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The previous observation leads us to refine the analysis to show that the terms appearing in the formula obtained from the co-aera formula are continuous functions. This leads us to carefully use the results provided by the implicit function theorem. We prove the continuity with respect to the level of the studied functional. This result is crucial to be able to use the tools of measure theory to exchange the limit with the expectation. Then, the other term of the equality, the one where the conditional expectation intervenes, requires tools of the probability calculus to check its continuity with respect to the level.

The procedure indicated above applies to moments of order greater than two of the functional. An important part of our work gives several applications. Some of them are strictly probabilistic in nature, others are related to the study of the random sea, and still others concern the roots of trigonometric and algebraic random polynomials. Finally, we also make a small excursion into the theory of gravitational lenses.

We end the book with a novel study of the local time approximation of Gaussian fields by measuring the set of levels of the regularized field by convolution with a kernel that approximates the Dirac delta. From a technical point of view, this chapter is a bit more demanding, but its inclusion reveals the power of the formulas and opens to the reader some possible research directions.

FOREWORD To Enrique Cabaña

In these notes, we study the behavior of the level set C X (y) := {x ∈ D ⊂ R d : X(x) = y} for a fairly smooth random field X : Ω × D ⊂ R d → R j with d ⩾ j. We are interested in establishing a formula for the expectation and for the higher order moments of the (d -j)-area measure of the level set C X (y), i.e., σ d-j (C X (y)), as well as formulas for level set functionals.

Let us give the historical context. The study of level sets of Gaussian random processes began in the 1940s with two seminal papers by Mark Kac [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] and Stephen 0. Rice [START_REF] Rice | Mathematical analysis of random noise, part i-ii[END_REF], respectively. In both articles, a formula was established to calculate the expectation of the number of zeros of a Gaussian process X : Ω × R → R. It should be noted, however, that Kac was interested in the asymptotic study of the number of roots of a random polynomial while Rice sought such a formula for imperatively Gaussian models in communication theory. Over the next decade, both works were generalized and deepened. Kac's work was extended to calculate the asymptotic variance of the number of roots and a central limit theorem was also proved. Rice's work was also generalized. Cramér and Leadbetter began a fruitful collaboration on this subject that resulted in their very famous book [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF].

In 1957, M. S. Longuet-Higgins, in an article devoted to the modeling of the sea as a random surface [START_REF] Longuet-Higgins | The statistical analysis of a random, moving surface[END_REF], gives for the first time a Kac-Rice formula for Gaussian fields, X : Ω × R 2 → R, which can be considered as a great success. The work, while very ingenious, provided no formal mathematical proof. Nevertheless, this article was intensely cited after its appearance and its imprint on subsequent work for the study of level sets for random fields was very important.

In the early eighties of the last century, three other key works were published. The article entitled "Esperanzas de integrales sobre conjuntos de nivel aleatorios" by E. Cabaña, [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF], that the reader will have the opportunity to FOREWORD revisit with these notes, a Springer Lecture Notes [START_REF]Wschebor -Surfaces aléatoires[END_REF] written by M. Wschebor "Surfaces aléatoires" and finally the Robert Adler's book "The Geometry of Random Fields" [START_REF] Adler | The geometry of random fields[END_REF]. These three works deal with the extension of the ideas of Kac and Rice to multidimensional random fields.

These themes, somewhat "exotic" for the time they were studied, have been revived in the 21st century. We have seen the appearance of two books, [START_REF] Adler | Taylor -Random fields and geometry[END_REF] and [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF], that gave a new impetus to the subject.

The well-established Kac-Rice formulas in the 1980s have been proven again and improved, revealing unsuspected connections. However, the most important aspect of this recent revival is the application of Kac-Rice formulas in several areas of pure and applied mathematics. With these notes, different in its accent from the two aforementioned books, we want to introduce the reader into an old and at the same time young field, highlighting a significant number of applications.

These notes come from a course given by one of the authors at the XXX Escuela Venezolana de Matemática that took place at Mérida, Venezuela in September 2017. For this edition, they have been considerably expanded and corrected.

CHAPTER 1 SOME HISTORICAL REMARKS ABOUT KAC-RICE FORMULA

The well-known change of variable formula in an integral of a real function can be written as follows. Let G : R → R a monotone and differentiable function and

I = G([a, b]). If f is a continuous function, we have I f (y) dy = b a f (G(t)) G ′ (t) dt.
A similar formula is also true when G is differentiable but not necessarily monotone. In such a case, the formula must be modified by introducing the number of crossings of the level y for the function G. We define the latter quantity as follows: This formula is known as the area formula and has a long history. Its first proof is presented in an article by S. Banach [START_REF]Sur les lignes rectifiables et les surfaces dont l'aire est finie[END_REF]. This formula can be used to obtain another formula known as the Kac counter [START_REF]On the average number of real roots of a random algebraic equation (II)[END_REF]. In fact, if the function G is continuously differentiable and has a finite number of crossings at the u level, then

(1) N G [a,b] (u) = lim δ→0 1 2δ b a 1 [u-δ,u+δ] (G(s)) G ′ (s) ds.
Kac used this formula to obtain the expectation of the number of real roots of a random polynomial. In fact, let {a i } n i=0 be a set of independent standard Gaussian random variables. Let us define for each n the following random polynomial X n (t) := a 0 + a 1 t + • • • + a n t n . Kac was interested in the expectation of the random variable N Xn [0,T ] (0). Using the counter [START_REF] Adler | The geometry of random fields[END_REF], knowing that the number of real roots of X n and X ′ n is bounded by n, we see that almost surely, we have

N Xn [0,T ] (0) = lim δ→0 1 2δ T 0 1 [-δ,+δ] (X n (s)) X ′ n (s) ds,
and moreover, the right side is also bounded. The dominated convergence theorem implies

E N Xn [0,T ] (0) = lim δ→0 1 2δ T 0 δ -δ R |z| p Xn(s),X ′ n (s) (x, z) dz dx ds = T 0 R
|z| p Xn(s),X ′ n (s) (0, z) dz ds,

where p Xn(s),X ′ n (s) (x, z) is the density of the Gaussian vector (X n (s), X ′ n (s)). This is the famous Kac-Rice formula. This name comes from the fact that Rice, considering the zeros of random processes, also gives a proof of this result for Gaussian processes [START_REF]Mathematical analysis of random noise, part iii-iv[END_REF]. Nevertheless, Rice's interest was not in random polynomials, but in problems related to random signals. In the case studied by Rice, more work is needed because, in general, the processes are not almost surely bounded.

In a historical article [START_REF]Origin of Rice's formula[END_REF], the author claims that in fact, the formula was obtained by Rice long before the publication of his articles [START_REF] Rice | Mathematical analysis of random noise, part i-ii[END_REF] and [START_REF]Mathematical analysis of random noise, part iii-iv[END_REF], which remain the main references to the first proof of the formula.

Rice's proof, although original and very suggestive, was supplemented by Itô in [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF] who gives, for stationary Gaussian processes, a necessary and sufficient condition for the number of crossings to be finite. The Itô's condition requires the finiteness of the second spectral moment of the process.

In 1967, some time after the publication of the aforementioned works, Cramér & Leadbetter's book [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF] was published. In this book, not only was a general proof of the Kac-Rice formula given, but the higher moments were also considered, establishing a formula for factorial moments of the number of crossings for Gaussian processes. In addition, the theory has been enriched and supplemented by an interesting series of applications.

Besides, in the text, a necessary condition was given to ensure that the variance of the N X [0,T ] (0) was finite, X being a stationary Gaussian process. To do this, the authors used Kac-Rice's formula for the second factorial moment of N X [0,T ] (0). The condition was expressed as follows: ∃δ > 0 such that

δ 0 |r ′′ (t) -r ′′ (0)| t dt < ∞,
where r is the covariance function of X. A little later, D. Geman [START_REF] Geman | Occupation times for smooth stationary processes[END_REF] showed that this condition was also sufficient.

At that time, the study of level sets for random fields was not very popular. A brilliant exception is the seminal work of M.S. Longuet-Higgins [START_REF] Longuet-Higgins | The statistical analysis of a random, moving surface[END_REF] appeared in 1957 and in which, among several applications of the level crossings to sea modeling, a Kac-Rice formula for the length of the level curve for a stationary Gaussian random field X : R 2 → R was firmly established.

Apart from the article mentioned above, interest in the functional of level sets for a random field only emerged in the last seventies and eighties of the last century. For example, we can cite the founding article [START_REF] Adler | Level crossings for random fields[END_REF], where Adler and Hasofer extended the notion of crossing levels using the Euler characteristic of the excursion set from a Gaussian random field X : R 2 → R. Also, it is important to mention the work of Benzaquén & Cabaña [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF], where for the first time a Kac-Rice formula for the measure of the level set of a Gaussian random field X : R d → R was obtained, generalizing the result of the aforementioned article [START_REF] Longuet-Higgins | The statistical analysis of a random, moving surface[END_REF].

In the eighties, two books dealing with the levels set for random fields were published. The first book, written by R. Adler [START_REF] Adler | The geometry of random fields[END_REF], deals with problems related to the geometry of random fields. The Euler characteristic of the excursion set A u (X, S) := {s ∈ S : X(s) ⩾ u} for a Gaussian random field X : R d → R was introduced and a Kac-Rice formula for the expectation of this functional has been proved. In addition, a formula for the expected number of maxima above the u level of X(t) for t ∈ S has been given. Subsequently, several applications of the last mentioned formula were provided. In particular, the author obtains an approximation of the tail of the distribution of the random variable max t∈S X(t). The second book, is a Springer Lecture Notes written by M. Wschebor [START_REF]Wschebor -Surfaces aléatoires[END_REF] where the expectation of the Lebesgue measure of the level set C S,X (u) := {s ∈ S : X(s) = u} was computed. The results contained in this book generalize those of the article [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF], showing a Kac-Rice formula for more general Gaussian fields, demonstrating a formula for higher moments and also considering non-Gaussian processes.

The Kac-Rice formulas cited above are based on a geometric measurement formula known as the coarea formula. This formula will be established and proven at the beginning of this book. The coarea formula is one of the main tools in Federer's work [START_REF] Federer | Geometric measure theory[END_REF] and other mathematicians (the corresponding references can be found in the bibliography of this latter book).

To facilitate understanding, we will give the formula and sketch an application. Let G be a differentiable function G : D ⊂ R d → R j , d ⩾ j, and D an open set of R d . Let ∇G(•) denote its Jacobian. If f : R j → R + then for a Borel subset B ⊂ D, B f (G(x))(det(∇G(x)∇G(x) T ))

1 2 dx = R j f (y)H d-j (C B,G (y)) dy
where H d-j is the Hausdorff measure in dimension d -j and C B,G (y) := {x ∈ B : G(x) = y}. In the case we develop, we define j = 1, f = 1 A for A a Borel set of R and G = X a continuously differentiable Gaussian random field and its gradient satisfies a Hölder condition. In this case, C B,X (y) is almost surely a differentiable variety of co-dimension one (see [START_REF]Wschebor -Surfaces aléatoires[END_REF]) and the formula is

B 1 {X(x)∈A} ∥∇X(x)∥ d dx = A σ d-1 (C B,X (y)) dy.
Then, taking the expectation on both sides and assuming that for any bounded Borel set A one of the two integrals is finite, using Fubini's theorem and duality, we get for almost all y In [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF] for stationary Gaussian fields and in [START_REF]Wschebor -Surfaces aléatoires[END_REF] for more general and smooth Gaussian fields, conditions are given for the formula to be true for all y. In general, it is not trivial to switch from the formula (2) to the formula given for all y. Different strategies have been developed and the explanation of a possible way is one of the main interests of this work.

The formula (2) for d ⩾ j ⩾ 1 was studied by Cabaña in [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF]. The article was written in Spanish and had not been widely distributed. In the more recent book [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF] a proof has been sketched, and in these notes, we will generalize and complete these two nice initiatives.

In the twenty-first century, two books appeared [START_REF] Adler | Taylor -Random fields and geometry[END_REF] and [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF] that gave new impetus to the subject. New fields of application of the formulas have appeared in the literature and the question has become a vast research field. Examples include applications to the number of roots of random polynomial systems (algebraic or trigonometric) and also to the volume of nodal sets for rectangular systems.

The current literature is considerable. We can mention among others: [START_REF] Granville | The distribution of the zeros of random trigonometric polynomials[END_REF] and [START_REF] Azaïs | CLT for crossings of random trigonometric polynomials[END_REF] for the study of random trigonometric real polynomials and [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] which considers the length of the set of zeros of the random trigonometric polynomial in the torus T 2 , also [START_REF]On the Kostlan-Shub-Smale model for random polynomial systems. Variance of the number of roots[END_REF], [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF]Chapter 12] and [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF] for the zeros of Kostlan-Shub-Smale polynomials or systems and [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] for the study of zeros for more general polynomials and also the zeros of other geometric objects. Kac-Rice formulas are also a basic tool for studying sets of zeros of random waves and it has been very important to prove or disprove Berry's conjectures [START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF], see [START_REF] Marinucci | Nonuniversality of nodal length distribution for arithmetic random waves[END_REF] and the references therein.

One area of application where the formulas have been very useful is random modelling of the sea. This domain presents the first application of Kac-Rice's formula for random fields in the nice article [START_REF] Longuet-Higgins | The statistical analysis of a random, moving surface[END_REF]. In addition, the Lund's School of probability has been very active in these areas, see for example [START_REF] Lindgren | Stochastic asymmetry properties of 3D Gauss-Lagrange ocean waves with directional spreading[END_REF] and the references contained therein. The Kac-Rice formula is not valid for random fields with non-differentiable trajectories. However, the study of some level functionals for these fields as the local time, was implemented by approximating the actual field by a regular field using a convolution with an approximate Dirac delta. In addition, the Kac-Rice formula for a functional level of the smoothed field makes it possible to approximate a level functional of the original field. Thus, the random fields to which the level sets are studied can have their domain in a finite-dimensional manifold; see [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] for example.

We have presented a panorama, perhaps a little fast, of the genesis and development of Kac-Rice formulas and their deep imprint in the study of sets of zeros of random functions. In these notes, we will try to make accessible to postgraduate students and researchers in probability and statistics and related fields the basic ideas for demonstrating the formulas. We will also insist on its applications, both those of the first epoch and those of the present times. We hope the reader will enjoy reading them as much as we did while writing them.

CHAPTER 2

A PROOF OF THE COAREA FORMULA

Preliminaries

As mentioned earlier, in these notes we study the Kac-Rice formulas dealing with the expectation of the level set measure for random fields or processes. In what follows, we describe the different parts of this work.

First, there are two variants of the change of variables formula for multiple integrals that are very useful in integral geometry. The first one corresponds to smooth and locally bijective functions G : R d → R d and the second one applies to smooth functions G : R d → R j with d > j, having a differential of maximal rank. These formulas are called respectively area formula and coarea formula. By applying these formulas to the trajectories of the random fields, then taking the expectation, we obtain the well known Kac-Rice formulas. Recently and mainly thanks to the publication of two excellent books ( [START_REF] Adler | Taylor -Random fields and geometry[END_REF] and [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF]), the application of these formulas has aroused a growing interest in fields as varied as: random algebraic geometry, the complexity of algorithms for solving large systems of equations, the study of zeros of random polynomial systems, and finally, applications in engineering. We now present the parts of this book.

1. In the first part, we give an analytical proof of the area and coarea formulas. Such a proof, originally attributed to Banach and Federer [START_REF] Federer | Geometric measure theory[END_REF], uses elementary tools of vector calculus and measure theory in R d . 2. The above formulas are the basis for establishing the validity of Kac-Rice formulas for random fields. They allow to compute the expectation of the measure of the level sets

C Q,X (y) := {t ∈ Q ⊂ R d : X(t) = y},
where X : Ω × R d → R j is a random field and d ⩾ j. It should be noted that one can obtain a Kac-Rice formula for almost any level using the area and coarea formulas, Fubini's theorem and duality. However, in applications, the interest is directed towards a fixed y-level. For example, the zeros in the study of the roots of a random polynomial. This precision leads us to a delicate study to generalize the classical theorems of inverse function and implicit function. For this part, we have based our approach on two seminal works: on the one hand, an article by E. Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF], published in the proceedings of the II CLAPEM conference and on the other hand, in the Lecture Notes of Mathematics by M. Wschebor [START_REF]Wschebor -Surfaces aléatoires[END_REF].

The method we use also produces the Kac-Rice formula for the upper moments of the level measure. 3. These notes continue with several applications. We first show examples where the hypothesis can be verified, then we use the Kac-Rice formulas to obtain conditions on the finiteness of the first and second moments of the level set measure. The very important case of Gaussian random fields leads us to explicit calculations. Then, we study the number of roots of trigonometric random polynomials. We highlight the asymptotic behavior of the expectation and variance of the number of roots. We then study the application of the Kac-Rice formula to the modeling of the sea and to random gravitational lenses. Another topic we consider is the nodal curves of the random wave system considered by Berry and Dennis in [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF]. These curves are called dislocations in physics and correspond to the lines of darkness in the propagation of light, or the threads of silence in the propagation of sound (see [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF]). 4. After these applications, we pay special attention to systems of random polynomials of several variables which are invariant under the action of the group of rotations in R d . These polynomial systems are called Kostlan-Shub-Smale, after the authors who first studied them and also established the properties of the set of their zeros. We obtain an asymptotic formula for the variance of the measure of the set of zeros of these systems. It is important to note that this result had already been obtained by another method by Letendre and Puchol in [START_REF] Letendre | Variance of the volume of random real algebraic submanifolds II[END_REF]. 5. Finally, we consider a Gaussian random field whose trajectories are not differentiable. If we approximate its trajectories using a convolution with a sequence approximating the Dirac delta, the approximated fields have smooth trajectories. We then study the approximation of the local time of the original field by the length of the set of levels of the smoothed

HYPOTHESIS AND NOTATIONS

process. We obtain the convergence in L 2 (Ω) and also some results of convergence in law.

Hypothesis and notations

Let D be an open set of R d and let j ⩽ d be a positive integer and G : D ⊂ R d → R j be a function. The function G satisfies the hypothesis H 0 :

H 0 : G is continuously differentiable on D, that is G ∈ C 1 (D, R j ). We denote by ∇G(•) its Jacobian. For y ∈ R j we define the level set at y as:

C G (y) := {x ∈ D : G(x) = y} = G -1 (y),
and N ⋆ = {x ∈ Z, x > 0}.

C Q,G (y) := C G (y) ∩ Q, where Q is a subset of R d . If G satisfies H 0 ,
An application f : (E, d E ) → (F, d F ) between two metric spaces is said to be L-Lipschitz, L ⩾ 0, if d F (f (x), f (y)) ⩽ Ld E (x, y), for any pair of points x, y ∈ E.

We also say that an application is Lipschitz if it is L-Lipschitz for some L.

In the same way, an application f : (E, d E ) → (F, d F ) between two metric spaces, is said to be locally Lipschitz, if for each x ∈ E, there exists a neighborhood V x of x such that the restriction of function f to V x is Lipschitz. L(R d , R j ) denotes the vector space of linear functions from R d to R j with the norm ∥•∥ j,d . Also L 2 (R d , R j ) is the vector space of continuous symmetric linear applications from R d to R j with the norm ∥•∥ (s) j,d . If B is a matrix, B ij denotes the element that appears in the ith row and jth column. For j ∈ N ⋆ , S j-1 is the boundary of the unit ball of R j . For any function f , supp(f ) is its support. C is a generic constant and its value can change within a proof.

Coarea formula

The two results below are known in the literature as the coarea formula, cf. Federer [26, pp. 247-249] and Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF]. Our proof is based on the excellent notes of Weizäcker & Geißler from Kaiserslautern University [START_REF] Weizsäcker | Fractal sets and preparation to geometric measure theory[END_REF].

Theorem 2.3.1. -Let f : R j → R be a mesurable function and G : D ⊂ R d → R j , j ≤ d, be a function satisfying the hypothesis H 0 where D is an open set. For any Borel B subset of D, the following formula is true: [60, pp.60-67]. First, we will prove the formula for affine functions g, then we will consider the formula for sets A of null Lebesgue measure in R d , and then we will consider sets A which are subsets of D r g . In order to accomplish our task, we need to prove some lemmas. Lemma 2.3.9. -Proposition 2.3.7 is true for surjective affine functions g, that is if g(x) := a + φ(x) where a ∈ R j is fixed and φ is a linear function of maximum rank j.

(3) B f (G(x)) det ∇G(x)∇G(x) T 1/2 dx = R j f (y)σ d-j (C D r B,G (y) 
Proof of Lemma 2.3.9. Without loss of generality, we can always consider a = 0. Indeed, on the one hand ∇g(•) = ∇φ(•), so for any Borel set A of R d the following equality is true:

A det ∇g(x)∇g(x) T 1/2 dx = A (det(∇φ(x)∇φ(x) T )) 1/2 dx.
On the other hand, because the mesure σ j is translation invariant, we have: Now let V be the vector subspace of R d defined by V := ker φ. This space is of dimension (d -j) because φ has maximal rank j. We denote by V ⊥ its orthogonal complement which is of dimension j.

We will work with coordinate systems associated with these spaces, i.e. if x ∈ R d , we will write x := (z, w) with z ∈ V ⊥ and w ∈ V . Then the Lebesgue measure σ d on R d is the product measure σ j ⊗ σ d-j . Observe that φ| V ⊥ is a one to one function since dim V ⊥ = j. Let us denote Ψ the inverse function of this restriction, i.e. Ψ := (φ| V ⊥ ) -1 . We have φ • Ψ = Id R j and Ψ • φ| V ⊥ = Id V ⊥ , where Id R j (resp. Id V ⊥ ) is the identity function on R j (resp. V ⊥ ). Moreover, since φ T maps R j into V ⊥ by definition of V , we have:

Ψ T • Ψ • φ • φ T = Ψ T • φ T = (φ • Ψ) T = Id R j ,
then:

(5)

(det(φ • φ T )) 1/2 = (det(Ψ T • Ψ)) -1/2 = |det(Ψ)| -1 ,
the last equality is a consequence of the fact that Ψ is an endomorphism of R j .

Let A be a fixed Borel set of R d . Consider the function

h : V ⊥ -→ R + z -→ σ d-j {w ∈ V : (z, w) ∈ A}.
Observe that for y ∈ R j we have φ -1 (y) ∩ A = {(Ψ(y), w) : w ∈ V } ∩ A and given that Ψ(y) ∈ V ⊥ , (6) h(Ψ(y)) = σ d-j (φ -1 (y) ∩ A).

So, since the Lebesgue measure σ d is the product measure σ j ⊗ σ d-j , we get [START_REF] Azaïs | Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires[END_REF] 

σ d (A) = V ⊥ h(z) dσ j (z).
Finally, since the function φ is a linear function and by using the equalities ( 5), [START_REF] Azaïs | Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires[END_REF], the formula of change of variable for function Ψ which is a C 1 function as well as Ψ -1 as endomorphism in finite dimension and the equality [START_REF] Armentano | Central limit theorem for the volume of the zero set of kostlan-shub-smale random polynomial systems[END_REF], we obtain Proof of Lemma 2.3.12. Consider K a compact set of R d and x ∈ K. Since g is locally Lipschitz on R d , there exists a constant L x > 0 and a radius r x > 0, such that, for all u, v ∈ B(x, r x ), ∥g(u) -g(v)∥ j ⩽ L x ∥u -v∥ d . Since g is locally Lipschitz on R d , it is continuous on R d and also on the compact set K. We define M := sup u∈K ∥g(u)∥ j < ∞. Since K is compact, there exists m ∈ N * , such that for any i = 1, . . . , m, there exists x i ∈ K, satisfying K ⊂ ∪ m i=1 B(x i , r x i /2). Also define L := max i=1, ..., m {L x i } and r := min i=1, ..., m {r x i }.

A (det(∇φ(x)∇φ(x) T )) 1/2 dx = A (det(φ • φ T )) 1/2 dx = σ d (A) |det(Ψ)| -1 = V ⊥ |det(Ψ)| -1 h(z) dσ j (z)
Let us prove that g is a Lipschitz function on K with Lipschitz constant L := max{L, 4M /r}. Indeed, let us consider u, v ∈ K. If ∥u -v∥ d ⩽ r 2 : there exists i ∈ {1, . . . , m}, such that u ∈ B(x i , r x i /2). In this case u, v ∈ B(x i , r x i ) and

∥g(u) -g(v)∥ j ⩽ L x i ∥u -v∥ d ⩽ L ∥u -v∥ d . If ∥u -v∥ d > r 2 : ∥g(u) -g(v)∥ j ⩽ 2M = 4M r × r 2 ⩽ 4M r ∥u -v∥ d ⩽ L ∥u -v∥ d .
This completes the proof of the lemma. An,g (y)) dy = 0.

By taking the limit when n → ∞, Beppo Levi's theorem implies that

R j σ d-j (C D r A,g (y) 
) dy = 0.

Remark 2.3.11 follows.

Proof of Lemma 2.3.10. For δ > 0, we will denote by H δ k the Euclidean Hausdorff pre-measure which defines the k-dimensional Euclidean Hausdorff measure, denoted H k , k ∈ N ⋆ . The measure H k coincides with the Lebesgue measure σ k on R k with the Euclidean norm (cf. [60, p. 16]). Let δ := 1/ℓ, ℓ ∈ N ⋆ . By definition of H Moreover, by definition of H 1/ℓ d-j , and given that ((U ℓ i ) i∈I ℓ ) ℓ∈N covers A, we have ( 9)

2 d-j ω d-j H 1/ℓ d-j (g -1 (y) ∩ A ∩ D r g ) ⩽ i∈I ℓ U ℓ i d-j 1 g(U ℓ i ) (y) := h ℓ (y). ⩽ lim inf ℓ→+∞ R j h ℓ (y) dy = lim inf ℓ→+∞ R j i∈I ℓ U ℓ i d-j 1 g(U ℓ i ) (y) dy = lim inf ℓ→+∞ i∈I ℓ U ℓ i d-j σ j (g(U ℓ i )). ( 10 
)
The idea is now to establish a relation between σ j (g(U ℓ i )) and U ℓ i . The isodiametric inequality for the norms (cf. [60, p. 14]) will allow us to obtain this relation and thus to continue our proof. Let us recall this inequality.

Proposition 2.3.13. -Let C be a bounded Borel set of R j then σ j (C) ⩽ ω j 2 j |C| j .
The function g is Lipschitz on O, so that the images g(U ℓ i ) are bounded sets. We use the isodiametric inequality for these bounded sets and also that g is Lipschitz with Lipschitz constant Lip(g), and finally inequality [START_REF] Azaïs | CLT for crossings of random trigonometric polynomials[END_REF]. In this way [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF] gives us

2 d-j ω d-j R j σ d-j (C D r A,g (y)) dy ⩽ lim inf ℓ→+∞ i∈I ℓ U ℓ i d-j σ j (g(U ℓ i )) ⩽ lim inf ℓ→+∞ i∈I ℓ U ℓ i d-j ω j 2 j g(U ℓ i ) j ⩽ lim inf ℓ→+∞ i∈I ℓ U ℓ i d-j ω j 2 j Lip j (g) U ℓ i j = lim inf ℓ→+∞ i∈I ℓ U ℓ i d ω j 2 j Lip j (g) ⩽ lim inf ℓ→+∞ ω j 2 j Lip j (g) 2 d ω d H 1/ℓ d (A) + 1 ℓ = 2 d-j ω j ω d Lip j (g)H d (A) = 2 d-j ω j ω d Lip j (g)σ d (A).
This completes the proof of Lemma Let us choose an element x ∈ A. Consider the vector subspace of R d defined by V := ker ∇g(x). It is of dimension (d -j) since ∇g(x) has maximal rank j. Let V ⊥ be its orthogonal complement which is of dimension j. Let us observe that ∇g(x)| V ⊥ is one to one.

