
N——

1

1 exp(—22)) "

Finally we will consider the last term 7.

n(d=2)/2  pVan
In = Kqgkd—1 /
( 0

.2 1
o) O (et Y
(83) x sin?2(z/+/n) dz.
By setting R := cos™(z/+/n), we have

1 B R?

(1 = cos?(z//n))I/?

with |R| < exp(—az?) ALif 2 < Z/n.
Thus the integrand in can be bounded with the bound computed in ,

depending on z < zg or z > z9. That is, on the interval close to zero or on the

(84)

;)

C 7
(1 R2)3
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other. In the first case, we use

_ 1 n%" z
| g 1| | < O

the last function above is an integrable function since j < d — 1. On the large

d—2

<C
(

interval, we get

(d=2)/2 1 ~ 1| sin®2(z/v/n
e e LA

Zd_2
(1 — exp(—2azd))i/?’

the last function above being again an integrable function. Since these two

< Cexp(—2az?)

bounds allow applying the dominated convergence theorem, it turns out that
. Kakd—1 | g2 [ 1
1 — Hdfid_ ‘ el ’ / 1
T S IV A e e
That completes the proof of Lemma [£.5.4]

2424z,

4.6. Local time and length of curves of level set

Let X : Q x R4 =5 R, d > 2, be a stationary centered continuous Gaussian
process and F' be its spectral measure assumed not to be concentrated in a
Borel set of zero Lebesgue measure. Let T be a bounded open set of R
We will consider regularizations of the trajectories of X by means of convolu-
tions of the form X.(t) = W, x X(¢), € > 0, where U, is an approximation of
unity when ¢ tends to zero and satisfies some regularity conditions.

The aim of this section is to approximate the local time of X over T at a given
level u, say Lx(u,T), by the length of curves of the u level set of process X¢,

say Ud—l(CT,XE (u))

Some of the results that will be presented in Sections and have
been partially discussed in [I9]. We can cite some references of papers that
have dealt on the same subject in the case where d = 1. More precisely if
Nx_(u) represents the number of crossings of the level u by the process X,
on the interval [0, 1], Wschebor [61] has shown that, in the case of Brown-
ian motion, the appropriately normalized random variable Nx_(0) tends to
Lx(0,[0, 1]), as € — 0, in LP(2) for any p > 1, and a similar result applies to
multiparameter Brownian motion. Azais and Florens [7] have extended this
result to a class of stationary Gaussian processes.
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We start with some considerations on the local time of X on 7.

4.6.1. Local time. — We define the local time as the density of the occu-
pation measure of X. This definition was used for example by Berman ([13]).
More precisely, if A denotes a Borel set in R, we define the occupation measure

:uT(wv A) of X by
pr(w,A) =o4{t € T, X (w,t) € A}.

The local time Ly (u,T), when it exists, is any function satisfying

uT(w,A):/LX(w,u,T)du,
A

for almost every w.

Another formulation is that the local time, when it exists, is the Radon-
Nikodym derivative

dpr

Tﬁ(u)

By Proposition 1 of [19], the local time of X, denoted by Lx(-,T), exists P-
almost surely and is L?(A; x P). One can also refer to Theorem 22.1 of [30].
One reason why this result is true is that

/ (r2(0) — r2(s — £))"Y2 ds dt < oo,
TxT

where r stands for the covariance of process X. The finiteness of the last

Lx(u,T):=

integral comes from the following lemma whose proof is given in Lemma 1 of
[19].

Lemma 4.6.1. — There exists C > 0, such that for all (s,t) € T xT,r?(0) —
r2(s —t) = C ||s — t||5, where T is the closure of the set T.
We now state the identity of the second moment of local time.

Proposition 4.6.2. — For all any level u € R, we have
E[L% (u,T)] :/ Px(s),x () (U, u) ds dt,
TxT

where px (s) x(t)(++) s the density of vector (X(s), X(t)).

Proof of Proposition [4.6.9  The proof is given in [30] (see equality (25.5)).
However, we give here a sketch of the proof which we will use later.
Proposition ensues from Proposition 1 of [19].

Proposition 4.6.3. — There exists a version of L(-,T) such that Yu € R,
ns(u) = 55 [1 Tt 1x(8)—ul<s} dt, 6 > 0, converges in L*(Q) to Lx (u,T).



4.6. LOCAL TIME AND LENGTH OF CURVES OF LEVEL SET 131

Let u € R. By computing E[n?(u)], we obtain:

2 putd  putd
E[nj(u)] = 1 (z,y)dsdt | dzdy.
Ns 2 s s T Px(s),x)\T> Y Y

Using Lemma we easily obtain that the function

(z,y) — Px(s),x(t) (2, y) dsdt
TxT

is continuous at (x,y) and then using Proposition we obtain

[E[Ug(u)] 6—> pX(s),X(t)(u7u) dsdt = [E[L2X<uvT)]
=0 JrxT
Another interesting way to prove Proposition [£.6.2] is to apply Theorem 1 of
[24]. Indeed, in this theorem, the authors expand the local time Lx(u,T) in
terms of Hermite polynomials. More precisely, if (Hy(x))ren is the Hermite
orthogonal basis of L?(R, o(z)dz), i.e.
k _—1 d*
Hy(z) == (=1)"¢p~ (x)ﬂ(go(x)),
x
where ¢ denotes the standard Gaussian density on R, they show the following
theorem.

Theorem 4.6.4. — Let u € R a fixed level. The following expansion of the
local time Lx (u,T) holds in L?(2):

1 Uu 1 U
Ly(u,T) = T(O)go(m)ZMHk<m)/THk(X(s)/\/T(O)) ds.

keN

Using this last expansion and Mehler’s formula (see [20]), we obtain

E[L% (u, T)]

Y 1 of wu r(s—t)\? .
_T(O)S(J( r(O))Zq!Hq< T(O))/TxT< r(0) > do dt

qeN

The following equality can be found in |33, Eq. (39)]. For 0 < |w| < 1 and
x € R, we have

1, 1 2w
- q_
Zq!Hq(x)w = ﬁ_w?eXp<1—|—w>'
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Thus, applying this last equality to = := u/+/7(0) and to w := r(s —t)/r(0),
we obtain

1 1 u?
BIL (u, 7)) = 2 /T><T V72(0) —r2(s — t) exp<_r(0) +7r(s — t)) dodt

= / Px(s),x (1) (U, u) ds dt.
TXT

This completes the proof of Proposition [4.6.2] O
Let f : T — R be a bounded function. More generally that before, we are
interested in a canonical renormalization of the ordinary local time, given by,

Vu e R

L (u,T) := /Tf(t)LX(u, dt).
Geman and Horowitz proved in [30, Theorem 6.4] the following identity.
Theorem 4.6.5. — For any Borel function h(t,x) >0 on T x R,

/T h(t, X (8)) dt = /R /T h(t, 2)Lx (z, dt) dz.

Remark 4.6.6. — This equality is still valid for any Borel function h(t, z),
which is not necessarily positive, provided that one of the two integrals is finite.
This is for example the case when h is bounded. °

Remark 4.6.7. — If we take h(t,x) := T4(x), where A is a Borel set of R,
we find the usual definition of local time. If we take h(t,z) := g(z), where g is
a bounded Borel function, we get the known occupation formula

[ sx@nat= [ go)Lxe.1)d.
T

R

Let us define the measure py as

ns) = [ [ fOLx(a, at o

where A is any Borel set of R. Since f is bounded, uf(A) < Coy(T) < oo.
The measure p is a finite and its Fourier transform is

fg(z) ::/Reimduf(x):/Reim/Tf(t)LX(a:, dt)dz, ze€R.

By Theorem and Remark applied to h(t,z) := e f(t), we have
ff(z) = [ e#X(®) f(t) dt, so by applying Lemma and since function f is
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a bounded one, we obtain
] = [ FOFEO X0 ds
TxT

= F)f(s)eZrO=rls=) g5 ¢
TxT

< [ Isels@le o asar
TxT
«__©
R
We deduce from these inequalities that
+o0o
el [ iR o] <c
and we conclude that, with probability one,
+oo
| i as <o,
Thus by Plancherel’s theorem we proved that
+oo
/ [E[(LQ@,T))Z’} dz < oo,

and then for almost all x € R,

E[(LQ@,T)V] < .

133

Then, we aim at giving a generalization of Propositions [£.6.2] and [£.6.3] for the

renormalized local time Lﬁ;(-7 T).
Let us state the following two propositions.

Proposition 4.6.8. — For any level u € R, the random variable ng(u) de-

fined by
1
0] (u) == / SOV i1 x(8)—ul<s}
2% /o

§ >0, converges in L*(Q) towards LQ(U, T).

Since function f is bounded and (z,y) = [, 7 Px(s),x(t) (%, y) dsdt is con-
tinuous at (x,y), as an immediate consequence we deduce as above the follow-

ing proposition,

Proposition 4.6.9. — For any level u € R, we have

E[(LL D] = | F)fOpxe xp(uw) dsdt,
TxT
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Proof of Proposition[{.6.8 To prove this proposition, it is sufficient to prove
the following lemma.

Lemma 4.6.10. — For any x,h € R, we have
! ) 2
E{(Lx(x+h,T)—Ly(z,T) < CO(h) < C|hl|,

where 0(h) := (h? + |h\d71)1]{d753} + h?In(1/|h|) T 4zsy, for h sufficiently small
and where the constante C' is locally bounded as function of x.

Remark 4.6.11. — This lemma highlights the fact that since d > 3, the
renormalized local time Lﬁc{(', T') almost surely admits a continuous version as
function of z. .
Taking h(t,z) := f(t)1a(z), with A = Ju — 4§, u+ [ in Theorem we

obtain

1 u+6

n({(u) = / LQ(QE,T) dz.

20 u—0

This implies that

[E[(nj;(u) - LQ(U,T)ﬂ —E [(215 1:6 (Lﬁ((x,T) - LQ(U,T)) dx>2]

1 u+9 2
! f
< — —
RS s [E|:(LX(1',T) LX(U,T)) :| dx

<CH{ — 0.
6—0

That will end the proof of Proposition Let us prove Lemma [4.6.10, O

Proof of Lemmal4.6.10. 1t is sufficient to prove the inequality of the lemma for
x,z+ h not belonging to a set N, such that o1(N) = 0. Indeed, if it is possible
to do so, then we can define L_J;((x, T) for z € N as limit in L?(Q) of Lg((y, T)
as y — x, with y ¢ N and this version of the canonical renormalization of the
ordinary local time will satisfy the required inequality for all z,z + h € R.

By Theorem and Remark applied to h(t,z) := 1, we have
oq(T) = / Lx(xz,T)dz < oo.
R

Now, since f is bounded, we have Vx € R, )Lﬁ((m,T)‘ < CLx(x,T). There-
fore, L. (-, T) € L*(R).
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Lebesgue’s differentiation theorem ensures the existence of a o1-null measure
set N such that if z ¢ N then

1 T+
Y R ! _ !
lim 77; (z) = lim - - L (y, T)dy = Lx (2, T).

So, applying Fatou’s lemma and the fact that function

(‘T7y) — f(s)f(t)pX(s),X(t) (‘T’y) dsdt
TxT

is continuous at (x,y), we get that for all z,z + h ¢ N,
! f 2
E (LX(:U +hT) — LX(:E,T)>

= [E[ygg)(né“ (+h) —nf (x)ﬂ

‘ 1 2 2
Z[E[}g%<25> < /T FO (Ve x (0~ @rhy <8y — Ve x (9)—al<s}) dt) ]

< ) ) {pxs).x0) (@ + h, x4+ h)

—2Dx(s),X(t) (x+h,x) +Px(s),X(t) (, :c)} dsdt.
A simple calculation shows that the right-hand side of the last inequality is
bounded by
1
TxT (r2(0) — r2(s — t))2
X [h2 + {1 — exp(—ah?(r?(0) — r’(s — t))_l)}] dsdt,

(&

where a > 0 is a fixed number and C is locally bounded as function of x.
Lemma [£.6.1] gives the required result. O

Remark 4.6.12. — 1t is interesting to note that Proposition [4.6.§ implies,
without particular effort, that for any level u,v € R and for all bounded
functions f,g: T — R, we have

B[ D). T)] = | (5)o0pxe)xowv) dsdr

To finish this section on the local time, we complete the statement of The-
orem due to Doukhan and Leon([24]) to the renormalized local time.
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Theorem 4.6.13. — Letu € R, a fized level. The following expansion of the
local time LQ(U,T) holds in L?(§2):

Lh(uT) = u
55) L) T(0)<P< T(O))
1 u TS

Proof of Theorem |{.6.15 Let us define the random variable Z/(u,T) as the
right-hand side of that is

2/ wT) = :<o>9”< :<o>>

x Z,j,m(wf‘(fg)) /T F($)Hi(X(5)/v/1(0)) ds

keN

2
Let us prove that E [(Lg((u, T)— Zf(u, T)) =0.
On the one hand, by Proposition @7 we already know that

[E[(Lf u,T)) / F(8)fO)px(s),x (1) (u,u) ds dt.

On the other hand, using Mehler’s formula, we obtain

E [(Zf(u,T))Q] = r(lo)sf( ;(0)>
<30 ( ﬁ> Tfo(s)f(t)<r(;(8)t)>qdsdt.

qeN

And as we saw in the second way of proving Proposition we use [33]
Eq. (39)] to obtain

[E[(Zf(u,T)f] - [E[(L;‘((u,T))ﬂ .

Let us now compute E [Lg((u, 71 (u, T)} :

First for fixed k € N, let us define function hy by hi(t, z) := f(t)Hg(x/+/7(0))
in Theorem [£.6.5] We thus obtain the equality

[ som (X r0) dt = [ L@ ) (a//r0) da
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and then

E[ 1w )27 0. 1)] = :mf( f(o)) Z’;H’“<f<0>>

keN
x/RHk<x/\/r(0)>[E{LQ(a:,T)LQ(u,T)} dz.
Applying Remark [4.6.12] we get
[E[Lf (u, T)Zf (u, T)

N ( >/T fs \/r2 —1r2.s—t)

The following formula can be found in [31], (8), page 804]. For 0 < a < 1,
keNand z € R,
1 _ 2\k/2 oz )
exp(—35(z — 2)°) Hy(az)dz = (1 — « H .
We make the change of variable x = By for § # 0. For 0 < a < 1, 8 # 0,
k € N and z € R, we obtain

\/%/ exp(—3(Bz — 2)?)Hy(afz) dz = ;(1 - a2)k/2Hk<\/1a_ZW> .
We apply this last formula to
fe O
V72(0) — 12(s — t)’
ur(s —t)
\/ )v/72(0) — r2(s — t)
and to
N \/1"2 —r2(s—1t)
r(0) '

We obtain
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£ 0,12/ (0, 7)] = Nlo)go?( f(o)> [ s
1 u r(s —t)|* ur(s —t) .
g%.’f'H‘( r<0>> r(0) H’“(mr@—t)) e

We consider the following equality in [33, (39)]). For 0 < |w| < 1 and
z,y €R,

1 1 —w?(2? + y?) + 2wy
E - a_
2 q!Hq(x)Hq(y)w i exp< 50— w?) .

We apply this last inequality by choosing

r(0)
ur(s —t)

YO s - b))

_ r(s—t) ‘ ’
r(0)

and

getting
E [L;‘((u, 72! (u, T)]

9 U 5 1
_“0< r<o>> “Jra? O =
u?r(s —t)

" e’“p<r<o><r<o> (s t>>) dods

—|(thtw.)]

yielding Theorem O
Now we will approximate the renormalized local time L&(u, T) over T at u, by
an appropriate normalization of functionals of the u-level set of the smoothed
process X;.

4.6.2. Approximation to the length of curves of level set. — Let X :
QO xR? = R, d> 2, be a continuous Gaussian isotropic process of zero mean
and F' its spectral measure. We assume that F' is not concentrated in a zero
Lebesgue measure Borel set of R%.
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We assume that the covariance of process X, say r, is Cz(Rd, R) except at

the origin. Note that this implies that [p. [|2|3 dF(z) = +oc.
We consider regularizations of the trajectories of X by means of convolutions
of the form X (t) := W, x X (t), € > 0, Wc(t) := 2 ¥(L), where ¥ is C?(R%, R)
with compact support, nonnegative, depending only on the norm and such
that [, U(t)dt = 1.

Note that X, : QxR?% — R is still a centered continuous Gaussian stationary
isotropic process and is C?(R4, R).

Let T be an open bounded set of R% and let u be a fixed level. Let also
f:T — R be a continuous bounded function.

The objective of this paragraph is to approximate the renormalized local time
Lﬁ(u, T'), by functionals of the u level set of the regular approximating process
X.. We need some definitions.

Let us define 6, := E[||¢]|,], where € is a standard Gaussian vector of R?.
We will note 7. the covariance of X., € > 0 and by 7 that of X and X, that
is 7(8) (t) := E[X.(t) X (0)]. )
Since X is isotropic, E[VX.(0)VX,(0)!] = pcly, where p. := —88;;(0) for any
i=1,...d and I; stands for the identity matrix in R¢. '

Remark 4.6.14. — Since [, |#||3 dF () = 400, Fatou’s lemma implies that
limg_,0 pe = +00. We then deduce that for € small enough and for all ¢t € T,

the vector (X.(t), VX.(t)) has a density. o
We define the functional
9—1
& (u) .= ft)dog_1(t), &>0.

Ve Jopy
We will show the following theorem.

Theorem 4.6.15. — The random variable §g(u) converge in L*(Q) towards
L_J;((u,T) as € tends to zero.

Proof of Theorem[4.6.15 Proposition [4.6.8|ensures that it is sufficient to show
that

6—0e—0

lim lim E [(gg‘(u) - ng(u>)2] = 0.
Let
2=k (af)’| +E[ ()] - 2E [ w)].
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Propositions [4.6.8| and [4.6.9] imply that
2
lim € [(ng”(u)) | = [ 50w dsari=atw),

TXT

2
Let us consider E [(5! (u))

We claim that assumptions of Theorem are fulfilled.
It remains to show that for any (s,t) € T x T with s # t, the vector
(Xe(s), X:(t)) has a density.

This fact follows from Lemma whose proof is given in [19] Lemma 2|.
Lemma 4.6.16. — 3C > 0, Jeg > 0, Ve < g, Y(s,t) € T x T, one has
r2(0) —r2(s —t) = Cl|s — t|3-

To finish the argument, the Borel-Tsirelson-Ibragimov-Sudakov inequality

(see in [3, Theorem 2.1.1]) ensures in the one hand that

2d
E [(sup HV2X6($)H§S;> ] < 0.
zeT ’

On the other hand, we use the fact that f is a continuous bounded function
on T to verify the hypothesis H7. In this way it is enough to establish that
Vu € R, we have

/ E[[IVX:(8)ll4 [VX() 4 | Xe(5) = Xe(t) = u]
TXT
X Dx.(s),x. (1) (U, u) ds dt < oo,

where px_(s),x.(¢)(+; +) is the density of vector (Xc(s), Xc(t)). The proof of this
last fact can be found for example in |19, Proposition 2|.