We will denote by π V the orthogonal projection of R d onto V and define the function

h x : R d → R d as h x (x ′ ) := x + π V (x ′ ) + (∇g(x)| V ⊥ ) -1 (g(x ′ ) -g(x)).
We want to prove that for any ε > 0, there exists δ > 0 such that if B δ (x) is the set

(11) B δ (x) := B(x, δ) ∩ A, then 1 -ε 1 + ε d (1 + ε) j B δ (x) det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ -εσ d (B δ (x)) ⩽ R j σ d-j (C B δ (x),g (y)) dy (12) 
⩽ 1 + ε 1 -ε d (1 -ε) j B δ (x) det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ + εσ d (B δ (x)) .
To do this, let's start by showing the following two things: For any ε > 0, there exists δ > 0 such that if x ′ , x ′′ ∈ B δ (x), we have:

(13) (1 -ε) x ′ -x ′′ d ≤ h x (x ′ ) -h x (x ′′ ) d ≤ (1 + ε) x ′ -x ′′ d , as well as (14) det ∇g(x)∇g(x) T 1/2 -det(∇g(x ′ )∇g(x ′ ) T ) 1/2 < ε.
The inequality ( 14) is a consequence of the fact that ∇g(•) is a continuous function defined on R d . To prove [START_REF] Berman | Local times and sample function properties of stationary Gaussian processes[END_REF], notice that (∇g(x)| V ⊥ ) -1 is a finite dimensional endomorphism and therefore continuous. Thus, we have

(∇g(x)| V ⊥ ) -1 j,j < ∞. Furthermore, let's define ∆ δ (x) as ∆ δ (x) := sup x ′ ̸ =x ′′ ,x ′ ,x ′′ ∈B δ (x) ∥g(x ′ ) -g(x ′′ ) -∇g(x)(x ′ -x ′′ )∥ j ∥x ′ -x ′′ ∥ d ,
remembering that B δ (x) is defined by [START_REF]Sur les lignes rectifiables et les surfaces dont l'aire est finie[END_REF]. Since g belongs to C 1 , we can write the following first order Taylor expansion

g(x ′ ) = g(x ′′ ) + 1 0 ∇g(x ′′ + λ(x ′ -x ′′ )) dλ (x ′ -x ′′ ), getting g(x ′ ) -g(x ′′ ) -∇g(x)(x ′ -x ′′ ) = 1 0 (∇g(x ′′ + λ(x ′ -x ′′ )) -∇g(x)) dλ (x ′ -x ′′ ).
This implies, since ∇g(•) is continuous, that for any ε > 0, there exists δ > 0, such that

(15) ∆ δ (x) ⩽ ε (∇g(x)| V ⊥ ) -1 -1 j,j . Let ε > 0 be a fixed real number and x ′ , x ′′ ∈ B δ (x). Since V = ker ∇g(x), we have ∇g(x)| V ⊥ (π V ⊥ (x ′ -x ′′ )) = ∇g(x)(x ′ -x ′′ ).
This implies [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF]. The proof of ( 13) is thus completed.

x ′ -x ′′ -(h x (x ′ ) -h x (x ′′ )) d = π V ⊥ (x ′ -x ′′ ) -(∇g(x)| V ⊥ ) -1 (g(x ′ ) -g(x ′′ )) d = (∇g(x)| V ⊥ ) -1 ∇g(x)(x ′ -x ′′ ) -(g(x ′ ) -g(x ′′ ) d ⩽ (∇g(x)| V ⊥ ) -1 j,j ∆ δ (x) x ′ -x ′′ d ⩽ ε x ′ -x ′′ d , the last inequality comes from
Let T x : R d → R j be the following affine function,

T x (x ′ ) := g(x) + ∇g(x)(x ′ -x). It is surjective because ∇g(x) is of maximal rank j. Moreover, it is certain that T x • h x = g. Indeed, given that π V (x ′ ) ∈ V and (∇g(x)| V ⊥ ) -1 (g(x ′ ) -g(x)) ∈ V ⊥ , we can write T x (h x (x ′ )) = g(x) + ∇g(x)(h x (x ′ ) -x) = g(x) + ∇g(x)(π V (x ′ )) + ∇g(x) (∇g(x)| V ⊥ ) -1 (g(x ′ ) -g(x)) = g(x) + ∇g(x)| V ⊥ (∇g(x)| V ⊥ ) -1 (g(x ′ ) -g(x)) = g(x) + g(x ′ ) -g(x) = g(x ′ ).
Furthermore, [START_REF] Berman | Local times and sample function properties of stationary Gaussian processes[END_REF] allows us to conclude that for fixed ε > 0, h x is Lipschitz on B δ (x), having a Lipschitz constant equal to (1 + ε). Since h x is an injective function on B δ (x), h x admits an inverse function defined on h x (B δ (x)). The inequality [START_REF] Berman | Local times and sample function properties of stationary Gaussian processes[END_REF] ensures that this inverse is also Lipschitz on h x (B δ (x)) with a Lipschitz constant equal to (1 -ε) -1 . These two facts allow us to apply to h x and h -1 x the Lipschitz contraction principle which we recall below (cf. [60, p. 18]).

Proposition 2.3.15. -Let E, F be two subsets of R m . We assume that there exists a surjective Lipschitz function f :

E → F with Lipschitz constant L. Then H k (F ) ⩽ L k H k (E) for all k ⩾ 0.
Let us apply simultaneously this last principle on the one hand to the function f := h x for E := B δ (x), F := h x (B δ (x)), L := (1 + ε) and k := d, and on the other hand to f := h -1

x for

E := h x (B δ (x)), F := B δ (x), L := (1 -ε) -1 and k := d. We obtain (16) (1 -ε) d σ d (B δ (x)) ⩽ σ d (h x (B δ (x))) ⩽ (1 + ε) d σ d (B δ (x)).
Let G be a set such that G ⊆ h x (B δ (x)). Let us again apply simultaneously the principle of contraction to the function f := h -1

x , for E := G, F := h -1 x (G), L := (1 -ε) -1 and k := d -j, and then to f := h x , for E := h -1

x (G), F := G, L := (1 + ε) and k := d -j, we get

(1 + ε) -(d-j) H d-j (G) ⩽ H d-j (h -1 x (G)) ⩽ (1 -ε) -(d-j) H d-j (G). In particular, if we choose G := T -1
x (y) ∩ h x (B δ (x)), and observe that

T x • h x = g, H d-j (h -1 x T -1 x (y) ∩ h x (B δ (x)) ) = σ d-j (g -1 (y) ∩ B δ (x)
), then we get

(1 + ε) -(d-j) σ d-j T -1 x (y) ∩ h x (B δ (x)) ⩽ σ d-j (g -1 (y) ∩ B δ (x)) (17) ⩽ (1 -ε) -(d-j) σ d-j T -1 x (y) ∩ h x (B δ (x)
) . We can now prove [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF]. To do so, we apply [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF], then Lemma 2.3.9 to the surjective affine function T x for the Borel set A := h x (B δ (x)), also [START_REF] Berzin | Estimation of local anisotropy based on level sets[END_REF] and finally [START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF], so we obtain

R j σ d-j g -1 (y) ∩ B δ (x) dy ⩽ (1 -ε) -(d-j) R j σ d-j T -1 x (y) ∩ h x (B δ (x)) dy = (1 -ε) -(d-j) hx(B δ (x)) det(∇T x (x ′ )∇T x (x ′ ) T ) 1/2 dx ′ = (1 -ε) -(d-j) σ d (h x (B δ (x))) det ∇g(x)∇g(x) T 1/2 ⩽ (1 -ε) -(d-j) (1 + ε) d σ d (B δ (x)) det ∇g(x)∇g(x) T 1/2 ⩽ 1 + ε 1 -ε d (1 -ε) j B δ (x) det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ + εσ d (B δ (x)) .
In the same way

R j σ d-j g -1 (y) ∩ B δ (x) dy ⩾ (1 + ε) -(d-j) R j σ d-j (T -1 x (y) ∩ h x (B δ (x))) dy = (1 + ε) -(d-j) hx(B δ (x)) det(∇T x (x ′ )∇T x (x ′ ) T ) 1/2 dx ′ = (1 + ε) -(d-j) σ d (h x (B δ (x))) det ∇g(x)∇g(x) T 1/2 ⩾ (1 + ε) -(d-j) (1 -ε) d σ d (B δ (x)) det ∇g(x)∇g(x) T 1/2 ⩾ 1 -ε 1 + ε d (1 + ε) j B δ (x) det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ -εσ d (B δ (x)) .
The inequality [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF] follows.

To finish the proof of Lemma 2.3.14, for fixed ε > 0, using Vitali's covering theorem (cf. [START_REF] Weizsäcker | Fractal sets and preparation to geometric measure theory[END_REF]Theorem 1.15,p. 14]), the set A can be covered, except for a set whose Lebesgue measure is zero, by a sequence of disjoint sets of the type B δ (x). These are closed sets because A is closed since it is compact. By Remark 2.3.11, we can forget the null measure set. Then we take the sum on this partition. By highlighting the fact that σ d (A) < ∞, A being a compact set and by using [START_REF] Benzaquen | The expected measure of the level sets of a regular stationary Gaussian process[END_REF], we obtain

1 -ε 1 + ε d (1 + ε) j A det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ -εσ d (A) ≤ R j σ d-j (C A,g (y)) dy ≤ 1 + ε 1 -ε d (1 -ε) j A det(∇g(x ′ )∇g(x ′ ) T ) 1/2 dx ′ + εσ d (A) .
Since ε > 0 is sufficiently small, Proposition 2.3.7 is satisfied if A ⊆ D r g , which completes the proof of Lemma 2.3.14.

To finish the proof of Proposition 2.3.7, we apply Lemma 2.3.14 to the Borel set A ∩ D r g . Noting that (D r g ) c = {x ∈ R d , det(∇g(x)∇g(x) T ) = 0}, Proposition 2.3.7 follows. We can prove now Theorem 2.3.1 and its corollary.

Let B be a Borel subset of D and A := B ∩ G -1 (I), where I is a Borel set of R j . We consider ∀n ∈ N ⋆ , the closed sets

D n := x ∈ R d , d(x, D c ) ⩾ 1 n .
Since D is open, the sets 

:= A ∩ D n , we obtain An (det(∇g n (x)∇g n (x) T )) 1/2 dx = R j σ d-j (C D r
An,gn (y)) dy, and since g n = G on D n then on A n , we get

B∩Dn 1 I (G(x)) det ∇G(x)∇G(x) T 1/2 dx = R j 1 I (y)σ d-j C D r B∩Dn,G (y) dy. 
Moreover, when n tends to infinity, the sets (D n ) n∈N * tend increasingly towards D. Beppo Levi's theorem implies that Theorem 2. 

|f (G(x))| det ∇G(x)∇G(x) T 1/2 dx ⩽ C B det ∇G(x)∇G(x) T 1/2 dx < ∞, since the function G is C 1 on D

Kac-Rice formulas for almost all levels

In this section,

X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) denotes a random field that belongs to C 1 (D, R j ), Y : Ω × D ⊂ Ω × R d → R is a continuous process and D is an open set of R d .
Let H be the operator

H : L(R d , R j ) -→ R + A -→ (det(AA T )) 1/2 .
Recall that the random set D r X is defined as D r X = {x ∈ D : rank (∇X(x)) = j} and for y ∈ R j , the level set

C D r X (y) is C D r X (y) = C X (y) ∩ D r X .

Let us consider the following hypotheses

-H 1 : For almost all x ∈ D, the density of X(x), i.e. p X(x) (•), exists. -H 2 : The function u -→ E C D r X (u) |Y (x)| dσ d-j (x) , is a continuous function of the variable u. -H ⋆ 2 : The function u -→ E σ d-j C D r X (u) , is a continuous function of the variable u. -H 3 : The function u -→ D p X(x) (u)E |Y (x)| H(∇X(x)) X(x) = u dx, is a continuous function of the variable u. -H ⋆ 3 : The function u -→ D p X(x) (u)E H(∇X(x)) X(x) = u dx,
is a continuous function of the variable u.

Using the coarea formula and by duality, we will prove the following proposition. 

E σ d-j (C D r X (y)) = D p X(x) (y)E H(∇X(x)) X(x) = y dx.
2. If X and Y satisfy the hypotheses H 1 and (H 2 or H 3 ), then for almost all y ∈ R j ,

(19) E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
Proof of Proposition 2.4.1. Let us begin by proving part 1 of the proposition. Applying Remark 2.3.2 that follows Theorem 2.3.1 to the function G = X and f = 1 A where A is a Borel set of R j and to the Borel set B = D, we have

D 1 X(x)∈A H(∇X(x)) dx = A σ d-j (C D r X (y)) dy.
By taking the expectation of each side of the equality, which is possible because both terms are positive, and by applying Beppo Levi's theorem, we obtain by using the hypothesis

H 1 A E σ d-j (C D r X (y)) dy = A D p X(x) (y)E H(∇X(x)) X(x) = y dx dy.
In this step of the proof, we need a duality lemma.

Lemma 2.4.2. -Let f 1 , f 2 : R j → R + , be two measurable functions such that for any bounded set

A ∈ B(R j ), A f 1 (y) dy = A f 2 (y) dy < ∞, then f 1 = f 2 σ j -almost surely.
Proof of Lemma 2.4.2. We start by proving the lemma for two measurable functions g 1 et g 2 taking values in R + such that, for all B ∈ B(R j ),

B g 1 (y) dy = B g 2 (y) dy < ∞. Consider the set B := {g 2 < g 1 }. Since R j g 2 (y) dy < ∞, the hypothesis B g 1 (y) dy = B g 2 (y) dy implies that R j 1 B (y)(g 1 (y) -g 2 (y
)) dy = 0, and thus 1 B (y)(g 1 (y) -g 2 (y)) = 0 for almost all y ∈ R j . Similarly, consider B ′ := {g 1 < g 2 } and conclude R j 1 B ′ (y)(g 2 (y) -g 1 (y)) dy = 0 for almost all y ∈ R j . Finally g 1 = g 2 , σ j -almost surely. Now consider two functions f 1 and f 2 satisfying the assumptions of the lemma.

Let K be a compact set in R j . Since for any B ∈ B(R j ), A := B ∩ K is a bounded Borel set of R j , and if g 1 := f 1 1 K and g 2 := f 2 1 K , we have by hypothesis B g 1 (y) dy = B g 2 (y) dy < ∞. The preliminary result that we have shown implies that for any compact set

K of R j , f 1 1 K = f 2 1 K , σ j -almost surely.
The proof ends by noting that, except for a set of zero measure, the set R j can be written as a non-decreasing union of compact sets and applying Beppo Levi's theorem.

We apply here the lemma to the function 

f 1 (y) := E σ d-j (C D r X (y)) and to the function f 2 (y) := D p X(x) (y)E H(∇X(x)) X(x) = y dx.
G := X, h(x, y) := 1 A (y) × Y (x) × 1 D (x)
where A is a bounded Borel set of R j and to the Borel set B := D, we almost surely have (20

) D 1 X(x)∈A Y (x)H(∇X(x)) dx = A C D r X (y) Y (x) dσ d-j (x) dy.
Indeed, the hypothesis 

H 2 implies (21) E A C D r X (y) |Y (x)| dσ d-j (x) dy < ∞, so almost surely A C D r X (y) |Y (x)| dσ d-j (x)
E D 1 X(x)∈A |Y (x)| H(∇X(x)) dx < ∞.
We can take the expectation both sides of [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] and from the hypothesis H 1 , we obtain that for any bounded Borel set

A of R j A E C D r X (y) Y (x) dσ d-j (x) dy = A D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx dy.
Note that the last equality is still true replacing Y by |Y | and the corresponding integrals are finite.

CHAPTER 2. A PROOF OF THE COAREA FORMULA

Let us now consider

f 1 (y) := E C D r X (y) Y (x) dσ d-j (x) and f 2 (y) := D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
A priori, the functions f 1 and f 2 do not take their values in R + . However, a small modification of Lemma 2.4.2 can be made, by noticing that

A |f 1 (y)| dy < ∞ and A |f 2 (y))| dy < ∞, for any bounded Borel set A of R j , this implies f 1 = f 2 , σ d-j -almost surely.
This completes the proof of Proposition 2.4.1 in the case where X and Y satisfy the hypotheses H 1 and H 2 . A similar proof can be made when X and Y satisfy the hypotheses H 1 and H 3 .

CHAPTER 3 KAC-RICE FORMULA FOR ALL LEVEL

In this section

X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) denotes a random field that belongs to C 1 (D, R j ), Y : Ω × D ⊂ Ω × R d → R is a continuous process and D is an open set of R d .

Rice formula for a regular level set

Let us specify that ( 18) and ( 19) are true for almost all y ∈ R j . However, in applications, these formulas are needed for all y fixed in R j . We will establish a theorem that gives assumptions on X and Y such that these formulas will hold for all y in R j . Specifically, we will assume continuity of both members of ( 18) and [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF], restricting ourselves to the set D r X and proving the equality for any y fixed in R j . Before going any further, let us state two assumptions that are useful for what follows.

These formulas are similar to the previous ones but without the absolute value in the integrand.

-H 4 : The function

u -→ E C D r X (u) Y (x) dσ d-j (x) , is a continuous function of the variable u. -H 5 : The function u -→ D p X(x) (u)E[Y (x)H(∇X(x)) X(x) = u ] dx, is a continuous function of the variable u. Theorem 3.1.1. - 1. If X satisfies the hypotheses H 1 , H ⋆ 2 and H ⋆ 3 , then ∀y ∈ R j , (22) E σ d-j (C D r X (y)) = D p X(x) (y)E H(∇X(x)) X(x) = y dx.
2. If X and Y satisfy the hypotheses H 1 , (H 2 or H 3 ), H 4 and H 5 , then ∀y ∈ R j , 

(23) E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx. Remark 3.1.2. -If X and Y satisfy the hypotheses H 1 , H 2 and H 3 , then ∀y ∈ R j it holds that E C D r X (y) |Y (x)| dσ d-j (x) = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx.
∈ R j , E σ d-j (C D r X (y)) = D p X(x) (y)E H(∇X(x)) X(x) = y dx.
The hypotheses H ⋆ 2 and H ⋆ 3 imply the continuity of each member of the equality and in consequence their equality ∀y ∈ R j .

By reasoning in a similar way, we can prove [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF]. This completes the proof of Theorem 3.1.1. Remark 3.1.2 comes from the fact that the hypotheses H 4 and H 5 become the hypotheses H 2 and H 3 , replacing Y by |Y |.

3.1.1. Checking the hypotheses. -In the previous section, we proved [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF] by assuming mainly the continuity of its two members. Our goal in what follows is to specify a large class of processes X and Y that satisfies the hypotheses H i , i = 1, . . . , 5.

We first consider the hypotheses H 2 and H 4 . This leads us to prove Theorem 3.1.3 which is needed to prove Proposition 3.1.8 which follows. We must emphasize that the proof we are about to give is deeply inspired by Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF].

For a while, the functions X and Y will be assumed to be deterministic, i.e. they are not random functions. . Then the function

Theorem 3.1.3. -Let X : D ⊂ R d → R j (j ⩽ d) be a function belonging to C 1 (D, R j ) such that ∇X is
y -→ C D r D 1 ,X (y) Y (x) dσ d-j (x)
is continuous with respect to the variable y.

Proof of Theorem 3.1.3. Just like Cabaña, we will define an atlas of C D r X (y).

Consider x 0 ∈ D r X fixed. Thus ∇X(x 0 ) has rank j. If A d := {1, 2, . . . , d}, there exists λ := (ℓ 1 , ℓ 2 , . . . , ℓ j ) ∈ A j d , ℓ 1 < ℓ 2 < • • • < ℓ j such that J (λ) X (x 0 ) := det ∂(X 1 , . . . , X j ) ∂(x ℓ 1 , x ℓ 2 , . . . , x ℓ j ) (x 0 ) ̸ = 0.
We define λ c the complementary index in A d , i.e. λ c := (i 1 , i 2 , . . . , i d-j ) ∈ A d-j d , and

i 1 < i 2 < • • • < i d-j .
If (e 1 , e 2 , . . . , e d ) denotes the canonical basis of R d , let V λ := vect(e i 1 , e i 2 , . . . , e i d-j ) and V ⊥ λ be the corresponding orthogonal subspace, i.e. V ⊥ λ := vect(e ℓ 1 , e ℓ 2 , . . . , e ℓ j ). With these notations, if

x := (x 1 , x 2 , . . . , x d ) = d i=1
x i e i ∈ R d , we denote x λ := (x i 1 , x i 2 , . . . , x i d-j ).

Consider the function

f λ defined from D ⊂ R d into R d such that x → f λ (x) := π V λ (x) + j k=1 (X k (x) -y k )e ℓ k
, where X k (resp. y k ) denotes the components of X (resp. y), k = 1, . . . , j, and where π V λ represents the projector on V λ . The Jacobian J f λ (x 0 ) of this transformation evaluated at

x 0 is J f λ (x 0 ) = J λ X (x 0 ) ̸ = 0. By the inverse function theorem, there exists an open neigh- borhood U λ x 0 of x 0 included in D, such that f λ (U λ x 0 ) is still an open set of R d and such that the restriction f λ | U λ x 0 has an inverse h λ belonging to C 1 defined from f λ (U λ x 0 ) onto U λ x 0 . CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL Let us define the set R λ x 0 , by R λ x 0 := (x i 1 , x i 2 , . . . , x i d-j ) ∈ R d-j : d-j k=1 x i k e i k ∈ f λ (U λ x 0 ) . Since f λ (U λ x 0 ) is an open set, the set R λ x 0 is also an open set of R d-j . Let us denote h λ := (h λ 1 , h λ 2 , . . . , h λ d ).
We have the following sequence of equivalences

x ∈ U λ x 0 , X(x) = y ⇐⇒ x ∈ U λ x 0 , f λ (x) = π V λ (x) ⇐⇒ π V λ (x) ∈ f λ (U λ x 0 ), x = h λ (π V λ (x)) ⇐⇒ x = π V λ (x) + j k=1 h λ ℓ k (π V λ (x))e ℓ k , x λ ∈ R λ x 0 ⇐⇒ x = d-j k=1 x i k e i k + j k=1 h λ ℓ k d-j k=1 x i k e i k e ℓ k , x λ ∈ R λ x 0 ⇐⇒ x = ---→ α λ,x 0 ( x λ ), x λ ∈ R λ x 0 ,
where we defined ---→ α λ,x 0 : R λ

x 0 ⊂ R d-j → R d by (24) ---→ α λ,x 0 (x i 1 , x i 2 , . . . , x i d-j ) := d-j k=1 x i k e i k + j k=1 h λ ℓ k d-j k=1 x i k e i k e ℓ k .
This provides us with a local parametrization of the level set C D r X (y), defined by -→ α λ . Moreover, such a function belongs to C 1 defined over R λ x 0 . Remark 3.1.4. -Furthermore, as a bonus, we get that C D r X (y) is a differentiable manifold of dimension (d -j).

• We now decompose D r X into the following form:

D r X = λ∈B j Γ(λ),
where

B j := {λ = (ℓ 1 , ℓ 2 , . . . , ℓ j ), ℓ k ∈ A d , ℓ 1 < ℓ 2 < . . . < ℓ j } and Γ(λ) := {x ∈ D, J (λ) X (x) ̸ = 0}. Remark 3.1.5. -For all λ ∈ B j , Γ(λ) = {x ∈ D, ∇X(x)| V ⊥ λ is invertible} • Remark 3.1.6. -Let us mention that if x 0 ∈ C D r X (y) ∩ Γ(λ), for λ ∈ B j , then ---→ α λ,x 0 ( x 0,λ ) = x 0 . • Remark 3.1.7.
-We could have proved a less general result than the one established in this theorem. More exactly, we could have proved this theorem under the following weaker hypothesis: Y : D r X ⊂ R d → R is a continuous function such that supp(Y ) ⊂ Γ(λ), for any λ ∈ B j . Indeed, it is this condition that we finally need in the proof of Propositions 3.1.8 and 3.2.3 given later. However, the result of the above theorem seemed interesting to us in itself because we did not find it in the literature. Moreover, this general result has the advantage that in the proof we expose in a neat way a partition of unity of D r X . This construction will allow us later in the proof of Proposition 3.2.3 to decompose the function Y on this partition and thus to find ourselves in the case where the function has its support included in Γ(λ).

• Let us prove Theorem 3.1.3 in the case where

D = D 1 . That is, when D is an open, convex, bounded set of R d , X : D ⊂ R d → R j (j ⩽ d) is a function in C 1 (D, R j ) such that ∇X is Lipschitz and Y : D ⊂ R d → R is a continuous function such that supp(Y ) ⊂ D r X . It suffices to prove the theorem in the case where Y : D r X ⊂ R d → R is a continuous function with supp(Y ) ⊂ D r X .
Let y be fixed in R j . We assume supp(Y ) ⊂ Γ(λ), λ ∈ B j . We will define the integral of Y on the level set C D r X (y), i.e. we will give a meaning to

C D r X (y) Y (x) dσ d-j (x). Consider x 0 ∈ supp(Y ) ⊂ Γ(λ).
For the previous facts, there exists an open neighborhood U λ x 0 of x 0 , such that

x ∈ U λ x 0 ∩ C D r X (y) ⇐⇒ x = ---→ α λ,x 0 ( x λ ), x λ ∈ R λ x 0 .
Since U λ x 0 is an open set, one can choose a radius r λ x 0 > 0 such that the closed ball of R d with center x 0 and radius r λ x 0 is contained in U λ x 0 , so B(x 0 , r λ x 0 ) ⊂ U λ x 0 . Since supp(Y ) is a compact set of R d , we can cover supp(Y ) by a finite number of balls, i.e. supp(Y ) ⊂ ∪ m i=1 B(x i , r λ x i ) such that for all i = 1, . . . , m, we still have: B(x i , r λ x i ) ⊂ U λ x i . We will construct a partition of unity for supp(Y ) which is a compact manifold and denote it by {π 1 , . . . , π m }. As in Wendell Fleming's book [START_REF] Fleming | Functions of several variables[END_REF], we define the real-valued function

h of C ∞ by h(x) :=    exp -1 1 -x 2 , |x| < 1; 0, |x| ⩾ 1. CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL For i = 1, . . . , m and for x ∈ supp(Y ), let Ψ i (x) := h ∥x -x i ∥ d /r λ x i . Since supp(Y ) ⊂ ∪ m i=1 B(x i , r λ x i ) by construction, we have that ∀x ∈ supp(Y ), m i=1 Ψ i (x) > 0.
For i = 1, . . . , m and for x ∈ supp(Y ), let us define

π i (x) := Ψ i (x)/ m i=1 Ψ i (x).
The functions {π 1 , . . . , π m } define a partition of unity for supp(Y ) because

1. π i is C ∞ over supp(Y ), π i ⩾ 0, i = 1, . . . , m; 2. supp(π i ) = supp(Ψ i ) ⊂ supp(Y ) ∩ B(x i , r λ x i ) ⊂ U λ x i ; 3. m i=1 π i (x) = 1, x ∈ supp(Y ).
The integral of Y on the level set y can be defined by ( 25)

C D r X (y) Y (x) dσ d-j (x) = m i=1 U λ x i ∩C D r X (y) π i (x)Y (x) dσ d-j (x) = m i=1 R λ x i π i ( --→ α λ,x i ( x λ )) Y ( --→ α λ,x i ( x λ )) det ∇ --→ α λ,x i ( x λ )∇ --→ α λ,x i ( x λ ) T 1/2 d x λ .
After defining the integral, we need to prove that it is a continuous function of the level. As the level varies, we have to modify the procedure. We continue by following the approach of Cabaña. Consider x 0 ∈ Γ(λ) ∩ C D r X (y) fixed. We then construct U λ x 0 and R λ x 0 . Let us define the function

G : R λ x 0 × R j × W λ x 0 ⊂ R d-j × R j × R j → R j , by G( x λ , δ, γ) := X( ---→ α λ,x 0 ( x λ ) + j k=1 γ k e ℓ k ) -y -δ,
where γ := (γ 1 , . . . , γ j ), x λ := (x i 1 , x i 2 , . . . , x i d-j ) and W λ x 0 is a neighborhood of zero in R j such that for any

x λ ∈ R λ x 0 , ---→ α λ,x 0 ( x λ ) + j k=1 γ k e ℓ k ∈ D and ∇X( ---→ α λ,x 0 ( x λ )+ j k=1 γ k e ℓ k )| V ⊥ λ is invertible, which remains possible since Γ(λ) is an open set of D and x 0 ∈ Γ(λ). Since X is C 1 and ---→ α λ,x 0 is C 1 on R λ x 0 , then G is C 1 on R λ x 0 × R j × W λ x 0 . Moreover, by Remark 3.1.6, we have G( x 0,λ , 0, 0) = X( ---→ α λ,x 0 ( x 0,λ )) -y = X(x 0 ) -y = ⃗ 0 R j . More, ∂G ∂γ ( x λ , δ, γ) = ∇X ---→ α λ,x 0 ( x λ ) + j k=1 γ k e ℓ k V ⊥ λ , (26) 
this implies ∂G ∂γ ( x 0,λ , 0, 0) = ∇X(x 0 )| V ⊥ λ ,
which is invertible by Remark 3.1.5.

The implicit function theorem can be applied. Thus there exists three neighborhoods, first V λ x 0 ⊂ R λ x 0 which we can choose equal to R λ x 0 , and two other neighborhoods of zero in R j which we denote by W λ

x 0 and W λ x 0 (we can also choose this neighborhood equal to W λ

x 0 ) and a function γ λ,x

0 of class C 1 defined from R λ x 0 × W λ x 0 onto W λ x 0 , that is γ λ,x 0 : R λ x 0 × W λ x 0 ⊂ R d-j × R j → W λ x 0 ⊂ R j such that 1. γ λ,x 0 ( x 0,λ , 0) = ⃗ 0 R j 2. ∀( x λ , δ) ∈ R λ x 0 × W λ x 0 , G( x λ , δ, γ λ,x 0 ( x λ , δ)) = ⃗ 0 R j 3. ∀( x λ , δ, γ) ∈ R λ x 0 × W λ x 0 × W λ x 0 , G( x λ , δ, γ) = ⃗ 0 R j ⇒ γ = γ λ,x 0 ( x λ , δ) .
Moreover, by differenciating the expression G( x λ , δ, γ λ,x 0 ( x λ , δ)) = ⃗ 0 R j with respect to x λ , we obtain for all

( x λ , δ) ∈ R λ x 0 × W λ x 0 , O j,d-j = ∂G ∂ x λ ( x λ , δ, γ λ,x 0 ( x λ , δ)) + ∂G ∂γ ( x λ , δ, γ λ,x 0 ( x λ , δ)) × ∂γ λ,x 0 ∂ x λ ( x λ , δ) ,
where O j,d-j is the null matrix with j rows and d -j columns.