The Rice formula of the second order follows from the application of Theorem
[3:3:9] That is, we have

e[ ()] = [ g0
X[E[HVXﬁ(S)/\//Tst VX (t /\//TEHd}Xe(S) = Xc(t) = u]

XPX.(s),X(t) (U, w) ds dt.

Remark 4.6.17. — Note that Yu € R, almost surely

CT X \U (u) = Cr,x. (u).
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To apply the dominated convergence theorem we need an upper bound for
the expression within the integral in last equality. Let us quote the following
lemma cited as Appendix 1 in [19].

Lemma 4.6.18. — Let (Y, Z, X1, X3) be a centered Gaussian vector taking
its values into R242 while Y and Z take their values in R* and X1, Xo in R.
Let us suppose that E[X?] = E[X3] = 02, E[X1X3] = v with o* — 42 # 0, then
Yu € R

ENY 4 1Z1l;] X1 = X2 = u]

1 1
<(E[IYIZ))* (ENZIZ)* [t +40%(0® + )27

In particular if, for all s,t € T, with s # t, we choose Y := VX,(s) and
7 = VX.(t), X1 := Xc(s) and Xo := X (t), thus 02 := r.(0) and 7 := r.(s—1).
Lemma ensures that assumptions of Lemma are satisfied.
Moreover, note that since for all (s,t) € T x T, r(0) + r.(s — t) converges
uniformly to r(0) +7(s —t) > 0 when ¢ tends to zero, so for all (s,t) € T x T,
re(0) 4+ r-(s —t) = C > 0 for ¢ sufficiently small.

We deduce that for all s,t € T, with s #t and ¢ < &g, we have

[FIFO] x E[[IVXe(s)/v/iell g VXe(8)/ Vel | Xe(5) = Xe(t) = u]
XPX.(s),X. (1) (U, u) ds dt

7:(0)u? ] 1

SO (s 02

1
<C——— c YT xT).
s =l

We deduce that
2
lim [E[(gg<u>) } o IOV0
TxT

e—0
T {E [ VX (s) /el [IVX(0) /el g | Xo(s) = Xot) = w]

X Px.(s)x.(0) (s w) } dsdt,
provided that the limit inside the integral exists.
In pursuit of our goal, we use the decomposition given in [61 p. 60|, that is
for 7 := s —t, where s,t € T and € > 0

VX.(0) = & + (X:(0)ae + X(7)8:)
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X (1) = & — (Xe(7)ae + X(0)5e),
where & and £ are centered Gaussian vectors taking values in RY, with joint
Gaussian distribution, each of them independent of (X.(0), X.(7)), such that,
if Vr, stands for the Jacobian of the X, covariance function,

0= ZE(T)VTE(T)
r2(0) — r2(7)
5 o 1O
r2(0) = r2(7)
7”5(0)
r2(0) = r2(7)

Cov(&., &) = —V2r.(1) - MVTE(T)VTE(TY.

Var(§) = Var(&) = —V2r.(0) — VTE(T)V’I“E(T)t

With these notations, we obtain

lim E [(gg‘(u))2] =0;> - f(s)f(t)

e—0
. Vre(s —t)u
<mdell(e - e a)/ Ve,

e

X

)

XpXe(s),Xs@)(u,u)} dsdt.

Using Remark one can show that for all s,¢t € T,

— 2 —
Vre(s —t) 0 and Vere(s —t) 0.
\/'LTE e—0 e e—0
Furthermore,
re(s —t) — r(s — 1),
e—0
SO

lim E [(gg(w)z] = afu).

e—0
Now to finish the proof of theorem, we need to compute the term

E [5! (u)ng(u)} . We have

E[el )] = 55 [ 502

We are going to use the ﬁrst order Rice formula given in Theorem [3.3.3] For
any fixed s € T, the process Y is defined as Y (t) := f(t)1|x(s)—u/<s, t € T.

/CDT FOVx(s)—uj<s doa—1(t) | ds.

T,Xe (w)
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This model is not part of the proposed models but a slight modification allows
us to include it in those studied. As before when we applied the Rice formula
of the second order, we check that the hypotheses making the formula valid
are verified. We obtain

E e (wmf ()] = o / / 0,1 (s)
X [E[HVXa( )/ V1l 1) x (5)—ul<s | Xe(t) = u] X px_qy(u) dtds,

where py_(;)(+) stands for the density of the random variable X (t).
Since function f is bounded, Ve < g9 and Vs, t € T

0 LSO EIVX()/ Vel g Vx5 —ul<s | Xe(t) = u] X px.y(u) < C.

The dominated convergence theorem applies. Using once again Remark 4.6.14
we can show that for s,t € T,

VrE) (s —t)
\/sz-: e—0

Furthermore &) (s — t) - r(s —t). Thus
lim rE[gf / /
< lim {[E[IIVXE( )Nl xs) i< \Xs<t> = u] X (@)} deds

// [H£”d |X(s —u|<5}X u] pr(t)(u)dtds,

where px ;) (+) stands for the density of the random variable X (), and § is a

0.

standard Gaussian vector taking values in R?, independent of (X (s), X (1)),
for all s, € T'. Therefore

lim E[¢/ (u)n}%u)}
// 26 E[T)x(s —“|<5|X = u] X px()(u)dtds

M(//f ()(u,v)dsdt> av.

By using the already mentioned continuity of the function

(z,y) = . Tf(s)f(t)pX(s),X(t) (z,y)dsdt,



144 CHAPTER 4. APPLICATIONS

we finally obtain that

lim lim E [g‘g(u)ng(u)} = a(u).

6—0e—0
This completes the proof of the theorem. O
4.6.3. Rate of convergence. — In the same context as before, and for

technical reasons, we renormalize the functional 5! (u) at point u as follows.
We consider

VI (u) =

-1
/) | F(8) dosr (B2 > 0,

v Cr x./v/re@®

where f : T — R is still a continuous and bounded function and T is an open
bounded set of R
As in the previous section, we can prove that V2 (u) converges in L?(Q) towards

the renormalized local time Lﬁ{ / (u,T). We are aiming at giving the rate
T

(0)

of this convergence.

We will make the following additional hypothesis on the covariance r of pro-
cess X. It is assumed that the covariance can be written as r(t) = r(0) —
12 L(|It]l,), 0 < a < 1, where lim,_,o+ L(z) = C1, > 0, where L > 0 is
even and has two continuous derivatives except at the origin, which satisfy
lz| L'(|z|) = O(1) and z2L"(|z|) = O(1) as x — 0.

Moreover, in case where a = 1/2 and d = 2, we further assume that func-
tion L has a continuous third derivative except at the origin, which satisfies
2| L'(|z]) = o(1), 2*L"(|z]) = o(1) and |23 L”(|z]) = O(1) as z — 0.

The rate will then depend on the value of a.

We will draw largely on the results achieved in [18], where the framework was
the same but in case where d = 1.

We study the convergence of

Z(f,g) = (@) [1H(1/6)]_b(a) /

R

o) (VI - 2,

= e~ [In(1/£)] M VL(F, ),

)
where g : R — R is C?(R,R) and also L?(p(r) dz).
We also assume that ¢’ and ¢” are L?(p(x) dz).
Furthermore, in case where o = 1/2 and d > 2, we suppose that ¢” belongs to
LA(p() dz).
The Hermite coefficients of function g being denoted by c¢,, n € N, we set for
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reR -
Hg(z) :=zg'(z) — ¢"(x) = Z nepHy (z

Thus the following series is convergent,
o0

(86) ZnQn!ci < 00.
=0

Let us introduce some notations and hypothesis.
We define the constants C, and ¢, as

C, = CL/ / ||v—de dvdw
Rd JRd

—c, / B(w) ]2 dw,
[Rd

where ® = ¥ x V¥ is the convolution product of ¥ with itself and

Ca
by = .
2r(0)
The constants C'y and K /5 are
1
Cy = o [ Juwlf[®(w) - 2¥(w)] dw,
2d Rd

and
K. =Cy /R ¥ (w) ], dw.

We denote by ¢, (resp. Ny,) the standard Gaussian density (resp. random
variable) on R™, for m € N — {0} with the convention that p; = ¢.

For k := (ki, ko, ..., kyn) € N and x := (21, 22, .. ) € R™, we set
k| = ky+ky+ 4k, kli=kilkol k) and Hy(z) = [[ Hy,(z;)-
1<j<m

We define the function h : RY — R: for x = (21,22, ...,24) € R?,

h(x) = 07"z, —1=> > a(k)H

q=0 eNd
|k|=q

where for k # 0,

-1
ba_
k!
and a(k) := 0 for k = 0. Note that since the polynomial H, is odd when n is
odd, the summation on g begins at ¢ = 2 since all the indices k;, i = 1,...,d

(87) a(k) = » |2l Hr(2)pa(x) da,
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such |k| = g have to be even.

Also define
*®
20 N ._
)= [ Tl

and if d =2 (and a = 1/2)
A
X3(1/2)°
When o > % we suppose that the process X has a spectral density s. In the
case where o = 1/2 , we will make the assumption that the open set T is a
rectangle.

Asymptotic equivalence symbol = This symbol will be reserved for the asymp-
totic equivalence of real deterministic sequences.

Asymptotic equivalence symbol ~ For a set of random variables X,,, the no-
tation X;,, = op(l) means that X, ﬂ) 0. Furthermore, if Y, is a set of

random variables such that X,, =Y, + OP( ), we will note X,, ~Y,,.
Let us state the following two theorems.

Theorem 4.6.19. — The random variable V(f,g) satisfies
IE[‘/(EQ(fa 9)] = 0(64a =+ 52 11’1(1/8) + 64(1—04)).

Morover:

1. Ifa < 3, a(a) = 2a, b(a) = 0 and the limit of the variance divided by

gla g

0= Zn w2 [ F)f(s) (T(t — 5))n dt ds.

TXT 7(0)

2. Ifa> 1, a(a) =2(1—a), b(a) = 0 and the limit of the variance divided
by (=) s

<‘C)Z 5 e, )

q=2 {=(q— 4)V0

9) 3 . AT
A T
3,0=1

92r —(q—4)
— t— dt ds.
( at,-atj( 5)> °

<[ rore (",

TXT
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3.ifa=1/2 and d > 2, a(a)) = 1, b(a) = 0 and the limit of the variance
divided by €2 is {1 + Uy + U3 + Ly, where {3 is

r(t—s)\" 1 d 2y
ly = C“P Znnlc . t)f(s)< (i(o))> (Z%(t—s)) dt ds,

and {4 1s

liyo
by =2
! <o>< Ci3(1/2) )ZCq g4/

o F@)f(s) <r(i(0)5)>q2 (Zd: <§: (t — s)>2> dt ds.

4. ifa=1/2 and d =2, a(a) = 1, b(a) = 1/2 and the limit of the variance
divided by £21n(1/e) is

05 := a%(2,0)02 </T F2(1) dt> [E[f (X(O)/\/@)} :

Before stating Theorem let us define the following random variable
&. Fort € T, we let &.(t) :=(X(t) — X(t))/e.

Theorem 4.6.20. — 1. If a < %, a(a) = 2a, b(a) =0, we have

=.(f,9) o X(f,9)

where
X(fg)=to [ Hy@L, @ T)ds
=t /T 10 (X0 Vr)g (X(0/Vr0) - " (X(0)/Vr©))) at
2. If a > %, a(a) = 2(1 — @), b(a) =0, we have

=.(f.9) “ ¥ (f.9)

where

d oo k=2
Yi5e) ::_< (CLXd );; k'2<m>

></ Kf()\l—i—)\z—l—"'—i-)\k)
Rdk
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(88)

Jo s
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X Z )‘H(k 1 dZX()‘l)dZXO\Q) . dZx (M),
IIeIly

and where we set for A € RE, X := (XD X® A qnd

/f int g,

and we denoted by (-,-) the canonical scalar product in R

[, is the set of permutations of {1,2,...,k}, dZx is the random spectral
measure associated with X and the integral is an It6- Wiener integral (see
j45]).

Ifa = 1/2 and d > 2, a(a) = 1, b(a) = 0, the random variable &,
converges vaguely to & (see the Section of Appendix@for definition of
the vague convergence) and the random variable Z:(f, g) converges stably
and vaguely to X(f,g) + Y(f,9) + Z(f,g) (see also the Section of
Appendix@ for definition of the stable vague convergence ), where

._ I<1/2 "
(f.g) = 0) /Tf(t)g (X(t)/\/@) dt

1 ,
+ g 109 (X0 gar

with

( /F) dt—llmr/f

the last convergence being stable vague convergence.
Furthermore for all z(+) belonging to L*(T),

e [ s (xm/m) (0t X() = () )

(X@/v/r(0) &) dt,

:N<O;C\1; o (Z (9252 — S ) g’(x(t)/\/@)
xg' (w(s)/@) dt ds) .

4. ifa=1/2 andd =2, a(a) = 1, b(a) = 1/2, the random variable Z.(f, g)

stably converges when € — 0 to N(f,g) (see the Section of Appendix
@ for definition of the stable convergence ), where

N(f.9) = a2, 0o [ rs(x(0/0) ai70).
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and W is a standard Brownian sheet in R2 independent of X .

Remark 4.6.21. — Note that in case where a > %, if we assume that f is
a constant function whose value is one and that the open set T is a rectangle
with the form T = %, Jas, be[, then the function K; can be expressed as
follows

d
K =] [exp(u“)be) —exp(ir®@ayp)] /ix®,
=1
for A := (AW, X@ A ¢ RY,
So that in the very special case where T = introo01¢, the kernel has the
following particular form

d
Kp(\) = H [exp(z’)\“)) - 1} /i)\(f)

/=1
Thus, the corresponding result stated in [2| can be linked to [18, Theorem 2
(iii)]. o
Proof of Theorem[].6.19. We apply the coarea formula established in Corollary

to the Borel set B := T and to the functions h : R4 x R - R, G: T C
R¢ — R, defined by

h(t,u) :== f(t)g(u); G:=
We deduce on the one hand that
[ stV wdu - / £ (Xo(0)/v/720)) VX0 .

On the other hand, Theorem applied to the functions h(t,u) := f(t)g(u)
and to X := X/4/r(0) yields that

/R S, (. T) du = /T FO9(X(0)/v/7(0)

By combining the two previous expressions, we finally get

/f { Xo()/v/7e(0)) IVX(8)]4 - ((t)/m)}dt

X,
re(0)

Thus

Valh) = [ £O0(Xe(0)/V/7e0) VXL (0)/ V)
+ [ 1 {g(X€<t>/m) —g(xu)/m)} a
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=51 + 5.
Thus, we can split Z.(f, g) into two terms
E:(f.9) =& @ n(1/e)] "W + e @ n(1/e)] MV S,
=T +T5.

The proof will proceed as follows.

We are going to prove that E[S7] = O(e*(1 =% 4-£21n(1/¢)) and that E[S3] =
O(e* + £2).
So we can already see that in case where o # %, the term S; only matters
when o > 1/2 and we will show in this case that E[T?] — 3. Similarly, the
term S will only play a role when a < % and in this case we will prove that
E[T2] — ¢1. The case where o = 1/2 is a little more delicate and we will treat
it each time separately.
First let us consider the term Ss.
Let us prove that if a < %,

eT1E[S3] — 41,
while if o = %,
e ’E[S3] — 01+ L3,

Using the Hermite expansion of g, we can write the term Sy as

1= [ 10 {1 (50 ) - 11 (X000

We split S5 into two terms:
= =) —
Sy = ;Cn/Tf(t) {1 o ( r(0) > }Hn (Xs(t)/ 7“5(0)) di+
> | 50 {( ’;ff(?))) 1, (Xe(0)//7200)) — Hy (X(t)/\/rm))} at

=Uy + V5.
We first study the asymptotic variance of Us. Using the Mehler’s formula [20],

we obtain

ny 2
- ) nc? s B Ts(o) M " S
E[U2] _nzl e T><Tf<t)f( )(1 < T(o)) ) ( re(0) ) ad
2 ko 2
_ oonc? _[re(0) (02
=2 ’n(l 7"(0)) <§<r(0>> >
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X FOF(s) <7"(t(6)5)>n dt ds.

TxT Te

Let us state and prove a lemma.

Lemma 4.6.22. — £72%(r(0) — r.(0)) — C4 as € goes to zero.
Proof of Lemma[{.6.22
r¢(0) :/ ¢ (w)r(cw) dw.
Rd

Using the form of the covariance r and the fact that [, ®(t)dt = 1, we
easily obtain

g2 (r(0) — re(0)) = / ®(w)L(e [w] ) w3 dw.
Rd

Convergence follows from that of L, i.e. from the fact that lim, .o+ L(z) =
Cr > 0. O
By writing 1 — 1/7-(0)/r(0) as

) r(0)—.(0)

r(0)  (/re(0) + /r(0)y/r(0)

and by using Lemma [£.6.22] we get on the one hand that

2
el 1 — re(0) —— 2.
7’(0) e—0
On the other hand,

n—1 kN 2 0
ra(O) ’ n2 an nn202 o
<Z<r<0>) ) St ad ) ninen <o

k=0

1—

These arguments plus the fact that f is a bounded function will be used to
apply Lebesgue’s dominated convergence theorem giving the following conver-
gence: Vo in |0, 1], we have

(89) e NE[UZ] — 4.

We are now interested in the asymptotic variance of V5. According to Mehler’s
formula

TxT

E[Vi] = nlc} F@)f(s)
n=1
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re(t—s)\" rE(t — s) " r(t—s)\"
) -2 ——+ dtds.
: [( r(0) ) ( r0 ) T\ :
We divide the integration domain 7" x 7' into two parts, namely Ts(l) and T€(2),

defined by:

T .= {(s,t) € T x T; ||t — s]|; < Me}

€

and

T .= {(s,t) € T x T; ||t — s||; > Me}

where M will be chosen later (in Lemmas [4.6.23| and 4.6.24)).
Let us denote by A. the term corresponding to the domain Ts(l). Our attention

is focused on finding an upper bound for this term. Since f is bounded, we

) ()
() ()

Using the fact that for all s and ¢t € T,

have

(0.9)
1.2
|A| < Czln.cn/T<1)<
n= £

r(t—s)
r(0)

re(t —s)

<1 d
(0) an

)

we easily obtain the following bound

|Ac| < C’<n§:1 n!nci) /TE(”(

re(t —s) —r(t— s)’

+ Ot =) = r(t - 5)|) dtds,

At this stage of the proof, we need a lemma.