From [START_REF] Federer | Geometric measure theory[END_REF] and since

∂G ∂ x λ ( x λ , δ, γ λ,x 0 ( x λ , δ)) = ∇X ---→ α λ,x 0 ( x λ ) + j k=1 γ k,λ,x 0 ( x λ , δ)e ℓ k ×∇ ---→ α λ,x 0 ( x λ ),
we finally obtain

(27) ∂γ λ,x 0 ∂ x λ ( x λ , δ) = -∇X ---→ α λ,x 0 ( x λ ) + j k=1 γ k,λ,x 0 ( x λ , δ)e ℓ k | V ⊥ λ -1 × ∇X ---→ α λ,x 0 ( x λ ) + j k=1 γ k,λ,x 0 ( x λ , δ)e ℓ k × ∇ ---→ α λ,x 0 ( x λ ). Define (28) ----→ α λ,x 0 ,δ ( x λ ) := ---→ α λ,x 0 ( x λ ) + j k=1 γ k,λ,x 0 ( x λ , δ)e ℓ k ,
this function is a local parametrization of the level set C D r X (y + δ). With this new parametrization we can write [START_REF] Fleming | Functions of several variables[END_REF] as [START_REF] Geman | Occupation times for smooth stationary processes[END_REF] ∂γ λ,

x 0 ∂ x λ ( x λ , δ) = -∇X( ----→ α λ,x 0 ,δ ( x λ ))| V ⊥ λ -1 × ∇X( ----→ α λ,x 0 ,δ ( x λ )) × ∇ ---→ α λ,x 0 ( x λ ).
In a similar way, by differentiating the equality G( x λ , δ, γ λ,x 0 ( x λ , δ)) = ⃗ 0 R j with respect to δ, this time, we obtain the equality

(30) ∂γ λ,x 0 ∂δ ( x λ , δ) = ∇X( ----→ α λ,x 0 ,δ ( x λ ))| V ⊥ λ -1
.

We should point out that if

x λ ∈ R λ x 0 then G( x λ , 0, 0) = X( ---→ α λ,x 0 ( x λ )) -y = ⃗ 0 R j .
By the previous point 3, we get γ λ,x 0 ( x λ , 0) = 0, and since γ λ,x 0 is a

continuous function on R λ x 0 × W λ x 0 , first we obtain lim δ→0 ----→ α λ,x 0 ,δ ( x λ ) = ---→ α λ,x 0 ( x λ ),
the convergence being uniform on R λ x 0 . Indeed, since γ λ,x 0 ( x λ , 0) = 0 and using the mean value theorem and (30), we have

∥ ----→ α λ,x 0 ,δ ( x λ ) ----→ α λ,x 0 ( x λ )∥ d = j k=1 j i=1 ∂γ k,λ,x 0 ∂δ i ( x λ , θ k δ)δ i e ℓ k d = j k=1 ((∇X( -----→ α λ,x 0 ,θ k δ ( x λ ))| V ⊥ λ ) -1 (δ)) k,1 e ℓ k d ⩽ j sup z∈K (∇X(z)| V ⊥ λ ) -1 d,j × ∥δ∥ j ,
where 0 < θ k < 1, for k = 1, . . . , j and K is a compact set of R d defined by

K := ---→ α λ,x 0 (R λ x 0 ) + j i=1 γ ℓ k,λ,x 0 (R λ x 0 × W λ x 0 )e ℓ k . Finally, let us recall that ∥(∇X(z)| V ⊥ λ
) -1 ∥ d,j remains bounded on this compact set. To show this, just make the open sets V λ x 0 and W λ x 0 smaller. That is, choose

V λ x 0 such that V λ x 0 ⊂ R λ x 0 and an open set F λ x 0 containing 0 on R j such that F λ x 0 ⊂ W λ x 0 . Second, let us prove that ∇ ----→ α λ,x 0 ,δ converges uniformly to ∇ ---→ α λ,x 0 on R λ x 0 . Given that ∀ x λ ∈ R λ x 0 , X( ---→ α λ,x 0 ( x λ )) = y, we get ∇X( ---→ α λ,x 0 ( x λ )) × ∇ ---→ α λ,x 0 ( x λ ) = O j,d-j .
By this last fact, ( 28) and ( 29), we have the following sequence of inequalities:

∥∇ ----→ α λ,x 0 ,δ ( x λ ) -∇ ---→ α λ,x 0 ( x λ )∥ d,d-j = -∇X( ----→ α λ,x 0 ,δ ( x λ ))| V ⊥ λ -1 ×[∇X( ----→ α λ,x 0 ,δ ( x λ )) -∇X( ---→ α λ,x 0 ( x λ ))] ×∇ ---→ α λ,x 0 ( x λ) d,d-j ⩽ ∇X( ----→ α λ,x 0 ,δ ( x λ ))| V ⊥ λ -1 d,j × ∥∇X( ----→ α λ,x 0 ,δ ( x λ )) -∇X( ---→ α λ,x 0 ( x λ ))∥ j,d × ∥∇ ---→ α λ,x 0 ( x λ )∥ d,d-j ⩽ sup z∈K (∇X(z)| V ⊥ λ ) -1 d,j sup x λ ∈R λ x 0 ∥∇X( ----→ α λ,x 0 ,δ ( x λ )) -∇X( ---→ α λ,x 0 ( x λ ))∥ j,d × sup x λ ∈R λ x 0 ∥∇ ---→ α λ,x 0 ( x λ )∥ d,d-j .
The first term in the last inequality is bounded as explained above. The third term is also bounded because ∇ ---→ α λ,x 0 is continuous on R λ x 0 which is a compact set. In the same way, the second term tends to zero because we already know that ----→ α λ,x 0 ,δ uniformly converges to ---→ α λ,x 0 on R λ x 0 and ∇X is continuous on K, a compact set.

We will show that Then, let us notice that since

lim δ→0 C D r X (y+δ) Y (z) dσ d-j (z) = C D r X (y) Y (z) dσ d-j (z).
O ⊂ Γ(λ) ⊂ D, the set O ∩ C D r X (y) is a compact set of R d .
Let us build a partition of unity {π 1 , . . . , π m } for this compact manifold in the following way.

Consider x ∈ O ∩ C D r X (y). Since x ∈ O ⊂ Γ(λ), x ∈ Γ(λ) it turns out that J (λ) X (x) ̸ = 0 and we can construct the open set U λ x . Since U λ
x is open, we can choose a real number r λ

x > 0 such that the closed ball of R d of center x and radius

r λ x is contained in U λ x , let B(x, r λ x ) ⊂ U λ x . We know that O ∩ C D r X (y) is a compact set of R d , then we can cover O ∩ C D r X (y) with a finite number of these balls, that is O ∩ C D r X (y) ⊂ ∪ m i=1 B(x i , r λ x i
) such that for i = 1, . . . , m, we still have:

B(x i , r λ x i ) ⊂ U λ x i .
In the same way as on page 30, we obtain a partition of unity of O ∩ C D r X (y), i.e. {π 1 , . . . , π m }, such that:

1. π i is C ∞ on O ∩ C D r X (y), π i ⩾ 0, i = 1, . . . , m; 2. supp(π i ) ⊂ O ∩ C D r X (y) ∩ B(x i , r λ x i ) ⊂ U λ x i ; 3. m i=1 π i (x) = 1, x ∈ O ∩ C D r
X (y). Moreover, the following sequence of inclusions is true 

supp(Y ) ∩ C D r X (y) ⊂ O ∩ C D r X (y) ⊂ O ∩ C D r X (y) ⊂ ∪ m i=0 U λ x i , x i ∈ O ∩ C D r X ( 
B(f λ (ω), R ω ). It is also possible to have diam(U (ω)) ⩽ inf i=1,...,m diam( W λ x i ), W λ
x i being the neighborhood of zero in R j used to construct the function γ λ,x i and also the local parametrization of the level curve at level y + δ. Since supp(Y ) is a compact set in R d , it can be covered by a finite number of such sets:

supp(Y ) ⊂ ∪ k ℓ=1 U (ω ℓ ) ⊂ ∪ k ℓ=1 U (ω ℓ ) ⊂ O where ω ℓ ∈ supp(Y ), for ℓ = 1, . . . , k.
Let us chose δ = (δ 1 , . . . , δ j ) ∈ R j such that ∥δ∥ j ⩽ inf ℓ=1,...,k R ω ℓ /2. We will prove that if δ is small enough, any element of C D r X (y + δ) ∩ supp(Y ) belongs to ----→ α λ,x i ,δ (R λ x i ), at least for one index i belonging to 1, . . . , m. Let us chose z ∈ C D r X (y + δ) ∩ supp(Y ). Since z ∈ supp(Y ), there exists ℓ = 1, . . . , k, such that z ∈ U (ω ℓ ), and given that z

∈ C D r X (y + δ), f λ (z) = π V λ (z) + j k=1 δ k e ℓ k ∈ B(f λ (ω ℓ ), R ω ℓ /2). It follows that π V λ (z) ∈ B(f λ (z), ∥δ∥ j ) ⊂ B(f λ (ω ℓ ), R ω ℓ ). Thus there exists an unique x ∈ U (ω ℓ ) ⊂ O, such that f λ (x) = π V λ (z) = π V λ (x) + j k=1 (X k (x) -y k )e ℓ k . So π V λ (z) = π V λ (x) and j k=1 (X k (x) -y k )e ℓ k = 0, so X(x) = y. Since x ∈ O ∩ C D r X (y) ⊂ ∪ m i=0 U λ x i , x can be written as x = --→ α λ,x i ( x λ ), x λ ∈ R λ x i , for some i = 1, . . . , m. Finally and since π V λ (z) = π V λ (x), the vector z can be written as z = x + π V ⊥ λ (z -x). Moreover, π V ⊥ λ (z -x) = j k=1 γ k e ℓ k and ∥γ∥ j = ∥π V ⊥ λ (z -x)∥ d ⩽ ∥z -x∥ d ⩽ diam(U (ω ℓ )) ⩽ diam( W λ x i ), because we have sup ℓ=1,...,k diam(U (ω ℓ )) ⩽ inf i=1,...,m diam( W λ x i ).
Using Property 3. of function G, we proved that z = ----→

α λ,x i ,δ ( x λ ), x λ ∈ R λ x i , i = 1, . . . , m. Suppose that t, s ∈ (∪ m i=0 U λ x i ) ∩ C D r X (y) are such that π V λ (t) = π V λ (s) and t ̸ = s. We can write s = (π V ⊥ λ (t) + σ 0 γ) + π V λ (t), where σ 0 > 0, γ ∈ V ⊥
λ and ∥γ∥ d = 1. By defining h(σ) := X(t + σγ) we have h(0) = h(σ 0 ) = y. Let us specify that this function is well defined for 0 ⩽ σ ⩽ σ 0 , because D is a convex open set and here is the only place where we use the convexity of the set D. Moreover, Rolle's theorem allows us to state that if h := (h 1 , . . . , h j ), then for all ℓ = 1, . . . , j, there exists σ ℓ ∈ (0, σ 0 ) such that ḣℓ (σ ℓ ) = ∇X ℓ (t + σ ℓ γ)(γ) = 0. Moreover,

1 = ∥γ∥ d = (∇X(t)| V ⊥ λ ) -1 (∇X(t)| V ⊥ λ (γ)) d ⩽ M ∥∇X(t)(γ)∥ j ,
where

M := m i=1 sup x∈U λ x i (∇X(x)| V ⊥ λ ) -1 d,j < ∞.
To ensure that the last norm is finite it is sufficient to take the open sets U λ x i sufficiently small. Finally, using that ḣℓ (σ ℓ ) = 0 we obtain

1 ⩽ M 2 j ℓ=1 |∇X ℓ (t + σ ℓ γ)(γ) -∇X ℓ (t)(γ)| 2 ⩽ M 2 j ℓ=1 ∥∇X ℓ (t + σ ℓ γ) -∇X ℓ (t)∥ 2 1,d .
Assume ∇X is a Lipschitz function. Let L be its Lipschitz's constant. We have

1 ⩽ M 2 L 2 j ℓ=1 σ 2 ℓ ⩽ jM 2 L 2 σ 2 ,
where σ := max ℓ=1,...,j σ ℓ . From this, we obtain

∥s -t∥ d = σ 0 ⩾ σ ⩾ 1 √ jM L := a. (31) Let us prove that if z ∈ C D r X (y + δ) ∩ supp(Y ), there exists a unique x ∈ ∪ m i=0 U λ x i ∩C D r X (y), such that z = x+π V ⊥ λ (z -x) and such that ∥π V ⊥ λ (z -x)∥ d ⩽ inf i=1,...,m diam( W λ x i ) (note
that it is always possible by taking the open sets W λ

x i to ensure that diam( W λ x i ) < a/2). Since z belongs to C D r X (y + δ) ∩ supp(Y ), we have shown above the existence of this x. Let us now show the uniqueness. Assume that there exists another vector

x ′ ∈ (∪ m i=0 U λ x i ) ∩ C D r X (y), x ′ ̸ = x, such that z = x ′ + π V ⊥ λ (z -x ′ ) and also that ∥π V ⊥ λ (z -x ′ )∥ d ⩽ inf i=1,...,m diam( W λ x i ). From (31) we necessarily have ∥x -x ′ ∥ d ⩾ a. Furthermore, it holds x -x ′ d ⩽ ∥x -z∥ d + x ′ -z d = ∥π V ⊥ λ (z -x)∥ d + ∥π V ⊥ λ (z -x ′ )∥ d < a 2 + a 2 = a.
We thus obtain a contradiction.

Let us now consider z ∈ C D r X (y + δ) ∩ supp(Y ), since x ∈ O ∩ C D r X (y) ⊂ O ∩ C D r
X (y) and given that z λ = x λ , we obtain the sequence of equalities

Y (z) = m i=1 π i (x) × Y (z) = m i=1 π i (x) × 1 {x∈U λ x i ∩C D r X (y)} × Y (z) = m i=1 π i (x) × 1 {x= ---→ α λ,x i ( x λ )} × 1 { x λ ∈R λ x i } × Y (z) = m i=1 π i ( --→ α λ,x i ( z λ )) × 1 {x= ---→ α λ,x i ( z λ )} × 1 { z λ ∈R λ x i } × Y (z) = m i=1 π i ( --→ α λ,x i ( z λ )) × 1 {z= ----→ α λ,x i ,δ ( z λ )} × Y ( ----→ α λ,x i ,δ ( z λ )) × 1 { z λ ∈R λ x i } .
The last equality coming from the construction of the vector x from the vector z and from the uniqueness of the decomposition of z on the set (∪ m i=0 U λ x i ) ∩ C D r X (y). We have the following equality and convergence as δ tends towards zero

C D r X (y+δ) Y (z) dσ d-j (z) = m i=1 {z= ----→ α λ,x i ,δ ( z λ ), z λ ∈R λ x i } π i ( --→ α λ,x i ( z λ )) × Y ( ----→ α λ,x i ,δ ( z λ )) dσ d-j (z) = m i=1 R λ x i π i ( --→ α λ,x i ( z λ ))Y ( ----→ α λ,x i ,δ ( z λ ))(det(∇ ----→ α λ,x i ,δ ( z λ )∇ ----→ α λ,x i ,δ ( z λ ) T )) 1/2 d z λ ---→ δ→0 m i=1 R λ x i π i ( --→ α λ,x i ( z λ ))Y ( --→ α λ,x i ( z λ ))(det(∇ --→ α λ,x i ( z λ )∇ --→ α λ,x i ( z λ ) T )) 1/2 d z λ .
The last convergence comes from the uniform convergence of ----→ α λ,x i ,δ to --→ α λ,x i on R λ

x i and of that of

∇ ----→ α λ,x i ,δ to ∇ --→ α λ,x i on R λ x i . But m i=1 R λ x i π i ( --→ α λ,x i ( z λ ))Y ( --→ α λ,x i ( z λ ))(det(∇ --→ α λ,x i ( z λ )∇ --→ α λ,x i ( z λ ) T )) 1/2 d z λ = m i=1 U λ x i ∩C D r X (y) π i (x)Y (x) dσ d-j (x) = O∩C D r X (y) Y (x) dσ d-j (x) = C D r X (y) Y (x) dσ d-j (x), because supp(Y ) ⊂ O.
In summary, we have proved the continuity of the function

y → C D r X (y) Y (x) dσ d-j (x), under the hypothesis that Y : D r X ⊂ R d → R is a continuous function satisfy- ing supp(Y ) ⊂ Γ(λ).
Finally, we no longer assume that supp(Y ) ⊂ Γ(λ), just that supp(Y ) ⊂ D r X . Let us introduce two new functions. For λ ∈ B j and t ∈ D, let [START_REF] Granville | The distribution of the zeros of random trigonometric polynomials[END_REF] ϕ λ (t) := inf

γ∈V ⊥ λ ,∥γ∥ d =1 ∇X(t)| V ⊥ λ (γ) j , and 
ϕ(t) := sup λ∈B j ϕ λ (t).
These two functions are Lipschitz and therefore continuous, with the same constant L, as ∇X. Indeed, let us consider the first function. Considering two points t and t ⋆ , we have for any γ ∈ V ⊥ λ satisfying ∥γ∥ d = 1,

∇X(t)| V ⊥ λ (γ) j = ∥∇X(t)(γ)∥ j ⩽ ∥∇X(t)(γ) -∇X(t ⋆ )(γ)∥ j + ∇X(t ⋆ )| V ⊥ λ (γ) j .
Using that ∇X is Lipschitz, we obtain

∇X(t)| V ⊥ λ (γ) j ⩽ L ∥t -t ⋆ ∥ d + ∇X(t ⋆ )| V ⊥ λ (γ) j , CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL then (33) ϕ λ (t) ⩽ L ∥t -t ⋆ ∥ d + ϕ λ (t ⋆ ).
Since a symmetric inequality can be proved, we obtain finally

|ϕ λ (t) -ϕ λ (t ⋆ )| ⩽ L ∥t -t ⋆ ∥ d .
Let us now study the second function, ϕ.

By [START_REF] Hille | A class of reciprocal functions[END_REF] we can write

ϕ(t) ⩽ L ∥t -t ⋆ ∥ d + ϕ(t ⋆ ),
and as before

|ϕ(t) -ϕ(t ⋆ )| ⩽ L ∥t -t ⋆ ∥ d .
Let us prove that (34)

(λ ∈ B j and t ∈ Γ(λ)) ⇐⇒ (ϕ λ (t) > 0) .
Let us consider t ∈ Γ(λ) for λ ∈ B j . By Remark 3.1.5 that means that

∇X(t)| V ⊥ λ
has an inverse and moreover that ker(∇X(t)

| V ⊥ ) = ⃗ 0| V ⊥ . But there exists γ 0 ∈ V ⊥ λ , ∥γ 0 ∥ d = 1 such that ϕ λ (t) = ∇X(t)| V ⊥ λ (γ 0 ) j
, and this implies that ϕ λ (t) > 0.

To prove the other implication, let us suppose that for a λ ∈ B j , t / ∈ Γ(λ), i.e. ∇X(t)| V ⊥ λ has no inverse. Then there exists γ ∈ V ⊥ λ , ∥γ∥ d = 1 such that ∇X(t)| V ⊥ λ (γ) = 0, and this implies ϕ λ (t) = 0. Now let us prove that [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] (t ∈ D r X ) ⇐⇒ (ϕ(t) > 0) .

Indeed, by [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF], we have the following equivalences

(t ∈ D r X ) ⇐⇒ (∃λ ∈ B j , t ∈ Γ(λ)) ⇐⇒ (∃λ ∈ B j , ϕ λ (t) > 0) ⇐⇒ (ϕ(t) > 0)
We will construct a partition of unity of D r X whose support intersected by D r X will be included in Γ(λ), ∀λ ∈ B j . We will denote this partition by η λ . Let us first consider the function χ λ (t) := (2ϕ λ (t) -ϕ(t)) + . Since ϕ λ and ϕ are Lipschitz functions, it follows that 2ϕ λ -ϕ remains Lipschitz. So, the function χ λ is also Lipschitz and a fortiori continuous.

Let us show that 

(36) (t ∈ D r X ) =⇒   λ∈B j χ λ (t) > 0   . Consider t ∈ D r X .
(Γ(λ)) c 1 ∩ {t ∈ D, ϕ(t) > C}, contained in the set {t ∈ D, χ λ (t) = 0}.
More precisely, let us prove that for a given C > 0, if δ ⩽ C 2L (with L being the Lipschitz constant of the function ∇X), then

((Γ(λ)) c 1 ) δ ∩ {t ∈ D : ϕ(t) > C} ⊂ {t ∈ D : χ λ (t) = 0}
where for any set A we have defined the open set A δ := {x ∈ R d : d(x, A) < δ}. Thus, let C > 0 be fixed and t ∈ ((Γ(λ)) c 1 ) δ ∩ {t ∈ D : ϕ(t) > C}. Since t ∈ ((Γ(λ)) c 1 ) δ , there exists t ′ ∈ B(t, δ) such that t ′ ∈ (Γ(λ)) c 1 (and also such that ϕ λ (t ′ ) = 0 as a consequence of [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF]). Then we have, since ϕ λ is Lipschitz with Lipschitz constant L that

ϕ λ (t) ⩽ ϕ λ (t) -ϕ λ (t ′ ) + ϕ λ (t ′ ) ⩽ L t -t ′ d ⩽ Lδ ⩽ C 2 .
Therefore, 2ϕ λ (t) ⩽ C < ϕ(t), and this leads that χ λ (t) = 0. We have proved that for all C > 0 and ∀δ ⩽ C 2L , we have the inclusion

{t ∈ D r X : χ λ (t) ̸ = 0} = {t ∈ D r X : η λ (t) ̸ = 0} ⊂ (Γ(λ)) c 1 δ c ∩ D r X ∪ {t ∈ D r X : ϕ(t) ⩽ C},
where we recall that the symbol c denotes the complementary set with respect to R d . Noting that (Γ(λ))

c 1 δ c is a closed set contained in Γ(λ) ∪ D c , we have supp(η λ ) ⊂ [(Γ(λ) ∪ D c ) ∩ D r X ] ∪ (∩ C>0 {t ∈ D r X : ϕ(t) ⩽ C}), that is supp(η λ ) ∩ D r X ⊂ Γ(λ) ∪ (∩ C>0 {t ∈ D r X : ϕ(t) ⩽ C} ∩ D r X ). To complete the proof, it is enough to show that ∩ C>0 {t ∈ D r X : ϕ(t) ⩽ C} ∩ D r X = ∅. Indeed, consider z ∈ ∩ C>0 {t ∈ D r X : ϕ(t) ⩽ C} ∩ D r X . Then z ∈ D r X
and for all C > 0, there exists a sequence of points z n,C of D r X , satisfying ϕ(z n,C ) ⩽ C which converges to z ∈ D r X . Since the function ϕ is continuous on D and also on D r X , it holds that ϕ(z) ⩽ C. This last inequality is true for all C > 0, then we get that ϕ(z) = 0. From [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] we easily obtain that z ∈ (D r X ) c 1 . But z ∈ D r X . We have proven that [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF] supp(η λ ) ∩ D r X ⊂ Γ(λ). In this form, for t ∈ D r X we have

Y (t) = λ∈B j η λ (t)Y (t) = λ∈B j Y λ (t),
where we set for t ∈ D r X , Y λ (t) := η λ (t)Y (t). The function Y λ is a continuous function on D r X with compact support included in Γ(λ), since supp(Y ) ⊂ D r X by hypothesis and from the inclusion [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF]. We have ∀y ∈ R j

C D r X (y) Y (z) dσ d-j (z) = λ∈B j C D r X (y) Y λ (z) dσ d-j (z).
The continuity of the left-hand side integral as a function of the variable y is a consequence of the continuity of each of the terms of the right sum. This last fact is an application of the above procedure. This completes the proof of Theorem 3. . In this case, the function X restricted to the bounded open set

D 1 i.e. X |D 1 , is such that X |D 1 : D 1 ⊂ R d → R j is C 1 (D 1 , R j ) and such that ∇X |D 1 is Lipschitz.
One can apply the previous procedure to these two functions X |D 1 and Y and also to the open set D 1 . It is possible that D 1 is not a convex set, but this is not a real problem. Indeed, if we refer to page 35, the only place where we used the convexity of the open set, we realize that the important thing is to be able to apply Rolle's theorem to the function h which is defined there and to use the fact that the function ∇X is Lipschitz. Since D 1 could not be convex, we were not sure if we could do it, but this is not the case if we work on D which is convex. The proof of the theorem is finished.

Now we are able to exhibit a class of processes X and Y satisfying the hypotheses H 2 and H 4 through the following assumption A 0 and the following proposition whose proof is based on the one given by Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF]. In what follows, we will give a new proof slightly more general that the original one. 

-A 0 : X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) is a random field that belongs to C 1 (D, R j ), where D is a bounded open convex set of R d , such that for almost all ω ∈ Ω, the process ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) satisfying E L d X (•) < ∞. Also, Y : Ω × D ⊂ Ω × R d → R is a continuous process such ∃λ ∈ B j such that supp(Y ) ⊂ Γ(λ). Moreover, ∥(∇X(•)| V ⊥ λ ) -1 ∥ d,
⊂ R d → R j (j ⩽ d) is C 1 (D, R j ) and such that ∇X(ω) is Lipschitz. The process Y (ω) : D ⊂ R d → R is a continuous function such that supp(Y (ω)) ⊂ Γ(λ)(ω) ⊂ D r X(ω)
. The set D is an open and convex bounded set of R d . According to Theorem 3.1.3 the function

y -→ C D r X(ω) (y) Y (ω)(x) dσ d-j (x)
is a continuous function of the variable y. The same is true for

C D r X(ω) (y) |Y (ω)(x)| dσ d-j (x).
Let us find an upper bound for C D r X (y) |Y (x)| dσ d-j (x) which would be an integrable random variable that does not depend on y. Then, according to the dominated convergence theorem, hypotheses H 2 and H 4 will be fullfilled. Since supp(Y ) ⊂ Γ(λ), we can construct a partition of unity of supp(Y ). As on page 30 getting as in (25)

C D r X (y) Y (x) dσ d-j (x) = m i=1 R λ x i π i ( --→ α λ,x i ( x λ )) Y ( --→ α λ,x i ( x λ )) det ∇ --→ α λ,x i ( x λ )∇ --→ α λ,x i ( x λ ) T 1/2 d x λ . Consider x λ fixed in R λ x i such that --→ α λ,x i ( x λ ) ∈ supp(Y ), i = 1, . . . , m. We have det ∇ --→ α λ,x i ( x λ )∇ --→ α λ,x i ( x λ ) T 1/2 ⩽ ∥∇ --→ α λ,x i ( x λ )∥ d d×(d-j) . Let us uniformly bound ∥∇ --→ α λ,x i ( x λ ))∥ d,d-j , for all x λ in R λ x i such that --→ α λ,x i ( x λ ) ∈ supp(Y ). For any x λ ∈ R λ x i , we have X( --→ α λ,x i ( x λ )) = y.
Taking derivatives in this equality on the open set R λ

x i , we obtain

∇X( --→ α λ,x i ( x λ )) × ∇ --→ α λ,x i ( x λ ) = 0.
Using [START_REF] Doukhan | Asymptotics for the local time of a strongly dependent vector-valued Gaussian random field[END_REF] and that --→ α λ,x i ( x λ ) ∈ Γ(λ), ∀u ∈ R d-j , u := (u 1 , . . . , u d-j ) we get

∇ --→ α λ,x i ( x λ )(u) = -∇X( --→ α λ,x i ( x λ )) | V ⊥ λ -1 ∇X( --→ α λ,x i ( x λ )) | V λ d-j k=1 u k e i k + d-j k=1 u k e i k . Since (∇X(•)| V ⊥ λ ) -1 d,j
, Y (•) and ∥∇X(•)∥ j,d are uniformly bounded on supp(Y ), and the bound does not depend on ω, then we have

C D r X (y) |Y (x)| dσ d-j (x) ⩽ C π V λ (D) m i=1 π i ( --→ α λ,x i ( x λ )) 1 { ---→ α λ,x i ( x λ )∈supp(Y )} 1 { x λ ∈R λ x i } d x λ .
For ω ∈ Ω and x λ ∈ π V λ (D), we consider the set A defined by

A := --→ α λ,x i ( x λ )(ω), x λ ∈ R λ x i (ω) and --→ α λ,x i ( x λ )(ω) ∈ supp(Y )(ω), i = 1, . . . , m .
We partition the set A into equivalence classes. An equivalence class A i 0 for i 0 = 1, . . . , m, is

A i 0 := --→ α λ,x i ( x λ )(ω), x λ ∈ R λ x i (ω) ∩ R λ x i 0 (ω) and --→ α λ,x i ( x λ )(ω) = ---→ α λ,x i 0 ( x λ )(ω) ∈ supp(Y )(ω), i = 1, . . . , m .
By (3), page 30, we have m i=1 π i (x) = 1, x ∈ supp(Y ). Moreover, in each class we bound the corresponding sum by one. It only remains to count the maximal number of equivalence classes. For counting the classes let us take two elements belonging to two different classes. To fix the ideas, we will take for example

t := --→ α λ,x i ( x λ )(ω), x λ ∈ R λ x i (ω) and --→ α λ,x i ( x λ )(ω) ∈ supp(Y )(ω) and s := ---→ α λ,x j ( x λ )(ω), x λ ∈ R λ x j (ω) and ---→ α λ,x j ( x λ )(ω) ∈ supp(Y )(ω), i, j = 1, . . . , m with t ̸ = s.
It is clear that t and s are two different elements of R d , they have the same projection on V λ and belong to the level curve C D r X (y). Repeating the proof given on page 35 since t ∈ supp(Y )(ω) and that

(∇X(•)| V ⊥ λ ) -1 d,j
is uniformly bounded on supp(Y ) by a constant C, we get the following bound

1 ⩽ C 2 j ℓ=1 ∥∇X ℓ ( --→ α λ,x i ( x λ ) + σ ℓ γ) (ω) -∇X ℓ ( --→ α λ,x i ( x λ )) (ω)∥ 2 1,d .
But for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω), we get 1 ⩽ jC 2 L 2 X (ω)σ 2 (ω), where σ := max ℓ=1,...,j σ ℓ . As in [START_REF] Gradshteyn | Ryzhik -Table of integrals, series, and products[END_REF], we finally obtain the following bound

∥s -t∥ d = σ 0 (ω) ⩾ σ(ω) ⩾ 1 √ jCL X (ω) := a(ω).
The open balls of center t and s and diameter a(ω) do not intersect. We have at most (diam(D)/a(ω)) d balls of diameter a(ω) and thus at most (diam(D)/a(ω)) d equivalence classes. Finally, for almost all ω ∈ Ω:

C D r X(ω) (y) |Y (ω)(x)| dσ d-j (x) ⩽ C π V λ (D) (diam(D)/a(ω)) d d x λ ⩽ Cσ d-j (π V λ (D)) diam(D) jC d L d X (ω) ⩽ CL d X (ω). Since E L d X (•) < ∞, y -→ E C D r X (y) Y (x) dσ d-j (x) is continuous. The same is true for E C D r X (y) |Y (x)| dσ d-j (x)
. Then the hypotheses H 2 and H 4 have been verified. This completes the proof of the proposition. Remark 3.1.9. -In A 0 , we can replace the condition E L d X (•) < ∞ by the following one: ∃L > 0 ∋ for almost all ω ∈ Ω, supp(Y (ω)) ̸ = ∅ =⇒ L X (ω) ⩽ L. In this case, the hypotheses H 2 and H 4 hold.