Lemma 4.6.23. — 3C >0, 3¢ >0, AM > 0, Ve < &g, V(s,t) € T x T, we
have

sup {’7’(5)(8 —t)—r(s—t)|;|re(s—t) —r(s— t)\}

200—2
< C{f2a“{||s—t||d<Me} +e? s =t “{Hs—tud>Me}}~
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Let us suppose for a moment that the lemma is proved. In this vein we

|Ac| < Cog(T, (Z ninc? )

Using inequality , we finally get
|A | C€d+2a

Thus, we have shown that A. = o(e*® + £2).
Let us proceed to the proof of Lemma [4.6.23

obtain

Proof of Lemma[.6.23. For T := s —t, while s,¢ € T, the difference between
the two terms 7(9)(7) and r(7) is expressed and using that function ¥ is a
density, we obtain

rE(r) —r(r) = /[Rd U(v) [r(r —ev) —r(r)] dv
= [ ¥ [Er) 17137 = 217 = vl I = <0l?] .

Since ¥ has compact support in R?, it is always possible to choose a number
N > 0 such that if |[v]|; > N then ¥(v) =0. Let M = 4N.
Since the functlon L is bounded on a compact set, obviously, if ||7]|, < Me,
then ’r E (1) —r(r )’ < Ce?,
Let us now choose 7 such that ||7||; > Me and v such that |lv||; < N, then
||IT —ev||; = 3Ne. Thus we can make a second order expansion of r(7 — ev)
in the neighbourhood of 7. Using the fact that ¥ is a density function and
in addition is an even function as depending on the norm, we can express

T‘(E)(T) —r(7) as
(90) rE(r) —r(r) =

5 Y(v) x e Vv a—m— (T — Oev) » dv,
2 (ol <Ny e omor

with 0 < 6 < 1 depending on ¢, 7 and v. Now for & # 0, we can express

2
gg(m), fori=1,...,d, as
Ty

0%r e
= ) = 20 a3 L) (Il + 20— 1)2?)

2a—3 2 20—2
+ 2377 2/ (lallg) ((da = 1)a? + ll2)3) + 27 23> L ().
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Since L has two continuous derivatives except at the origin, which satisfies
|z| L' (|z|) = O(1) and 22L"(|z]) = O(1) as x — 0 and lim,_,+ L(z) = Cy,, we
2

can conclude that a—g(:c) = O(||:c|](21a72), as soon as x lives in a compact set.
14

7
We have thus proved that, for 7, v, # and ¢ such that ||7|; > Me, ||v||; < N,
0<6<1ande< e,

o0?r 202 20—2
@(T — fev) = O(||7 — Oev[|7777) = O(|I7[137 ),

since ||7]|372% < 2179 || — Bev||3* as soon as ||7]|; > 4Ne = Me. We can

argue in a similar way for the other terms (1 —0ev), fori,j=1,...,d

T Tj
and i # j. Finally, using that [p, ¥(v) |v]|3 dv < oo, we have proved that for
I7lly > Me and € < e, [ () — r(7)] < Ce2 7|52
Thus the lemma follows for the term &) (7) — (7).
Now to finish the proof of the lemma, we consider the second difference term

re(7) — r(7). In the same way as before, we can write this term as

re(r) —r(r) = /[Rd O (v) [r(r —ev) —r(1)] dv

- /Rd & (v) [L(HTHd) ITlE" = L(llr — evllg) I — ev3*| dv.

The same kind of arguments could be considered by replacing the ¥ function
with the ® function and would give the expected result.

This completes the proof of the lemma. O
Returning to our proof of the theorem, we consider the second term B corre-
sponding to the region TE(Z).

As for the proof concerning the set Tg(l), we bound B as follows.

19y 2
|Be| < C(Zl n.ncn> /Téz)(

re(t—s) —r(t— s)‘
+ ‘T(E)(t —s)—r(t— S)D dtds.
The second part of Lemma [£.6.23] yields the bound
B.| < 052/ It — s]2*2 dt ds.
TxT

And since d — 2 + 2a > 0, one finally proved that
|B.| < Ce2.
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We have shown that [E[S%] = O(e% + ¢2). Using the convergence established
in (89) it turns out that if o < 3,

e1E[S2] — 4.
e—0
Now consider the case where a = 1/2 and prove that
e 2E[S3] — {1 + 15.
e—0
We have already proven that
-2 2
e “E [U2] E) El .
Thus let us show that
-2 2
E
TEV] = b
and that
e 2E[UVa] — 0.
e—0

We first compute [E[Vﬂ. As in the previous part, we split [E[VQQ] into two
parts, A and B.. We saw that A. = O(e9T2%) = 0(£?). Let us examine the
second term B, and show that e 2B, ——0> £3. We have

e—

Be= Y0 [, 1010)

(ret=9N"_(rOe=9\"  (re=9\"] .
!( ) 2( +(0) ) ("o )]d““
Using equality , we obtain

p=3 0 [ 1016 (5)

d
1 0?r
X r(t—s)—i—/ d(v) x €2 E E Vv ———(t — s — fev) | dv
2 Jola<ny - 01,01

i=1 j=1 L
1 9 Zd: Zd: 0%r
-2 r(t—s)—i—/ U(v) x e ViVj——(t — s —fev) | dv
2 Sl <y o ooy
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We expand the terms into each parenthesis using the binomial expansion. We
get

p=3ond [, 505t >(T(1 ))

xi(:)(i)kr”k(t—s) Z/Rd “Jatart (t— s — Ocv) dv

ij=1
: 0?r :
- ; /R Vpivj g 5 (= s —ev)dv | o dudids
.= BM 4+ B,

where the term Bél) corresponds to the term obtained for £ = 1 and the term
BY stands for the remaining ones (k > 2).

Let us deal with the first term Bél) which will give the limit.

5B Z i T D) (r(;(E)S))M

Z/ ) —20( ))v-v-ﬂ(t—s—ﬁsv)dv dtds
Rd “ o0t '

Let us see that we can apply Lebesgue’s dominated convergence theorem. At
this point in the proof, we state a lemma whose proof was demonstrated in

that of Lemma |4.6.23| and which is valid not only for a = % but also for all
ranges of 0 < a < 1.

Lemma 4.6.24. — 3C > 0, 3¢9 > 0, IM > 0, Ve < €9, V(s,
such that ||t — s||; = Me and for all v € R% such that ]|, < %
1,7 =1,...,d, we have

tye T xT,
then for all

2
‘ or (t—s—0ev)| < C |t —s|2272,

8ti8tj
for all 0 <0 < 1.

Thus, taking « = 1/2 and using knowing that f is bounded, we can
bound the integrand appearing in the expression of Bél)/e2 by C ||t — SHCZI.



4.6. LOCAL TIME AND LENGTH OF CURVES OF LEVEL SET 157

Moreover, since d — 1 > 0, we have

(91) L/ It = sl deds < oo,
TxT

All the ingredients are gathered to justify the exchange of the limit with the
series and the integral, which gives

et T 2r(0) &= g r(0)
e
X (t — s)/ (®(v) — 2V (v)) vvjdo | dtds.
i 8t,~8t]~ Rd

To finish with this term, noting that the functions ® and ¥ depend only on
the norm, we finally express the last convergence as

lim QB() ls3.
e—0 ¢

Let us show that E%Bgz) — 0.
e—0

Using the previous lemma, we bound the terms

<&b>x }:Ad %ma( s — fev) dv

k
—9 —s—
Z /d v]at 8t (t —s—0ev)dv
i,j=1"R
k _
by (C |t — SHEI) which is also bounded by (C It — s||;1) X (%)k g
In that way, we obtain the following bound.
) n o\ k C k-1
B@wg 12 MY (&2
<o mad ((7) i
n—k
t—
x/‘\ﬁ—ﬂulT( T atas.
7 r(0)

Thus

i ‘3(2)‘ < C’i%n'c2 z”: <n> <Ce) o
62 : h n=2 " k=2 k M
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n—k
t —
« / = st | "= s,
T r(0)
By making the change of variable k — 2 = £ we obtain
1 Cc \'
— 1@
spelseSue (1) (%)
n—2—/{
1|t —s)
« /T;2> Ie=sll7' | dt ds.

Now for n > 2 we use the bound,

(r2) <=0 (")

5%‘352‘ CEZ n—ln'cZ( ><C€>£

getting

n=2
(t—S) n—2—¢
o ltslt UGE drs
= C’sZn(n — Dnlc?
n=2
N P N L Gl A i
) sl (0] e s.

At this stage of the demonstration, we have to prove a lemma.
Lemma 4.6.25. — For £ small enough and M large enough,

rit—s)| C
— 1
(0) + e <1,

for all s,t € Tg(z).
Let us assume for a moment that the lemma is proved. Using and ,

we obtain the bound

1
2 ’B§2)‘ < Ce.

To conclude, we have proved that in case a = %,

ePE[VF] — L.
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Before going further in the proof, let us show Lemma [4.6.25]

Proof of Lemma . On the one hand, let us notice that for § > 0 small
enough and s,t € T4, such that |t —s|l; < 0, we have

r(t —s) _ r(t—s)
r(0) r(0)
and
r(t—s)  L(||t —sly)
1- 7’(0) - j(o) 4 Ht_SHd
MCy,
Z 0

where we defined C7, := inf s ey { L[t — sllg)} > 0. Thus for s, € 7% such
that ||t —s||; <

r(t—s) C CL c
+(0) _M€>M6<7'(())_J\42> > 0,

for M sufficiently large.

On the other hand, one can choose ¢ sufficiently small so that

{ r(t—s)
sup
{s,teT,||t—s]|4>5}

r(0)
This completes the proof of the lemma. O
Let us now prove that in the case a = 1/2,

e 2E[UsVa] — 0.
e—0

+£6<<1
Mo STS S

Using the Mehler’s formula once again, we obtain
1 r<(0) "
E[U2 V5] n‘c f(s)=(1-
V2] Z TXT )()5< < 7’(0)>>

X 1 [(rg(t— s) ) — <( (¢~ ) )n] dt ds.
e [\V7r(0)y7(0) V7e(0)1/7(0)

Working in the same way as for the terms Us, A, and B, we easily obtain

S [V (anc){g(l_ 7;5(<§)>>}

( rst—s)—r()(t—s)‘dtds>.
TxT
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Using Lemmas |4.6.22 and [4.6.23| inequalities and , we find the fol-
lowing bound

1 .
=2 [ElU2V2]l < C/ {Vottyenrey +2 s = 17" Vo000 | dtds
TxT

< C{ed +6} < Ce =o(1).
For ae = 1/2 we have proved that
e E[S3] —— &+ Ls.
E£—00

Now, consider the term 5.
Our goal is to establish that E[S?] = O(e*=%) + £21n(1/¢)).
For this purpose, let us prove Proposition [4.6.26]

Proposition 4.6.26. — 1. If d — 4+ 4a >0,
1 2
64(1_0‘)[E[S1] e—0 b
2. Ifd—4+4a<0or (d=3 and a = %),
E[S?] = O(£%).
3. Ifd=2 and a =1/2,
1
————E[S}] —> 4.
e21In(1/e) 51l =5 6

Remark 4.6.27. — The proposition highlights the fact that the term S; will

prevail when a > 1/2 or when aw = 1/2 and d = 2. In the case where o > 1/2,
1

cd(l—a)

Parts and [4 of Theorem will then follow. Furthermore, in case where
a =1/2 and d > 2, this proposition implies that

E[S?] l.

e—0

1 2
SEIST]) — o

Proof of Proposition |4.6.26. Let us calculate E[S?].
E[S?) = [ F0)f()E[g(Xe(0)/v/7(0)) g(Xe(5)/v/7:(0))
T<T
X W(VX(1)/\/ii2) H(VX(3)/ /i) | dtds,
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As in the previous section, we divide the integration domain T' x T" into two
parts Te(l) and T5(2). Let ¢1(g) be the integral over Tg(l). Making the change of
variable t — s = ew, we obtain

f(e) = / FO)(t - ew)

{(wt):(t—ew,t) ETXT[|wl| g<M}

X E|g( X () //7(0)) g (Xc(0)/V/re(0)) W(VX(ew) /v/iic)
X h(VXE(O)/\//TE)} dt duw.

Since the function f is assumed to be bounded, we can bound the following
expression. For any (w,t) such that (t —ew,t) € T x T,

F(0)f(t = ew)E g (Xe(ew)/v/12(0)) 9 (X-(0)//7-(0))
h(VX. (ew) /i) H(VX-(0)/ Vo) |
< CE|g?(X.(0)/V/ro(0) ) h3(VX.(0) /o) |
:C[E[g ( /\/rsi)} [h*(VX<(0)/y/122)]
= CE[¢*(MN)] E[h*(Ny)]
< o0,

the finiteness is justified by the fact that g is L?(¢(z) dz).
So we have proved that
l1(e) = O(e9).
We now consider the integral on TE(Q) denoted by /2(g). Since the product h-g
is L2(R4Y g1 () dz), the following expansion converges in this space. For

— 1
z = (r1,T2,...,0q T4p1) € RIL,
(92) h(z1, 29, .., 7a)g(Tat1) Z > bk
9=2 peNd+1
lkl=q

where for k := (k)l, ko, ..., kq, kd+1) S Nd+1, b(ki) = a(kl, ko, ..., kd)ckd+1‘

With these notations, we have

bE) = | FOFS D > > bk)m

q=2 ¢'=2 eNI+1 meNdtl
|kl=q |m|=¢

X [E[ﬁk(Us(t))ﬁm(Us(S))] dt ds,
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where

v = (G

()/\/;Ta, ot ()/\/;TE,..., ()/@,X /\/Ta(o)>'

First of all, let us note that if k,mm € N4*! are such that |k| # |m/, then for
all s,t € T x T, E[Hp(U:(t))Hm(Us(s))] = 0 and the expression above turns
out to be a sum of orthogonal terms in L?(2).

Indeed, to prove this, we need a generalization of Mehler’s formula given
in Taqqu ([59], Lemma 3.2) or in Berzin (|16], Lemma 3.9) via the following
lemma.

Lemma 4.6.28. — Let X = (Xj)i=1n and Y = (Y})j=1,n be two standard
Gaussian vectors in R™ such that for 1 < i,j < n, E[X;Y;] = pij, then for
k,m € N", we have

a”
E[Hk<X>Hm<Y>1=< Y. kmt ] a?.)hmm-
ai; >0 1<i,j<n "
225 aig=ki

22 aig=m;

The previous lemma allows us to write

) = | OS2 3 bRbm)EHRU-(0) Hm(Us(s)] dt ds
€ =2 kg, meNdt!
|k|=|m|=q

/2>Z S S F()b(R)b(m)kimI AW (K, m, s, 1) dt ds,

4=2 [, meNdt1
|k|=|m|=q

where for ¢ > 2 and k,m € N+! such that |k| = [m| = ¢ and (s, t) € T2?,

AD(k,m,s,t) = Z AD(k,m,s,t,a),
a; ;=0
Zj ai,j:ki

20 Qi =m;

where for a = (a;j)1<i j<d+1

2 i, j
782 gi (t=s) 1
Al k,m,s t,a):= Gk
g )= 11 i
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8 i d+1
Te (t—s)
X H ot T 1
1<i<d Viiz/=(0) ady1!
0 Ad+1,5
_ﬁ(t _ S) .

ot;
o1 B
1<5<d He TE(O) ad+1,5°

(o)
7-(0) ag+1,d+1!

Let us see that in case where d—4+4a > 0, we can apply Lebesgue’s dominated
convergence theorem and that
1
54(1_01)62(6) 52.

e—0

Let us fix ¢ > 2, k,m € N4 such that |k| = |m| = q, a := (aij)1<ij<dr1

and (s,t) € TE(Q). Recall that all the indices k;, ¢ = 1,...,d are even and that

(k1 ko, .., ka) # (0,0,...,0).

We want to find an upper bound for 6_4(1_0‘)/1&1)(14, m,s,t,a).

We have to consider three cases.

Case 1. szzl a;j = 2.

In this case, i, jo € {1,...,d} such that a;, j, > 2 or g, jo, 1,51 €
{1,...,d} such that (i, jo) # (i1, 71) and such that a;, j, > 1 and a;, ;, >
1.

82
Since Vi, j =1,...,d, re (t — s)/pe| < 1, an upper bound for
0t;0t;
0?r i
—4(1-a) € (t—
. T |or (e s)m
1<i,5<d
is )
82r, c—2(1-a)
(t—s)
Otiy Ot j, He
or

0%r. g—2(1-a) 0%r.
latioatjo (t=s)) — — | ’atilatjl (t =)

c—2(1-a)
e ) '
Now on the one hand,

0%r, 0?r

(93) (t—s) = / () (t— s — 2v) do,
8752'0({%]'0 ”UHdg% Btioatjo
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and by Lemma [4.6.24] we deduce that

(94) O're (t—s)| <Clt—s|3*?
Oti, Ot , = a
On the other hand, we consider the expression of ..

0%r,

=— 0
1 0*®

= 52/Rd 8—1}%(@)7"(751)) dv

_ —2(1-a) 82@

2«
y aT%(U)L(é‘ [vllg) l[vllg™ dv.

We deduce that
(95) e o).

5_2(1_04) e—0
2 —2(1-a)
‘ 0%r. (t— ) g
Oti, Ot} e
is bounded by C ||t — s||2*72.
To conclude with this case,

Ve (1 )/ (VBN /72(0)

)

Finally,

;. d+1

1

1<i<d
or Ad+1,5 r (t o 8) Ad+1,d+1
x | |57 —9)/(Vie\/r=(0)) X |
; at] TE(O)
1<j<d
is bounded by one.
Wrapping up these inequalities,
1

c—4(1-a) ’A£Q)(k,m78,t7a)‘ <Ct - S||§(a*1) H a il
1<i,j<d+1 7"

Case 2. ijzl a;j = 1.