•

Proof of Remark 3.1.9. It suffices to replace in the proof of the previous proposition L X (ω) by L and a(ω) by 1 √ jCL . In this case, for almost all ω ∈ Ω, we have

C D r X(ω) (y) |Y (ω)(x)| dσ d-j (x) ⩽ C.
and this implies the integrability.

Remark 3.1.10. -We can generalize Proposition 3.1.8 (resp. Remark 3.1.9) by assuming that D is an open and convex set possibly unbounded by maintaining the same hypotheses on X. That is, assuming that X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) is a random field which belongs to C 1 (D, R j ), such that for almost all ω ∈ Ω, the process ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) satisfying E L d X (•) < ∞ (resp. there exists L > 0 such that for almost all ω ∈ Ω, the assumption supp(Y (ω)) ̸ = ∅ implies that L X (ω) ⩽ L). In this case, we will assume that Y is defined on D In the following, we will study the hypotheses H 1 , H 3 and H 5 . The last two hypothesis deal with the continuity of the right-hand side term in the Kac-Rice formula. We will show the following proposition which is also deeply inspired by Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF].

We will exhibit a class of processes X and Y satisfying these assumptions. We will therefore state some hypotheses concerning the processes X and Y .

To the first three assumptions A 1 , A 2 and A 3 , we will add the assumption that Y can be written as a function G of X, ∇X and

W : Ω × D ⊂ R d → R k , k ∈ N ⋆ , a continuous random field, where D is still an open set of R d . That is, ∀x ∈ D (39) Y (x) := G(x, W (x), X(x), ∇X(x)),
where

G : D × R k × R j × L(R d , R j ) -→ R (x, z, u, A) -→ G(x, z, u, A), is a continuous function of its variables on D × R k × R j × L(R d , R j ) such that ∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ), |G(x, z, u, A)| ⩽ P (f (x), ∥z∥ k , h(u), ∥A∥ j,d ),
where P is a polynomial with positive coefficients and f : D -→ R + and h : R j -→ R + are continuous functions.

-A 1 : The process X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) is Gaussian and belongs to C 1 (D, R j ), such that ∃a ∈ R, 0 < a, such that for almost all x ∈ D, 0 < a ⩽ inf ∥z∥ j =1 ∥V (X(x)) × z∥ j . Moreover, the first order partial derivatives of its covariance Γ X are bounded almost surely on the diagonal contained in D × D. Therefore, for almost all x ∈ D, the random field W (x) is independent of the vector (X(x), ∇X(x)), and ∀p ∈ N, ∀n ∈ N, ∀ℓ ∈ N and ∀m ∈ N

D f p (x)E[∥W (x)∥ n k ] E ∥∇X(x)∥ ℓ j,d E ∥X(x)∥ m j dx < ∞.
-A 2 : For all x ∈ D, X(x) = F (Z(x)), where F : R j -→ R j is a bijection belonging to C 1 (R j , R j ), such that ∀z ∈ R j , the Jacobian of F at z, J F (z) satisfies J F (z) ̸ = 0 and the function

F -1 is continuous. The process Z : Ω × D ⊂ Ω × R d → R j (j ⩽ d)
is Gaussian and belongs to C 1 (D, R j ) such that ∃a ∈ R, a > 0, such that for almost all x ∈ D, 0 < a ⩽ inf ∥z∥ j =1 ∥V (Z(x)) × z∥ j ; the first order partial derivatives of its covariance Γ Z are bounded almost surely on the diagonal contained in D × D. Moreover, for almost any x ∈ D, W (x) is independent of the vector (Z(x), ∇Z(x)), and ∀p ∈ N, ∀n ∈ N, ∀ℓ ∈ N and ∀m ∈ N

D f p (x)E[∥W (x)∥ n k ] E ∥∇Z(x)∥ ℓ j,d E ∥Z(x)∥ m j dx < ∞.
-A 3 : For all x ∈ D, X(x) = F (Z(x)), where

Z : Ω × D ⊂ Ω × R d → R j ′ (j < j ′ ) is Gaussian and belongs to C 1 (D, R j ′ ), with mean m Z (•) = E[Z(•)
] bounded on D, and such that there exist real numbers a and b, 0 < a ⩽ b, such that for almost all x ∈ D,

0 < a ⩽ inf ∥z∥ j =1 ∥V (Z(x)) × z∥ j ⩽ sup ∥z∥ j =1 ∥V (Z(x)) × z∥ j ⩽ b;
the first order partial derivatives of its covariance Γ Z are bounded almost surely on the diagonal contained in D×D. Moreover, for almost all x ∈ D, W (x) is independent of the vector (Z(x), ∇Z(x)) and it is assumed that the latter has a density denoted by p Z(x),∇Z(x) (•, •). Finally, ∀p ∈ N, ∀n ∈ N and ∀ℓ ∈ N

D f p (x)E[∥W (x)∥ n k ] E ∥∇Z(x)∥ ℓ j ′ ,d dx < ∞. (40) 
The function F must satisfy the hypothesis F which is

• (F ) F : R j ′ -→ R j (j < j ′ ) is C 2 (R j ′ , R j ).
In addition, defining A j ′ := {1, 2, . . . , j ′ }, there exists λ := (ℓ 1 , ℓ 2 , . . . , ℓ j )

∈ A j j ′ , ℓ 1 < ℓ 2 < • • • < ℓ j , such that ∀z ∈ R j ′ , J (λ) F (z) := det ∂(F 1 , . . . , F j ) ∂(z ℓ 1 , z ℓ 2 , . . . , z ℓ j ) (z) ̸ = 0.
For simplicity, let us assume that λ = (1, 2, . . . , j) and denote J F (z) instead of J (λ) F (z). Furthermore, ∀v ∈ R j ′ -j , the function F v defined by

F v : R j -→ R j u -→ F v (u) := F (u, v),
is an invertible function whose inverse F -1 v is assumed to be continuous at u. Moreover, ∀ℓ ∈ N and ∀µ > 0, the function (41)

T ℓ : R j -→ R + u -→ T ℓ (u) := R j ′ -j 1 J F (F -1 z (u), z) e -µ∥z∥ 2 j ′ -j ∇F (F -1 z (u), z) ℓ j,j ′ dz, 3.1. RICE FORMULA FOR A REGULAR LEVEL SET is continuous. -A 4 :
For almost all (x, y, ẋ) ∈ D × R × R dj and ∀u ∈ R j , the density p Y (x),X(x),∇X(x) (y, u, ẋ) of the joint distribution of (Y (x), X(x), ∇X(x)) exists and is continuous at u. Moreover

u -→ D R×R dj |y| ∥ ẋ∥ j dj p Y (x),X(x),∇X(x) (y, u, ẋ) d ẋ dy dx, is continuous. Remark 3.1.11.
--It is interesting to note that hypothesis A 1 (resp. A 2 , resp. A 3 ) contains the case where the processes X and Y satisfy ∀x ∈ D, Y (x) = G(x, X(x), ∇X(x)) and also the case where Y (x) is independent of (X(x), ∇X(x)) (resp. Y (x) independent of (Z(x), ∇Z(x))).

-Note also that hypothesis A 4 is satisfied for example in the case where, ∀u ∈ R j , there exists a neighborhood V u of u and a function h u such that

D R×R dj |y| ∥ ẋ∥ j dj h u (x, y, ẋ) d ẋ dy dx < ∞,
and such that ∀z ∈ V u and for almost all (x, y, ẋ) ∈ D × R × R dj , p Y (x),X(x),∇X(x) (y, z, ẋ) ⩽ h u (x, y, ẋ). In fact, these hypotheses are the required ones to apply Lebesgue's dominated convergence theorem which allows us to obtain the continuity of the function

u -→ D R×R dj
|y| ∥ ẋ∥ j dj p Y (x),X(x),∇X(x) (y, u, ẋ) d ẋ dy dx.

• We are now able to exhibit a class of processes X and Y satisfying the hypotheses H 1 , H 3 and H 5 through the following proposition. Proposition 3.1.12. -If Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions A 1 , A 2 , A 3 or if X and Y satisfy assumption A 4 , then the hypotheses H 1 , H 3 and H 5 are verified.

Proof of Proposition 3.1.12.

1. Let us first assume that the processes X and Y satisfy assumption A 1 .

Let us show that the hypotheses H 1 and H 5 are satisfied. Since X is Gaussian and that for almost all x ∈ D,

inf ∥z∥ j =1
∥V (X(x)) × z∥ j ⩾ a > 0, the distribution of the vector X(x) is not singular with density p X(x) (•). Moreover, u → p X(x) (u) is continuous and it is bounded above, i.e. there exists a real M such that for almost all x ∈ D and ∀u ∈ R j , (42)

p X(x) (u) ⩽ M.
The hypothesis H 1 is verified.

Let us show that the hypothesis H 5 is satisfied.

Since for almost all x ∈ D,

Y (x) = G(x, W (x), X(x), ∇X(x)),
using the assumptions on G and since for all

A ∈ L(R d , R j ), H(A) ⩽ C ∥A∥ j j,d , ∀u ∈ R j we have E[Y (x)H(∇X(x)) X(x) = u ] = E[L(x, W (x), X(x), ∇X(x)) X(x) = u ],
where L is a continuous function of all its variables belonging to

D ×R k × R j × L(R d , R j ) and such that ∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ), (43) |L(x, z, u, A)| ⩽ Q(f (x), ∥z∥ k , h(u), ∥A∥ j,d ),
where Q is a polynomial with positive coefficients and f : D -→ R + and h : R j -→ R + are continuous functions.

For almost all x fixed in D, let us consider the regression equations: for s ∈ D X(s) = α(s)X(x) + ξ(s),

∇X(s) = j i=1 ∇α i (s)X i (x) + ∇ξ(s), (44) 
where (ξ(s), ∇ξ(s)) is a Gaussian vector independent of X(x). In particular, α(x) = Id j . A covariance computation gives

α(s) = Γ X (s, x) × Γ -1 X (x, x)
, where Γ X is the covariance matrix of X. Thus for all i, m = 1, . . . , j and ℓ = 1, . . . , d,

(∇α i (s)) ℓ,m = ∂Γ X ∂s ℓ (s, x) × Γ -1 X (x, x) mi .
In particular for almost all x ∈ D, i, m = 1, . . . , j and ℓ = 1, . . . , d,

(∇α i (x)) m,ℓ = ∂Γ X ∂s ℓ (x, x) × Γ -1 X (x, x) mi .
Since for almost all x ∈ D, inf ∥z∥ j =1 ∥V (X(x)) × z∥ j ⩾ a > 0 and that the first order partial derivatives of the covariance Γ X are almost surely bounded above on the diagonal contained in D × D, ∃M ∈ R such that for all i = 1, . . . , j and for almost all x ∈ D we have ( 45)

∥∇α i (x)∥ j,d ⩽ M. For u ∈ R j , let G X,L (u) := D E Y (x)H(∇X(x)) X(x) = u p X(x) (u) dx.
With the above notations, we obtain

G X,L (u) = D E L(x, W (x), X(x), ∇X(x)) X(x) = u p X(x) (u) dx.
Since for almost all x ∈ D the random variable W (x) is independent of the vector (X(x), ∇X(x)), using [START_REF] Longuet-Higgins | The statistical analysis of a random, moving surface[END_REF], this yields that

G X,L (u) = D E L x, W (x), u, j i=1 ∇α i (x)(u i -X i (x)) + ∇X(x) p X(x) (u) dx.
We have therefore eliminated the conditioning appearing in the integrand. Now since for almost all x ∈ D, the function u → p X(x) (u) is continuous and the function L is also continuous then for almost all x ∈ D, the function

u → L x, W (x), u, j i=1 ∇α i (x)(u i -X i (x)) + ∇X(x) p X(x) (u),
is continuous. Moreover, using the bounds ( 42), ( 43) and ( 45), we get that for almost all x ∈ D, L x, W (x), u,

j i=1 ∇α i (x)(u i -X i (x)) + ∇X(x) p X(x) (u) ⩽ S f (x), ∥W (x)∥ k , ℓ(u), ∥X(x)∥ j , ∥∇X(x)∥ j,d ,
where S is also a polynomial with positive coefficients and ℓ : R j -→ R + is a continuous function.

It is clear that for almost all x ∈ D, the function

u → S f (x), ∥W (x)∥ k , ℓ(u), ∥X(x)∥ j , ∥∇X(x)∥ j,d , 50 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL
is continuous. Furthermore, we know that for ∀p ∈ N, ∀n ∈ N, ∀ℓ ∈ N and ∀m ∈ N,

D f p (x)E(∥W (x)∥ n k ) E ∥∇X(x)∥ ℓ j,d E ∥X(x)∥ m j dx < ∞.
Thus, and since the function u → ℓ(u) is continuous we obtain that the function

u → D E S f (x), ∥W (x)∥ k , ℓ(u), ∥X(x)∥ j , ∥∇X(x)∥ j,d dx, is continuous.
A weak application of Lebesgue's dominated convergence theorem allows to conclude that the hypothesis H 5 is true.

A similar proof can be made to show that the hypothesis H 3 is also satisfied. This completes the first part of the proof. 2. Suppose now that the processes X and Y satisfy assumption A 2 . Let us prove that hypothesis H 1 is satisfied.

In the same way as in part 1 of the proof, since Z is Gaussian and given that for almost all x ∈ D,

inf ∥z∥ j =1 ∥V (Z(x)) × z∥ j ⩾ a > 0,
the distribution of the vector Z(x) is non singular with density p Z(x) (•).

The assumptions on the function F imply that for almost all x ∈ D the vector X(x) has a density p X(x) (•) given by ∀u ∈ R j :

p X(x) (u) = 1 |J F (F -1 (u))| p Z(x) (F -1 (u)).
Let us show that the hypotheses H 3 and H 5 are satisfied.

Using the same notations of part 1, for almost all x ∈ D and ∀u ∈ R j we have

E L(x, W (x), X(x), ∇X(x)) X(x) = u p X(x) (u) = E L(x, W (x), F (Z(x)), ∇F (Z(x)) × ∇Z(x)) Z(x) = F -1 (u) × p Z(x) (F -1 (u)) × 1 |J F (F -1 (u))| = E L(x, W (x), Z(x), ∇Z(x)) Z(x) = F -1 (u) × p Z(x) (F -1 (u)) × 1 |J F (F -1 (u))|
,

where the function L, ∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ) is defined by L(x, z, u, A) := L(x, z, F (u), ∇F (F -1 (u)) × A).
It is clear, since F belongs to C 1 (R j , R j ) and F -1 is continuous, that L has the properties of L, i.e. L is a continuous function of its variables in

D × R k × R j × L(R d , R j ) and that L(x, z, u, A) ⩽ Q(f (x), ∥z∥ k , h(u), ∥A∥ j,d ),
where Q is a polynomial with positive coefficients and h : R j -→ R + is a continuous function.

We have shown using the notations of 1)

that ∀u ∈ R j G X,L (u) = G Z, L (F -1 (u)) × 1 |J F (F -1 (u))| .
This leads us to the case considered in 1) where the process X is replaced by the process Z. The continuity of the function u → G X,L (u) is a consequence of the continuity of G Z, L and the fact that the function

F -1 is continuous and that F is C 1 (R j , R j ).
This ends the second part of the proof. 3. Suppose that the processes X and Y satisfy the assumption A 3 . We need to prove that hypotheses H 1 , H 3 and H 5 are satisfied.

Let us first prove that for almost all x ∈ D, the distribution of the vector (X(x), ∇X(x)) has a density p X(x),∇X(x) (•, •), and let us compute this density.

Consider the following notations. The matrix

s v,u = (s ik ) 1⩽i⩽v 1⩽k⩽u ∈ L(R u , R v )
, defined by its generic element s ik , will be identified with the matrix s v,u with row vector s (v,u) ∈ R vu , defined by s (v,u) := (s 11 , s 21 , . . . , s v1 , s 12 , s 22 , . . . , s v2 , . . . , s 1u , s 2u , . . . , s vu ).

Using this notation, we can introduce the following function

K : R j × R j ′ -j × R jd × R (j ′ -j)d -→ R j × R j ′ -j × R jd × R (j ′ -j)d t = t (j ′ ,1) = t j,1 t j ′ -j,1 , s = s (j ′ ,d) = s j,d s j ′ -j,d -→ K(t, s) := (F (t)) (j,1) , t (j ′ -j,1) , (∇F (t) × s) (j,d) , s (j ′ -j,d) .
The Jacobian matrix J K of this transformation satisfies:

∀(t, s) ∈ R j ′ × R j ′ d : J K (t, s) = (J F (t)) d+1 ̸ = 0, by hypothesis. Furthermore, since F is C 2 (R j ′ , R j ) then K is C 1 (R j ′ × R j ′ d , R j ′ × R j ′ d ).
Moreover, K is one-to-one and has an inverse K -1 given by

K -1 : R j × R j ′ -j × R jd × R (j ′ -j)d -→ R j × R j ′ -j × R jd × R (j ′ -j)d t = t j,1 t j ′ -j,1 , s = s j,d s j ′ -j,d -→ F -1 t j ′ -j,1 (t j,1 ), t j ′ -j,1 , ∇F (F -1 t j ′ -j,1 (t j,1 ), t j ′ -j,1 ) -1 jj × s j,d -∇F (F -1 t j ′ -j,1 (t j,1 ), t j ′ -j,1 ) jj ′ -j × s j ′ -j,d , s j ′ -j,d ,
where for A ∈ L(R j ′ , R j ), we denote, by [A] jj the matrix A for which we keep only the j first columns and by [A] jj ′ -j the matrix A for which we retain the

(j ′ -j) last columns. Since ∀x ∈ D X(x) = F (Z(x)) and ∇X(x) = ∇F (Z(x)) × ∇Z(x),
we have

K(Z(x), ∇Z(x)) = X(x), (Z(x)) j ′ -j,1 , ∇X(x), (∇Z(x)) j ′ -j,d .
We deduce that if for almost all x ∈ D,

p X(x),(Z(x)) j ′ -j,1 ,∇X(x),(∇Z(x)) j ′ -j,d (•, •, •, •)
denotes the density of the vector

X(x), (Z(x)) j ′ -j,1 , ∇X(x), (∇Z(x)) j ′ -j,d , and p Z(x),∇Z(x) (•, •) that of (Z(x), ∇Z(x)) then ∀(u, z j ′ -j,1 , s j,d , s j ′ -j,d ) ∈ R j × R j ′ -j × R jd × R (j ′ -j)d ,
we have

p X(x),(Z(x)) j ′ -j,1 ,∇X(x),(∇Z(x)) j ′ -j,d (u, z j ′ -j,1 , s j,d , s j ′ -j,d ) = p Z(x),∇Z(x) (K -1 (u, z j ′ -j,1 , s j,d , s j ′ -j,d )) × 1 J F (F -1 z j ′ -j,1 (u), z j ′ -j,1 )
d+1 .

Finally, we get the density of the vector (X(x), ∇X(x)) by integrating this last expression. Hence for almost all x ∈ D and ∀(u,

s j,d ) ∈ R j × R jd we have (46) p X(x),∇X(x) (u, s j,d ) = R j ′ -j ×R (j ′ -j)d 1 J F (F -1 z (u), z) d+1 × p Z(x),∇Z(x) (F -1 z (u), z), ∇F (F -1 z (u), z) -1 jj × s j,d -∇F (F -1 z (u), z) jj ′ -j s j ′ -j,d , s j ′ -j,d ds j ′ -j,d dz. Remark 3.1.13.
-It is important to note that the results presented above could be obtained using the coarea formula. We referred the reader to Corollary 4.18 of [60, p. 68]. However, we preferred explicit computations in order to obtain the exact expression of this density and also to introduce some useful notations in what follows.

•

Now, for u ∈ R j , we define as in the part 1

G X,L (u) := D E[Y (x)H(∇X(x)) X(x) = u ]p X(x) (u) dx = D E[L(x, W (x), X(x), ∇X(x)) X(x) = u ]p X(x) (u) dx.
Since for almost all x ∈ D, W (x) is independent of (X(x), ∇X(x)) , we get ∀u ∈ R j ,

G X,L (u) = D×R jd E[L(x, W (x), u, s j,d )]p X(x),∇X(x) (u, s j,d ) ds j,d dx = D R j ′ -j ×R (j ′ -j)d ×R jd 1 J F (F -1 z (u), z) d+1 × E[L(x, W (x), u, s j,d )] × p Z(x),∇Z(x) F -1 z (u), z , ∇F (F -1 z (u), z) -1 jj × s j,d -[∇F (F -1 z (u), z)] jj ′ -j s j ′ -j,d , s j ′ -j,d ds j,d ds j ′ -j,d dz dx.
In the last integral where the integration domain is R jd , holding fixed

(s j ′ -j,d , z, x) ∈ R (j ′ -j)d × R j ′ -j × D, let us make the following change of variable v j,d := [∇F (F -1 z (u), z)] -1 jj × (s j,d -∇F (F -1 z (u), z) jj ′ -j × s j ′ -j,d ).
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We get

R jd E[L(x, W (x), u, s j,d )]p Z(x),∇Z(x) ((F -1 z (u), z), ([∇F (F -1 z (u), z)] -1 jj (s j,d -∇F (F -1 z (u), z) jj ′ -j s j ′ -j,d ), s j ′ -j,d )) ds j,d = R jd E[L(x, W (x), u, [∇F (F -1 z (u), z)] jj × v j,d +[∇F (F -1 z (u), z)] jj ′ -j × s j ′ -j,d )] ×p Z(x),∇Z(x) ((F -1 z (u), z), (v j,d , s j ′ -j,d )) × J F (F -1 z (u), z) d dv j,d = R jd E L x, W (x), u, ∇F (F -1 z (u), z) v j,d s j ′ -j,d ×p Z(x),∇Z(x) (F -1 z (u), z), (v j,d , s j ′ -j,d ) × J F (F -1 z (u), z) d dv j,d . Finally, ∀u ∈ R j , G X,L (u) = D R j ′ -j 1 J F (F -1 z (u), z) × R (j ′ -j)d ×R jd E L x, W (x), u, ∇F (F -1 z (u), z) × v j,d s j ′ -j,d ×p Z(x),∇Z(x) (F -1 z (u), z), v j,d s j ′ -j,d dv j,d ds j ′ -j,d dz dx = D R j ′ -j 1 J F (F -1 z (u), z) × R j ′ d E L x, W (x), u, ∇F (F -1 z (u), z) × s j ′ ,d ×p Z(x),∇Z(x) ((F -1 z (u), z), s j ′ ,d ) ds j ′ ,d dz dx. (47) 
A slight modification of the beginning of the proof or the use of the coarea formula given in [60, Corollary 4.18, p. 68], shows that for almost all x ∈ D the vector X(x) has a density p X(x) (•), for all u ∈ R j , given by:

p X(x) (u) = R j ′ -j 1 J F (F -1 z (u), z) × p Z(x) (F -1 z (u), z) dz.
This implies the hypothesis H 1 . Moreover, this density is a continuous function of the variable u. Indeed, using the assumptions on Z, ∃λ > 0 such that for almost all

x ∈ D and for all (z, u) ∈ R j ′ -j × R j ,

p Z(x) (F -1 z (u), z) ⩽ Ce -2λ∥(F -1 z (u),z)-m Z (x)∥ 2 j ′ ⩽ Ce -λ∥(F -1 z (u),z)∥ 2 j ′ ⩽ Ce -λ∥z∥ 2 j ′ -j , (48) 
since the function m Z (•) is bounded on D. Moreover, using the assumptions satisfied by the function F and the process Z, for almost all z ∈ R j ′ -j and x ∈ D, the functions

u → 1 J F (F -1 z (u), z) × p Z(x) (F -1 z (u), z), and 
u → 1 J F (F -1 z (u), z) e -λ∥z∥ 2 j ′ -j are continuous.
Using that the function u → T ℓ (u) is continuous for ℓ = 0 (see [START_REF]Variance of the volume of random real algebraic submanifolds[END_REF] in the hypothesis A 3 ), Lebesgue's dominated convergence theorem allows to state that for almost all x ∈ D, the function u → p X(x) (u) is continuous.

Let us now return to the definition of G X,L (u) given by [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. Since for almost all x ∈ D, W (x) is independent of (Z(x), ∇Z(x)), G X,L (u) can be written as follows

G X,L (u) = D R j ′ -j 1 J F (F -1 z (u), z) × p Z(x) (F -1 z (u), z) × E L(x, W (x), u, ∇F (F -1 z (u), z) × ∇Z(x)) Z (x) = (F -1 z (u), z) dz dx.
In the same way as in the part 1 of this proof, for any s ∈ D we regress Z(s) on Z(x) for almost all x ∈ D so

Z(s) = α(s)Z(x) + ξ(s), ∇Z(s) = j ′ i=1 ∇α i (s)Z i (x) + ∇ξ(s),
where (ξ(s), ∇ξ(s)) is a Gaussian vector independent of Z(x). Using the assumptions on the process Z, we obtain as in the part 1 of this proof the following inequality: ∃M ∈ R such that ∀i ∈ {1, . . . , j ′ } and for almost all x ∈ D we have [START_REF] Petters | A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula[END_REF] ∥∇α

i (x)∥ j ′ ,d ⩽ M.
Moreover, for almost all x ∈ D and since W (x) is independent of (Z(x), ∇Z(x)), we get

G X,L (u) = D R j ′ -j 1 J F (F -1 z (u), z) × p Z(x) F -1 z (u), z ×E L x, W (x), u, ∇F (F -1 z (u), z) ×    j ′ i=1 ∇α i (x) ((F -1 z (u), z)) i -Z i (x) + ∇Z(x)        dz dx.
As in part 1, we have thus eliminated the conditioning appearing in the integrand and

G X,L (u) = D R j ′ -j Ω 1 J F (F -1 z (u), z) × p Z(x) (F -1 z (u), z) ×L x, W (x)(ω), u, ∇F (F -1 z (u), z) ×    j ′ i=1 ∇α i (x)[((F -1 z (u), z)) i -Z i (x)(ω)] + ∇Z(x)(ω)      dP(ω) dz dx = D R j ′ -j Ω f (u, ω, z, x) dP(ω) dz dx.
By the hypotheses satisfied by Z and F and since L is a continuous function, we obtain for almost all (ω, z, x)

∈ Ω × R j ′ -j × D, that the function u → f (u, ω, z, x) is continuous. Now let's bound the expression f (u, ω, z, x).
By using the bounds ( 43), ( 48) and ( 49) we get that for almost all

(ω, z, x) ∈ Ω × R j ′ -j × D, |f (u, ω, z, x)| ⩽ C J F (F -1 z (u), z) e -λ∥(F -1 z (u),z)∥ 2 j ′ × R f (x), ∥W (x)(ω)∥ k , h(u), ∇F (F -1 z (u), z) j,j ′ , (F -1 z (u), z) j ′ , ∥∇Z(x)(ω)∥ j ′ ,d , ∥Z(x)(ω)∥ j ′ ,
where R is a polynomial with positive coefficients and h : R j -→ R + is a continuous function.
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Using the fact that ∀n ∈ N,

∃M n > 0 such that ∀y ∈ R j ′ , e -λ/2∥y∥ 2 j ′ × ∥y∥ n j ′ ⩽ M n ,
we get that for almost all (ω, z, x)

∈ Ω × R j ′ -j × D, |f (u, ω, z, x)| ⩽ C J F (F -1 z (u), z) e -µ∥z∥ 2 j ′ -j × S f (x), ∥W (x)(ω)∥ k , h(u), ∇F (F -1 z (u), z) j,j ′ , ∥∇Z(x)(ω)∥ j ′ ,d , ∥Z(x)(ω)∥ j ′ := g(u, ω, z, x),
where S is again a polynomial with positive coefficients and µ = λ/2 > 0. It is clear that g is a continuous function of the variable u for almost all (ω, z, x) ∈ Ω × R j ′ -j × D. On the one hand, using the hypotheses on Z and the hypothesis [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] we have that ∀p ∈ N, ∀n ∈ N, ∀ℓ ∈ N and ∀m ∈ N,

D f p (x)E[∥W (x)∥ n k ] E ∥∇Z(x)∥ ℓ j ′ ,d E ∥Z(x)∥ m j ′ dx ⩽ C D f p (x)E[∥W (x)∥ n k ] E ∥∇Z(x)∥ ℓ j ′ ,d dx < ∞.
In addition, it should be noted that

D R j ′ -j Ω g(u, ω, z, x) dP(ω) dz dx = R j ′ -j C J F (F -1 z (u), z) e -µ∥z∥ 2 j ′ -j × D E S f (x), ∥W (x)∥ k , h(u), ∇F (F -1 z (u), z) j,j ′ , ∥∇Z(x)∥ j ′ ,d , ∥Z(x)∥ j ′ dx dz.
On the other hand, since for all ℓ ∈ N the functions h and T ℓ are continuous at u, the same is true for

u → D R j ′ -j Ω g(u, ω, z, x) dP(ω) dz dx.
By applying a weak version of Lebesgue's dominated convergence theorem, we deduce that the hypothesis H 5 is true.