Note that we necessarily have

d d
Zai7d+1 > 1 and Zad'i'l’j = 1.
i=1 j=1
Indeed, otherwise we would have Z?:l ki =1 or Z;l:l mj = 1, which
cannot happen since all indices k; (resp. m;), i = 1,...,d are even and
there exists at least one index ¢ such that k; # 0 (resp. m;).
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Thus Jig, jo € {1,...,d} such that a;, j, = 1 and Ji1, j1 € {1,...,d} such
that a;, g41 =1 and ag1,, = 1.
As previously

—2(1—a) 827‘5 g
1<i,5<d
in bounded by
2 —2(1-w)
) 0°r, (t— ) €
Otiy Ot j, He
and then by C ||t — s||3* 2,
Similarly,
—2(1—a) 87’5 Gid+1
| 5z, (L = 8)/(Vhev=(0))
1<i<d ! "
or Ad+1,j5 ro(t — g)|%dt+1d+1
[T |22 - sypvmymn| x|l -2
J 7:(0)

1<y<d

is bounded by

ore 2(1-a) 37«5 c—2(1—a)
it /0| | Vo i )/0) Ve

Arguments similar to those given in the proof of Lemma [£.6.24] lead to

Or. 2a—1
t— C |t — o
G- <cle- sl
Moreover, as before, we get the bound 4/ 672;:‘1) < C. Finally, we obtain
the bound
A [ AD to,my s ta)| <Ol -l [T —

1<4,j<d+1 @i j-
4(a—1 1
<Cle=sl ™ I —
1<6,j<d+1 ij:
~ 7]\

Case 3. Z” 1ai; =0.
Note that we necessarily have

Zazd—H 2 and Zad+1g>2-

j=1
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Indeed, otherwise we would have Zle ki =0o0r 1 or 2?21 mj =0 or 1,
which is impossible.

Thus Jig € {1,...,d} (resp. jo € {1,...,d}) such that a;, 4+1 > 2 (resp.
Ad+1,jo = 2) or Jdig,i1 € {1,. . .,d} (resp. dj0,J1 € {1,...,d}), 1o # i1
(resp. jo # j1) such that a;yqr1 = 1 and a;, g+1 = 1 (resp. ag15, = 1
and aqy1,5, = 1).

We proceed as for the other two cases to establish the following bound.

e 0= AW (K, m, 5,1, a)| < C ||t — 5|57 11 !

Qg j!
1<i,j<d+1

4(x— 1
<clt-sl; " ] .

a; ;!
1<6,j<d+1 I

Finally, if we gather the three cases, we have shown that for fixed ¢ > 2 and
k,m € N1 such that |k| = |m| = ¢ and (s, t) € T2,

(q) . 4(a—1) § : 1
Ag (k7m787t) g CHt SHd H aij!7
a; ;20  1<i,j<d+1 7

2 ai,j=Fki
>0 Qi =my

which provides recalling that f is bounded, the following bound

6—4(1—04)

674(1704)

F(6) £ (5)b(K)b(m)klm! A9 (k, m, s, t)’

4(a—1 1
<Ot =slli V) pom) [ kim! >~ [T —
a; ;20 1<ij<d+1 7
Zjam-:ki

22 i =

At this stage of the proof let us state a lemma.

Lemma 4.6.29. — Let X = (Xj)i=1n and Y = (Y})j=1,n be two standard
Gaussian vectors in R"™ and G € L*(R", p,(z) dx), with the following expan-
sion in this space:

For x = (z1,...,z,) € R", G(z1,...,2p) = Z Z g(k)Hy ().

g=0 keN™
|k|=q

Then

ST 1g(k)| |g(m)| E[Hk(X)Hm(Y)] < oo
qzol’ﬁirlflw;q
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In particular, if for 1 < i,j < n, E[X;Y;] =1, then

06 Y X le®llem) Y kml [ <o

a
q=0 k,meN"™ a;,;20 1<i,5<n v
|k|=|m|=q > @i j=ki
22 @i j=m;

Recalling that d —4 + 4« > 0 and applying this lemma to n := d+ 1 and to
the function hg and thus to coefficients b(k) defined by , we get

on ([ = st avas)

SO pwibm) Y kmt I | <

a; j.

4=2 |, meNd+1 a; ;>0 1<i j<d+1 7
|k|=|m|=q > ai5=ki
22 i =

We are therefore able to apply Lebesgue’s dominated convergence theorem.

Remark 4.6.30. — Before doing so, notice that we have highlighted the
following results: for 0 < a < 1,

ta(e) < 054(1_0‘)/ = 4D dg ds.
7
Thus if d — 4 + 4a < 0, lo(e) = O(e?) = 0(52).
Moreover, if d — 4 + 4a = 0, £3(e) = O(e*(= In(1/¢)) and if d = 3 (and then
o = 1), thus we proved that 5(¢) = O(3In(1/e)) = O(e?).
Remember that ¢1(c) = O(e?) = O(?). We have finally proved that in the
case d —4+4a < 0 or (d = 3 and a = 1), E[S] = O(¢?). The proof of
Proposition [£.6.26]2] is therefore complete.
In case where d —4 + 4o = 0 and d = 2 (and then a = 1/2 ), la(e) =
O(£21n(1/¢)), so that E[S?] = O(¢?In(1/¢)). This is the required bound. How-
ever, this way does not give the explicit limit, only an upper bound. We will
therefore have to examine this case separately in order to prove the Proposition
4.6.26H3] °
Let us return to the case d — 4 + 4o > 0 and to the proof of Proposition
We have proven that

im—t ) = [ fOIS S bk)b(m)kim!

e—0 64(1 a) TXT =2 b1
|k|=|m|=q
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X Z lim 8_4(1_0‘)A§q)(k,m,s,t,a) dt ds.
05550 e—0
25 i j=ki
23 @i j=m;

Before considering the four different cases that will give the limit, let us make
some remarks about some covariance limits.

Using the expression for the second derivative of . given in , we easily get
that for s,t € T with s # t and for 7,j = 1,d,

(98) lim

Also for s,t € T', we have
li —s)=r(t—=s).
6m(l) re(t—s) =r(t—s)

In this way and using the convergence given in we obtain

0%r. g~2(1-a) 9 1 0%
li - - -
£50 DL;0t, (t=s)— - (Crxale) ot:0t; (t—s)
and
ore g=(1=a) 1/2 Or

lim t—s
liy G (¢ 0) s = (O
Let us fix ¢ > 2, k,m € N such that |k| = |m| = ¢, a := (a;;)1<ij<d+1
and (s,t) € T x T.

From the above, we have to consider four cases.

i) St s)

— Case 1. It corresponds to situations where:

d
Z Qg5 = 37

',j—l

or g a;; = 2 and g a2d+1+g agy1,j =
t,j=1

or E a;; =1 and E ald+1+g agy1,5 = 3;
t,j=1

or Z a;; = 0 and Zazd+1+2ad+17] =

1,7=1
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Using the previous convergence, we have

lim 5_4(1_°‘)A§Q)(k, m,s,t,a) =0.

e—0

— Case 2. For this case,

d d d
Z a;; = 2, Zai’d+1 =0 and Zadﬂ,j =0.
i=1 j=1

ij=1
This configuration is equivalent to the existence of indices ig,jg €

{1,...,d}, such that a;, j, = 2, ag+1,4+1 = ¢ — 2 and a; ; = 0 otherwise.
With this configuration, we have

lim 5_4(1_0‘)A§Q)(kz, m,s,t,a)
e—0

In this case, we have

| =

k=(0,...,0,2,0,...,0,qg—2)
io
and m = (0,...,0,2,0,...,0,qg — 2)
it
where “2” means that 2 is in position ig.
%0

— Case 3. For this case,

d d d
Z a;j = 1; Zai’d+1 =1 and Zadﬂ,j = 1.
i=1 j=1

ij=1

This configuration is equivalent to the existence of indices ig,jg €
{1, - ,d}, such that Qig,jo = 1, Qi d+1 = 1, Ad41,50 = 1, (d41,d+1 = q — 3
and a; ; = 0 otherwise.

With this configuration, we have

lim 5*4(1*05)145:4)(]{;, m,s, t, a)

e—0
TR G A | (R B/
=(Crx3(a)) (8ti08tjo<t 3)>( 'r(O)(‘?tiO(t s)atjo(t 5)

Xm53ﬂ<dﬁm@>qé
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So
k=(0,...,0,2,0,...,0,qg — 2)
i
and m = (0,...,0,2,0,...,0,qg — 2).
Jo
— Case 4. Here,
d d d
Z aij = 0; Zai’d+1 =2 and ZadHJ =9,
i,j=1 i=1 =1

This configuration is equivalent to the existence of indices ig,jo €
{1,...,d} such that Gip,d+1 = 2, A1y = 2, ad1,de1 = 4 — 4 and
a; ; = 0 otherwise.

With this configuration we have

lim 5*4(170‘)14?) (k,m,s,t,a)
e—0

1 _9 1 or or 2 1 r(t—s)\*"
= Z(CLX?[(OZ)) <_7“(0)8ti0(t_8)atjo(t_5)> X (q_4)!< 7“(0) ) :

So we have

k=1(0,...,0,2,0,...,0,q — 2)
io
and m = (0,...,0,2,0,...,0,q — 2).
Jo
If we combine the four cases, we have proven that
lim s a(e) = [ FOF$)(Coi()

e—0 [—;4(1—O¢ TxT

d
X 2,0,... 2,0,...
2 a(0,..,0,2,0,...,0)a(0,...,0,2,0,....0)
4,Jj=1 1 j

q=2

> 2y r r
+ Z 4(q—2)(q — 2)!03_2 <_628tj(t - S)> <_7'(10) gti (t—s) 0 (t — s)>

= ot;
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» (-@(?;(t _ s>§[j<t - s>>2(r(i(;>8)>q_4} at ds.

Now since for all ¢« = 1,...,d, one has a(0,...,0,2,0,...,0) = a(2,0,...,0),
T

(2

we finally proved that

1
lim S 2(6) = &,
and since £1(¢) = O(e?) and d — 4 + 4o > 0, one can conclude that
1
lim W[E[S%(E)] = L.

This gives Proposition .

To finish the proof it remains to show Proposition So let us sup-
pose that d = 2 and that « = 1/2. Our goal is now to prove the following

convergence:
1
——FE[S?] — 45.
e21In(1/e) 51l =5 6
First we look at the term ¢;(¢) which we have seen to be O(¢2?). So ¢1(g) =
o(£21n(1/¢)).

Consider the second term f¢o(g), which, as we saw earlier, is equal to

lo(e) = /T DS ST SR mKImIAD (k. m, s, ) dr ds,

where for ¢ > 2 and k,m € N3 such that |k| = |m| = q and (s,t) € T€(2)7
AD(k,m,s,t) = Y AW(k,m,s,t,a),

[7%7 20
225 @i, =Fki
20 @i g=m;

where for a := (ai7j)1<i7jg3,

62 (W]
76t4g;4(t7 ) 1
Ag‘I)(kz,m,s,t, a) = H i0lj
i 2 a; ;!
1<7f,]<2 € 2,
or @i,3 or as,;
c(t— 5) ~e - )
ot 1 ot 1
X ¢ | % H J :
1<i< || VHe r(0) i,3* 1<<2 || VHe re(0) as,j:
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re(t—s)\" 1
X .
TE(O) CL373!

Let us fix ¢ > 2, k,m € N3 such that |k| = |m| = ¢, @ := (a;)1<i j<3 and
(s,t) € TV,

We want to find an upper bound for 5_2[ln(1/€)]_1A§q)(k, m,s,t,a).
Applying the same type of reasoning as before, we distinguish four cases.

Case 1. Z?jzl a;j = 3.

In this case, we obtain

1
e ?[In(1/e)] ! ‘A@(k,m,s,t, a)( <Clt—sl et/ [ —
1< j<g 4o
and
(99) /T(2> It = sl3? dtds < Ce.
Case 2. Z?,j:l a;j = 1.
In this case, we get
1
2 n(1/2)] 7 AL (s, a)| < C = sl (/0] T —,
1<4,5<3 @i j:
and
(100) /T<2> [t — s||3* dtds < C.
Case 3. Z?,j:l a;; = 0.
In this case, we have
1
e 2ln(1/2)] " [AD (k,m, st a)| < Cln(1/2)] 7 [T
1<i j<g i
and
(101) / l1dtds < C.
T
Case 4. Z?,j:l ai;j=2and Y2 a3+ 25:1 asj > 1.
In this case, we obtain
1
(1)) A9 ke, m, s, 1,a)| < Clle = sllz 3/ T
ivjr
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and
(102) / |t — 5|32 dtds < C'n(1/e).
7

Let us denote by B(k,m) the following set:

B(k,m) := {a (@i5)ij=1,2,3 E aw—k‘z,g a;; =m;, E a;j = 3 or

,j=1

Za”—lor Za”—OOr Za,j—Zwmh Zalg—i—ZagJ

1,j=1 1,j=1 1,j=1

Summarizing all the cases and using (99), (100), (101), (|102|) and (97), it is
clear that

'masa) | LSS NS ) ) ks

4=2 k,meN3
|k|=|m|=q
X Z ‘Ag‘n(k,m,s,t,a)‘dtds
acB(k,m)
e 1
Clin(1/e)] > b(k)| [b(m)| klm! ) 11 —
=2 k,meN3 a; ;20 1<ij<3 )
|k|=|m|=g > @i j=k;

22 i =m;

Clin(1/e)] ! —0.

To conclude, we have shown that

a2 00 ro(t—s q
(103) 5—2[1n(1/e)]—1£2(e):m o TS (S)Zq’%(it(o)))
e € q=0 c

0?r. 2 0?r. 2 0?r. 2

—(t — 2 t— —(t — dt ds.
. [( Gt ) +2(Grete s ) + (G- ) | aeas
Remark 4.6.31. — This last part of the proof highlights the fact that

e UIn(1/2)] Y28, ~ e [In(1/e)]"2a(2, O)/T ( /\/7>

<[ ( G ) + (v | a
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To obtain the asymptotic variance, we split the set TE(Q) into two sets, Us
and V_ 5, defined by

Us:={(s,t) e T xT:|s—t||l, >}
and
Voo = {(s,0) € TV : ||s — tll, < 8},

where § > 0 is fixed and will eventually tend to zero. The corresponding
integrals will be denoted respectively by L; s(¢) and Lo 5(¢).
On the one hand, using the convergence given in , we know that

epe — Crx3(1/2).
e—0

On the other hand, using Lebesgue’s dominated convergence theorem, it is
straightforward to prove that

2a%(2,0) a8 gz T8\
e—0 (CLX%(l/Q))Q Uéf(t)f( )ZQ‘ q( T(O) )

q=0

x !@Z(t - s))2 + 2<£Zt2 (t — 5)>2 +<?;g(t -~ s)>2] dt ds.

Thus, using once again the convergence given in , we get
e 2[In(1/e)] M ea(e) = Las(e)

In(1/e)Ly 5(e)

= 2020 g
= Cogayp )
. - 2 re(t —s)\"
x/‘/a,éf(t)f( >q:20‘1! q( 7:(0) >

0%r, 2 0?r. ? d%re ?
_ 2 - — :
X [( 8t% (t s)) + <8t18t2 (t S)) —‘r( 875% (t 8)) dtds

Inspired by Lemma [4.6.23| and using the additional assumptions made on the
function L, we pinpoint that for (s,t) € T x T, such that Me < ||t — s||, and
for all 4,5 = 1,2,
0?r. 0?r ‘ £
t—8)———(t—s)| < C——,
‘3tz‘3tj( ) 5tz‘3tj( ) It = sl
which implies that

It = sll3
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Moreover, using Lemmas [4.6.23] and [4.6.22] we can prove that, for all ¢ € N,

(252) 1| < cate-st.

Finally, we also have the following inequality

827’ 2 —92

Using , 1} the fact that Z;il qq!cg < oo and Lebesgue’s dominated

convergence theorem, we easily obtain that

Los(e) = W Zq'c In(1/2)]~ /V F(6)£(s)

x l(gz(t - s)>2 + 2(({;3@@ — 3))2 +<gig(t - s))2] dt ds.

To conclude this section, we have proven that

_ _ _ 24d%(2,0)
= 2in(1/2)) ELSH) = o |9 (X)) | Ut

where

Us(e) :=[In(1/e)]” /Eaf [(6t2(t 8)>2

0%r > 0% 2
P - I - .
+ <8t18t2 (t s)) + < o (t s)) ] dtds

To carry out this proof, let us focus on the term Us(e).

The hypotheses made on function L, allow us to write the following asymptotic
equality, for (s,t) € T x T, and for all 4,5 = 1,2:

?r 2 (t; — :)2(t; — 5;)> 1
—(t— s)> =C? L +o .
(f’%i@tj It — sl It — 513

Furthermore,

sup |f(s) = f(t)| —= 0.
{(s,t)ETXT,||s—t]| ,<8} 40

The last convergence and the last asymptotic equality plus the fact that

ii_lg%[ln(l/a)]l/ [t — s|l52 dtds < (2m)Aa(T) < o0

Ves
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imply that
Us(e) = UV (e) + U (o),
where

UM () = C2ln(1/e)] ! /V F20) |1t - sll3? dds,

and
lim lim ’U(gQ)(s)’ =0.

6—0e—=0

Now we consider 75 := {t € R? : dist(t,T¢) > §}. With this notation we have

Uy (e) = C%( F2(t) dt> [In(1/e)] ™

X (/ Hw||2_2 dw) +W6,€a
{weR?, Me<w],<6}

T 5

where
lim MW&E =0.
6—0e—0
Since
hm[lna/g)}l/ Jwl|5? dw = 2
e—0 {weR?, Me<|jwl|, <6}
and

6—0

li 2)dt = 2)d
m [ s JRECED

we finally proved that

tim =2 {ln(1/2)] E[S?) — WE[QQ (xovr)] ([ o)

= a2(2,0)02 (/T £2(1) dt) [E[g2 (X(O)/m)} = 0.

The proposition ensues. O

Let us return to the proof of Theorem By Remark we already
know that parts and [4] of Theorem follow from the last proposition.
Let us show part [3| of the theorem. Suppose that « = 1/2 and d > 2. We
pointed out in Remark [4.6.27, that in this case, E%[E[S’%] - ly. We also

proved that in case where a = %, E%[E[S%] - 1+ 3.
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So to finish with part [3] of the theorem it only remains to prove that in the
case where o = 1/2 and d > 2, we have

1 1
572”5[5182] ;—0—> 564

We will prove this result in the more general case where a = 1/2 (and d > 2).
First, we compute - = E[S1S9].

E5150] = 5 | F0() x E [a(X0/ /7 0)) hOX.(0)/ Vi)
{Q(Xe )/ Vr:0) —g(X@)/M)}] s

As we did before, we split the integration domain 1" x T into two parts Tg(l)

and T0?. Let us call ¢, (€) (resp. ca(g)) the integral over TV (resp. TE(Q)).

Let us focus first on the first term ¢;(¢).

lc1(e)] < C(E[¢*(N1)])? ([E[hQ(Nd)])%
%[E[{g(&(@/@)—g( 0)/v/r(©)} D L a1
< Ce™? (fE [{g(xg(o)/\/v@) ~ 9(X(0)/Vr(0)) }QD

By calculating the last expectation with Mehler’s formula (see Lemma {4.6.28)),

we obtain

e[ {0/ v0) o (xorvr) )

> r@0) "
=2 AEnl|1 - —L— 0,
2 ( ( "0 n—:«») )7
r@0)/(Vi0)Vr(0)] < 1and 32, é2nt < oo,

So we have proved that the term c;(e) gy 0 whether the dimension d is
E—

since

greater than or equal to two or strictly greater than two.
Let us now tackle the second term ca(g). We obtain the following decomposi-
tion:

eae) = 5 [, F0F(s) [( (1)/v/re(0) ) h(VX(1)/V/ie)

x icn( ( (0)/r(0 )) ) ( /\ﬁ)] dt ds

n=1
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% [ FOSOE o(X:00/V0) X0/ VD)

72

x icn {( TE(O)/T(O))”HH (Xe()/V/re(0)) = Ha(X(5)/+/7(0) ) }] dt ds
n=1

= d1(€) + dg(é‘).

Let’s first look at the first term d;(¢) which will give the limit.
With the same notations as in the proof of Proposition and by applying
Mehler’s formula (see Lemma |4.6.28)), we obtain

1 i (0"
=3 [, I050 Y ¥ b(k)cq<1—< rm)))

q:2 k:ENd+1
|k|=q

x[E[ﬁk(U( Hq<X /\/?)} dtds
= i Z akl,kg,...,kd)ckd+1cq

TE(Q) q=2 keNd+1
lk|=q
1 ( ( ) ) rg t —5) kd“
X —
€ \/
ore ks o, k2 Ore ka
1 8T1(t—8) Tt = (t—s) 8td(t_8) s
el Vitey 7:(0) VHe/ 7:(0) Ve 7:(0)

Let us justify that we can interchange the limit in € with the integral and the
sum.

q
On the one hand, for ¢ > 2, we first bound the term = (1 —< T;((OO))> ) by

ql (1 — T;((OO))). Then taking into account that %(1 - Tf((oo))> — liya, we

q
finally see that % 1-— ( r:((oo))) has an upper bound Clq, for € small enough.

On the other hand, arguing as in the proof of Proposition [4. we know that
for ¢ > 2 and |k| = g, there exists at least one index ig € {1 .,d} such that
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ki, = 2. Thus we have an upper bound for

Or. kL o, k2 Ore ka
o) (") e (r=0)™|
e Vi) | | Vier/re(0) Viiz\/7<(0) re(0)

To conclude, it is sufficient to justify that the following series is finite

Z Z k)| [cql qq! < .

q=2 peNd+1
|k|=q

Here again, we refer to the proof of Proposition and Lemma [4.6.29|which
we will adapt to the new situation.
The following function G is L?(R%!, 04,1 (2) dz), with the following expansion

in this space. For o := (x1,...,2441) € R4TL
G(x1,...,xq41) == h(x1,22,. .., 24)g(T4s1) Z Z b(k
q=2 peNd+1
|k|=q

Also the function H, € L*(R, ¢1(x) dz). Recall that, for z € R,

Hg(x )—ﬂﬂg ZchnH
n=1
Thus
Z > Ib(k)|leq| g! < oo
9=2 eNd+1
|k|=q

So we proved that

¢ .
hm dl (E) — 1/2 <a(27 07 70)) Zcqichqq!

IO = o\ enaam ) 2
r(t—s) =2/ /o 2
) Tfo(t)f(S)< 7(0) ) <;(3tz(t_s)> ) dids
_ 64
=5

It only remains to show that da(e) s 0.
E—
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da(e) = FOF() Y Y blk)eqa!

(2)
c q=2 peNd+1
|k|=q
ore k1 ore k2 ore ka
1 8t1 (t_ S) 3t2 (t—S) %(t_ 5)
X — RO [ S
e | Vr=/7(0) VizA/7(0) Vie/7(0)
k
" re(t — s) -
re(0)/r(0)
or(e) m or©) k2 or©) kd
oty (t =) Ota (t =) Oty (t—s)

| vV VIO | vEe/r(0)

H(t— 5) )k dtds
" <\/rs<o>\/r<o> ree

Still with the same type of arguments as those given previously, and considering
the case where the even indices k;, for ¢ = 1,...,d, are such that Zf-lzl k; >
4, we apply Lebesgue’s dominated convergence theorem and the limit gives
zero. So we consider only the remaining terms for which there is an index
ip =1,...,dsuch that k;; =2, k; =0fori #ip,i=1,...,d and kg4 = ¢—2.
We get

00 d
lim da(g) = a(2,0,...,0) lim HOHODIXT=DY E%
q=2 i=1

e—0 e—0 T5(2>
ore 2
ati(t—s) ( Tg(t—s) )q 2
Vie/1(0) V/1(0)4/7(0)

or) 2

—(t —s) ©) (¢ — a2
Ot ( roft— ) ) dt ds.
Vie/7(0) V7(0)4/7(0)

Let us justify that this limit is zero.
Fori=1,...,d, s,t € TE(Q) and ¢ > 2, we bound the following term
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2
ore

1 (= 5) re(t —s) -
Ae(Qat - 8) =5 oL ( - )
e || Vaey/r(0) | \ V/re(0)/r(0)

or)
e Y ( rO(t — s) )
Vi) | \Vr0)y/r0)

} |

On the one hand, by applying Lemmal4.6.23| we can bound ‘re(t —5) =&t - s)}
by Ce? ||t —s|;'. On the other hand, using arguments similar to the one

2

ore or(©)
oL, (t—s)— ot (t—s)

re(t —s) —r&(t — s)‘ +

<Ci{(q—2)

given for prove this lemma, one can show that if we let 7:=1¢ — s,
1 or. or®
€ ( ot; (T) - ot; (7)

- [ @) - vw)x
{llvllg<N}

with 0 < 0 < 1 depending on ¢, 7 and v.
This equality involves two things. The first is that

0%r

1 UJW@TJ(T — QE'U) dU,

j=

can be bounded by Ce ||t — 5||gl.

€ 6ti e—0
¥ are even functions.
Finally, we collect the following facts

A(q,t —s) < Cq|t—s|;', and A(q,t—s) — 0.

e—0

()
The second is that 1 or (1) — or (T)> —— 0, since the functions ¢ and

To conclude, using that > > |b(k)||cqlqq! < o0, we deduce that

q:2 keNd+1
|k|=q

oo

22 |lcg—2] |cq| qq! < 0.

q:

Moreover, since d > 2, we know that [ .||t — SHEI dtds < oo.
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All the ingredients are gathered to apply once again Lebesgue’s dominated
convergence theorem, leading to the required limit:

lim dg(&) = 0.
e—0

That complete the proof of Theorem [4.6.19] O
Let us now prove Theorem [4.6.20}

Proof of Theorem [4.6.20. We begin by showing part [I] of the theorem. So
let us suppose that a < % In this case we have seen in the proof of Theorem
that the random variable Z.(f, g) is equivalent in L?() to e ~2%Sy, itself
equivalent in L?(Q) to e~2*Us,, where

Uz = icn/Tf(t) {1 —( 7;8(((;)))> }Hn (Xa(t)/\/rs(0)> dt.

Let us see that the random variable e 22U, is in turn equivalent in L?(Q) to

the following random variable X (f, g).
X(f,9) = oS e /T £ Ho (X (6)//7(0)) dt.
n=1

The proof is very similar to the one given to prove that 5*40‘[E[U22]
tends to ¢;. It comsists in using Mehler’s formula and the fact that

5‘20‘(1 ) /r(O)) —— o and that Y32, nln?c2 < o,

E—
This being so, let us recall that the function H g was defined in the introduction
by,

o0
Hg(x) = zg'(x) — ¢" () = Y ne,Ho(w).
n=1
Thus the limit random variable X (f,g) can be expressed as

X(19) = b | 10H9(X(0)/Vr0) at.

By applying Theorem to the function h(t,x) := f(t)Hg(z) and to X :=
x/4/7(0), this random variable can also be expressed as

X(f,9) = la /R Hy()L, ol T) do,

r(0)
which is the required result. This ends proof of part

We shall now tackle the proof of part |2l Let us suppose that « > %
We have seen in Theorem 4.6.19|that the random variable Z.(f, g) is equivalent
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in L2(Q) to Ty = e 21726 | thus
Es(fv g) = T17

where
=720 [ (09 (Xe(0/v/re0)) VXL (0)/ Vi) dt

and recall that for = := (1, 29, ...,24) € R%,

h(z1, 2. 2q) = Y Y a(k)Hy(z)

9=2 keNd
lk|=q
while coefficients a(k) are defined by . Thus, to study the convergence of
Zc(f, g) it is enough to consider that of T}.
Let us define the following random variable:

Wetg) =207 [ 10900/ /7)) a2 )

where

ha(z1,z9,...,2q) := Z a(k)Hy(x)

It is almost obvious that [E[(Tl - We(g))Q] = 0. Just look at the way we
e—
showed that E[T?] - 9, to see that E[W2(g)] - ly and that
E— E—
E[TWe(9)] — £2.
e—0

Thus to study the convergence of T} it is enough to consider that of We(g).
We have

d
We(g) =a(2,0,...,0)> e 217
7j=1

/f /\/7)H2<atj /\/lTe>
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0)Y " W (g)

j=1
We fix j € {1,2,...,d}. To simplify the notation, we will study the asymptotic
behavior of W )( ) Given the form of the assumed limit, this will be sufficient

since the convergence will take place in L?(€). Using the Hermite coefficients
of the function g we obtain

W) (g) = e~20-2) /T £(t)

X ickQHk2< /\/"“57) H2<
k=2

Let us justify the interchange of the sum and the integral. This is a consequence

)/ Vi) .

of the following facts. On the one hand, let us define the Cauchy sequence
(Dy)n in L2(Q).

N
Dy = kZQCk—z/Tf(t)Hk—z /\/7> Hz(

On the other hand, defining in L?(¢(x) dz),
N

gN =9 — Y ckaHi o,
one has

E[{ [ s (X0 v/70) (o) v ) }]
<) [ f2(t)[ 4 (et 3 (v )| e
1) ( [ 7 oa) s (x. 0 vrm)] |13 G0/ ) |

= 2\(T </f2 dt>||gN||2¢—>0

while [|-||, , represents the L*(R, ¢(x) dr) norm.
Finally, we obtain

Wi(g) =273 "oy

)/ Vi) .
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X/Tf(t)Hk2 /\/7”67> H2< /\/l78>

Denoting by dZx () the random spectral measure corresponding to X, U the
Fourier transform of ¥ and dZ.(\) := ¥(e\) dZx (), we have the following
representation for W) (9).

W) (g) = 72(1704)0007 . A0 47, (A
(9) =2 kz2k2/Tf<> (ﬁR >>

1 Ny
H. iNDerht qz /\> dt,
2(\/M€ /[Rd =)
where we noted \ := ()\(1), A N@ )\(d)).

For (A\,t) € R? x T, let ng) and wé‘j) be

, ) NI
(J)()\ t) = 1(0) ez()\,t>’ wéj)(A7t) — Z\jiez(k,t[
Te He

The functions w%j ) (,t) and w(] )( ,t) are orthogonal with respect to the measure
~ 2
\Il(s)\)‘ s(A) dA, where we recall that s is the spectral density of the process

X. Thus we can use the It6’s formula for the Wiener-Ito integral (see [45],
Theorem 4.3, p. 37), obtaining

(9) g9) = ZTIEj)(g)
k=2

where
©)) a) W)
Tk] () :=¢ —2(1- Cl— 2/ f(t) 7 /de Z W )\1, (H(g))o\%t)
TIElT,
. .wg;(k))@k, ) dZ.(\)dZ(Ns) ... dZ-(\g) dt,
with
1 n<k-2
n)=
¢n) {2 otherwise
and where IIj is the set of permutations of {1,2,...,k}. Thus
. B —2(1—a) 1
Téj)(s):— 2 - Kp(Ar+ A2+ + Ag)

(O e R

x Z )‘H(k: 1) H(k; dZ.(A1)dZ.(A2) ... dZ.(A\x) almost surely,
TeTl,
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where Ky is given by .
Since by we know that

He 2
20w oo Cxale):

to obtain the asymptotic behavior of T; k(;j )(5) it is enough to consider the con-
vergence of the term below. Define

€) Ck—2 L
M (e) == — KA+ X4+ A

X Z )‘H(k: DA 42 (A1) dZe(A2) - . dZc(Ar).
IIelly

The second moment of this random variable is
E|(MP) R L. YR
EE) T )R 2R Jga TV g
(4) (G) () )

XD M M M- M s AD)s(A2) - s(Ak)
TIell, Telly
~ 2~ 2 - 2

x‘\IJ(s)\l)‘ ]qj(m)‘ ...‘\I!(s)\k)‘ A dha. .. diy.

At this stage of the proof, we must state a lemma whose proof is given just
after the proof of the part [2] of the theorem.

Lemma 4.6.32. — Let (u.) be a sequence of finite measures in (R)F such

that their density He(j) with respect to the Lebesgue measure in (RT)* can be
written as

HI (A, gy M) o= (KA + Ag 4+ M)
<y )‘H(k: 1) jk:) (jgk—U)‘%f()k) (A1)s(A2) ... s(Ak)
Mell, Yell,

< Jaen)| [ien)| - [Fen)|

Then e m p, where  is a finite measure in (RY)* with density HY) with

respect to the Lebesgue measure in (R)* given by

H(j)()\l’AQ,..., ):’Kf()\1+)\2++)\k)|2
) () (4)
Z Z )\H(k 1) I{(k)‘ T(k— ))\ Y(k)S s(A1)s(A2) ... s(Ak).
HEHkTEHk

It implies that



4.6. LOCAL TIME AND LENGTH OF CURVES OF LEVEL SET 187

lim H9 N Aoy AR dd dag ... d)y,
e—0 (Rd)

= - HY (A, A, ) dAdAg .. d)g.
R

Suppose that this lemma is proved. Let us define

) 9 1
M) = -2 m/wfffulﬂﬁwmk)

(o)

XD )‘H(k A dZX(Al)dZX(&) - dZx (k).

This It6-Wiener integral is well defined since by Lemma [£.6.32] we have
2
@ m)> Cp—p 1 )
E|{M;(0 = ——— HY (A1, A2, ..o, A k) dArdAg ... dA .
[( k ( )) } (T(O))k_Q K (A1, A2, Ak) dAp dAg <00

Furthermore

(104) lim E [(M(j)(e))Q] _E [(M,E”(O))Q] .

e—0
Consider now

C—2

(\/r=(0))F Qf i

< M M VEODV0) - V5B (A B(eX) . T(eNr),

HEHk

()\1 + X+ /\k)

Dlij)(€, )\1,)\2,. . .,/\k> ==

and

Cl—2 1

<\/<>>k2f e
X3 A M VEODV5(00) - v/5 ().

IIelly

D0, A1, A, -, M) = — (A + A+ 4 Ag)

, 2
On the one hand the convergence appearing in ((104) means that HD,(CJ )(5, )H2

in L2 with respect to the Lebesgue measure in (R?)*.

converges to

. 2
D0, )|,

On the other hand, the random variable D,E;j )(5,-) converges pointwise to

DY(0,) as e — 0. Lebesgue th implies that | DY (e, ) — DP(0, )| £
2 (0, . gue theorem implies tha o (e, ) 20, —=
2 =0

0 in the L2norm with respect to the Lebesgue measure in (RY)¥. That is
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MD () Dy A1) (0) and finall 0 d that
i 6):6% "/ (0) and finally as ¢ — 0 we proved tha
1) () O, 706)
where .
() ()
79(0) := MY (0

We will now prove that

—~ . o0 . LQ(Q) > .
W9(g) = > 1) =25 S 1 0).
k=2 k=2

[E[(Wgﬁ(g)ﬂ - 2( 1(a)>2§: (k —2)l}_y

Crx3
)
X ) f(s rt—s)\" 1 ﬁt—s ey _qyk2t
frror (U )( o >> (-1

0~ (k—1)
0?r

J

A similar argument gives the result when the sum begins with N + 1. Using
convergence given in (105]) this implies that

[o¢] 2 o

;%EK 3 T,E”(@) } - ¥ [E{(T,@(O))Q].
E=N+1 k=N+1

And since > ;2 o E [(T,gj)(()))g] < 00, then

00 2
T T ) _
(106) Jim g%[E[( > T, (5)> ] =0.

k=N+1

On the one hand
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0o 2 N 2
C{[E ( > Tkgn(e)) ] +[E{<Z (T]@(g)_T’gj)(o))) ]
E=N+1 k=2

(5 )]

and using once again convergence given in ([105]) we obtain
k| (S (70 o)
- Doyl
limE <§ : (Tk (e) = T (0))>

ofm(5 )] (£ 0]

On the other hand, since Y 72 5 E [(T,g”(())) } < oo and E {T,gf)(O)Tlg)(O)} =0
for k1 # ko, we deduce that

0o 2
(107) N@ [E{( Z Téj)((])) ] —0
k=N+1

Using the convergences given in ((106]) and (107)) we finally obtain

B E v o))

k=2

T T (4) T () _
<C{]\}1_rgogl_r>r(1)[E|:< E T, (6)) ] +]\}1_I}C1>O[E|:< E T, (O)) ]}0
k=N+1 k=N+1

. : 2
We thus proved that lim._,o E [(ZZO:Q <T,§j)(s) - T,gj)(O))) } = 0. Thus

L? Q)
e—0 ZT
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d oo
L2(Q)
—>a T £ 9).

That yields item [2] of the theorem.

Remark 4.6.33. — 1t is obvious using Proposition that T7 converges
in L2(Q) to Y (f, g) in the more general case where d + 4a — 4 > 0. Thus, the
last convergence prevails in the particular case where « = 1/2 and d > 2. e

Proof of Lemma|4.6.32.  Let xe(y1,72,--.,7%) be the Fourier transform of p.
in (R9)%. That is

Xe (V15725 -+ Vk) ::/ et gihein2) otk )
Rdk

2 (4) () ) (4)
XK+ 22+ AP D0 D AT ) A M M)
I, TEeIl,

~ 2|~ 2 ~ 2
><s()\l)s(/\g)...s()\k)‘\I/(s)q) ‘\Il(m)‘ ...‘\I/(e)\k)‘ A ... A\

:/ AL ) piA2,72) ik, k) F(b) f(s)etPatret A t=5) 4y 4
Rdk TxT
<Y T )\(J a % m“?) (A)s(A2) ... s(hg)
Ielly, Telly

X ‘\IJ(E)\I)’ ’\If(a)\g)‘ ‘\I/(E)\k)‘ dA\pd)s ... d)\s
= f(t)f(s)/ ei()\h’71+tfs)ei(/\2,72+t,s> o ei<)‘k,'Yk+tfs>
TxT Rdk

<> A A A e Ay ()5 (Na) - s (k)
IIell, Tell,

~ 2 ~ 2 ~ 2
x‘\I/(E)\l)’ ’m(m)‘ ...‘\I/(s)\k)‘ A ... dAgdids.