A similar proof can be done to verify the hypothesis H 3 . This completes the third part of the proof.

4. Now suppose that the processes X and Y satisfy the assumption A 4 . Let us show that the hypothesis H 5 holds true, since the hypothesis

H 1 is clearly satisfied. For u ∈ R j , D E[Y (x)H(∇X(x)) X(x) = u ]p X(x) (u) dx = D R×R dj yH( ẋ)p Y (x),X(x),∇X(x) (y, u, ẋ) d ẋ dy dx.
Using the hypotheses on the density p Y (x),X(x),∇X(x) (y, u, ẋ), we obtain that the function appearing into the integral is a continuous function of u for almost all (x, y, ẋ)

∈ D × R × R dj . Moreover, since for any A ∈ L(R d , R j ), H(A) ⩽ C ∥A∥ j j,d
, we easily obtain the following bound: ∀u ∈ R j and for almost all (x, y, ẋ) This ends the proof of Proposition 3.1.12.

∈ D × R × R dj , |y| H( ẋ)p Y (x),X(x),∇X(x) (y, u, ẋ) ⩽ C |y| ∥ ẋ∥ j d,j p Y (x),X(x),∇X(x) (y, u, ẋ) := g(x, y, u, ẋ). It is easy to see that for almost all (x, y, ẋ) ∈ D × R × R dj , the func- tion u -→ g(x,

Rice's formula for all level

We have previously given conditions for certain classes of processes X and Y satisfying the hypotheses (H 2 , H 4 ), or (H 1 , H 3 , H 5 ). We will now provide a class of processes satisfying the hypotheses H i , i = 1, . . . , 5 simultaneously and prove Proposition 3.2.3 and Theorem 3.2.5 giving conditions on X and Y allowing the validity of the Rice formula for all level. We should recall that Proposition 3.2.3 was proved in 1985 by Cabaña [START_REF] Cabaña | Esperanzas de integrales sobre conjuntos de nivel aleatorios[END_REF]. Our proof is deeply inspired by this work. The hypothesis H 2 and H 4 are difficult to verify. We will use the tools already developed to prove the required continuity. For this purpose, i.e. in order to exhibit a class of processes verifying hypotheses H 2 and H 4 , we resort to the only tool we have provided before, namely the use of Proposition 3.1.8. Our goal is then to construct a class of processes Y satisfying the hypothesis A 0 , i.e. such that Y is a continuous process for which there exists

λ ∈ B j such that supp(Y ) ⊂ Γ(λ), (∇X(•)| V ⊥ λ ) -1 d,j
, Y (•) and ∥∇X(•)∥ j,d being uniformly bounded on the support of Y .

These assumptions being very demanding, the idea is, given a process Y , satisfying assumptions A i , i = 1, . . . , 4, and thus by Proposition 3.1.12 verifying the hypotheses H 1 , H 3 and H 5 , approximating the latter for fixed n ∈ N ⋆ , by a process Y (n) , defined as

Y (n) := λ∈B j Y (n) λ . The process Y (n) λ
still verifies hypotheses H 1 , H 3 and H 5 and above all assumption A 0 . In this form, by applying Theorem 3.1.1, for n ∈ N ⋆ fixed we will propose a Rice formula for processes X and Y (n) and for any level y ∈ R j . Then, we will make n tend to infinity to obtain a Rice formula for X and Y .

For this purpose, let

X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field in C 1 (D, R j ) where D is an open set of R d , and let Y : Ω × D ⊂ Ω × R d → R a continuous processes.
In the same way as in Section 3.1.1, we define for fixed λ ∈ B j and x ∈ D r X , Y λ (x) := η λ (x)Y (x), where η λ (t) has been defined in [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF].

For

n ∈ N * , let Y (n) be Y (n) (x) := λ∈B j Y (n) λ (x), for x ∈ D , where Y (n) λ is Y (n) λ (x) := Y λ (x)f n (x)Ψ(Y (x)/n)Ψ(∥∇X(x)∥ j,d /n) × Ψ 1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} 1 D r X (x)
, where the function ϕ λ has been defined in [START_REF] Granville | The distribution of the zeros of random trigonometric polynomials[END_REF], and Ψ is a continuous even function on R, decreasing on R + such that

Ψ(t) := 1, 0 ⩽ t ⩽ 1 0, 2 ⩽ t and (f n ) n∈natural * is the sequence of functions defined from R d to [0, 1] as follows f n (x) := d(x, D 2n ) d(x, D 2n ) + d(x, D (n) )
,

where the closed sets D 2n and D (n) are

D 2n := x ∈ R d , d(x, D c ) ⩽ 1 2n and D (n) := x ∈ R d , d(x, D c ) ⩾ 1 n .
We will see later in the proof of Lemma 3.2.1 that the functions (f n ) n∈N * are well defined, continuous and such that the support of f n|D is contained in D for each n ∈ N * . In Lemma 3.2.2 we will prove that (f n ) n∈N * is a sequence of nondecreasing functions tending to one when n goes to infinity.

Let us explain a little more the choice of the terms composing the expression of

Y (n) λ : -Y λ (x)f n (x)Ψ(1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} ) ensures that Y (n) λ (x)
will tend to Y λ (x) when n tend to infinity for x ∈ D r X , as we will show by using the fact that f n (x) tends to one when n tends to infinity. Then for

x ∈ D r X , Y (n) (x) will tend to λ∈B j Y λ (x) = Y (x). Furthermore, this implies since ∀n ∈ N ⋆ , supp(f n|D ) ⊂ D, that supp(Y (n) λ ) ⊂ Γ(λ). -Ψ (1/nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} ensures that ∀n ∈ N ⋆ , (∇X(•)| V ⊥ λ ) -1 d,j is uniformly bounded on the support of Y (n) λ . -Ψ(Y (x)/n)f n (x) ensures that Y (n) λ is uniformly bounded on D since f n (x) ⩽ 1. -Ψ(∥∇X(x)∥ j,d /n) ensures that ∀n ∈ N ⋆ , ∥∇X(•)∥ j,d is uniformly bounded on supp(Y (n) λ ).
We can now establish the following lemmas.

Lemma 3.2.1. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field belonging to C 1 (D, R j ), where D is an open, convex and bounded set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) satisfying E L d X (•) < ∞. Let Y : Ω×D ⊂ Ω×R d →
R be a continuous process. Then, on the one hand, for n ∈ N ⋆ , X and Y (n) satisfy the hypotheses H 2 and H 4 . On the other hand, if Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions A i , i = 1, 2, 3 or if X and Y satisfy the assumption A 4 , then ∀n ∈ N ⋆ , X and Y (n) satisfy the hypotheses H 1 , H 3 and H 5 and a fortiori the hypotheses H i , i = 1, . . . , 5.

In this form we have provided a class of processes X and Y (n) satisfying simultaneously the hypotheses H i , i = 1, . . . , 5. Then, by Theorem 3.1.1, we get that ∀n ∈ N ⋆ and ∀y ∈ R j

E C D r X (y) Y (n) (x) dσ d-j (x) 3.2. RICE'S FORMULA FOR ALL LEVEL 61 = D p X(x) (y)E Y (n) (x)H(∇X(x)) X(x) = y dx.
The idea consists to make n tends to infinity. More precisely we can show the following lemma. [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions

Lemma 3.2.2. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field belonging to C 1 (D, R j ), where D is an open, convex and bounded set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) satisfying E L d X (•) < ∞. Let Y : Ω×D ⊂ Ω×R d → R be a continuous process. If Y satisfies
A i , i = 1, 2, 3 or if X and Y satisfy the assumption A 4 , ∀y ∈ R j , lim n→+∞ E C D r X (y) Y (n) (x) dσ d-j (x) = E C D r X (y) Y (x) dσ d-j (x) and lim n→+∞ D p X(x) (y)E Y (n) (x)H(∇X(x)) X(x) = y dx = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
Finally, we can establish the following proposition. [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions A i , i = 1, 2, 3 or if X and Y satisfy the assumption A 4 , then for all y ∈ R j we have •

Proposition 3.2.3. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field belonging to C 1 (D, R j ), where D is an open, convex and bounded set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L d X (•) < ∞. Let Y : Ω×D ⊂ Ω×R d → R be a continuous process. If Y satisfies
E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
Proof of the Lemma 3.2.1. Let X : Ω × D ⊂ Ω × R d → R j be a random field in C 1 (D, R j ) such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L d X (•) < ∞ and let Y : Ω × D ⊂ Ω × R d → R be a continuous process.
Let us show that ∀n ∈ N ⋆ , the processes X and Y (n) satisfy the hypotheses H 2 and H 4 . Consider for n fixed in N ⋆ and for λ fixed in B j the process Y (n) λ . We will now prove that the processes X and Y (n) λ satisfy the assumption A 0 (see page 41). Thus, we will deduce by using Proposition 3.1.8 that these processes satisfy the hypotheses H 2 and H 4 . Let us verify that Y (n) λ is continuous on D, which is a non-trivial fact due to the presence of 1 D r X (x) in the definition of this function. Let us first notice that since the sets (D 2n ) n∈N * and (D (n) ) n∈N * are closed, the functions (f n ) n∈N * are well defined and continuous on R d and then on D. Consider now x ∈ (D r X ) c 1 and a sequence (x p ) p∈N ⋆ of points in D which converges to x as p tends to infinity. We have Y (n) λ (x) = 0. Suppose that there exists a subsequence

(x p k ) k∈N ⋆ of (x p ) p∈N ⋆ , such that Y (n) λ (x p k ) ̸ = 0, for all k ∈ N ⋆ . In this case, necessarily ϕ λ (x p k ) ⩾ 1
2n for all k ∈ N ⋆ , and since the function

ϕ λ is continuous on D, it turns out that ϕ λ (x) ⩾ 1 2n . Property (34) implies that x ∈ Γ(λ) ⊂ D r
X , which leads to a contradiction. All the points, except perharps a finite number, of the sequence

(x p ) p∈N ⋆ , are such that Y (n) λ (x p ) = 0. The sequence (Y (n) λ (x p )) p∈N ⋆ then
converges to zero. Moreover, using a reasoning similar to the previous one, we can prove that the function

x → Ψ(1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} )
is continuous on D and then on D r X . The function

Y (n) λ is continuous on D r X , which leads to the continuity of Y (n) λ on D.
Let us now prove that ∀n ∈ N ⋆ , the support of this function is contained in

Γ(λ), i.e. supp(Y (n) λ ) ⊂ Γ(λ).
To prove this inclusion, we will first prove that we have ∀n ∈ N * , supp(f n|D ) ⊂ D. Indeed, since ∀n ∈ N * the set D 2n is closed, we have

supp(f n|D ) = {x ∈ D, d(x, D c ) > 1/(2n)} ⊂ D.
The last inclusion is a consequence of the continuity of the distance function and the fact that D is an open set. Therefore

supp(Y (n) λ ) ⊂ {x ∈ D, ϕ λ (x) ⩾ 1/(2n)} ∩ D ⊂ {x ∈ D, ϕ λ (x) ⩾ 1/(2n)} .
The last inclusion comes from the fact that function ϕ λ is continuous on D. Finally, from [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF] we have supp(Y

(n) λ ) ⊂ Γ(λ). Let us see that Y (n) λ
is uniformly bounded on its support.
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We only need to prove that Y

(n) λ is uniformly bounded on D. Consider x ∈ D such that Y (n) λ (x) ̸ = 0. Then necessarily we have |Y (x)| ⩽ 2n. Since we have f n (x) ⩽ 1 and η λ x)1 {x∈D r X } ⩽ 1, Y (n) λ (x) ⩽ |Y (x)|. It is therefore true that Y (n) λ (x) ⩽ 2n and we get the result. Let us show that (∇X(•)| V ⊥ λ ) -1 d,j is uniformly bounded on the support of Y (n) λ . We have seen that supp(Y (n) λ ) ⊂ x ∈ D, ϕ λ (x) ⩾ 1 2n . Then for x ∈ supp(Y (n) λ ), we have (∇X(x)| V ⊥ λ ) -1 d,j ⩽ 2n. Therefore, the result is true. Let us finally show that ∥∇X(•)∥ j,d is uniformly bounded on the support of Y (n)
λ . This follows from the following inclusion:

supp(Y (n) λ ) ⊂ x ∈ D, ∥∇X(x)∥ j,d ⩽ 2n ∩ D ⊂ x ∈ D, ∥∇X(x)∥ j,d ⩽ 2n .
The last inclusion comes from the fact that X is C 1 (D, R j ). Finally the processes X and Y (n) λ satisfy the assumption A 0 and thus the hypotheses H 2 and H 4 . Using that

Y (n) = λ∈B j Y (n) λ and that Y (n) = λ∈B j |Y (n)
λ |, it is clear that X and Y (n) satisfy also the hypotheses H 2 and H 4 . Now suppose that Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and that X and Y satisfy one of the assumptions A i , i = 1, 2, 3. Let us then prove that X and Y (n) satisfy the hypotheses H 1 , H 3 and H 5 . For almost all x ∈ D, we have ( 50)

Y (x) = G(x, W (x), X(x), ∇X(x)),
where G is a continuous function on

D × R k × R j × L(R d , R j ) and such that ∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ), |G(x, z, u, A)| ⩽ P (f (x), ∥z∥ k , h(u), ∥A∥ j,d ). ∀n ∈ N ⋆ and x ∈ D Y (n) (x) = λ∈B j η λ (x)Y (x)f n (x)Ψ(Y (x)/n)Ψ(∥∇X(x)∥ j,d /n) × Ψ(1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} )1 D r X (x). We deduce that ∀n ∈ N ⋆ and almost surely ∀x ∈ D, (51) Y (n) (x) = M n (x, Y (x), ∇X(x)),
where

∀n ∈ N ⋆ , M n is a continuous function defined on D × R × L(R d , R j ).
The proof of this last statement can be done in a similar way to that used to prove the continuity of

Y (n) λ on D. Moreover, ∀(x, y, A) ∈ D × R × L(R d , R j ), |M n (x, y, A)| ⩽ C |y| .
By (50), we have ∀n ∈ N ⋆ and for almost all x ∈ D,

Y (n) (x) = M n (x, G(x, W (x), X(x), ∇X(x)), ∇X(x)) = G n (x, W (x), X(x), ∇X(x)),
where ∀n ∈ N ⋆ and ∀(x, z, u, A)

∈ D × R k × R j × L(R d , R j ), G n (x, z, u, A) = M n (x, G(x, z, u, A), A). It is clear that G n inherits the properties of G and M n ; that is G n is a contin- uous function on D × R k × R j × L(R d , R j
) and is such that

∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ), |G n (x, z, u, A)| ⩽ C |G(x, z, u, A)| ⩽ CP (f (x), ∥z∥ k , h(u), ∥A∥ j,d ) := Q(f (x), ∥z∥ k , h(u), ∥A∥ j,d ),
where Q and P are polynomials with positive coefficients and the functions f : D -→ R + and h : R j -→ R + , are continuous. Finally Y (n) satisfies ( 39) and X and Y (n) satisfy one of the three assumptions A 1 , A 2 or A 3 . Using Proposition 3.1.12, we proved that the hypotheses H 1 , H 3 and H 5 hold for X and Y (n) . Using the first part of this lemma we can conclude that the hypotheses H i , i = 1, . . . , 5, are satisfied by X and Y (n) . Now suppose that X and Y satisfy the assumption A 4 . Let us prove that ∀n ∈ N ⋆ , X and Y (n) satisfy H 1 , H 3 and H 5 . Since for almost all (x, y, ẋ)

∈ D × R × R dj and ∀u ∈ R j , the density p Y (x),X(x),∇X(x) (y, u, ẋ) of the joint distribution (Y (x), X(x), ∇X(x))
exists (and is a continuous function of u) then for almost all x ∈ D and ∀u ∈ R j , the density p X(x) (u) of X(x) exists and H 1 is true. Now using (51), we have ∀n ∈ N ⋆ and ∀u ∈ R j ,

L n (u) := D E[Y (n) (x)H(∇X(x)) X(x) = u ]p X(x) (u) dx = D E[M n (x, Y (x), ∇X(x))H(∇X(x)) X(x) = u ]p X(x) (u) dx 3.2. RICE'S FORMULA FOR ALL LEVEL 65 = D E[L n (x, Y (x), ∇X(x)) X(x) = u ]p X(x) (u) dx, where L n is a continuous function on D × R × R dj and since for all A ∈ L(R d , R j ), H(A) ⩽ C ∥A∥ j j,d , we have ∀n ∈ N ⋆ et ∀(x, y, A) ∈ D × R × L(R d , R j ), |L n (x, y, A)| ⩽ C |y| ∥A∥ j j,d . Finally, ∀n ∈ N ⋆ and ∀u ∈ R j , L n (u) = D R×R dj L n (x, y, ẋ)p Y (x),X(x),∇X(x) (y, u, ẋ) d ẋ dy dx.
In the same way as in the proof of Proposition 3.1.12, (item 4, page 58), a weak version of Lebesgue's dominated convergence theorem implies that ∀n ∈ N ⋆ , the function u -→ L n (u) is continuous. Then the hypothesis H 5 is true. We can also obtain in the same way the hypothesis H 3 . This completes the proof of this lemma.

Proof Lemma 3.2.2. Let us first prove that ∀y ∈ R j , (52) lim n→+∞ E C D r X (y) Y (n) (x) dσ d-j (x) = E C D r X (y) Y (x) dσ d-j (x) .
Recall that ∀n ∈ N ⋆ and ∀x ∈ D we have

Y (n) (x) = λ∈B j η λ (x)Y (x)f n (x)Ψ(Y (x)/n)Ψ(∥∇X(x)∥ j,d /n) × Ψ(1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} )1 D r X (x). Notice that ∀y ∈ R j and ∀x ∈ D, • lim n→+∞ Y (n) (x)1 C D r X (y) (x) = Y (x)1 C D r X (y) (x) • Y (n) (x) 1 C D r X (y) (x) ⩽ |Y (x)| 1 C D r X (y) (x) • Y • 1 C D r X (y) ∈ L 1 ( dσ d-j ⊗ dP ) Let us establish the first statement, by proving first that for x ∈ D, lim n→∞ f n (x) = 1. Consider x ∈ D. Since D c is closed, we have that d(x, D c ) > 0, and ∃n 0 ∈ N * such that d(x, D c ) ⩾ 1 n 0 . Thus for n ⩾ n 0 , we have d(x, D c ) ⩾ 1 n , which implies for n ⩾ n 0 , x ∈ D (n) . Consequently ∀n ⩾ n 0 , d(x, D (n) ) = 0 and f n (x) = 1 ∀n ⩾ n 0 .
Finally, the first statement is a consequence of the inclusion [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF], i.e. ∀λ ∈ B j we have supp(η λ )∩D r X ⊂ Γ(λ). Indeed, this last inclusion implies that ∀λ ∈

B j , ∀x ∈ D r X ∩ Γ c 1 (λ), η λ (x) = 0 and then ∀λ ∈ B j , ∀x ∈ D r X , lim n→+∞ Y (n) λ (x) = η λ (x)Y (x) so that ∀x ∈ D r X , lim n→+∞ Y (n) (x) = ( λ∈B j η λ (x))Y (x) = Y (x).
The last statement can be proved in the following way. Using Lemma 3.2.1, X and Y (n) satisfy H i , i = 1, . . . , 5 and in particular H 1 , H 2 and H 3 . Remark 3.1.2 allows us to obtain that ∀n ∈ N ⋆ and ∀y ∈ R j ,

E C D r X (y) Y (n) (x) dσ d-j (x) = D p X(x) (y)E Y (n) (x) H(∇X(x)) X(x) = y dx.
By noticing that the sets (D 2n ) n∈N * and (D (n) ) n∈N * , which define the sequence (f n ) n∈N * , are respectively decreasing and nondecreasing sequences, we obtain that the sequence (f n ) n∈N * is nondecreasing. Since the function Ψ is an even function on R and decreasing on R + , the sequence (

Y (n) ) n∈N * is non-decreasing.
We can apply Beppo Levi's theorem and we have ∀y ∈ R j

lim n→+∞ ↑ E C D r X (y) Y (n) (x) dσ d-j (x) = E C D r X (y) |Y (x)| dσ d-j (x) .
Similarly, ∀y ∈ R j ,

lim n→+∞ ↑ D p X(x) (y)E Y (n) (x) 1 D r X (x)H(∇X(x)) X(x) = y dx = D p X(x) (y)E |Y (x)| 1 D r X (x)H(∇X(x)) X(x) = y dx = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx.
The last equality comes from the fact that ∀x ∈ D we have

1 D r X (x)H(∇X(x)) = H(∇X(x)). We then obtain ∀y ∈ R j (53) E C D r X (y) |Y (x)| dσ d-j (x) = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx < ∞,
since X and Y satisfy one of the four assumptions A 1 , A 2 , A 3 or A 4 and by Proposition 3.1.12, satisfy the hypothesis H 3 . We have shown that Y • 1 C D r X (y) ∈ L 1 ( dσ d-j ⊗ dP ). Then using Lebesgue's dominated convergence theorem, we can deduce [START_REF] Podolskij | Understanding limit theorems for semimartingales: a short survey[END_REF]. Let us show that ∀y ∈ R j , ( 54)

lim n→+∞ D p X(x) (y)E Y (n) (x)H(∇X(x)) X(x) = y dx = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
In the same way as before, we notice that ∀y ∈ R j and for almost all x ∈ D,

• lim n→+∞ Y (n) (x)H(∇X(x))p X(x) (y) = Y (x)H(∇X(x))p X(x) (y) • Y (n) (x) H(∇Xx))p X(x) (y) ⩽ |Y (x)| H(∇X(x))p X(x) (y) • E |Y (x)| H(∇X(x))p X(x) (y) X(x) = y < ∞
and the finiteness of the last expression results from that of the second integral in [START_REF]Origin of Rice's formula[END_REF].

Lebesgue dominated convergence theorem allows to write ∀y ∈ R j and for almost all x ∈ D,

• lim n→+∞ E Y (n) (x)H(∇X(x)) X(x) = y p X(x) (y) = E Y (x)H(∇X(x)) X(x) = y p X(x) (y).
Moreover, ∀y ∈ R j and almost surely ∀x ∈ D,

• E Y (n) (x)H(∇X(x)) X(x) = y p X(x) (y) ⩽ E |Y (x)| H(∇X(x)) X(x) = y p X(x) (y) ∈ L 1 (D, dx).
The last statement comes from the fact that the second integral in (53) is finite. Lebesgue's dominated convergence theorem allows to obtain [START_REF] Rice | Mathematical analysis of random noise, part i-ii[END_REF]. This completes the proof of Lemma 3.2.2 and consequently the proof of Proposition 3.2.3.

We can now state Theorem 3.2.5 which follows. It allows us to weaken assumptions A i , i = 1, 2, 3. More precisely, we want to avoid assuming the existence of uniform lower (or upper) bounds for the variance of the Z process appearing under these assumptions.

In the first three assumptions B 1 , B 2 and B 3 , we will assume that Y can be written as in the [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF]. Let D be an open set of R d .

-

B 1 : Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d)
be a Gaussian random field belonging to C 1 (D, R j ), such that ∀x ∈ D, the vector X(x) has a density. Moreover, for almost all x ∈ D, the field W (x) is independent of the vector (X(x), ∇X(x)), and ∀n ∈ N,

D E[∥W (x)∥ n k ] dx < ∞. -B 2 : ∀x ∈ D, X(x) = F (Z(x)), where F : R j -→ R j is a bijection belonging to C 1 (R j , R j ), such that ∀z ∈ R j , the Jacobian of F in z, that is J F (z) satisfies J F (z) ̸ = 0 and the function F -1 is continuous. Let Z : Ω×D ⊂ Ω×R d → R j (j ⩽ d) be a Gaussian process belonging to C 1 (D, R j
) such that ∀x ∈ D, the vector Z(x) has a density. Moreover, for almost all x ∈ D, W (x) is independent of the vector (Z(x), ∇Z(x)), and ∀n ∈ N,

D E[∥W (x)∥ n k ] dx < ∞. -B 3 : For all x ∈ D, X(x) = F (Z(x)), where Z : Ω × D ⊂ Ω × R d → R j ′ (j < j ′ ) is a Gaussian random field belonging to C 1 (D, R j ′ ) such that ∀x ∈ D, the vector (Z(x), ∇Z(x)
) has a density. Moreover, for almost all x ∈ D, W (x) is independent of the vector (Z(x), ∇Z(x)). Finally,

∀n ∈ N D E[∥W (x)∥ n k ] dx < ∞.
The function F verifies assumption (F ) given in assumption A 3 . -B 4 : Is the same assumption A 4 .

Let us now state the hypothesis H 6 .

-

H 6 : ∀y ∈ R j , D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx < ∞.
We are now ready to formulate the following theorem. [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions B i , i = 1, 2, 3 and the hypothesis H 6 or if X and Y satisfy the assumption B 4 ,

Theorem 3.2.5. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field belonging to C 1 (D, R j ), where D is an open and bounded convex set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L d X (•) < ∞. Let Y : Ω×D ⊂ Ω×R d → R be a continuous process. If Y satisfies
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then ∀y ∈ R j we have

E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx. Remark 3.2.6.
-Under the same hypotheses as in Theorem 3.2.5, eliminating the condition E L d X (•) < ∞ and the hypothesis H 6 , we obtain the following inequality ∀y ∈ R j 

E C D r X (y) |Y (x)| dσ d-j (x) ⩽ D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx. • Remark 3.2.
D n := x ∈ R d , d(x, D c ) > 1 n . ∀n ∈ N ⋆ , D n is
* , D n ⊆ x ∈ R d , d(x, D c ) ⩾ 1
n which is a compact set contained in D. The set D n may not be convex but D n ⊂ D, and the latter set is convex. We apply Remark 3.2.4 which follows Proposition 3.2.3 to X |Dn and to Y |Dn (resp. |Y | |Dn ). We get: ∀y ∈ R j and ∀n ∈ N * ,

E C D r Dn,X (y) Y (x) dσ d-j (x) = Dn p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx,
and also ∀y ∈ R j and ∀n ∈ N * ,

E C D r Dn,X (y) |Y (x)| dσ d-j (x) = Dn p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx. 70 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL Knowing that D is an open set of R d , lim n→+∞ ↑ D n = D, Beppo Levi's theorem leads to, ∀y ∈ R j , E C D r X (y) |Y (x)| dσ d-j (x) = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx < ∞,
by using the hypothesis H 6 . We can apply Lebesgue's dominated convergence theorem to get, ∀y ∈ R j ,

E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
If X and Y satisfy the assumption B 4 which is nothing else than the assumption A 4 , the above equality is trivial since already settled in Proposition 3.2.3. The proof of Theorem 3.2.5 is finished.