We have to consider three cases depending on the permutations that appear
in the last expression.

Case 1 For two different integers, the permutations are the same. We can sup-
pose, without loss of generality, that II(k) = Y(k) = 1 and II(k — 1) =
Y (k — 1) = 2. The integral is then

f(t)f(s) / ei()\l,71+t—s)€i<A2,72+t_5> y .ei<>\k7’7k+t—8>
TxT Rdk

(A (A9 s)s(he) - s()
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~ 2|~ 2 —~ 2
x)\y(m)’ ‘@(EAQ)) ...’\IJ(sAk)’ A\ s ... di dtds

d%re 0%r.
— Tfo(t)f(S) (atg(’ﬂ +t— 5)) (87%(72 +t— 5))
Xre(y3+t—5)...re(ye +t—s)dtds.

There are 2k!(k — 2)! such cases.
Case 2 The permutations coincide for one index and differ for the other two

indices. We may assume, again without loss of generality that, II(k) =
Y(k)=1,1I(k—1) =2 and Y(k — 1) = 3. As before the integral is

27’5 Te
/T><T @) f(s) <8atj2(71 +t— s)) <gtj (2 4+t — 8)>

£

0
X <a;(’73+t—s)> re(ya+t—s)...re(y +t —s)dtds.
J
There are 4k!(k — 2)!(k — 2) such cases.
Case 3 All indices are different. We can suppose that II(k) = 1, II(k — 1) = 2,
T (k) =3 and Y(k — 1) = 4. The integral is

[ 1050 (GEenri=9) (GEoert-9) (Grtare-9)

ore

X <%(74+t—s)> re(ys +t—s)...re(y +t—s)dtds.
j

There are k!(k — 2)!(k — 2)(k — 3) possible cases.

We will consider in detail only one integral, that corresponding to the first
case, that is

82T€ 827“5
LE(’Yla’yZ’"'?’}/k’) = f(t)f(s) 3 (’yl+t—s) 72('}/24‘75—8)
TXT ot; ot
Xre(yg+t—5)...re(y +t—s)dtds.

We will prove that L.(-) converges uniformly on k, where « is any compact set
in (RY)*, as e — 0, to Lo(+) defined by

*r 0?r
L0(71>’727"'77k) = f(t)f(S) ((9152(71 +t—8)) ( (’)/2—|—t—3)>
J

TxT 871512
xr(ys+t—s)...r(y +t—s)dtds.
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Since f is bounded, we have

’LE(PYl?’YQa s 77]6) - L0(717727 s 7716)’

9%r 9%r
gC O k—2 3 t £ t—
Lo | GGt
O%r 9%r
—ﬁ(’n—i-t—s)ﬁ(’yg—kt—s) dtds
J J
9%r 2y
+/ camt+t=s) |z +tt—s)|lre(ys+t—35)...re(y +t—5)
TxT 8tj 8tj

—r(ys+t—38)...r(y+t—9)| dtds}

The first integral above is bounded by

0?r. 0?r 2r.
C — t—8)— —5 t— — t— dtd
{ LBt gt =9)||GEm -9 as
2 2 2

At —s)| | S+t — ) — o (ya+ 1t — )

+/ o dtds
TxT

ot 3
2 ) b
<cC / 3 e (o ] 2@)) dv
2 2
0?r, 0%r
X {/K<80]2 (v) — 81;]2(U)> dv] ,

while the second integral is bounded by

ot

2,. 2
Cx sup |re(vs)...re(vg) —r(vs)...r(vg)| X /K<((;)2(v)> dv| ,

{v3,..v €K} J

where K is a compact in R
We have seen in the proof of Proposition [4.6.26| (see (98))) that for v # 0,
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Moreover, we have emphasized (see (94))) that for v € K and for j = 1,...,d,
[v]lq > Me,
0%r,

200—2
S ()| <ClolF?.
J

(v)

Moreover, a simple calculation shows that when [jv||; < Me, we have

2
0“re
2
8vj

202
< Ce” .

(v)

2

0 _ .
Furthermore 8—2(1}) = O(HUHZO‘ 2), for any v in a compact set.
v

J
Now, recalling that o > %, we have d +4a — 4 > 0.
These arguments justify the use of Lebesgue’s theorem which implies that

0?r. 0?r ? 4
/K 81)]2- (v) — a—U?(U) v 0.

Therefore, the two terms tend to zero as € — 0. Thus lim._,¢ x.(+) is continuous
on (R%)* and in particular at point 0 of (R%)*. Therefore, there exists a finite
measure p such that . — @ and, by Levy’s theorem, pu. — pu weakly.

This yields the lemma. O

So to finish with the proof of the theorem, it remains to prove items [3] and
4l
Consider the proof of part 3| of the theorem. We suppose that o = 1/2 and
d> 2.
Remember that we defined the random variable & as follows: for t € T,
&(t) == [X(t) — X(t)]/e, T being an open rectangle.
Also remember that g” belongs to L*(p(x) dx).
Finally, to finish with some notation reminders, we defined the constant K /o

by:

K, =Cp /[Rd Y (w) [Jw|q dw.

As already seen previously, we have split the random variable Z.(f, g) into two
terms,

EE(f?.g) = Tl +T27

where

7= = [ 09(Xet0)/3/re0) VX0 V)

e
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and

1

=2 [ 10 {a(x0/ V@) - o (x 0/ Vi) } at

eJr
: L*(Q)
We know using Remark 4.6.33| that T} — Y(f,9).

E—

Thus the random variable Z.(f, g) is equivalent in L2(Q) to Y (f, g) + Tb, i.e.

Es(fag) = Y(fa g) + T2-

Let us look at the term T5.
Since g is C%(R,R), Vt € T we can write

g(X-0)/V/re0) - 9(X(0)/ V7))
:(X€<t>/¢r? - X(0)/Vr0) g (X(0)/Vr(0))
+ (X0 (/)
<[ (X(t)/m X0/ V/r20) — X(0)/V70)) ) du

We split the random variable X (t)/+1/7:(0) — X (¢)/+/r(0) into two terms as

follows:
_ . re(0)
X.(t)/ OO = ( 0 ) X0+ 7Z 60,

With this decomposition, we then split T5 into three terms thus obtaining

Ty — rl( ( / )/f (t)/1/r(0 )dt
*.ﬁ«g(o)/:rftg ”F>§€t «
2
1 L, [0 e
w2 f f(t)< 7«5<o><1 r<o>>X<t>+ %(ofs“))

x/olu—u (X (0)/V/r(0) + u(Xe()/v/7(0) - X(8)//r(0)) ) dudt.

Let us define the terms below:

n?:=E [(Xf(t)ﬁX(t)ﬂ —r iy = 2r(0) (i{(lo/)? - 61/2) ,
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since Ky I8

_ i (7O =r(0)
K,»=Cp /Rd U(w) [|wl||; dw = gg%(g .

With this notation, we introduce the random variables Z. and W,(t, u) setting
for all t € T and Vu € [0, 1]

and
We(tu) 1= X(0/7/r(0) + u(Xo(0)/V/70) - X(0)//r0)) = N (05 02(w),
with v?(u) := 2u?c; — 2uc: + 1, where

r©) (0)

O0<c.:=1-— 0.
= Jr0)/ra(0) =0

We obtain

R Y r(0) , .
o= W(l T(0)> | roxwg (xo/vio) a

1 /
_,_\/7/1’(25)9 (X(0)/v/r(0)) &(t)

Tg”( /f /1—u W (¢, u)) dudt

LT /ftHth / (1 — w)g" (We(t, w)) dudt

re(0)

. re 2 "

" r:(0) € ( \/7> /f £)X( / w)g" (We(t,u)) dudt
2 fe 0 1

M) (1 - M) /Tf(t)X(t)ée(t)/O (1= w)g" (We(t,u)) dudt.

Let us now show that the last three terms converge in probability to zero and
that the third term tends in L?(Q) to

f(g) /T F(t)g" (X()/v/r(0)) .




196 CHAPTER 4. APPLICATIONS

Note that this last term is

(T -a) [ st (x001 @) a

Let us start with the last convergence proposition.
Since n? — n% /o1 We compute the second order moment of the following random
variable minus its supposed limit, getting

[{/ fl / u)g” (We(t,u)) dudt — / £() ,, (75)/\/@) dt}2]
- /TXT F®1 () /[07 1]2(1 —u)(1—v)

<E [(g'%vvg(t,u)) 9" (X0/vr0))
X (g"(Wa(s, v)) —g" (X(s)/\/@)ﬂ dudv dtds

< c( / 1 (& [{s0700.0) o (x0)/v70)) }Q}f du>2
<o [ e[{ro.m -y (xovm)} ]

Let us justify that Lebesgue’s theorem can be applied. On the one hand, since
2

g" is L*(p(x) dz), it trivially follows that E [{g” (X(O)/\/r(()))} ] <C

On the other hand, using that 1 < 1—1c. <v2(u) <1, Vu € [0, 1] and ¢ < &,

we obtain that

(108) E[{g"W-(0,u)}’] < CE[{g"(N)}*] < C.

So we can interchange the limit in € and the integral. Therefore it only remains
to show that Vu € [0, 1], one has

(109) ;%E[{g”(w (0,u)) — ( /F>} ]

To do so, we will apply Scheffé’s lemma. Let u fixed in [0, 1].
First, note that W.(0,u) almost surely converges to X(0)/4/r(0) and
since g is C?(R,R), we get that ¢”(W.(0,u)) almost surely converges to

g'(X(0)/\/r©).
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Using that 3 < vZ(u) <1 and that v?(u) - 1, we have
e—

E[{o0v.0.0))"] — | {o (xovmm) V]

e—0
All the ingredients are gathered to apply the Scheffé’s lemma. We conclude
that ¢”(W.(0,u)) tends in L?(2) to g” (X(O)/\/T(O)) which is the required
result.

Let us now show that the last three terms tend in probability towards zero.
Consider A;, the first term of the sum.

2
_ 11l [ oy [ L O
A= r8(0)5<1 \/E) /Tf(t)X (t)/o (1 —u)g"(We(t,u)) dudt.

Since 1 (1 - TE(O)) —> {19, it is only necessary to prove that the random
€ 7(0) ) c0

variable .
FOX*) [ (10" (Wt ) duds
T 0

is bounded in L(Q).
Therefore we are bounding the following expectation:

e || [0 [ (- w0 auar|

1
0

1
< C/o E[|X2(0)g" (W-(0,w))|] du

< C(E[x*(0)))* /01([E[{g"(m(o,u))}QDé du
<C,

the last bound is follows from (|108)).
Consider B, the second term of the sum.

"'5( T(O)

2 1 _[re(0) ! o o)) du
(1 r(0)> /T FOX B Z() /0 (1= w)g" (We(t, u)) dudt.

2 ([0 ! D o)) dug
Be= (1 ) | roxweo /0 (1~ w)g"(We(t, ) dudt

1 r=(0)
<]_— T(O))QO and ngmnl/g
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it is sufficient, as for the previous term A., to prove that the random variable

/f /01(1—u)g”(W€(t, u)) du dt

is bounded in L'(€). As before we bound the following expectation.

[E[/Tf(t)X(t)Zs(t) /01(1—U)g"(Ws(tU))dude

<o) EZo)* [ ([t mo.m)])
<C.

Let us consider the last and more difficult term. Since n? — n? J2» 1t suffices
to prove the convergence to zero of the following term C..

1
C. = /T (O (Z.(1)) /0 (1~ u)g"(We(t, w) duds
== DE + Fe>

where

D. = /T F(8) Ho(Z (1)) /01<1— W) (9" (Welt,w) = ¢" (X (0)/v/7(0)) ) duat,
Po= /T P Ha(Z(0)g” (X (6)/\/7(0)) dudr.

Let us first consider the term D,.

E[|D.]] < C(E[HE(Z-(0))])?

></01<E[{ (W0, u)) — o (X /F)}D du— 0,

The last convergence is a consequence of (108)) and (109). Finally, it remains
to consider the term F. for which we will prove that E[F?] tends to zero with
e. So let us compute E[F2].

E[F] = OIS [Hz(Z (t ))g”<X(t)/\/@>
xHy(Z(5))g" (X ()/v/r(0)) | dtds.

We divide the domain of integration 7" x T into two parts, namely T(s(l) and

T = {(s,) €T X T : ||t — 5|, < 6}
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and
T = {(s.) €T x T+ |t = sy > 6)

where § > 0 is chosen such that

sup {lr(t—s)/r(O)} <p <1
{stGTHt sllg= }

The corresponding 1ntegrals are denoted by fz M) and fs(2)
First, we bound the term fe
Using the fact that ¢” is L*(¢(z) dx), we easily obtain that for all s,t € T,

(110) ‘[E[HQZ ( /\ﬁ)H2 ( /F)”
< Eiz.0)? ({7 (X<0>/ v)}]) <e.

In this way, we obtain the following bound
’ < Con(TV) < €67,
(2)

We are now interested in the second term fz
Using the bound given in (110]), we can apply Lebesgue’s dominated conver-
gence theorem and interchange the limit with the integral.

Let us therefore fix a point (s,t) in T(2) and prove that,

lim E[ H(Z (1) (X (5)/v/r(0)) Ha(Z:(5))g" (X (5)/v/7(0)) | =

thus achieving our goal. We compute the last expectation:

B Ha(Z:(6)g" (X()/v/r(0)) Ha(Ze(s))g" (X (5)//r(0))]
iicqu kE—1)¢(6—1)

k=2 (=2
X E[ H(Z:(0)) Ha(Z:(5)) Hi2 (X (0/V/r(0)) Heos (X(5)/7/r0))]

By writing Mehler’s formula [20] and using the bound

E[X(0)/V/r(0)- X(5)/VrO)]| <p < 1,

it is easy to obtain the following upper bound

E[H2(2.(4) Ha(Z()) Hea (X (0)/ /7 (0)) Homs (X(9)/3/70)) ]

<C{(k=2)(k = 3)(k = 21" gy + (k= 210k — 9" T4y
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(=2 = Dp PN pamty |-

Thus, using Holder’s inequality we get

DO lenedk(k — 1)e( = 1)]

k=2 (=2

E[H2(2.(6) Ha(Z()) Hea (X (0)/ /1 (0)) Hims (X(9)/3/70)) ]

<C {i Ak —1)(k —2)(k — 3)p**
k=4

N =

+ (i crk!(k —2)(k — 3)(k — 4)pk5)

k=5

=

X (i ci_ok!(k —2)(k —3)(k — 4)pk5>

k=5

<C {icik!k(k —1)(k —2)(k —3)pF*

k=4
—I_ (

X (i crk!(k+2)(k + Dk(k —1)(k — 2)pk_3> ’ }

k=3

1
2

NE

AR (k—2)(k—3)(k — 4)pk_5)

£
Il
o

<C.

The last bound comes from the following argument.

First, Y pocik! < oo (see ) Then for all 0 < p < 1, Y52, ciklph < oo
and this series is indefinitely differentiable.

Furthermore, for all m € N*, we have

<Z cik!pk> = Z crk! H(k —i+1)p" ™ < 0.
k=0

k=m =1
And in the same way

m+2

S k! [ k+i-2)p"? <.
k=3 =0
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So we have proved that we can interchange the limit with the series. It remains
to show that for fixed integers k, ¢ > 2, we have

liny E [ Hy (Z.(0)) Ho(Z:(3)) Hi (X()/+/7(0)) Hes (X(5)/3/7(0)) | =

and our final goal will be achieved.
On the one hand the distribution of the Gaussian vector

(200,251, X (0)/V/7(0). X (5)//7(0))

converges to that of the Gaussian vector

(2(1), (), X (6)/V/r(0), X (5)//7(0))

with covariance matrix

10 0 0
1 0 0
r(t—s)
: r(t—s) "o
0 (0) 1

On the other hand, by Lemma 3.1 of [59]

E| H3(Z:()) H3(Z:(5)) HE (X (1)//r(0)) HE5(X(s)//r(0)) |
<4 (E-2)W -2 < C.
These two facts imply that

E| Ha(Z(1) Ha(Z:(s)) Hi—a (X (8)/v/1(0)) He-s (X (5)//7(0) ) |
— B[ Ha(Z(0) Ha(Z(5) Hy 2 (X (0)/v/1(0)) Hy—o (X (5)/1/(0))]
— E[H2(Z()) Ha(Z(s))| E [ Hy—2 (X (8)//r(0)) He-z(X(s)//7(0)) |
— E[H2(Z(1))] E[Ha(Z(5))| E | Hia (X (8)/V/r(0)) Hea(X(5)//7(0)) |

= 0.

In short, we proved that lim._q fg(z) =0.
Therefore, we obtain the following bound. For any ¢ > 0,
ImE[F?] < Co%.
e—0
By taking limit when § — 0, we obtain the required result, i.e.
. 21
igr(l) E[FZ] = 0.
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To summarize all of this and by using that
1 1, [r(0) by
-(0) € r(0) ) =0 \/r(0)’
we have shown that
- 1)z
S.(19) 2 Y (1) + Ty =Y (,0) + 2 /f (1)/v/r(0)) di

1 /
N0 /T o <t>/\/r<o>) AOL

(T2 -up) [ 1009 (x01vr@) at
= Y(£9) + 2 [ 10)(X (0700 (X (0 70)
g (X)) di

tg [ 00 (X0 &
S22 [ g (X0/0) at
= X(f,9) + Y (1.0) 1/2/f "(X(0)//r(0))

t o 100 (YOO )

From now on, the reader is referred to Appendix [5] In the remaining part of
this section, we use the same notations and choose H := L?(T) i.e. the set of

continuous square-integrable functions on 7.
To finish with the proof of the theorem, it remains to show that the random

variable
= [ 5o (X000 ety

stably and vaguely converges to
= [ g (x(0)/ Vi) s(orar.

Indeed, the stably and vaguely convergence of the random variable Z.(f,g)
will be ensured by the application of Theorem 1 of [4] (see also the Appendix

of Appendix .

The random vector & : € — H is a centered Gaussian vector, since for
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all ¢ € H, the real random variable (¢,&.),, has a Gaussian distribution,
N(0; (Ke. ¢, ¢)5,), where the linear operator Ce, is

re(t —s) — 2rE)(t — s) +r(t — s)
52

o(s)ds.

Ke(0)(t) = [

T

Moreover, for any ¢ € H, by applying Lemma [4.6.23| we can see
<IC§E¢7 ¢>”H E) <’C§¢7 ¢>H )

where

We deduce by using Section [5.1] of Appendix [5] that

L& —— &
e—0

Returning to our objective, we discretize the random variable Z.(f) in the
following way.