Proof of Remark 3.2.6. In the same way as in the proof of Lemma 3.2.1, let us define ∀n ∈ N ⋆ , the random variable

Z (n) by Z (n) (x) := λ∈B j Z (n) λ (x) for x ∈ D, where we have defined for λ fixed in B j the random variable Z (n) λ by Z (n) λ (x) := Y (n) λ (x)Ψ(L X (•)/n),
where we recall that we have defined the random variable

Y (n) λ by Y (n) λ (x) = Y λ (x)f n (x)Ψ(Y (x)/n)Ψ(∥∇X(x)∥ j,d /n) × Ψ(1/(nϕ λ (x))1 {ϕ λ (x)>0} + 21 {ϕ λ (x)=0} )1 D r X (x)
. Note that we cannot work as in Lemma 3.2.1, since we are not able to show that Z (n) λ verifies hypotheses H 3 and H 5 . In fact, we cannot apply the results of Proposition 3.1.12, since we cannot verify that Z

(n) λ verifies assumptions A i , i = 1, . . . , 4. Indeed for x ∈ D, Z (n) 
λ (x) depends on the whole trajectory of the X process via the term Ψ(L X (•)/n). The processes X and Z (n) λ satisfy the hypotheses of Remark 3.1.9 and therefore X and

Z (n) λ satisfy H 2 .
As in the proof of Lemma 3.2.1, we deduce that X and Z (n) satisfy H 2 . Moreover, assuming for the moment that Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and that X and Y satisfy one of the three assumptions A 1 , A 2 , A 3 or that X and Y satisfy A 4 , Proposition 3.1.12 allows us to deduce that H 1 is satisfied. By Proposition 2.4.1 we obtain that for almost all y ∈ R j

E C D r X (y) Z (n) (x) dσ d-j (x) = D p X(x) (y)E Z (n) (x) H(∇X(x)) X(x) = y dx, thus for almost all y ∈ R j E C D r X (y) Z (n) (x) dσ d-j (x) ⩽ D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx.
By Proposition 3.1.12, the processes X and Y satisfy H 3 . Since X and Z (n) satisfy H 2 , we deduce that the right and left terms of the last inequality are continuous in terms of the variable y. Then the inequality is true ∀y ∈ R j . In the same way as in the proof of Lemma 3.2.2, using Beppo Levi's theorem, we obtain ∀y ∈ R j

lim n→+∞ ↑ E C D r X (y) Z (n) (x) dσ d-j (x) = E C D r X (y) |Y (x)| dσ d-j (x) . We have shown that ∀y ∈ R j E C D r X (y) |Y (x)| dσ d-j (x) ⩽ D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx,
this completes the proof of this remark whenever Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and that X and Y satisfy one of the three assumptions A i , for i = 1, . . . , 3 or that X and Y satisfy the assumption A 4 and then the assumption B 4 .

In the case where Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and X and Y satisfy one of the three assumptions B i , for i = 1, . . . , 3, in the same way as in the proof of Theorem 3.2.5, we apply ∀n ∈ N * the above inequality to X |Dn and Y |Dn which satisfy one of the three assumptions A i , for i = 1, . . . , 3. Letting n tends to infinity and applying Beppo Levi's theorem, we get the desired result. Let us remark that the right-hand side term is not necessary finite because we do not assume the hypothesis H 6 .

Our goal in this step of these notes is to propose a Rice's formula which is true for any level but without the assumption E L d X (•) < ∞ which was given in Theorem 3.2.5. We will propose in the following a little better than the inequality appearing in Remark 3.2.6. To do this, we will replace in this theorem one of the assumptions B i , i = 1, . . . , 4 by a slightly stronger assumption B ⋆ i . In the first three assumptions B ⋆ 1 , B ⋆ 2 and B ⋆ 3 , we will assume that Y can be written as in [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF]. More precisely, let D be an open set of R d and consider the following assumptions:

-B ⋆ 1 :
It is the assumption B 1 , plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D, the density of the vector (X(x 1 ), X(x 2 )) exists.

-B ⋆ 2 : It is the assumption B 2 , plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D, the density of the vector (Z(x 1 ), Z(x 2 )) exists.

-B ⋆ 3 : It is the assumption B 3 , plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D, the density of the vector (Z(x 1 ), Z(x 2 )) exists.

-B ⋆ 4 : It is the assumption B 4 , plus the following hypotheses:

1. The function

u -→ D R×R dj y 2 ∥ ẋ∥ j dj p Y (x),X(x),∇X(x) (y, u, ẋ) d ẋ dy dx is continuous. 2. For almost all (x 1 , x 2 , ẋ1 , ẋ2 ) ∈ D × D × R dj × R dj and for all (u, v) ∈ R j × R j , the density p X(x 1 ),X(x 2 ),∇X(x 1 ),∇X(x 2 ) (u, v, ẋ1 , ẋ2 ),
of the vector(X(x 1 ), X(x 2 ), ∇X(x 1 ), ∇X(x 2 )) exists. 3. Moreover, ∀y ∈ R j , the function

(u, v) -→ D×D R dj ×R dj ∥ ẋ1 ∥ j dj ∥ ẋ2 ∥ j dj p X(x 1 ),X(x 2 ),∇X(x 1 ),∇X(x 2 ) (u, v, ẋ1 , ẋ2 ) d ẋ1 d ẋ2 dx 1 dx 2
is bounded in a neighborhood of (y, y).

Let us express now the hypothesis

H ⋆ 6 . -H ⋆ 6 : ∀y ∈ R j , the function (u, v) -→ D×D p X(x 1 ),X(x 2 ) (u, v) × E H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = u, X(x 2 ) = v dx 1 dx 2
is bounded in a neighborhood of (y, y).

Finally we can state the following theorem. 

Theorem 3.2.8. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field in C 1 (D, R j ),
E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx. Remark 3.
E C D r X (z) Z (n) (x) dσ d-j (x) -E C D r X (z) Y (n) (x) dσ d-j (x) = E C D r X (z) Y (n) (x) (1 -Ψ(L X (•)/n)) dσ d-j (x) .
Let us assume for the moment that if Y satisfies (39) then X and Y satisfy one of the three assumptions A i , i = 1, 2, 3. By Lemma 3.2.1 and Proposition 3.1.12, since X and Y satisfy one of the four hypotheses A i , i = 1, . . . , 4, ∀n ∈ N * , X and Y (n) satisfy the hypotheses H 1 and H 3 (and also H 5 ). By Proposition 2.4.1, we then have for almost all z ∈ R j and ∀n ∈ N

⋆ E C D r X (z) Y (n) (x) dσ d-j (x) = D p X(x) (z)E Y (n) (x) H(∇X(x)) X(x) = z dx,
and a similar formula is true for the random variable Y (n) .

For simplicity, let us denote

• • • y+δ y-δ f (x) dx the following multiple integral y 1 +δ y 1 -δ • • • y j +δ y j -δ f (x) dx,
where δ > 0, y := (y 1 , y 2 , . . . , y j ) and f is a positive or integrable real valued function defined over j i=1 [y i -δ, y i + δ]. With this notation and using the Schwarz inequality we obtain ∀n ∈ N * , ∀y ∈ R j and ∀δ > 0:

(55) 1 2δ j • • • y+δ y-δ E C D r X (z) Z (n) (x) dσ d-j (x) - D p X(x) (z)E Y (n) (x) H(∇X(x)) X(x) = z dx dz ⩽ E (1 -Ψ(L X (•)/n)) 4 1 4 × 1 2δ j • • • y+δ y-δ E C D r X (z) (Y (n) (x)) 2 dσ d-j (x) dz 1 2 ×   E   1 2δ j • • • y+δ y-δ σ d-j (C D r X (z)) dz 2     1 4
.

Let us consider the second term of the product in the right-hand side of the last inequality.

For that, let us notice that if Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF], and if X and Y satisfy one of the three assumption A i , i = 1, 2, 3, or if X and Y satisfy the assumption B ⋆ 4 , it is easy to prove, as in Proposition 3.1.12 that X and Y 2 still satisfy the hypothesis H 1 and H 3 . By Proposition 2.4.1 and since ∀n ∈ N * , ∀x ∈ D, Y (n) (x) ⩽ |Y (x)|, we get the following inequalities, ∀n ∈ N * , ∀y ∈ R j , lim sup

δ→0 1 2δ j • • • y+δ y-δ E C D r X (z) (Y (n) (x)) 2 dσ d-j (x) dz ⩽ lim sup δ→0 1 2δ j • • • y+δ y-δ E C D r X (z) Y 2 (x) dσ d-j (x) dz ⩽ lim sup δ→0 1 2δ j • • • y+δ y-δ D p X(x) (z)E Y 2 (x)H(∇X(x)) X(x) = z dx dz -→ δ→0 D p X(x) (y)E Y 2 (x)H(∇X(x)) X(x) = y dx < ∞.
The last convergence comes from the fact that X and Y 2 satisfy the hypothesis H 3 . We will now study the third term of the product on the right-hand side of [START_REF]Mathematical analysis of random noise, part iii-iv[END_REF]. By Remark 2.3.2 following Theorem 2.3.1, if we apply the coarea formula to the functions G := X and f := 1 { j i=1 [y i -δ,y i +δ]} ⩾ 0 and to the Borel set B := D, ∀y ∈ R j , we obtain

• • • y+δ y-δ σ d-j (C D r X (z)) dz = D 1 {X(x)∈ j i=1 [y i -δ,y i +δ]} H(∇X(x)) dx.
If Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions A i , i = 1, 2, 3, the hypothesis in assumption B ⋆ i , i = 1, 2, 3, ensures that for almost all (x 1 , x 2 ) ∈ D × D, the density of the vector (X(x 1 ), X(x 2 )) exists. To be convinced of this, it is enough to calculate the density in the same way as in the proof of Proposition 3.1.12 to establish [START_REF] Marinucci | Nonuniversality of nodal length distribution for arithmetic random waves[END_REF]. Note that we can also use the formula given in [60, Corollary 4.18, p. 68]. Moreover, if X and Y satisfy the hypothesis B ⋆ 4 , it is clear that the density of the vector (X(x 1 ), X(x 2 )) exists for almost all (x 1 , x 2 ) ∈ D × D. Finally, ∀y ∈ R j , using the hypothesis H ⋆ 6 or using the fourth assumption appearing in B ⋆ 4 and using the same notational conventions as above, we obtain

lim sup δ→0 E   1 2δ j • • • y+δ y-δ σ d-j (C D r X (z)) dz 2   = lim sup δ→0 1 2δ 2j • • • y+δ y-δ • • • y+δ y-δ D×D p X(x 1 ),X(x 2 ) (z 1 , z 2 ) ×E H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = z 1 , X(x 2 ) = z 2 dx 1 dx 2 dz 1 dz 2 ⩽ C.
Before taking the limit when δ tends to zero in [START_REF]Mathematical analysis of random noise, part iii-iv[END_REF], let us observe that as in the proof of Remark 3.2.6, X and Z (n) satisfy the hypothesis H 2 (and H 4 ). Moreover, we saw in the beginning of this proof that ∀n ∈ N * , X and Y (n) satisfy the hypothesis H 3 (and H 5 ).

Taking the limit when δ tends to zero, it turns out that ∀n ∈ N * and ∀y ∈ R j

E C D r X (y) Z (n) (x) dσ d-j (x) - D p X(x) (y)E Y (n) (x) H(∇X(x)) X(x) = y dx ⩽ C E (1 -Ψ(L X (•)/n)) 4 1 76 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL × D p X(x) (y)E Y 2 (x)H(∇X(x)) X(x) = y dx 1 2
.

The idea now is to take the limit when n tends to infinity in the last inequality. First, by using Lebesgue's dominated convergence theorem,

lim n→+∞ E[(1 -Ψ(L X (•)/n)) 4 ] = 0.
Hence ∀y ∈ R j :

lim sup n→+∞ E C D r X (y) Z (n) (x) dσ d-j (x) - D p X(x) (y)E Y (n) (x) H(∇X(x)) X(x) = y dx = 0. Moreover, using Beppo Levi's theorem, ∀y ∈ R j , lim n→+∞ ↑ D p X(x) (y)E Y (n) (x) H(∇X(x)) X(x) = y dx = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx < ∞.
Proposition 3.1.12 ensures that the last integral is finite. Beppo Levi's theorem also implies that, ∀y ∈ R j ,

lim n→+∞ ↑ E C D r X (y) Z (n) (x) dσ d-j (x) = E C D r X (y) |Y (x)| dσ d-j (x) .
Then, ∀y ∈ R j ,

E C D r X (y) |Y (x)| dσ d-j (x) < ∞, (56) 
and also for ∀y ∈ R j ,

E C D r X (y) |Y (x)| dσ d-j (x) = D p X(x) (y)E |Y (x)| H(∇X(x)) X(x) = y dx.
In the same way as in the previous proof, replacing

Z (n) by Z (n) and Y (n) by Y (n) , we obtain ∀y ∈ R j : lim sup n→+∞ E C D r X (y) Z (n) (x) dσ d-j (x) 3.2. RICE'S FORMULA FOR ALL LEVEL 77 - D p X(x) (y)E Y (n) (x)H(∇X(x)) X(x) = y dx = 0.
By ( 56), Lebesgue's dominated convergence theorem implies, ∀y ∈ R j

lim n→+∞ E C D r X (y) Z (n) (x) dσ d-j (x) = E C D r X (y) Y (x) dσ d-j (x) . Also ∀y ∈ R j , lim n→+∞ D p X(x) (y)E Y (n) (x)H(∇X(x)) X(x) = y dx = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
This completes the proof of the theorem in the case where Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF], and X and Y satisfy one of the three assumptions B ⋆ i , i = 1, 2, 3, where we replaced in the assumption B ⋆ i the assumption B i by A i . If X and Y satisfy the assumption B ⋆ 4 , the theorem is true. Now suppose that Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and X and Y satisfy one of the three assumptions B ⋆ i , i = 1, 2, 3. We will proceed as in the proof of Theorem 3.2.5. Let us consider ∀n ∈ N ⋆ , the sets 

D n = x ∈ R d , d(x, D c ) > 1 n . For any n in N ⋆ ,
E C D r Dn,X (y) Y (x) dσ d-j (x) = Dn p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx, similarly replacing Y by |Y |.
The hypothesis H 6 allows, when n → ∞, to apply Lebesgue's dominated convergence theorem in the above equality. This ends the proof of the theorem.

General

Rice formulas for all level 3.3.1. Preliminaries for the general Rice formula. -The following two propositions proved by Azaïs & Wschebor [10, p. 178-179] will provide the arguments to obtain a general Rice formula for a random field. Our goal is to obtain a Rice formula for any level y ∈ R, the level not necessarily being regular.

Proposition 3.3.1. -Let Z : Ω × W ⊂ Ω × R ℓ → R m+k (m ∈ N, k ∈ N ⋆ ), be a random field in C 1 (W, R m+k ),
W an open set of R ℓ , J a compact subset of W whose Hausdorff dimension is less or equal to m and z 0 ∈ R m+k is fixed. We assume that Z satisfies the following assumption: ∀t ∈ J, the random vector Z(t) has a density p Z(t) (v) such that ∃C > 0, and a neighborhood V z 0 of z 0 such that ∀t ∈ J and for all v

∈ V z 0 , p Z(t) (v) ⩽ C. Then almost surely there is no point t ∈ J such that Z(t) = z 0 . Proof of Proposition 3.3.1. Let z 0 ∈ R m+k fixed. For T , a Borel set of R ℓ contained in W , let R z 0 (T ) := {ω ∈ Ω : ∃x ∈ T, Z(x)(ω) = z 0 }.
Let J be a compact set contained in W whose Haussdorff dimension is less than or equal to m. Since k ∈ N ⋆ , the Euclidian Haussdorff measure of J of dimension m + k is zero, that is H m+k (J) = 0 (cf. definition in [START_REF] Weizsäcker | Fractal sets and preparation to geometric measure theory[END_REF]). By definition of the Haussdorff Euclidian pre-measure of J which defines H m+k (J), i.e. H δ m+k (J), we have

H m+k (J) = 0 = lim δ→0 H δ m+k (J).
Consider ε > 0 and η > 0 fixed. There exists δ ε > 0 such that ∀δ ⩽ δ ε , there exists a countable set I and (r i ) i∈I , 0 < r i ⩽ δ, ∀i ∈ I such that

J ⊂ i∈I B(x i , r i ) and i∈I r m+k i ⩽ ε. Moreover, since W is open in R ℓ , ∀y ∈ J ⊂ W , there exists r y > 0 such that B(y, 2r y ) ⊂ B(y, 2r y ) ⊂ W .
Given that J ⊂ ∪ y∈J B(y, r y ) and that J is compact, there exists a finite covering (B(y j , r y j )) j=1,n satisfying J ⊂ ∪ n j=1 B(y j , r y j ), y j ∈ J for all j = 1, . . . , n. Consider r := inf j=1,...,n r y j and C the compact set defined by

C := ∪ n j=1 B(y j , 2r y j ) ⊂ W . Let R ε,η := inf(δ ε , r/2, µ/(2η))
where µ is the constant defining the neighborhood of z 0 , where the density of Z is bounded. This latter neighborhood satisfies that ∀t ∈ J the random vector Z(t) has a density p

Z(t) (v) satisfying p Z(t) (v) ⩽ C, for v such that ∥v -z 0 ∥ m+k ⩽ µ.
Thus there exists a countable set I and

(r i ) i∈I , 0 < r i ⩽ R ε,η ∀i ∈ I satisfying J ⊂ i∈I B(x i , r i ) and i∈I r m+k i ⩽ ε.
We have

P(R z 0 (J)) ⩽ P(sup t∈C ∥∇Z(t)∥ m+k,ℓ > η) + i∈I P sup t∈C ∥∇Z(t)∥ m+k,ℓ ⩽ η ∩ R z 0 (B(x i , r i ) ∩ J) . Let i fixed in I. If B(x i , r i ) ∩ J = ∅, then R z 0 (B(x i , r i ) ∩ J) = ∅ and P sup t∈C ∥∇Z(t)∥ j,d ⩽ η ∩ R z 0 (B(x i , r i ) ∩ J) = 0. If B(x i , r i ) ∩ J ̸ = ∅, let us fix z ∈ B(x i , r i ) ∩ J. For ω ∈ sup t∈C ∥∇Z(t)∥ m+k,ℓ ⩽ η ∩ R z 0 (B(x i , r i ) ∩ J) there exists x ∈ B(x i , r i ) ∩ J such that Z(x)(ω) = z 0 .
Let us remark that there exists j = 1, . . . , n such that x and z belong to the ball B(y j , 2r y j ), this entails that for all λ ∈ [0, 1], λx + (1 -λ)z ∈ C. Indeed, since x ∈ J, there exists j ∈ {1, . . . , n}, such that x ∈ B(y j , r y j ). We have the following inequalities

∥z -y j ∥ ℓ ⩽ ∥z -x i ∥ ℓ + ∥x i -x∥ ℓ + ∥x -y j ∥ ℓ ⩽ 2r i + r y j ⩽ 2R ε,η + r y j ⩽ r + r y j ⩽ 2r y j . Furthermore, since Z is C 1 (W, R m+k ), it is also C 1 (B(y j , 2r y j ), R m+k ). Since the ball B(y j , 2r y j ) is an open convex set, we have Z(z)(ω) -Z(x)(ω) = Z(z)(ω) -z 0 = 1 0 ∇Z(λx + (1 -λ)z)(ω) dλ (z -x). Consequently, as ∀λ ∈ [0, 1] we have λx + (1 -λ)z ∈ C then ∥Z(z)(ω) -z 0 ∥ m+k ⩽ η ∥z -x∥ ℓ ⩽ 2ηr i ⩽ 2ηR ε,η ⩽ µ. Hence P sup t∈C ∥∇Z(t)∥ m+k,ℓ ⩽ η ∩ R z 0 (B(x i , r i ) ∩ J) ⩽ P(ω, ∥Z(z)(ω) -z 0 ∥ m+k ⩽ 2ηr i ) CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL = R m+k 1 {∥v-z 0 ∥ m+k ⩽2ηr i } p Z(z) (v) dv ⩽ CD m,k (ηr i ) m+k .
Finally, we have shown that ∀ε > 0, ∀η > 0,

P(R z 0 (J)) ⩽ P sup t∈C ∥∇Z(t)∥ m+k,ℓ > η + CD m,k η m+k i∈I r m+k i ⩽ P sup t∈C ∥∇Z(t)∥ m+k,ℓ > η + CD m,k η m+k ε.
By taking limits when ε tends to zero then when η tends to infinity, in this order, we get P(R z 0 (J)) = 0.

We are now in a position to state the second proposition.

Proposition 3.3.2. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field in C 2 (D, R j ), where D is an open set of R d and let D 0 be a compact of R d contained in D. Let y ∈ R j fixed.
We assume that X satisfies the following assumption (S):

-(S) ∀(x, λ) ∈ D 0 × S j-1 the random vector (X(x), λ • ∇X(x)),
has a density p X(x),λ•∇X(x) (u, w), such that there exists a constant C > 0, a neighborhood V y of y and a neighborhood

V ⃗ 0 d of ⃗ 0 R d , such that ∀x ∈ D 0 and ∀λ ∈ S j-1 , ∀u ∈ V y and ∀w ∈ V ⃗ 0 d , p X(x),λ•∇X(x) (u, w) ⩽ C. Then P {ω ∈ Ω : ∃x ∈ D 0 , X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0.
Proof of Proposition 3.3.2. Let us define the random field Z by

Z : Ω × D × R j ⊂ Ω × R d × R j -→ R j × R d such that Z(x, λ) := (X(x), λ • ∇X(x)). Consider the set W := D × R j which is an open set of R ℓ , where ℓ := d + j. The field Z is C 1 (W, R j × R d ), since X is C 2 (D, R j ),
and takes its values in R m+k where m := j + d -1 and k := 1. Consider J := D 0 × S j-1 a compact set contained in W . Its Haussdorff measure is less or equal to m. Let z 0 := (y, ⃗ 0 R d ) ∈ R m+k be fixed. Since ∀(x, λ) ∈ D 0 × S j-1 the random vector (X(x), λ • ∇X(x)) has a bounded density p X(x),λ•∇X(x) (u, w), for u in a neighborhood of y and w in a neighborhood of ⃗ 0 R d then ∀t ∈ J the random vector Z(t) has a density p Z(t) (v)

satisfying p Z(t) (v) ⩽ C, for v in a neighborhood of z 0 . By Proposition 3.3.1, P{ω ∈ Ω : ∃(x, λ) ∈ D 0 × S j-1 , (X(x)(ω), λ • ∇X(x)(ω)) = (y, ⃗ 0 R d )} = 0 then P{ω ∈ Ω : ∃x ∈ D 0 , X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0.
This completes the proof of the proposition. We now have all the ingredients to prove Rice's general formula for all levels.

3.3.2. The general Rice formula. -In this section Theorem 3.3.3 provides a general Rice formula for any level, not necessarily regular. Note that Theorem 6.10 of [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF] gives the same result but in this book, the proofs are only sketched. The proof of Theorem 3.3.3 will be based on the proof of Theorem 3.2.5. Therefore, its proof will require more general assumptions than those denoted by B i , i = 1, . . . , 4, which appear in this last theorem. Let us therefore state the following hypotheses C i , i = 1, . . . , 4 with the same previous convention. For the three first assumptions C i , i = 1, . . . , 3, the process Y will be expressed using [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF].

In what follows we have the assumptions:

-C 1 : It is the assumption B 1 plus the following hypothesis: ∀x ∈ D the vector (X(x), ∇X(x)) has a density. -C 2 : It is the assumption B 2 plus the following hypothesis. ∀x ∈ D, the vector (Z(x), ∇Z(x)) has a density. -C 3 : It is the assumption B 3 plus the following hypothesis: the function F verifies assumption (F F ), i.e.

• (F F ) ∀y ∈ R j , ∃C > 0, there exists a neighborhood V y of y such that ∀µ > 0 and ∀u ∈ V y we have

R j ′ -j 1 J F (F -1 z (u), z) d+1 e -µ∥z∥ 2 j ′ -j ∇F (F -1 z (u), z) (j-1)d j,j ′ dz ⩽ C.
-C 4 : It is the assumption B 4 plus the following hypothesis: the process X verifies the assumption (S) of Proposition 3.3.2.

Theorem 3.3.3 states the general Rice formula for all level.

Theorem 3.3.3. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field in C 2 (D, R j ), where D is a bounded convex open set of R d . We assume that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L d X (•) < ∞. Let Y : Ω × D ⊂ Ω × R d → R be a continuous process.
If Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions C i , i = 1, 2, 3 and the hypothesis H 6 or if X and Y satisfy hypothesis C 4 then ∀y ∈ R j we have

E C X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx. Remark 3.3.4.
-We can replace the hypothesis: "for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) having a moment of order d", with the assumption:

E sup x∈D ∇ 2 (X(x)) (s) j,d d < ∞.
Indeed, if X is C 2 on D, the Taylor formula on D convex and open set allows to conclude that, since almost surely 

L X := sup x∈D ∇ 2 (X(x)) (s) j,d < ∞,
∈ R j E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
Let us check that the assumption S holds. That is, let us prove that if D 0 is a compact set contained in D and if X and Y satisfy one of the assumptions C i , i = 1, . . . , 3 then ∀(x, λ) ∈ D 0 × S j-1 the random vector (X(x), λ • ∇X(x)) has a density p X(x),λ•∇X(x) (u, w) such that ∀y ∈ R j there exists a constant C > 0, there exists a neighborhood V y of y and a neighborhood

V ⃗ 0 d of ⃗ 0 R d such that ∀x ∈ D 0 and ∀λ ∈ S j-1 , ∀u ∈ V y and ∀w ∈ V ⃗ 0 d it is true that p X(x),λ•∇X(x) (u, w) ⩽ C.
Note that the last conclusion is true when the processes X and Y satisfy the assumption C 4 . In this case, using Proposition 3.3.2, we will deduce that for any compact set D 0 contained in D and ∀y ∈ R j ,

P {ω ∈ Ω : ∃x ∈ D 0 , X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0.
By choosing the compact

D 0 := D (n) = x ∈ R d , d(x, D c ) ⩾ 1 n ⊆ D we will deduce, since D (n) tends in a nondecreasing way towards D, when n → ∞, that ∀y ∈ R j , P{ω ∈ Ω : ∃x ∈ D, X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0.
We will then have shown that

∀y ∈ R j , E C X (y) Y (x) dσ d-j (x) = E C D r X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx,
that will end the proof of this theorem. Let us check that the hypothesis S is verified, in the case where X and Y satisfy one of the conditions C i , i = 1, . . . , 3. Let D 0 be a compact set contained in D. For all x ∈ D 0 and ∀λ ∈ S j-1 , in the case where Y satisfies [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and X and Y satisfy one of the assumptions C i , i = 1, . . . , 3, in a first step we will study the density p X(x),λ•∇X(x) of the vector (X(x), λ•∇X(x)). We will express the latter in terms of the density p X(x),∇X(x) of the vector (X(x), ∇X(x)) which exists by the proof of Proposition 3.1.12 (cf. ( 46)). Thus, let us consider λ ∈ S j-1 , λ := (λ 1 , . . . , λ j ). There exists k ∈ {1, . . . , j} such that |λ k | ⩾ 1 √ j . We will assume for example k := j and that |λ j | ⩾ 1 √ j this will imply 1

|λ j | ⩽ √ j.
If u := (u 1 , . . . , u j ) ∈ R j and s := (s 11 , s 21 , . . . , s j1 , s 12 , s 22 , . . . , s j2 , . . . , s 1d , s 2d , . . . , s jd ) ∈ R jd , let us do as in the proof of Proposition 3.1.12 (third part) the following change of variables. Let K be the function defined by

K : R j × R jd -→ R j × R d × R (j-1)d (u, s) -→ K(u, s) := u, j i=1 λ i s i1 , j i=1 λ i s i2 , . . . , j i=1
λ i s id , s 11 , s 21 , . . . , s j-11 , s 12 , s 22 , . . . , s j-12 , . . . , s 1d , s 2d , . . . , s j-1d .

The Jacobian J K of this transformation is such that

∀(u, s) ∈ R j × R jd |J K (u, s)| = |λ j | d ̸ = 0, by hypothesis. Thus, K is a C 1 (R j × R jd , R j × R d × R (j-1)d
) one-to-one mapping, as well as 84 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL its inverse K -1 given by 

K -1 : R j × R d × R (j-1)d -→ R j × R jd (u,
1 λ j - j-1 i=1 λ i s i2 + s j2 , . . . , s 1d , s 2d , . . . , s j-1d , 1 λ j - j-1 i=1 λ i s id + s jd .
For any λ ∈ S j-1 , ∀x ∈ D 0 we have

K(X(x), ∇X(x)) = X(x), λ • ∇X(x), (∇X(x)) (j-1)d ,
where if s ∈ R jd we denoted s (j-1)d by s (j-1)d := (s 11 , s 21 , . . . , s j-11 , s 12 , s 22 , . . . , s j-12 , . . . , s 1d , s 2d , . . . , s j-1d ) .

With these notations, if p X(x),λ•∇X(x),(∇X(x)) (j-1)d denotes the density of the vector (X(x), λ • ∇X(x), (∇X(x)) (j-1)d ), we have:

∀λ ∈ S j-1 , ∀x ∈ D 0 , ∀(u, s) ∈ R j × R jd , p X(x),λ•∇X(x),(∇X(x)) (j-1)d (u, s) = 1 |λ j | d p X(x),∇X(x) K -1 (u, s) .
We deduce that ∀λ ∈ S j-1 , ∀x ∈ D 0 , ∀(u, w) ∈ R j × R d , w := (w 1 , w 2 , . . . , w d ),

(57) p X(x),λ•∇X(x) (u, w) = 1 |λ j | d R (j-1)d
p X(x),∇X(x) u, s 11 , s 21 , . . . , s j-11 ,

1 λ j - j-1 i=1 λ i s i1 + w 1 , s 12 , s 22 , . . . , s j-12 , 1 λ j - j-1 i=1 λ i s i2 + w 2 , . . . , s 1d , s 2d , . . . , s j-1d , 1 λ j - j-1 i=1 λ i s id + w d ds (j-1)d .
We now need find an upper bound for this density. For this purpose, let us consider each of C i , i = 1, . . . , 3 assumptions.

-If X and Y satisfy the assumption C 1 , then ∀x ∈ D 0 the vector (X(x), ∇X(x)) has a non singular density and since X is a process of class C 2 the covariance matrix of this vector is strictly positive on the compact set D 0 . Then there exist real numbers a, b > 0 such that ∀x ∈ D 0 , 0 < a ⩽ inf ∥z∥ j(d+1) =1 ∥V (X(x), ∇X(x)) × z∥ j(d+1) ⩽ b. In the same way as we obtained the equality [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF], and with the same notations, we prove the existence of a number µ > 0 and a number C > 0, such that ∀(x, u, s)

∈ D 0 × R j × R dj , p X(x),∇X(x) (u, s) ⩽ Ce -µ∥(u,s)∥ 2 j(d+1) ⩽ Ce -µ∥s∥ 2 jd ⩽ Ce -µ∥s (j-1)d ∥ 2 (j-1)d .
Using the equality (57), we obtain the following bound:

∀λ ∈ S j-1 , ∀x ∈ D 0 , ∀(u, w) ∈ R j × R d , p X(x),λ•∇X(x) (u, w) ⩽ C |λ j | d R (j-1)d e -µ∥s (j-1)d ∥ 2 (j-1)d ds (j-1)d ⩽ C, the last inequality comes from the fact that 1/|λ j | d ⩽ ( √ j) d .
The assumption (S) is satisfied.

-If X and Y satisfy the assumption C 2 , then ∀x ∈ D 0 the vector (Z(x), ∇Z(x)) has a non-degenerate density. In the same way as in the first part, we show the existence of a number µ > 0 and of a number

C > 0 such that ∀(x, u, s) ∈ D 0 × R j × R dj , p Z(x),∇Z(x) (u, s) ⩽ Ce -µ∥s∥ 2 jd .
Moreover, the equality [START_REF] Marinucci | Nonuniversality of nodal length distribution for arithmetic random waves[END_REF] proved in the third part of the proof of Proposition 3.1.12 and applied to j := j ′ shows that the density of the vector (X(x), ∇X(x)), for all (x, u, s) ∈ D 0 × R j × R dj , is given by:

p X(x),∇X(x) (u, s) = 1 |J F (F -1 (u))| d+1 × p Z(x),∇Z(x) F -1 (u), (∇F (F -1 (u))) -1 × s .
We deduce that there exists a constant µ > 0 such that ∀(x, u, s)

∈ D 0 × R j × R dj , p X(x),∇X(x) (u, s) ⩽ C |J F (F -1 (u))| d+1 × e -µ∥(∇F (F -1 (u))) -1 ×s∥ 2 jd .
Let y now be a fixed vector in R j . Since the function F is C 1 (R j , R j ) and F -1 is continuous, the Jacobian J F (F -1 ) is continuous on R j and nonzero everywhere. Let V y a compact neighborhood of y, then ∃C > 0 such that ∀u ∈ V y we have

1 |J F (F -1 (u))| d+1 ⩽ C. Moreover, ∀u ∈ R j , (∇F (F -1 (u))) -1 ∈ L(R j , R j ) and thus for all s ∈ R jd , ( 58 
) (∇F (F -1 (u))) -1 × s jd ⩾ ∥s∥ jd ∥∇F (F -1 (u))∥ j,j . Since F is C 1 (R j , R j ) and F -1 is continuous, the operator ∇F (F -1 (•)) is a continuous function of R j into L(R j , R j ).
There exists a constant C > 0 such that ∀u ∈ V y , we have

∇F (F -1 (u)) j,j ⩽ C.
We deduce that ∀s ∈ R jd and ∀u ∈ V y ,

(∇F (F -1 (u))) -1 × s jd ⩾ C ∥s∥ jd .
Finally, we conclude that ∀y ∈ R j , there exists a constant C > 0, a neighborhood V y of y and a constant µ > 0 such that ∀x ∈ D 0 , ∀u ∈ V y and for all s ∈ R jd we have

p X(x),∇X(x) (u, s) ⩽ Ce -µ∥s∥ 2 jd .
Then in the same way as in the first part of the proof of this theorem, we deduce that ∀y ∈ R j , there exists a constant C > 0, a neighborhood of y, (let say V y ), such that ∀x ∈ D 0 and ∀λ ∈ S j-1 , ∀u ∈ V y and ∀w ∈ R d ,

p X(x),λ•∇X(x) (u, w) ⩽ C.
Assumption (S) is satisfied.

-If X and Y satisfy the assumption C 3 , in the same way as before and since D 0 is a compact set, there exist constants µ > 0 and C > 0 such that ∀(x, u, s)

∈ D 0 × R j × R dj ′ , p Z(x),∇Z(x) (u, s) ⩽ Ce -µ∥u∥ 2 j ′ e -µ∥s∥ 2 j ′ d .
The equality [START_REF] Marinucci | Nonuniversality of nodal length distribution for arithmetic random waves[END_REF] proved in the third part of the proof of Proposition 3.1.12, shows that the density of the random vector (X(x), ∇X(x)) exists.

Using the same notations and (58), we can prove that the latter density is bounded in the following form, for all x, u, s

(j,d) ∈ D 0 × R j × R dj , p X(x),∇X(x) (u, s (j,d) ) ⩽ C R j ′ -j R (j ′ -j)d 1 J F (F -1 z (u), z) d+1 ×e -µ∥z∥ 2 j ′ -j × e -µ∥s (j ′ -j,d )∥ 2 (j ′ -j)d 3.3. GENERAL RICE FORMULAS FOR ALL LEVEL 87 × e -µ∥[∇F (F -1 z (u),z)] jj ∥ -2 jj × s j,d -[∇F (F -1 z (u),z)] jj ′ -j s j ′ -j,d 2 
jd ds (j ′ -j,d) dz.

We deduce that ∀(x, u, s

(j,d) ) ∈ D 0 × R j × R dj , p X(x),∇X(x) (u, s (j,d) ) ⩽ C R j ′ -j R (j ′ -j)d 1 J F (F -1 z (u), z) d+1 × e -µ∥z∥ 2 j ′ -j × e -µ∥s (j ′ -j,d) ∥ 2 (j ′ -j)d × e -µ∥[∇F (F -1 z (u),z)] jj ∥ -2 jj × s j-1,d -[∇F (F -1 z (u),z)] j-1j ′ -j s j ′ -j,d 2 (j-1)d ds (j ′ -j,d) dz,
where the matrix s j-1,d is the matrix s j,d from which we deleted the jth row and ∇F (F -1 z (u), z) j-1j ′ -j is the matrix ∇F (F -1 z (u), z) jj ′ -j from which we deleted the j-th row. Using(57), we get:

∃C > 0, ∃µ > 0, ∀x ∈ D 0 , ∀λ ∈ S j-1 , ∀(u, w) ∈ R j × R d , p X(x),λ•∇X(x) (u, w) ⩽ C R (j-1)d ×R j ′ -j ×R (j ′ -j)d 1 J F (F -1 z (u), z) d+1 × e -µ∥z∥ 2 j ′ -j × e -µ∥s (j ′ -j,d) ∥ 2 (j ′ -j)d × e -µ∥[∇F (F -1 z (u),z)] jj ∥ -2 jj s j-1,d -[∇F (F -1 z (u),z)] j-1j ′ -j s j ′ -j,d 2 
(j-1)d ds (j ′ -j,d) dz ds (j-1,d) .

We perform the following change of variables in the integral on R (j-1)d :

s j-1,d -∇F (F -1 z (u), z) j-1j ′ -j s j ′ -j,d = [∇F (F -1 z (u), z)] jj jj • v j-1,d . We get: ∃C > 0, ∃µ > 0, ∀x ∈ D 0 , ∀λ ∈ S j-1 , ∀(u, w) ∈ R j × R d , p X(x),λ•∇X(x) (u, w) ⩽ C R (j-1)d R j ′ -j R (j ′ -j)d 1 J F (F -1 z (u), z) d+1 ×e -µ∥z∥ 2 j ′ -j × e -µ∥s (j ′ -j,d) ∥ 2 (j ′ -j)d × e -µ∥(v j-1,d) ∥ 2 (j-1)d × [∇F (F -1 z (u), z)] jj (j-1)d jj ds (j ′ -j,d) dz dv (j-1,d) ⩽ C R j ′ -j 1 J F (F -1 z (u), z) d+1 e -µ∥z∥ 2 j ′ -j [∇F (F -1 z (u), z)] jj (j-1)d jj dz ⩽ C R j ′ -j 1 J F (F -1 z (u), z) d+1 e -µ∥z∥ 2 j ′ -j ∇F (F -1 z (u), z) (j-1)d jj ′
dz.
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The C 3 assumption allows to obtain that ∀y ∈ R j , there exists C > 0, a neighborhood V y of y, such that ∀x ∈ D 0 , ∀λ ∈ S j-1 , ∀u ∈ V y and ∀w ∈ R d , we have

p X(x),λ•∇X(x) (u, w) ⩽ C.
The hypothesis (S) is then verified. This ends the proof of the theorem.

In the same way as in Theorem 3.2.8, we can get rid of the assumption that

E L d X (•) < ∞ in Theorem 3.3.3. If one of the assumptions C 1 , C 2 , C 3 or C 4 is replaced by C ⋆ 1 , C ⋆ 2 , C ⋆ 3 or C ⋆ 4
, the Rice's formula is still true. In the first three assumptions C ⋆ 1 , C ⋆ 2 and C ⋆ 3 , we make the hypothesis that Y can be written as in [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF].

More precisely

-C ⋆ 1 :
It is the assumption C 1 , plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D the density of the vector (X(x 1 ), X(x 2 )) exists.

-C ⋆ 2 : It is the assumption C 2 plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D the density of the vector (Z(x 1 ), Z(x 2 )) exists.

-C ⋆ 3 : It is the assumption C 3 plus the following hypothesis: for almost all (x 1 , x 2 ) ∈ D × D the density of the vector (Z(x 1 ), Z(x 2 )) exists.

-C ⋆ 4 : It is the assumption B ⋆ 4 plus the following hypothesis: the process X verifies assumption (S). Theorem 3.3.6 summarizes all the results obtained previously. This is a new result. [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions C ⋆ i , i = 1, 2, 3 and the hypotheses H 6 and H ⋆ 6 or if X and Y satisfy the assumption C ⋆ 4 , then ∀y ∈ R j we have Let us assume D i , i = 1, . . . , 4, where in the first three D 1 , D 2 and D 3 , we also assume that Y can be written as in [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF]. We denote The assumptions E i , i = 1, . . . , 4, are the following:

Theorem 3.3.6. -Let X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) be a random field in C 2 (D, R j ), where D is a convex open bounded set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz. Let Y : Ω × D ⊂ Ω × R d → R be a continuous process. If Y satisfies
E C X (y) Y (x) dσ d-j (x) = D p X(x) (y)E Y (x)H(∇X(x)) X(x) = y dx.
∆ := {(x 1 , x 2 ) ∈ D × D, x 1 = x 2 } ⊂ R 2d ,
-E 1 : The process X : Ω × D ⊂ Ω × R d → R j (j ⩽ d) is
Gaussian and is C 2 (D, R j ) on D, such that for all (x 1 , x 2 ) ∈ D × D -∆, the vector (X(x 1 ), X(x 2 )) has a density. Moreover, for almost all (x 1 , x 2 ) ∈ D × D, the vector (W (x 1 ), W (x 2 )) is independent of the vector (X(x 1 ), X(x 2 ), ∇X(x 1 ), ∇X(x 2 )), and ∀n ∈ N,

D E[∥W (x)∥ n k ] dx < ∞. -E 2 : ∀x ∈ D, X(x) = F (Z(x))
, where F : R j -→ R j is a bijective function in C 2 (R j , R j ), such that ∀z ∈ R j , J F (z), the Jacobian of F in z, is such that J F (z) ̸ = 0 and the function F -1 is continuous. The process

Z : Ω × D ⊂ Ω × R d → R j (j ⩽ d) is Gaussian and is C 2 (D, R j ), such that for all (x 1 , x 2 ) ∈ D × D -∆, the vector (Z(x 1 ), Z(x 2 )
) has a density. Moreover, for almost all (x 1 , x 2 ) ∈ D × D, the vector (W (x 1 ), W (x 2 )) is independent of the vector (Z(x 1 ), Z(x 2 ), ∇Z(x 1 ), ∇Z(x 2 )), and ∀n ∈ N,

D E[∥W (x)∥ n k ] dx < ∞. -E 3 : ∀x ∈ D, X(x) = F (Z(x))
, where the process

Z : Ω × D ⊂ Ω × R d → R j ′ (j < j ′ ) is Gaussian and is C 2 (D, R j ′ ), such that ∀(x 1 , x 2 ) ∈ D × D -
∆, the vector (Z(x 1 ), Z(x 2 ), ∇Z(x 1 ), ∇Z(x 2 )) has a density. Moreover, for almost all (x 1 , x 2 ) ∈ D×D, the vector (W (x 1 ), W (x 2 )) is independent of the vector (Z(x 1 ), Z(x 2 ), ∇Z(x 1 ), ∇Z(x 2 )). Also, ∀n ∈ N,

D E[∥W (x)∥ n k ] dx < ∞.
The function F verifies assumption (F ) appearing in assumption

A 3 . -E 4 : For almost all (x 1 , x 2 , y 1 , y 2 , ẋ1 , ẋ2 ) ∈ D × D × R 2 × R dj × R dj and
∀u ∈ R j , the density

p Y (x 1 ),Y (x 2 ),X(x 1 ),X(x 2 ),∇X(x 1 ),∇X(x 2 ) (y 1 , y 2 , u, u, ẋ1 , ẋ2 ),
of the joint distribution of (Y (x 1 ), Y (x 2 ), X(x 1 ), X(x 2 ), ∇X(x 1 ), ∇X(x 2 )), exists and is continuous in the variable u. Furthermore

u -→ D×D R 2 ×R 2dj |y 1 | |y 2 | ∥ ẋ1 ∥ j dj ∥ ẋ2 ∥ j dj ×p Y (x 1 ),Y (x 2 ),X(x 1 ),X(x 2 ),∇X(x 1 ),∇X(x 2 ) (y 1 , y 2 , u, u, ẋ1 , ẋ2 ) × d ẋ1 d ẋ2 dy 1 dy 2 dx 1 dx 2 ,
is continuous.

Let us state the hypothesis H 7 .

-

H 7 : ∀y ∈ R j , D×D E |Y (x 1 )| |Y (x 2 )| H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = X(x 2 ) = y × p X(x 1 ),X(x 2 ) (y, y) dx 1 dx 2 < ∞.
We are ready to prove Theorem 3.3.9. [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions D i , i = 1, 2, 3 and the hypothesis H 7 or if X and Y satisfy the assumption D 4 , then ∀y ∈ R j we have 

Theorem 3.3.9. -Let X : Ω × D ⊂ Ω × R d → R j (j < d) be a random field in C 2 (D, R j ), where D is a bounded, convex open set of R d , such that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L 2d X (•) < ∞. Let Y : Ω × D ⊂ Ω × R d → R a continuous process. If Y satisfies
E   C X (y) Y (x) dσ d-j (x) 2   3.3. GENERAL RICE FORMULAS FOR ALL LEVEL 91 = D×D E Y (x 1 )Y (x 2 )H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = X(x 2 ) = y (59) ×p X(x 1 ),X(x 2 ) (y, y) dx 1 dx 2 .
∈ Ω, ∇X(ω) is Lipschitz with Lip- schitz constant L X (ω) such that E L 2d X (•) < ∞ by the hypothesis that E sup x∈D ∇ 2 X(x) (s) j,d 2d < ∞. • Remark 3.3.11.
-Under the same assumptions as in the theorem or those of Remark 3.3.14 formulated later, for j = d, one obtains a result similar to that given in [START_REF] Taqqu | Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence[END_REF]. We just have to replace

E   C X (y) Y (x) dσ d-j (x) 2   by E   C X (y) Y (x) dσ d-j (x) 2 - C X (y) Y 2 (x) dσ d-j (x)  
in [START_REF] Taqqu | Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence[END_REF]. The right-hand side remains unchanged. However, it should be noted that in this particular case, σ 0 is the counting measure. 

X : Ω × D × D ⊂ Ω × R 2d -→ R 2j x = (x 1 , x 2 ) -→ X(x) := (X(x 1 ), X(x 2 )), 92 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL and Y : Ω × D × D ⊂ Ω × R 2d -→ R x = (x 1 , x 2 ) -→ Y (x) := Y (x 1 ) × Y (x 2 ). Since X is a random field in C 2 (D, R j ), then X is a random field in C 2 (D × D, R 2j ) and D × D is a convex open set of R 2d . Also Y |D×D-∆ is still continuous on D × D -∆, an open bounded set of R 2d contained in D × D. Since for almost all ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant L X (ω) such that E L 2d X (•) < ∞, then for almost all ω ∈ Ω, ∇ X(ω) is Lips- chitz with Lipschitz constant L X (ω) = L X (ω), such that E L 2d X (•) < ∞.
Then under one of the assumptions C i , i = 1, . . . , 3, since Y is written as a function G of X and of ∇X and of the variable

W : Ω × D ⊂ R d → R k , k ∈ N ⋆ , in the following form, for almost all x ∈ D: Y (x) = G(x, W (x), X(x), ∇X(x)),
where

G : D × R k × R j × L(R d , R j ) -→ R (x, z, u, A) -→ G(x, z, u, A), is a continuous function of its variables on D × R k × R j × L(R d , R j ) and such that ∀(x, z, u, A) ∈ D × R k × R j × L(R d , R j ), |G(x, z, u, A)| ⩽ P (f (x), ∥z∥ k , h(u), ∥A∥ j,d ),
where P is a polynomial with positive coefficients and f : D -→ R + and h : R j -→ R + are continuous functions, it is the same for Y . More precisely, for almost all

x := (x 1 , x 2 ) ∈ D × D, Y (x) := G(x, W (x), X(x), ∇ X(x)),
where

W : Ω × D × D ⊂ Ω × R 2d -→ R 2k x = (x 1 , x 2 ) -→ W (x) := (W (x 1 ), W (x 2 )), G : D 2 × R 2k × R 2j × B(R 2d , R 2j ) -→ R x = (x 1 , x 2 ), z = (z 1 , z 2 ), u = (u 1 , u 2 ), A 0 0 B -→ G x, z, u, A 0 0 B := G(x 1 , z 1 , u 1 , A) × G(x 2 , z 2 , u 2 , B),
where B(R 2d , R 2j ) is the vector subspace of L(R 2d , R 2j ) of the matrices of the

form C := A 0 0 B where A, B ∈ L(R d , R j ).
It is clear that G remains a continuous function defined on

D 2 × R 2k × R 2j × B(R 2d , R 2j ),
and such that ∀(x, z, u, C)

∈ D 2 × R 2k × R 2j × B(R d , R j ), G(x, z, u, C) ⩽ P (f (x 1 ), ∥z 1 ∥ k , h(u 1 ), ∥A∥ j,d ) × P (f (x 2 ), ∥z 2 ∥ k , h(u 2 ), ∥B∥ j,d ) ⩽ P ( f (x), ∥z∥ 2k , h(u), ∥C∥ 2j,2d ),
where f is f :

D 2 -→ R + x = (x 1 , x 2 ) -→ f (x) := f (x 1 ) + f (x 2 ), while h is h : R 2j -→ R + u = (u 1 , u 2 ) -→ h(u) := h(u 1 ) + h(u 2 ).
They are continuous functions and P is a polynomial with positive coefficients.

It is easy to verify that X and Y |D×D-∆ satisfy the hypotheses B i , i = 1, . . . , 4, of Remark 3. 

H(∇ X(x)) = H(∇X(x 1 )) × H(∇X(x 2 )).

It turns out that X and Y |D×D-∆ satisfy the hypotheses of Remark 3.2.7 following Theorem 3.2.5. Now the hypotheses satisfied by X and Y make these two processes verify the hypotheses C i , i = 1, . . . , 4, contained in Theorem 3.3.3 and those of Proposition 3.3.2. Therefore, in the same way as in this theorem, we obtain that ∀y ∈ R j , (61)

P{ω ∈ Ω : ∃x ∈ D, X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0. One can deduce ∀y ∈ R j , ( 62 
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Indeed, using [START_REF] Weizsäcker | Fractal sets and preparation to geometric measure theory[END_REF], ∀y ∈ R j ,

P{ω ∈ Ω : ∃x ∈ D × D, X(x)(ω) = (y, y), rank ∇ X(x)(ω) < 2j} ⩽ P{ω ∈ Ω : ∃x ∈ D, X(x)(ω) = y, rank ∇X(x)(ω) < j} = 0.
Remark 3.2.7 applied to X and Y |D×D-∆ with ( 62) and ( 60) allow to write

∀y ∈ R j , E   C D r D×D-∆, X (y,y) Y (x) dσ 2(d-j) (x)   = E C D×D-∆, X (y,y) Y (x) dσ 2(d-j) (x) = D×D-∆ p X(x) (y, y)E Y (x)H(∇ X(x)) X(x) = (y, y) dx = D×D E[Y (x 1 )Y (x 2 )H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = X(x 2 ) = y ] ×p X(x 1 ),X(x 2 ) (y, y) dx 1 dx 2 .
The last equality is justified by the fact that σ 2d (∆) = 0. Moreover, we know, using Remark 3.1.4 and (61) that ∀y ∈ R j , almost surely C D r X (y) = C X (y) and C D r X (y) is a differentiable manifold of dimension (d -j). Thus ∀y ∈ R j , almost surely the set A = {(x, x) ∈ D × D, X(x) = y} is a differentiable manifold of dimension (d -j). Thus, since j < d, almost surely

σ 2(d-j) (A) = 0. So, ∀y ∈ R j , E C D×D-∆, X (y,y) Y (x) dσ 2(d-j) (x) = E C D×D, X (y,y) Y (x) dσ 2(d-j) (x) = E   C X (y) Y (x) dσ d-j (x) 2   .
The last equality comes from the fact that ∀y ∈ R j ,

C D×D, X (y, y) = C X (y) × C X (y).
This completes the proof of this theorem.

Proof of Remark 3.3.11. Under the same hypotheses as in Theorem 3.3.9, but for j = d, we do the same proof as before. We obtain ∀y ∈ R j ,

E C D×D-∆, X (y,y) Y (x) dσ 2(d-j) (x) = D×D E Y (x 1 )Y (x 2 )H(∇X(x 1 ))H(∇X(x 2 )) X(x 1 ) = X(x 2 ) = y × p X(x 1 ),X(x 2 ) (y, y) dx 1 dx 2 .
In the same way, the set A is still almost surely a differentiable manifold and since ∀y ∈ R j C D×D, X (y, y) = C X (y) × C X (y),

we can write, recalling that in this case σ d-j is the counting measure,

E C D×D-∆, X (y,y) Y (x) dσ 2(d-j) (x) = E C D×D, X (y,y) Y (x) dσ 2(d-j) (x) - C X (y) Y 2 (x) dσ d-j (x) = E   C X (y) Y (x) dσ d-j (x) 2 - C X (y) Y 2 (x) dσ d-j (x)   .
This completes the proof of this remark.

Remark 3.3.14. -In the same manner as in Theorems 3.2.8 and 3.3.6, we can weaken the hypothesis E L 2d X (•) < ∞ in Theorem 3.3.9. More precisely, we can make the hypothesis that for almost all ω ∈ Ω, ∇X(ω) is Lipschitz or as in Remark 3.3.10, demander la quasi finitude de sup x∈D ∇ 2 X(x) (s) j,d . It will suffice to replace in Theorem 3.3.9 the hypotheses D i by the following D ⋆ i assumptions, i = 1, . . . , 4, keeping the hypothesis H 7 and adding the following hypothesis H ⋆ 7 . -D ⋆ 1 : It is the assumption D 1 , plus the following hypothesis: for almost all (x 1 , x 2 , x 3 , x 4 ) ∈ D 4 , the density of the vector (X(x 1 ), X(x 2 ), X(x 3 ), X(x 4 )) exists.

-D ⋆ 2 : It is the assumption D 2 , plus the following hypothesis: for almost all (x 1 , x 2 , x 3 , x 4 ) ∈ D 4 , the density of the vector (Z(x 1 ), Z(x 2 ), Z(x 3 ), Z(x 4 )) exists.

-D ⋆ 3 : It is the assumption D 3 , plus the following hypothesis: for almost all (x 1 , x 2 , x 3 , x 4 ) ∈ D 4 , the density of the vector (Z(x 1 ), Z(x 2 ), Z(x 3 ), Z(x 4 )) exists.

-D ⋆ 4 : It is the assumption D 4 , plus the following hypothesis: the function

96 CHAPTER 3. KAC-RICE FORMULA FOR ALL LEVEL (u 1 , u 2 ) -→ D×D R 2 ×R 2dj y 2 1 y 2 2 ∥ ẋ1 ∥ j dj ∥ ẋ2 ∥ j dj × p Y (x 1 ),Y (x 2 ),X(x 1 ),X(x 2 ),∇X(x 1 ),∇X(x 2 ) (y 1 , y 2 , u 1 , u 2 , ẋ1 , ẋ2 ) d ẋ1 d ẋ2 dy 1 dy 2 dx 1 dx 2 is a continuous function.
For almost all (x 1 , x 2 , x 3 , x 4 , ẋ1 , ẋ2 , ẋ3 , ẋ4 ) ∈ D 4 × R 4dj and for all q := (u 1 , u 2 , v 1 , v 2 ) ∈ R 4j , the density p X(x 1 ),X(x 2 ),X(x 3 ),X(x 4 ),∇X(x 1 ),∇X(x 2 ),∇X(x 3 ),∇X(x 4 ) (q, ẋ1 , ẋ2 , ẋ3 , ẋ4 ), of the vector (X(x 1 ), X(x 2 ), X(x 3 ), X(x 4 ), ∇X(x 1 ), ∇X(x 2 ), ∇X(x 3 ), ∇X(x 4 ))

exists. Moreover, ∀y ∈ R j , the function

q -→ D 4 R 4dj ∥ ẋ1 ∥ j dj ∥ ẋ2 ∥ j dj ∥ ẋ3 ∥ j dj ∥ ẋ4 ∥ j dj × p X(x 1 ),X(x 2 ),X(x 3 ),X(x 4 ),∇X(x 1 ),∇X(x 2 ),∇X(x 3 ),∇X(x 4 ) (q, ẋ1 , ẋ2 , ẋ3 , ẋ4 ) d ẋ1 d ẋ2 d ẋ3 d ẋ4 dx 1 dx 2 dx 3 dx 4
is bounded in a neighborhood of q := (y, y, y, y). Let us state the hypothesis H ⋆ 7 . -H ⋆ 7 : ∀y ∈ R j , the function

q -→ D 4
p X(x 1 ),X(x 2 ),X(x 3 ),X(x 4 ) (q)E [H(∇X(x 1 ))H(∇X(x 2 ))

×H(∇X(x 3 ))H(∇X(x 4 )) (X(x 1 ), X(x 2 ), X(x 3 ), X(x 4 )) = q

dx 1 dx 2 dx 3 dx 4 ,
is a bounded function in a neighborhood of q := (y, y, y, y).

• CHAPTER 4

APPLICATIONS

The main reason for having well-fitting Kac-Rice formulas is that they provide tools for explicitly doing calculations that involve roots of functions as well as functionals of other levels. Below we will present some of these applications.

Let us first mention the possibility for getting conditions in which the level functional has some moments. This is a non-trivial task that has only been completely solved in some special cases. Furthermore, Rice's formulas have been also applied in physical oceanography and in the theory of dislocations of random waves propagation. Two other applications deserve to be studied: first the theory of random gravitational microlensings and second the study of the zero sets of random algebraic systems invariant under the orthogonal group, known in the literature as Kotlan-Shub-Smale systems. In the following, the reader will find a brief description of each of them.

Dimensions

d = j = 1
Classically, the study of the Rice formula began with the seminal papers by Kac [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] and Rice [START_REF] Rice | Mathematical analysis of random noise, part i-ii[END_REF]. The first considered the number of roots of a random polynomial with standard and independent Gaussian coefficients and the second developed formulas to study the crossovers of stationary Gaussian processes. In this subsection, we will revisit these two old problems. First, we will give, using the formulas obtained earlier, the necessary and sufficient conditions for the existence of the first and second moment of the number of crossings of a stationary Gaussian process. Second, Kac's research will be extended to consider random trigonometric polynomials.

4.1.1. Necessary and sufficient conditions for the first two moments of the number of crossings. -Let X : Ω×R → R be a real and stationary Gaussian process with zero mean. Let us denote its covariance function by r and its spectral measure by µ which is assumed not to be purely discrete. We have

r(t) = R e itλ dµ(λ).
The spectral moment of order p is defined as follows

λ p := R λ p dµ(λ).
For y ∈ R and t > 0, let N X [0,t] (y) the number of crossings of the level y by the process X on the interval [0, t]. We have the following theorem. 