The idea is to consider T' = Ujer,, T m With T; ;, T} 1 = ¢, and card(Iy,) = ip,.
Each T p,, is an open rectangle such that o4(7; ) m 0. Let denote t; ., the

center of Tj ,, in this manner we can approximated Z.(f) by Z. ., (f) defined
as follows

Zenl)i= 3 £(ti)d (X V) [ &ty
J€Im Jm
= 3 Ftim)g (X () /VrO) (1,0 6)y,

JE€Im

= <Z Ftim) (X (tm)/ /7 (0)) ﬂTj,m,£e>
H

JE€EIm
= <Fm(X)v §5>H :

As a first step let us show that, Z; ,,(f) S—”O> Z(f) == (Fn(X), &)y
E—

We will see the convergence of the following characteristic function

E {ez’s<Fm<X>,ss>H}

= [ Elespis (Pu(X).€00) | Myt X (t0) = 0

dIP(X(tj,m),jEIm) (‘ij’wj € Im)
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_ /R CE|exp (is 3 S(tian)g (21m/7(0) L s

J€Im

e AX () = xj,m}]
dP(X(tj,m),jeIm)(wj,m,j € In).

The random variable We , := > f(tjm)d’ (x%m/\/r(())) ij &-(t) dt has a
j€lm "
Gaussian distribution so that

LWen | Njer, {X(Ejm) = 2jm})
= N((@jms € Im) X Vg X Vatezm; Vitiezm — Vallieym X Vaz' X Vatieim)

where by applying Lemma [£.6.23]

Viten = 3 f(tim) F i) (2im/ /7 (0)) o' (1m/v/7(0))

1,J€Im
re(t —s) — 2r@(t — s) +r(t — )
X /Ti,mij,m =2 dtds
— Vi = Y f(tin) Ftin)g (200/ V) o (250/ /7 (0))
4,5€Im

d 0%r
X Cy —(t — s)dtds,
Li,m XTj,m ; ati ( )
and

Valeom = Y f(tim)d' (xzm/m)

€1,
. ( / POt — tim) =Tt = tim) dt)
Tim c j€lm
— ORim,
e—0

and Vg is the variance matrix of (X (¢ ), € I) € Rim.
From now on we note Ly the distribution of the random variable (X (t)):er.
We have therefore shown that

E |:€iS(Fm(X)7 £€>H:| e—0 Ri e_%SQVH;m dP(X(ti,er)yiEIm) (-xi,ma OIS Im)
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= [exp (;52 > Ftm) Fim)g (X /Vr(0)) o' (X0, /v/7(0))

i,j€Im
d 92r
x/ Z t—s dtds
Ti’mXijm k—

[E[e,% 5* (KeFom(X), Fin (X >>H}

L 67% 2 (KeFn(X), Fin(X ]X = x] dLx (z)
H

[Eeme >}.

To summarize, we have shown that Z. ,,,(f) N Zm(f) = (Fin(X), &)y, such

that if z € L2(T) o
L(Zn(f) | X = 2) = N(0; (Ke F(X), Fa (X))

In a second step, we show that

Zn(f) =2 2(5) = (FO (XO/Vr0) 1€)

Since X has continuous trajectories, our study can be restricted to such a type
of trajectories. We know that

Fne) 2, F(a) = £()g' (a//r(0))

m—r0o0

and since K¢ is a continuous operator, we obtain
(KeFm(X), Fin(X))y = (KeF(2), F(2))q -
Then

E[eisZm(f)] :/ [E|:eisZm(f) | X = x} dLx (z)
H

— / 6_582<K€FTVL(X),F"”(X)>H dEX(x)
H

SN o352 (KeF(2), F(x)) dLx (z)

m—r0o0 H
E[e"*? (f )] .

In conclusion we have shown,

Znlf) =2 2() = (00 (XOVP0) €)

m—0o0 H
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such that if z € L2(T)

£Z()|X =) = N (0:(Kef () (/@) £ (2// D)), ) -

To complete the proof, we apply Lemma 1.1 of [25]. It is then sufficient to
prove that

lim hmE[{Z m(f) —Zg(f)}Q] =0.

m—+00 e—=0
We compute E[{Zg,m( f) - Ze(f)}ﬂ. Applying the Mehler’s formula ([20]),
the fact that > oo jn?nlc? < oo and Lemma |4.6.23] we easily get

E[{Zem(f) - z,g(f)}?}
S / . '(X(ti,mwm)—f(t)g'(X(t)/m))

1,7€1Im

x(£(tim)g ( Jm/F)f )9 (X(5)/v/r0)) &g:(5)] dtds
= Z /TZMXT Zchcknk

1,7€1Im Jm n=1 k=1

< E|(# (i) Huo (X (t10)/v/7(0) ) O H, (X (0/7/r0))
X(f(jm)Hk 1( jm/\/7> s)Hj,_ 1( 8)/\/7'7)> (1) (s ]dtds
—:))Zc nn! Z/ <C¢,;gt£(t—s)>

4,J€Lm

’ [f(t””)f (im) (r(ti’rf«(o)t]’m))“ — £ (tm) (“tiéi ’m>>n1

—f(S)f(ti,m)< (s — tim )>n1+f(t)f(s)<r(i(6)s)>n1] at ds

m—o0 ZC nn' (C\IIZ gtg b=s )

TxT
’ l< E“t(O)S) 1_< (;(0)8)) . < (( 0) > ( (( ))>n1] dt ds
= 0.

This completes the proof of Theorem [1.6.20H3] .
Let us tackle the proof of the last part of that theorem.
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We suppose that & = 1/2 and d = 2.

By Remark , we already know that the term S will prevail when o = 1/2
and d = 2.

Moreover, Remark has emphasized the fact that

Ty = e YIn(1/e)]7Y/28,
= 7 = < (1)) 2a(2.0) [ (X070
. [H2(%)t< (t)/wz) . HQ(%); <t>/ﬂe)] dt

As in [17], the proof will proceed in several steps. Remember that T is an
open rectangle. If T" has the following form, T' =]a, b[x]c, d|, let us define for
t:=(t1,t2) € T,

Se(t) == e MIn(1/e)] /2
<[ (G
On the one hand, we prove in forthcoming Proposition [4.6.35| m 5| that (X, Se)

stably converges to (X, UW)
On the other hand we will consider a discrete version of 77, defining for m € N*

(/i) + Ha st vie ) | o

;_-

—1m—

T = fa™. g (Xe(a™, &™) /V/r(0))
i 7=0

(m) — (m)

e~ In(1 /)] /2 / (m*) /(m? [H (aX ()/@) +H2<aaf

3

I§
o

“0/vi )| at

where for i =0, ..., m, ™ = q + thy,, ™= c+ih!

7 1 m?
and h!, : = d—c
m

The stable convergence of (X, Se) implies that

with h,, = %

m—1m—1

T — 7™ .= a(2,0)0 ZZ; jz;) f(ai e )g(X(ai e )/Vr(O))
T (nm)  (m) W(am) (m)y 775 (m)

X W<ai+17cj+1) - W(ai+17cj ) — Wi(a 7052) + W( o ; ))} .
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Furthermore, it is easy to show that 70" is a Cauchy sequence in L?(Q).
It follows, using the asymptotic independence between X and W, that

7m ZQ 0.0)0 / £() (t)/«/r(O)) AW (¢)

m—r0o0

To conclude, i.e. to prove the convergence of T, it suffices to prove Lemma
for which a proof is given after that of Proposition

Lemma 4.6.34. —
lim lim E[(T. — T™)%] = 0.

m——+00 e—0

Proposition 4.6.35. — 1. S, Stab;e Stable, W
E—r
2. Furthermore,(X., Se) Stab(l)e (X, w),
e—

where W is a standard Brownian sheet in R2 independent of X.

Proof of proposition [{.6.35
FormeN a=t)y<t1 < - <tpm=bandc=s9 <851 << 8, =d,
let
m—1m—1
St s) @i j [Se(tiv1, sj+1) — Se(tira, s5)
=0 j

S

I
=)

— Se(t;, Sj+1) + S:(t;, sj)]

—1m-1

3
3

aije M In(1/e)] 7/

[e=]

7

» /:f+1 [HZ((?X (u )/\/ATE) +H2<

i J

<.

X

I
$—— ©°
By
: ~+

)/ v ) | d

where

m— m
Q= dj; E tz+1 ti)(sj+1 — sj) ,
=0 7=0

while d; ; € R, for 4,5 =0, ..., m — 1.

We want to prove that SE(m) (t,s) converges in law to N(O; 02).

For this purpose and as in the proof of Theorem [£.6.20H2] we have the following
representation for stm (t,s),
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-1
S (¢, s) = a; je HIn(1/e)] 712

i

3

3

Il
o
o

j=
t

41 Sj+1
[l e
ti Sy \/:LTE Rd

+Hy (W /R ) i i) dzg()\)>] du,
€

where we noted A := (A, X)) and dZ.(A) = U(eA)/s(A) dW(A), while W
is a Brownian sheet in R?. Recall that s is the spectral density of process X.
We use notations introduced in Slud [58].

For h € Lsym((IRQ)2)7 we define

1
V=g [ LA AW aw )

By using the Ito’s formula for the Wiener-It6 integral (see [45] Theorem 4.3
p. 37]), we obtain

SU (8, 8) = Io(h™),

where hé’") is
m—1m—1
A (N, ) = —2! Z Z ;e In(1/e)) Y2
i=0 j=0

i+1 SJ+1 ~ ~ .
/ / pt) 4 23,2 )} (XU (ep)v/s(N)/s(p) e M du

To obtain convergence of stm) (t,s), we use [47, Theorem 1|. Convergences
given in (111)) and in in the proof of the forthcoming lemma give the
required convergence appearing in part 1 of the later Theorem 1. So we just
verify condition (i) in proving the following lemma.

Lemma 4.6.36. —
lim E [{ng (t, s)}| = 304
e—0
Proof of Lemma [{.6.36, Let us give some convergence results that will help

us to show the lemma.
For all + = 0, m—1and j=0,.

?[In(1/e)]~ /l+1 /SJH/I+1 /SJ+1 [( o u—v)/ua>2
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+2( WACEPE v)/ue)Q (%tQ(u - U)/us>2] dudu

(111) — 0 (ti—i-l — ti)(8j+1 — Sj).
e—0

This is an immediate application of Theorem [£.6.19H4] when considering func-
tions f and g identically equal to one.

We also use the following convergence result.

For all indices, i1,1i2,j1,j2 = 0, ..., m — 1 such that (i1 # iy and iy +1 #
i9 and i3 + 1 # 41) or such that (j1 # j2 and j; + 1 # jo and jo + 1 # j1) or
such that ((ig =41+ 1lorig+1 =1d;)and (jo = j1 +1lorjo+1=j1)) or
such that (i; =iy and (j1 + 1 = jo or jo + 1 = j1)), or such that ((i; + 1 =
ig or ig + 1 =141) and j; = j2), we have

i1+1 3j1+1 ig+1 3J2+1 82T€ 2
(112) e ?[In(1/e)]” / / / / e (u—v)/pe | +

2<8f128t (u— v)/,u5> (8&2 (u— u)/ﬂg>2] dudv — 0.

Let us give a sketch of the proof of convergence given in .

The convergence to zero of the above integral is straightforward in case where
(i1 # 19 and i1 + 1 # g and 49 + 1 # 41) or such that (j; # j2 and j; + 1 #
jo and jo + 1 # j1). Indeed, in such a case, the integration variables v and v
appearing in the integral are such that ||u — v||, > ¢ and as indicated in the
proof of Theorem the integral converges to zero. Thus let us focus on
the indices such that ((ig =41+ 1lorig+1=14;) and (jo=j1+1lorjo+1=
J1))-

To this purpose, let us fix t1 < to < t3 and s1 < s9 < s3 and consider

gl [ 70 (G o)+

(e (- )/ue> (%2; (u—v)/us>2] dudo,

For the previous result obtained in Theorem [£.6.19H4] we know that

) to S2 to+6 psa+0 1
Ae = [In(1/e)]” / / / / 72"{nu—vn2>M6} dudv
ta s2—6 Jto 52 _”Hz
2[In(1/e)]~ / / / / U||2 T ju—v||,> e /5y dudv
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< C(n(1/2)]™" [In(v2) ~ In(Me/(29))

thus limg_,q @)AE =0, and lim._,g A. = 0.
e—
Also, the case where 1 < to < t3 and s1 < s and

YIn(1/e)]~ /tQ/ /t?’/ [(%2;6 _”)/M€>2

(927’5 2 827’5 2
2 - p—
" <8t18t2 (U U)/'u€> - < at% (u U)/;“s) du d’U,

is treated in a same way and gives lim._o B: = 0.
Finally, all the other cases are treated in the same manner by using the fact
that for all 7,7 = 1,2, and all (u1, u2),

0%r. 2 0%r. 2 0?r. 2
(113) <8tiatj('u1, U2)> = <atiatj(—'u1, UQ)) = (8152875] (u1, —U2)> .

To finish with the preliminaries, we will use the next convergence result.

For all indices, 41,12, %3, %4, j1,72,73,J4 =0, ..., m — 1l and for alli =1,...,4
and k; = 1,2
(114)

A 5 tig+1  fSii+1 ftig+1  [Sjo+1  flig+1  [Sjz+1 flig+l  [LSjg+1
til Sj1 tiz Sjg tig Sjg ti4 Sy

0%r. O%r. 0%r.
(ot o= 0 G, o = 0) (o, =0

9%r.
X <8tk38tk4(U3 - U4)/M€> dU1 du2 dU3 dU4 m 0.

To prove this convergence, we first notice that by applying Schwarz’s inequal-
ity and using the results of convergence , we easily obtain the required
convergence to zero of the previous integral for most cases. The only case left
to consider is the following.

Let us fix t1 < 9, s1 < s2 and k; fixed, for ¢ = 1, ..., 4. Let us consider

to So to S92 to ED) t2 52
comemaser [Cf0 L
t1 S1 t1 S1 t1 S1 t1 S1

9%r. 0%r.
(i = ) (s o= ) (i o = )

ﬂ( —ug)/pe ) duy dug dus d
atk38tk4 Uz — Uq)/ e U1 dug dug dug.
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As before, applying Schwarz’s inequality and working as in the proof of The-
orem we point out that this integral is O(1/In(1/e)) if we inte-
grate on the set {|lu; —ua|l, < Meor |lug —ugly < Meor |Jug —u4lly <
Me or ||uz —u4|ly < Me or |Jug — ually > 6 or |jug — us|ly >0 or

[[ug — ually > 6 or [lug — ually > 0}

Thus, we only have to consider the behavior of the integral on the set

{Me < ||lur —uall, < 6 and Me < |jur —uglly <90
and Me < ||ug — w4y < 0 and Me < |lug — ugll, < 6}

Once again, we apply the Schwarz’s inequality and Theorem We
obtain C. = D., where

D, < 0(5—4[111(1/5)}—2 /T4 T Me<ur —usll, <6}

0%r 2 9%r 2
B Al B O )
X <3tk13tk2 (ug — uz)/p > (Me<jus—uall, <5} <8tk38tk4 (u3 — uq)/p >

X H{Ms<||u17u\n,||2<6} du; dug dus dU4> .

We make the change of variables: w1 — us = v1 and ug — uqg = vo, getting

2
1
D.<C lnls_l/ —— dv (/ 11w —a )
<[ /o) Me<ol,<s |0l ) rxp TS0

Consequently, we obtain @)DE < C6?, and lim._,o D, = 0.
E—
The ground is now prepared for the proof of the lemma.
We compute the fourth moment of the random variable sim) (t,s).

m—1 m—1
4
E [{ng)(t,s)} } = Z Z Qiq, g1 Xig, jo Xig, jz Xig, ja

11,22,13,84=0 j1,72,73,j4=0

4 5 tig41 fSji+1  flig+1  [Sjo+1  flig+1  [Sjz+1  flig+1  [Sjg+1
til Sj1 ti2 Sjg tiS Sj3 t7,'4 Sjg

> [E[H2<8X5(ul)/\/ﬁs>Hz<8X5(uQ)/\/,7€>

ot ot
ket ki kg a=1,2 k1 k2

0X.

« Hy (gi (u3) /@) H, < () /WT)] duy dus dug dus.
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To calculate the expectation, we use the diagram formula (see |20}, pp. 431 and
432]):

(115) [HH2<25( Uy /\//75)] > Is,

Gel

where G is an undirected graph with 8 edges and 4 levels (for definitions,
see |20, p. 431]), I := I'(2,2,2,2) denotes the set of diagrams having theses
properties, and

O%r
(116) Ig = <_6(Ud (w) — Ug (w))/ue) :
wel;J(:V) Oty ) Othayy ’

where G(V') denotes the set of edges of G; the edges w are oriented, beginning
in di(w) and finishing in da(w).

The diagrams are called regular (see |20l p. 432]) if their levels can be matched
in a such way that no edges pass between levels in different pairs, otherwise
they are called irregular. Consider all the regular diagrams. Their contribution,
say R, is given by

m—1 m—1
R. = E g Qi 51 g o Mg 53 Xy gy

11,12,13,14=0 j1,72,73,J4=0

21+1 5]1+1 12+1 S]2+1 7,3+1 Sj3+l 7,4+1 Sj4+1
YIn(1/e)]~

32?”5 827“5
E 2 - 5 - £
x { <8tk18tk2( i /M ) (8tk36tk4( us 4>/'u )

k1,k2,k3,k4=1,2

2 (3<u - U3>/u5)2 2 (am - U4)/ua>2

Otg, Oty Oty, Ot,

(92?”€ 2 327"5 2
2\ o0 a5 (W — e) 2| 5, (u2 — < duq dusg dus d
* (8tk1 atlm (UI U4)/M > <8tk26tk3 (’LL2 U3)/,u > U1 duz dug duq

m—1 m—1
=3 E E Q51 Xig,jo Viz,jz Xig g

11,12,13,84=0 j1,j2,J3,J4=0

21+1 5]1+1 22+1 5]2+1 7,3+1 5]3+1 7,4+1 334+1
YIn(1/e)]~

9 Z 2 &< Y
Oty Oy, 41 2) e

k1,k2,k3,ka=1,2
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0%r. 2
x 2 (m(ug — U4)/u6> du; dusg dus dug

m—1 m—1

- 9 | [l s flisen fSig4
3 e V0 I A A
11,1 i1, tiq Si1 Lig Sja

11,12=0 j1,52=0
2
0“re
X 2 dui;d
Z <8tk18t U2)/Ms> up duz
k1,ka=1,2

— — tig+1 fSji+1 flig+1  [Sig+1
=3 Uiy, jy Wig, jo 26 ln 1/5

11,2=0 j1,52=0
6%5 2 r
<< St/ ) +2( 5 aw(ﬂ-”)/%)
0%r. 2
+ <8t%(u—v)/u5> ) dudv)

Now, by applying convergence obtained in (111) and (112)), we see that the
limit will be held for indices such that i1 = i3 and i3 = j2, giving

2

2
m—1m—1

. 2 2 4
lim Re =3 Zo ZO ;0 (ti1 — ti)(sj41 — s5) | = 30"
i=0 j=

To finish with the proof of the lemma, we conclude by noting that the contri-
bution of the irregular diagrams tends to zero with . Indeed, it is enough to
apply the formula of the diagram given in and to those diagrams.
Then convergence given in yields the required result. O
In conclusion, we have proved the convergence of finite dimensional distribu-
tions of S;.

To obtain assertion [1| of Proposition i.e. the convergence of process S;,
it is enough to prove the tightness of the sequence of this process.

Let us prove the following lemma.

Lemma 4.6.837. — For any (s,t) € T x T and ¢ > 0, we have

E|{5.(1) — 5:()}°] < ©lie =53
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Proof of Lemma |4.6.37 Let t := (t1,t2) € T and s := (s1,s2) € T. Let us
compute E [{Sg(t) - Sg(s)}ﬂ.

E[{S.() = S:(s)}°] = *n(1/2)]

K//{ : (%, /\/‘TE>+H2<(?9X2()/\//TE>}du6
| (a /i) + 1 B Yo )]

e 9 ln(l/e
)/ Vi ) + Ha o)/ vz )} d )6]

UVW(
e ([ (o) e m(Gsoone) o) |

We will only work with the first expectation, say V(t1, s1), the second would
be treated in the same way.

Let us suppose that s; < t; and prove that

Ve(tr, 1) = <~ n(1/e)] 3[E[(/“ [ (B i)

X 0
+ m(Goc/vie) | ao) ]
Uz
that will be enough to ensure the required result.

iy =wasar O

Z [H HQ <at Ug)/J;TE)] dU1 dUQ du3 dU4 d’LL5 du6.
(=1

k1,k2,k3,ka,ks,k6=1,2

As in the proof of Lemma |4.6.36| we use the diagram formula (see [20} pp. 431
and 432]) to calculate the expectation:

[HHQ(at (ue) NE)] 2 o

Gel

< C(t; —51)?,
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where G is an undirected graph with 12 edges and 6 levels (see [20] p. 431],
for definitions), I' :=I'(2, 2, 2, 2, 2, 2) denotes the set of diagrams having theses
properties, and

9%r.
Ie:= ] ( (udl(w)—udz(m)/%)a

weG(V) Otg, ) Ohay
where G(V') denotes the set of edges of G; the edges w are oriented, beginning
in di(w) and finishing in da(w).
Thus we will have to deal with four kinds of terms corresponding to four kinds
of graphs.

Case 1 This case corresponds to the regular diagrams. There are fifteen such
diagrams. They are of the form

0%r, 2 0%r, 2
(% - w)/ua) x (atk3 - U4)/ua>

0?r, 2
X | =———(us — u, :

<8tk58tk6( 5 6)/M6
The three other cases correspond to the irregular ones.

Case 2 There are thirty diagrams with the form

0%r. 2 0%r.
<8tk18tk2 (u1 — U2)/Ma> X <8tk38tk4 (uz — u4)/us>

0?r. 0?r.
a9 =900 ) * (G 0 = 0
82 £
(g tia =)

Oty O,

Case 3 There are forty diagrams with the following form

o“r

(927“8 2 -
(% - u2>/ua) < (a% e - u3>/ﬂa)

0%r. 9%r,
(ot =) < (i 1w
0. 9%r.
(g tus = wale ) (g = e )

Oty Oti, Oty Oti,
Case 4 There are 5! diagrams of the form

0%r. d%r.
(Bt 1= 2k ) * (i 1 =)
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0%r. 9%r.
X (8tk28tk4 (uz = “4)/“5> % (atkgatk5 (us — u5)/“5>

&%r. 0%r.
x (a% - u6>/ua) x <atk5 (s UG)/us) .

As in the proof of Lemma [4.6.36|let us give and show in the forthcoming lemma
two preliminaries results which will help us to treat the previous four cases.

Lemma 4.6.38. —

t1 to t1 to 627‘5 2
ln (1/e)] / / / / <8tk13tk2 u2)/,u5> duq dus

tl_Sl
e [T
s [ / St (un ~ )
87"5 8
‘8tk28t3( )/ pe oty at (U1 — ug)/pe| dug dug dusg

< C(tl — 81)3/2.

Proof of Lemmal[{.6.38 Let us begin with the proof of part [I] of the lemma.

0%r
By using the parity property of the function ———— BT 0 described in the formula
k1 kz

(113)), inequality (94]) and convergence given in , we get

t1 to t1 to 82,’,,6 2
ln (1/e)]™ /31 / / / <8tk18tk2 'LLQ)/,LLg) duy dusg

= 4e2[In(1/e)]”

/ ARG i) o= 1wt =~
C(tr — s)[m(1/e)]

t1—s1 to—c
/ / { Vil <hey + o Hz {||u||2>Ms}} du

< C(t1 — s1).

Let us now turn to the part [2] of the lemma and establish a first result.

(117) Un(1/e)] 3/2/: /t2 /t1 /t2 — u2)/ e

< C(tl - 81)3/2.

duq dusg

6tk1 ath
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Indeed, we have

t1 to t1 to
—3/2
hl (/e / / / / 8tk18tk2 — ug)/pe| dug dug
e M In(1/e)] 7%/
t1—s1 to—c
/ / 8tklatk2 )/Ne (tl — 81 —u1)(t2 —C—u2) du

< C(t = s1)[In(1/2)] 7

—S to—c
X/tl / {81"{||u|| avte) g >Ms}} du
0 2= [lull 2

< C(t — s1)[In(1/e)] 732

. 1/2
1/2 1—S1 to—c
x { (t1 — s1) + (t1 — 51) lqu V) y> ey du

C(t, — 51)*?[In(1/e)]

C( 81)3/2

Back to the proof of lemma part 2], we get the following bound
e [n(1/e)]

<
<

t1 to t1 to t1 to _[] a
u U < —u
/ / /sl / / s ~uzll <<} atklath( 2)/ e
0%r. 92
© o| dug dug d
8%875 3( )/M ot 18'5 3( )/,U’ wy dug dus
g [T [l (0ot gl gt
_3[111(1/6)]_ / / / / / / ﬂ{“ul—uz||2<M€}
S1 c s1 c 51 .
2.
2 'e _ Qs dus d
X SO, (ug — u3)/pe| duy dug dug
,1[ln(1/€)]73/2
t1 to t1 to
/ / / / 8tk2 8tk3 U3)/Ms duo dus

<C(t—s1)%?,
the last inequality coming from ((117)).
The same reasoning can be done for the set of integration ||ug — usll, < Me.

Thus to conclude the proof of inequality given in part b., we only have to
consider the set ||u; —ua||, > Me and ||up —usl|, > Me. We obtain, by
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applying Schwarz’s inequality and result obtained in part [I] of this lemma

e 3(In(1/e)] 73/
/1/2/1/2/1/2

(U2 —u3)/pe

uy — UQ)/,U@

0?r.
8t atkg ( —u3 ) /IU’E

s —uzl,>Me}

8tk1 atk2

T fjlun—uall,>Me} duy dus dus

X
Bt ko 875 ks

< (5_2[1n(1/5)]_1

t1 ta i1 to t1 to 9 1/2
/ / / / / / <8tk1 atkS 'U/3)/,us> dU1 d'u,2 du3>

X [5_4[ln(1/5)]_2

t1 to t1 to t1 to 827‘5 2
/ / / / / / <8tk18tk2 UQ)/NE) ﬂ{llU1*U2H2>Ms}

827' 2 1/2
€
X <atk18tk2 (ug — U3)/Me> T {uz—usl,>Mey dur duz dU3]

<Clt— ) <[1n<1/e>12

t1 pto pt1 pla pty o pto
////// ||U1—u2]|2 T —uz |, >Me}

1/2
2 1 {llug—uslly>Me} duy dug dU3>

HU2 usll3

g C(tl — 81)3/2.
That ends the proof of Lemma O

We turn back now to the proof of Lemma

The first case is treated directly by using part [I] of Lemma [4.6.38]

The second cases uses first part [1I] of Lemma and second Schwarz’s in-
equality and again part [I] of Lemma

The third case is a straightforward application of part [2] of Lemma [£.6.38]
Finally, the last case is solved by applying Schwarz’s inequality and again part
[ of Lemma

That yields Lemma O
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The tightness of process S; follows from [22 Theorem 3.1.10].
Thus the convergence in assertion [I] of Proposition [£.6.35] takes place in the
sense of processes convergence. Let us now show assertion

Let ¢; 4,4, = 0, ..., m — 1, be real constants. As before, it is sufficient to
establish the limit distribution of

m—1m—1

ZZCZJ (ti,s5) )+ SM(¢, s).

=0 j5=0

This time, we apply of [48, Theorem 1|. Indeed,

m—1m—1

Z Z cij X (L, sj

=0 j=0
belongs to the first Wiener chaos as Gaussian random variable with finite vari-
ance. Furthermore, ng) (t,s) belongs to the two order one. Mehler’s formula
allows us to verify the hypothesis appearing in (4) of this theorem.
Finally, assumption (iv) is satisfied since, by applying result of the previous
part |l I we know that Se (m) (t s) converges in distribution to a Gaussian random
variable, as well as » /" Z] T CijXe(ti, sj).
To summarize, we have proved the convergence of finite dimensional distribu-
tions of (X¢, S:).
To conclude, the tightness of processes (X¢, S¢) follows from that of process S;
proved in part . It implies the convergence of (X¢, S¢) as processes and then
ensures the stable convergence of (X, S:) and of that of S. (see [52, Propo-
sition 1]).
This yields proof of Proposition O
To conclude with the proof of Theorem [4.6.20] let us prove the last lemma.

Proof of Lemma|4.6.34 We can write E[(T; — Ts(m))Q] = E[T?] + [E[(Ts(m))z] -
2E[T.T{™]. By Theorem [1.6.19/4]

2
[E[Tg] m} 65.

Now, we compute E [(Te(m))Z].

[E[(Tgw)ﬂ:a?(z,()) In(1/e)]” Z Z f(a )f(a§f>,cgf))

11,i2= 0]17]2 0

Z1+1 J1+1 Z2+1 J2+1
xzzcm/w [ /(M /W

k=0 ¢=0
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(/v ) + i
(m) (m)
8X (9 X (ai 7C' )
< (ma( Bz v ) + (S ) ) ( =) v
Te
We proceed as in the proof of Proposition @-@ It is straightforward, by
using the asymptotic equality given in , to prove that

E|(T4M)] = 2422, 0)e72[n(1/2)]” LS ) el )

11,i2= 0]17]2 0

q
" Zq'c /11+1/11+1/ 12+1/]2+1 ag;n),cxn) cgn))
(m) (m) (m) (m) 7“5(0)

x [( %tz (t - )/ﬂe) +2( gt — 9 2+ (aatQ (1= 5)/ne) ] dtds.

Using convergence result given by m, we obtain that

m—1m—1
[E[(T;W)Q] = 242(2,0)e2[In(1/e)] Z > £2(a™

(S [ L G o)

v (- s)/ua) (G- )/%)2] at ds.

Now using the convergence result given by (111)), we finally get that

limy [E[ } (Z gle )
(EE A4

i=0 j=0

Thus, we easily obtain that

i 0] - (S ([ o) -
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To complete the proof of Lemma [4.6.34] it remains to show that
lim lim E[T.T™)] = 4.

m——+o00 e—0

Let us compute [E[TETE(m)].

;_n
,_.

m—1lm—

E[T:T™)] = a*(2,0)e~2[In(1 /)] Z Z f( )
> aa [ - [ o

k=0 £=0

<€ | (G0 vi) + (G 0/ V) ) (Xl /70)

(112 S0 ) + 1o (G ) ) (W)] dt .

As for the previous term and using the asymptotic equality (103]), we have

.

m—1m—1

[E{TgTE(m)] = 24%(2,0)*[ln(1/2)] 7" D Z ( )

=0 j=

XZQ’C//<m> /((t g m>))qf<t>
x [(aat( - >/u5) +2(£28t (t - )/Ms>2+<§t%€(t—8)/us>2] dt ds

= 2a%(2,0)e2[In(1/e)] Z Z f(aly ,]2)

11,82=0 j1,j2=0

aiy a(m) c(-m))> q
| ”H Jl‘“ / ig+1 / 12+1 io Gy
X Z q:C /(77L) / (nL) (7n) Te (0) f(t)

x [(aat (t - s)/ua) 2t s)/ua>2 " (ff% (t - s)/ua)gl atds.

Using the convergence result , we obtain that

E[T:T(™] = 2a°(2,0)e*[In(1/¢)] ™" Z Z ! ( )

=0 35=0
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00 et et (o= (4 P
X Zq‘c /<m> / /<m> /(m) r(0) f®)
[(%t< - )/ug) (8‘? " (t—S)/us>2 <(§tgs(t—8)/us>2] dt ds.

As for the previous term the convergence result (111]) yields that

1.2 ,2
il_)r%[E E qlcja (2,0)0
m m q
m—1m—1 m m) Erl) J+1 E ),C§~ )))
f f(t)dt
== alm Jebm r(O)

Finally, by taking the limit on m, we obtain
lim lim E[T.T™)] = 4.

m—+00 e—0
This completes the proof of Lemma [£.6.34 and also ends the proof of Theorem
4.6.20) O
O






CHAPTER 5

VAGUE CONVERGENCE AND STABLE
CONVERGENCE

5.1. Vague convergence

Let H be a separable Hilbert space. We denote by (-,-),, the scalar product
in H. We define the finite dimensional weak convergence of a sequence of
probability measures {py, o2 ; defined in this space, called vague convergence.
If for any ¢ € H the following functional

Jnl6) = /H 6.0 dp (2),

converges when n — oo toward a functional J(¢), we say that the sequence of
measures converges vaguely. It is easy to show that J(0) = 1. Moreover, the
functional J is positive definite i.e. if aq, ..., ay, are scalars and if ¢1, ..., dom
in H then we have that

m m

Z Z J(¢i — ¢j)aioj = 0.

i=1 j=1
This last property is a consequence of the same property verified by the J,.
Using Kolmogorov’s consistency theorem, we can define a measure u in H.
Nevertheless, it happens that it is only finitely additive. To explain this last
assertion, let {e;}7°, be a complete and orthonormal system in /. Let us define
Tesy ey, the orthogonal projection on the linear span of the set of vectors

{€i,..., e}, 1e.
k
TS S
(=1

We can define the following sequence of measure in R*

A = (e, (A)), A € BRY),
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B(RF) is the Borel o-algebra of R¥.
In this way, denoting by (-, ), the canonical scalar product in R, for all p € H

[ el < [ @
Rk H

By Levy-Cramer theorem on the convergence of probability measures in R¥,
we know that there exits a probability measure in R¥, which we denote by
%k such that

€ip ey

Cig, L Meil seensCig
)
n—oo

where —— denotes the weak convergence of probability measures. Moreover,
the collza?gn of these measures is consistent in the sense of Kolmogorov. They
therefore define a cylindrical measure y on H. To have the o-additivity, we
need an additional condition of tightness. If this last condition is not satisfied,
we say that p is a weak probability measure. We must denote this convergence
by

i —— .

Consider an example provided by Gaussian measures. Let X be a random
vector X : () — H with a distribution u, a probability measure defined on H.
Let L£(H) be the vector space of continuous linear operators from H to H. We
then say that p is Gaussian if for all ¢ € H the real random variable (¢, X),,
has a Gaussian distribution, N (E[(¢, X),,]; Var({¢, X),,)). There exists m €
H, and K, € L(H), self-adjoint and nonnegative, such that the following
properties are verified

[E[<¢7X>’H] = <m7 ¢>H fOI‘ any d) S H
COV(<¢1a X>’H ) <¢27 X>’H) = <IC,LL¢1> ¢2>H for any ¢1a ¢2 e H.

K, is the covariance operator while m is the mean. The distribution of X is
characterized by m and .
We can show that I, is a trace-class operator, i.e. it has a finite trace. Let
Tr(lCu) = >, (Kpuei, €i)q, < +00.
Note that if ||-||;, is the norm induced by the scalar product in H, one has

o0

Tr(Ky) = Z (Kuei, €i>7-[

=1
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o

E[(X —m, )y (X —m. ei)y]

E[(X —m, X —m),,]
= E[| X — m][3]

-
Il

= ||’C,LLH£(H)7

||-H£(H) is called the trace-norm.

From now on, we assume without loss of generality that m = 0. The follow-
ing formula is immediate

Ju(@) = /H X9 dp(x) = e~ 2<Kud9> o any ¢ € H.

It is easy to prove that for a sequence of Gaussian measures {p,}52, we
have
v

un—>,u,<:>lCuanCu,

n—oo n—oo

the last convergence takes place in the operator norm. The operator K, could
be non trace-class, then in such a case it can only define a weak Gaussian
measure.

5.2. Stable convergence

In this section, we introduce the notion of stable convergence of measures,
but adapted to the framework of the vague convergence. To begin with, let us
consider an equivalent definition of vague convergence whose proof is routine.

A continuous and bounded function F': H — R is said cylindrical if there
exists a finite dimensional subspace E C H such that F(y) = F(7mg(y)),Vy €
H, where mg is the ortogonal projection on E. The set of these functions is
denoted by Cey(H).

We have the following result. Let X, be a sequence of random variables
taking values in H with p, := £(X,,) then

p —— & E[F(X,,)] —— E[F(X)] and L(X) = p, F € Ceyy(H).

n—oo n—oo
Above, p could in principle be a weak probability measure.

To introduce the notion of stable vague convergence (denoted as S,) we
assume that the all H-valued random variables of the sequence X,, are defined
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on the same probability space (€2, F,P). This sequence converges in the sense
of S, if for all B € F and F' € Cpy,(H) we have

E[15(w)F(Xn(@))] —— E[15(@)F(X(w))].

This definition has an equivalent expression when ) is a metric space and F
is its Borel o-algebra. For any bounded and continuous function G : R — R
and for any random variable Y :  — R we have

E[G(Y)F(X,)] —— E[GON)F(X)].

Furthermore, the above characterization implies also that for all Y random
variable
Sy
Y, mp(Xn)) = (Y, mp(X)).

Finally we can extend as usual, this property to consider the case where

Y, Prob vy iy probability. Thus, it holds
n—o0

(Yo, 75(X0)) 22 (Y, mp(X)).
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