E N X [0,t] (y) = t π λ 2 λ 0 e -y 2 2λ 0 .
-Moreover, in this case, E (N X [0,t] (y)) 2 < ∞ if and only if for some δ > 0 we have r ′′ (τ ) -r ′′ (0) τ ∈ L 1 ([0, δ], dτ ).

Remark 4.1.2. -The first result was proved by K. Itô in [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF]. In this work, the author generalizes the previous proofs providing a definitive result. The second is the famous result of Geman [START_REF] Geman | On the variance of the number of zeros of a stationary Gaussian process[END_REF]. He considers only the case y = 0.

In [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF] the result has been extended for all y. • Proof of Theorem 4.1.1. Remark 3.3.4 following Theorem 3.3.3 gives the validity of the first formula whenever X is C 2 ([0, t], R). However, the result is valid with great generality as shown by Itô in [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF]. For the sake of completeness, we will outline his proof. It is first proved in [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF] that if λ 2 < ∞ the process has absolutely continuous trajectories. And besides, it is true that

N X [0,t] (y) ⩽ lim inf δ→0 1 2δ t 0 1 {|X(s)-y|<δ} X ′ (s) ds.
Using Fatou's lemma and the fact that X is Gaussian and stationary, we get by denoting φ for the standard Gaussian density on R

E[N X [0,t] (y)] ⩽ lim inf δ→0 t 2δ E[1 {|X(0)-y|<δ} X ′ (0) ] = lim inf δ→0 t 2δ √ λ 0 λ 2 y+δ y-δ R | ż| φ z √ λ 0 φ ż √ λ 2 dz d ż = lim inf δ→0 t 2δ √ λ 0 y+δ y-δ φ z √ λ 0 dz 2λ 2 π = t π λ 2 λ 0 e -y 2 2λ 0 .
Concerning the other inequality, in [START_REF] Itô | The expected number of zeros of continuous stationary Gaussian processes[END_REF], it is proved that the following inequality (monotonic limit) is true

N X [0,t] (y) ⩾ lim n→+∞ 2 n k=1 1 {[X((k-1)t/2 n )-y][X(kt/2 n )-y]<0} .
Therefore, using the monotone convergence theorem, we obtain

E[N X [0,t] (y)] ⩾ lim n→+∞ 2 n E[1 {[X(0)-y][X(t/2 n )-y]<0} ].
The expectation on the righthand side can be written as follows

E 1 {(X(0)-y)(X(t/2 n )-y)<0} = E 1 (y/ √ λ 0 ,+∞) X(0)/ λ 0 1 (-∞,y/ √ λ 0) X(t/2 n )/ λ 0 + E 1 (y/ √ λ 0 ,+∞) X(t/2 n )/ λ 0 1 (-∞,y/ √ λ 0) (X(0)/ λ 0 )
. For ease of notation, let λ 0 = 1. Thus if Z n stands for a standard Gaussian random variable independent of (X(0), X(t/2 n )) we have

E 1 (y,+∞) (X(0)) 1 (-∞,y) (X(t/2 n )) = E 1 (y,+∞) (X(0)) 1 (-∞,y) r(t/2 n )X(0) + 1 -r 2 (t/2 n )Z n = 0 -∞ φ(z) dz y- √ 1-r 2 (t/2 n )z /r(t/2 n ) y φ(x) dx, thus 2 n 0 -∞ φ(z) dz y- √ 1-r 2 (t/2 n )z /r(t/2 n ) y φ(x) dx ---→ n→∞ t √ λ 2 2π e -1 2 y 2 .
We can proceed in the same way for the second term. Finally obtaining for all λ 0

E N X [0,t] (y) ⩾ t π λ 2 λ 0 e -1 2 y 2 /λ 0 .
The above procedure can also be used to prove that if λ 2 = +∞ then E N X [0,t] (y) = +∞. And all results are valid. To prove the second statement of the theorem, one can use Remarks 3.3.10 and 3.3.11 following Theorem 3.3.9 for the case d = j = 1, thus assuming that X is C 2 ([0, t], R). Thus the formula for the second factorial moment holds provided that the integral appearing in the equation ( 63) is finite. Note that the assumption that X has C 2 trajectories implies that the covariance r is C 4 and then λ 4 < ∞. However the case λ 4 = +∞ remains an interesting case. This is the reason why we will follow the more general way given by [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF] and [START_REF] Geman | On the variance of the number of zeros of a stationary Gaussian process[END_REF]. In [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF] it is shown that

M 2 (y, t) := E N X [0,t] (y)(N X [0,t] (y) -1) = 2 t 0 (t -τ ) R 2 | ẋ1 | | ẋ2 | p τ (y, ẋ1 , y, ẋ2 ) d ẋ1 d ẋ2 dτ, (63) 
where p τ (x 1 , ẋ1 , x 2 , ẋ2 ) is the density of the vector

X(0), X ′ (0), X(τ ), X ′ (τ ) ,
which is non-singular for τ > 0, since the spectral measure µ is not purely discrete. Moreover, we show that if one of the terms in 63 is infinite, so is the other one. In this way, we give a necessary and sufficient condition for the right-hand side of the formula to be finite. Without loss of generality we can assume that r(0) = 1 and since λ 2 < ∞ that r is twice differentiable.

We will start by showing the result for the y = 0 level which is the original Geman result. Let us write M 2 (y, t) in another way using a regression model. We have

(64) M 2 (y, t) = 2 t 0 (t -τ )p τ (y, y)E X ′ (0)X ′ (τ ) X(0) = X(τ ) = y dτ,
where p τ (x 1 , x 2 ) stands for the density of the vector (X(0), X(τ )). The following model will be useful

X ′ (0) = ξ + α 1 (τ )X(0) + α 2 (τ )X(τ ) X ′ (τ ) = ξ ⋆ + β 1 (τ )X(0) + β 2 (τ )X(τ ),
where (ξ, ξ ⋆ ) is a Gaussian centered vector independent of (X(0), X(τ )), and

Var(ξ) = Var(ξ ⋆ ) := σ 2 (τ ) = -r ′′ (0) - (r ′ (τ )) 2 1 -r 2 (τ ) , ρ(τ ) := Cov(ξ, ξ ⋆ ) σ 2 (τ ) = -r ′′ (τ )(1 -r 2 (τ )) -(r ′ (τ )) 2 r(τ ) -r ′′ (0)(1 -r 2 (τ )) -(r ′ (τ )) 2 .
Moreover

α 1 (τ ) = r ′ (τ )r(τ ) 1 -r 2 (τ ) ; α 2 (τ ) = - r ′ (τ ) 1 -r 2 (τ ) β 1 (τ ) = -α 2 (τ ); β 2 (τ ) = -α 1 (τ ).
In this form, we have

M 2 (0, t) = 2 t 0 (t -τ )p τ (0, 0)E[|ξ| |ξ ⋆ |] dτ = 1 π t 0 (t -τ ) σ 2 (τ ) (1 -r 2 (τ )) 1/2 E ξ σ(τ ) ξ ⋆ σ(τ ) dτ.
Using the Cauchy-Schwarz inequality, we get

M 2 (0, t) ⩽ t π t 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ.
So if the integral on the righthand side is finite then M 2 (0, t) < ∞. But the integral converges if for δ > 0 we have

δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ < ∞, because the integrand is continuous in [δ, t].
Denoting reciprocally by a 2k the coefficients of the function |x| in the orthogonal Hermite basis (H k (x)) k∈N of L 2 (R, φ(x) dx), i.e.

H k (x) := (-1) k φ -1 (x) d k dx k (φ(x)
), Mehler's formula gives (see [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF])

+∞ > M 2 (0, t) = 2 π t 0 (t -τ ) σ 2 (τ ) (1 -r 2 (τ )) 1/2 ∞ k=0 a 2 2k (2k)!ρ(τ ) 2k dτ ⩾ 2 π a 2 0 t 0 (t -τ ) σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ ⩾ 2 π a 2 0 (t -δ) δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ.
The proof is complete in this case if we can prove that

r ′′ (τ ) -r ′′ (0) τ ∈ L 1 ([0, δ], dτ ) ⇐⇒ δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ < ∞.
But this is the purpose of Lemma 4.1.3 proved below.

We will now consider the case where y is any real number. Let us define m(τ

) := y 1 + r(τ ) r ′ (τ ) σ(τ ) ,
and introduce the expression

A(m, ρ, τ ) := E ξ σ(τ ) -m(τ ) ξ ⋆ σ(τ ) + m(τ ) .
Using (64) and regression, it turns out that

M 2 (y, t) = 2 t 0 (t -τ )p τ (y, y)σ 2 (τ )A(m, ρ, τ ) dτ.
By applying the Cauchy-Schwarz inequality, we obtain

A(m, ρ, τ ) ⩽ E ξ σ(τ ) -m(τ ) 2 E ξ ⋆ σ(τ ) + m(τ ) 2 1 2 = 1 + m 2 (τ ). (65) 
Let us now prove that the function m(τ ) is bounded in a neighborhood of τ = 0. For this purpose, let us consider the asymptotic behavior of r ′ (τ )/σ(τ ). Two cases must be considered depending on whether λ 4 is finite or not. In the first case, a Taylor expansion of order 4 of (r ′ ) 2 (τ )/σ 2 (τ ) easily gives that r ′ (τ )/σ(τ ) → -2λ 2 / λ 4 -λ 2 2 . Now suppose that λ 4 = +∞. Given that

r ′′ (τ ) -r ′′ (0) = 2 ∞ 0 [1 -cos(τ λ)]λ 2 dµ(λ),
we have by Fatou's lemma

lim inf τ →0 r ′′ (τ ) -r ′′ (0)) τ 2 ⩾ +∞ 0 lim inf τ →0 1 -cos(τ λ) (τ λ) 2 /2 λ 4 dµ(λ) = ∞ 0 λ 4 dµ(λ) = +∞. Moreover (r ′ ) 2 (τ ) σ 2 (τ ) ≃ λ 3 2 λ 2 (1 -r 2 (τ )) -(r ′ ) 2 (τ ) τ 4
, and

λ 2 (1 -r 2 (τ )) -r ′2 (τ ) = 2λ 2 (1 -r(τ )) -(r ′ ) 2 (τ ) + O(τ 4 ).
Moreover, using L'Hôpital's rule, we obtain

lim τ →0 2λ 2 (1 -r(τ )) -(r ′ ) 2 (τ ) τ 4 = lim τ →0 -r ′ (τ ) 2τ r ′′ (τ ) -r ′′ (0) τ 2 = +∞,
since we know that -r ′ (τ )/(2τ ) → λ 2 /2. Thus r ′ (τ )/σ(τ ) → 0.

Theses calculations lead us to conclude that

m(τ ) ---→ τ →0      -λ 2 y λ 4 -λ 2 2 if λ 4 < ∞; 0 otherwise.
In both cases, we have then shown that the function m(τ ) is bounded. In this form, by using (65), we easily obtain

M 2 (y, t) ⩽ Ct t 0 p τ (y, y)σ 2 (τ ) dτ,
and by Lemma 4.1.3 this integral is finite under Geman condition.

To prove the other implication assume that M 2 (y, t) < ∞. Thus

M 2 (y, t) ⩾ 2 δ 0 (t -τ )p τ (y, y)σ 2 (τ )A(m, ρ, τ ) dτ.
We will study A(m, ρ, τ ).

Since the function m(τ ) is bounded the following expansion is valid

|x -m(τ )| = ∞ k=0 a k (m(τ ))H k (x),
where deleting the variable τ in m, the coefficients are

a 0 (m) = m[2Φ(m) -1] + 2φ(m) a 1 (m) = 1 -2Φ(m) a ℓ (m) = 2 ℓ! H ℓ-2 (m)φ(m), ℓ ⩾ 2,
where Φ represents the Gaussian distribution of φ.

Using that function a k (m) is even if k is even and odd otherwise, the Mehler's formula gives

A(m, ρ, τ ) = ∞ k=0 a k (m(τ ))a k (-m(τ ))k!ρ k (τ ) = ∞ k=0 a 2 2k (m(τ ))(2k)!(ρ(τ )) 2k - ∞ k=0 a 2 2k+1 (m(τ ))(2k + 1)!(ρ(τ )) 2k+1 .
But by defining the odd projection as M odd (x, m) := 1 2 (|x -m| -|x + m|), we have

M odd (x, m) = ∞ k=0 a 2k+1 (m)H 2k+1 (x). Then E M odd ξ σ(τ ) , m(τ ) M odd ξ ⋆ σ(τ ) , m(τ ) = ∞ k=0 a 2 2k+1 (m(τ ))(2k + 1)!(ρ(τ )) 2k+1 ⩽ E M 2 odd ξ σ(τ ) , m(τ ) = R 1 2 (|x -m(τ )| -|x + m(τ )|) 2 φ(x) dx ⩽ m 2 (τ ). Thus A(m, ρ, τ ) ⩾ a 2 0 (m(τ )) -m 2 (τ ). Now it is easy to see that if -m 0 ⩽ m ⩽ m 0 then a 2 0 (m) -m 2 ⩾ 2/π(a 0 (m 0 ) -m 0 ) > 0.
Since the function m(τ ) is bounded in a neighborhood of zero, this implies that A(m, ρ, τ ) ⩾ C for τ sufficiently small. Then 

+∞ > M 2 (y, t) ⩾ C δ 0 (t -τ )p τ (y, y)σ 2 (τ ) dτ ⩾ C δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ,
r ′′ (τ ) -r ′′ (0) τ ∈ L 1 ([0, δ], dτ ) ⇐⇒ δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ < ∞. Proof of Lemma 4.1.3. Let us consider the integral δ 0 σ 2 (τ ) (1 -r 2 (τ )) 1/2 dτ.
For τ small enough, we have

σ 2 (τ ) (1 -r 2 (τ )) 1/2 ≃ 1 λ 3/2 2 -r ′′ (0)(1 -r 2 (τ )) -(r ′ (τ )) 2 τ 3 , thus integrating by part δ 0 -r ′′ (0)(1 -r 2 (τ )) -(r ′ (τ )) 2 τ 3 dτ = r ′′ (0)(1 -r 2 (τ )) + (r ′ (τ )) 2 2τ 2 δ 0 + δ 0 r ′ (τ ) τ r ′′ (0)r(τ ) -r ′′ (τ ) τ dτ = r ′′ (0)(1 -r 2 (δ)) + (r ′ (δ)) 2 2δ 2 + δ 0 r ′ (τ ) τ r ′′ (0) r(τ ) -1 τ dτ + δ 0 -r ′ (τ ) τ r ′′ (τ ) -r ′′ (0) τ dτ.
Finally, since

r ′ (τ ) τ r(τ ) -1 τ ≃ λ 2 2 τ 2 ∈ L 1 ([0, δ], dτ ),
and -r ′ (τ )/τ → λ 2 , the above integral is finite if and only if

δ 0 r ′′ (τ ) -r ′′ (0) τ dτ < ∞.

Numbers of roots of random trigonometric polynomials. -

In the following, we will study the asymptotic behavior of random Gaussian trigonometric polynomials. For any N ∈ N ⋆ and for two independent sequences of i.i.d. standard Gaussian random variables {a n } ∞ n=1 and {b n } ∞ n=1 these functions are defined as

X N (t) := 1 √ N N n=1 (a n sin nt + b n cos nt).
The number of zeros of such a process has been extensively studied lately (see [START_REF] Granville | The distribution of the zeros of random trigonometric polynomials[END_REF] for example). The process X N is an infinitely differentiable stationary Gaussian process of mean zero. We can define as before N X N [0, 2π[ (y) as the number y-level crossings of these trigonometric polynomials on the time interval [0, 2π[. The smoothness of these polynomials implies that the Rice's formula holds. The necessary ingredients for its application are

E[X 2 N (0)] = 1; E[(X ′ N (0)) 2 ] = 1 N N n=1 n 2 = (N + 1)(2N + 1) 6 . Hence E[N X N [0, 2π[ (y)] = 2π E[(X ′ N (0)) 2 ] 2 π e -y 2 /2 √ 2π = 2 √ 3 (N + 1)(2N + 1) 2 e -y 2 2 .
Yielding

lim N →∞ E[N X N [0, 2π[ (y)] N = 2 √ 3 e -y 2 2 .
To calculate the variance and its asymptotic value we need to consider the rescaled process:

Y N (t) := X N ( t N ). Since the covariance function of X N is r X N (t) = 1 N N n=1 cos nt = 1 N cos (N + 1)t 2 sin( 1 2 N t) sin 1 2 t , we get r Y N (t) → r X (t) := sin t t .
Similar results can be obtained for the first and second derivative of r Y N . The above result leads us to consider the sine cardinal process which has as covariance the function r X . In [START_REF] Azaïs | CLT for crossings of random trigonometric polynomials[END_REF] was proved that by constructing the processes Y N and X in the same probability space and if we define

B N := E N X N [0, 2π[ (0) -E[N X N [0, 2π[ (0)] -N X [0, 2πN [ (0) -E[N X [0, 2πN [ (0)] 2 it turns out that B N /N ----→ N →∞ 0. This result entails that lim N →∞ 1 N Var N X N [0, 2π[ (0) = lim N →∞ 1 N Var N X [0, 2πN [ (0) ,
and the last quantity is

2 √ 3 + 2 ∞ 0 E |X ′ (0)X ′ (τ )| X(0) = X(τ ) = 0 1 -(sin τ /τ ) 2 - 1 3π dτ.

Sea modeling applications

In this section, we give some theoretical justifications to the work of Podgórski & Rychlik [START_REF] Podgórski | Envelope crossing distributions for gaussian fields[END_REF]. This paper presents several applications to random sea waves. Like these authors, let us consider two random fields

X : R d → R( with d > j = 1) and V : R d → R d+1 .
The latter is defined as V (x) := (X(x), ∇X(x)). This is the argument of the function G in (39) but removing the explicit dependence on x and also on the field W , i.e. Y (x) := G(X(x), ∇X(x)).

Moreover, for sea applications either the X field is Gaussian and models the sea surface or it is the envelope field (defined below).

We will first discuss the case where the stationary Gaussian field of zero mean 

X is C 2 (D, R) with σ 2 := Var[X(0)] = E[X 2 (0)] > 0. Then Remark
∈ R E C X (y) Y (x) dσ d-1 (x) = D p X(x) (y)E Y (x) ∥∇X(x)∥ d X(x) = y dx = σ d (D)E Y (0) ∥∇X(0)∥ d X(0) = y e -1 2σ 2 y 2 √ 2πσ .
The following notion is also introduced in [START_REF] Podgórski | Envelope crossing distributions for gaussian fields[END_REF]. We define the distribution of V over the level set by first taking G(z) := 1 A (z) for z ∈ R d+1 and A a Borel set of R d+1 . We have Y (x) = 1 A (V (x)) and setting

P{V (x) ∈ A X(x) = y } := E C X (y) 1 A (V (x)) dσ d-1 (x) E C X (y) dσ d-1 (x) = E 1 A (V (0)) ∥∇X(0)∥ d X(0) = y E [∥∇X(0)∥ d ] = E [1 A (y, ∇X(0)) ∥∇X(0)∥ d ] E [∥∇X(0)∥ d ] . (66) 
To apply the formula to sea wave modeling, we set d = 3. Let us use the sea modeling notation from [START_REF] Podgórski | Envelope crossing distributions for gaussian fields[END_REF]. We have a zero-mean stationary Gaussian field X(t, p) := ζ(t, x, y), p := (x, y), which models the sea surface. To introduce it, let M (λ 1 , λ 2 , ω) be a random spectral Gaussian measure, restricted to the airy manifold

Λ := {∥ - → k ∥ 2 2 = ω 4 /g 2 } where - → k := (λ 1 , λ 2 ). We define ζ(t, x, y) := Λ e i(λ 1 x+λ 2 y+ωt) dM (λ 1 , λ 2 , ω).
In this way, by restricting the stochastic integral to the set

Λ + := {(λ 1 , λ 2 , ω) : ω ⩾ 0, ∥ - → k ∥ 2 = ω 2 /g},
using polar coordinates, we can write

ζ(t, x, y) = 2 ∞ 0 π -π cos(∥ - → k ∥ 2 cos(θ)x + ∥ - → k ∥ 2 sin(θ)y + ωt) dc(ω, θ),
where c is a random measure with independent Gaussian increments. The covariance function results

Γ(t, p) := E[ζ(0, 0, 0)ζ(t, x, y)] = 2 ∞ 0 π -π cos(∥ - → k ∥ 2 cos(θ)x + ∥ - → k ∥ 2 sin(θ)y + ωt) S(ω, θ) dω dθ,
where 2S(•, •) is the physical spectral density.

To establish the following results, it will be necessary to digress on the ergodic theory. The following text has been taken from [START_REF] Azaïs | Rice formulas and Gaussian waves II[END_REF]. For a given subset D ⊂ R 2 and for each t > 0, let us define A t := σ{X(τ, p) : τ > t, p ∈ D} and consider the σ-algebra of t-invariant sets A := t A t . Moreover, assume that Γ(t, p) ---→ t→∞ 0, for all p ∈ D. It is well known that under this condition, the σ-algebra A is trivial, that is, it only contains events having probability zero or one (see e.g. [START_REF] Cramér | Leadbetter -Stationary and related stochastic processes[END_REF] 

Z(t) := C ζ D (t,y) Y (t, p) dσ 1 (p).
Furthermore, in the following, we assume that

Y (t, p) := G(ζ(t, p), ∇ p ζ(t, p)),
where ∇ p is the gradient operator with respect to the space variables x, y. The process {Z(t) : t ∈ R + } is strictly stationary, of finite mean and Riemannintegrable. The ergodic theorem gives

1 T T 0 Z(t) dt a.s. ----→ T →∞ E B [Z(0)],
where B is the σ-algebra of t-invariant events associated with the process Z(t). Since for each t, Z(t) is A t -measurable, it follows that B ⊂ A so that

E B [Z(0)] = E[Z(0)]. Thus E B [Z(0)] = E C ζ D (0,y) Y (0, p) dσ 1 (p) = σ 2 (D)E Y (0, 0) ∥∇ p ζ(0, 0)∥ 2 ζ(0, 0) = y e -1 2 y 2 /λ 000 √ 2πλ 000 ,
where λ 000 := E[ζ 2 (0, 0)]. The above formula can be used to obtain the velocity distribution as defined in (66) (cf. [START_REF] Azaïs | Rice formulas and Gaussian waves II[END_REF]).

Next, we will consider the case where the observed field, denoted E(t, p), is the envelope field of X(t, p). First, let us define the Hilbert transform of ζ as the Gaussian field

ζ(t, x, y) := 2 ∞ 0 π -π sin(∥ - → k ∥ 2 cos(θ)x + ∥ - → k ∥ 2 sin(θ)y + ωt) dc(ω, θ).
The real envelope E(t, x, y) is

E(t, p) := ζ 2 (t, x, y) + ζ2 (t, x, y).
We can write the process E in the following form. Let

Z(t, p) := (ζ(t, x, y), ζ(t, x, y)).
Then, if F (z) := ∥z∥ 2 then E(t, p) = F (Z(t, p)). The function F satisfies condition B 3 except for z = 0, but this does not matter because P{Z(0, 0) = 0} = 0. Furthermore, a straightforward calculation shows that the process X verifies assumption (S) in Proposition 3. 

Z Y E (t) := C E D (t,y) Y (t, p) dσ 1 (p).
Invoking again the ergodic theorem, we obtain (67

) T 0 Z Y E (t) dt T 0 Z 1 E (t) dt a.s.
----→

T →∞ E[Y (0, 0) ∥∇ p E(0, 0)∥ 2 E(0, 0) = y ] E[∥∇ p E(0, 0)∥ 2 E(0, 0) = y ] . But E[∥∇ p E(0, 0)∥ 2 E(0, 0) = y ] = 1 y E ζ(0, 0)∇ p ζ(0, 0) + ζ(0, 0)∇ p ζ(0, 0) 2 E(0, 0) = y .
Thus conditioning and defining

f ± (y, z 1 ) := E z 1 ∇ p ζ(0, 0) ± y 2 -z 2 1 ∇ p ζ(0, 0) 2 ,
we get

E ∥∇ p E(0, 0)∥ 2 E(0, 0) = y = 1 y y -y (f + (y, z 1 ) + f -(y, z 1 ))p ζ(0,0) (z 1 ) dz 1
where p ζ(0,0) (z 1 ) is the density of ζ(0, 0) at z 1 .

Given that ζ has the same distribution asζ we finally have

E ∥∇ p E(0, 0)∥ 2 E(0, 0) = y = 2 y y -y f + (y, z 1 )p ζ(0,0) (z 1 ) dz 1 . 110 CHAPTER 4. APPLICATIONS
Consider the numerator in the right-hand side of the expression (67),

E Y (0, 0) ∥∇ p E(0, 0)∥ 2 E(0, 0) = y = 1 y E G y, 1 y ζ(0, 0)∇ p ζ(0, 0) + ζ(0, 0)∇ p ζ(0, 0) × ζ(0, 0)∇ p ζ(0, 0) + ζ(0, 0)∇ p ζ(0, 0) 2 E(0, 0) = y .
The same argument as above gives

E Y (0, 0) ∥∇ p E(0, 0)∥ 2 E(0, 0) = y = 2 y y -y F + (y, z 1 )p ζ(0,0) (z 1 ) dz 1 ,
where

F + (y, z 1 ) := E G y, 1 y z 1 ∇ p ζ(0, 0) + y 2 -z 2 1 ∇ p ζ(0, 0) × z 1 ∇ p ζ(0, 0) + y 2 -z 2 1 ∇ p ζ(0, 0) 2 .
Therefore, the right-hand side term of (67) becomes equal to

y -y F + (y, z 1 )p ζ(0,0) (z 1 ) dz 1 y -y f + (y, z 1 )p ζ(0,0) (z 1 ) dz 1 .
In some important cases, this term can be calculated explicitly using only the spectral moments of the processes ζ, ζ, ∇ p ζ, ∇ p ζ.

Berry and Dennis dislocations

In this part of the work, we will give an overview of the applications of the Rice formula to some physics notions known as random wave dislocations. This study is motivated by the seminal paper by Berry and Dennis, [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF], several new concepts were introduced on physical grounds.

We consider two independent isotropic Gaussian random fields of mean zero belonging to C 2 (D, R). Let ξ, η : Ω × R 2 → R, defined trough their spectral representation

ξ(x) := R 2 cos(⟨x, k⟩) (Π(k)/k) 1 2 dW 1 (k) - R 2 sin(⟨x, k⟩) (Π(k)/k) 1 2 dW 2 (k) and η(x) := R 2 cos(⟨x, k⟩) (Π(k)/k) 1 2 dW 2 (k) 4.3. BERRY AND DENNIS DISLOCATIONS 111 + R 2 sin(⟨x, k⟩) (Π(k)/k) 1 2 dW 1 (k),
where ⟨•, •⟩ stands for the scalar product in R 2 and k := (k 1 , k 2 ), k := ∥k∥ 2 , Π(k) is the isotropic spectral density and W := W 1 +iW 2 is a standard complex orthogonal Gaussian measure on R 2 . Without loss of generality, we can assume that E ξ 2 (0) = E[η 2 (0)] = 1. Defining the complex wave ψ(x) := ξ(x) + iη(x), the dislocations is the set of zeros of ψ, i.e.

N ψ D (0) := #{x : ψ(x) = 0} = #{x : ξ(x) = η(x) = 0}.
In [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF] (see formulas (2.7) and (4.6)), the expected number of dislocation points by unit of area is defined by

d 2 := E[#{x ∈ D : ψ(x) = 0}] σ 2 (D) = λ 2 (2π) 2 E ξ x (0) √ λ 2 η y (0) √ λ 2 - ξ y (0) √ λ 2 η x (0) √ λ 2 = λ 2 2π ,
where ξ x , ξ y , η x and η y stand for the derivatives of first order of ξ and η and

λ 2 := E[ξ 2 x (0)] = E[ξ 2 y (0)] = E[η 2 x (0)] = E[η 2 y (0)] .
Here, we will also study the length of the set of zeros of each coordinate process (length of nodal curves)

σ 1 (C ξ (0)) L = σ 1 (C η (0)).
We thus have the definition of the length of the nodal curves for the surface unit:

L := E[σ 1 (C ξ (0))] σ 2 (D) = E[σ 1 (C η (0))] σ 2 (D) .
In [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF], other notions have been defined related to the following two integrals

{x∈D:ψ(x)=0} Y (x) dσ 0 (x) = x∈{x∈D:ψ(x)=0} Y (x) and C ξ (0) Y (x) dσ 1 (x).
For the first one, we must recall that σ 0 is the counting measure. For instance in [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF] the dislocation curvature is introduced. In what follows, we will consider instead the curvature of one of the nodal curves, defined using for example ξ.

The curvature of the nodal curve ξ(x) = ξ(x, y) = 0, is

κ(x) := ξ xx (x)ξ 2 x (x) -2ξ xy (x)ξ x (x)ξ y (x) + ξ yy (x)ξ 2 y (x) ∥∇ξ(x)∥ 3 2 .
For the interval [0, κ 1 ] defining Y (x) := 1 [0,κ 1 ] (κ(x)), one obtains a particular case of the function Y (x) = G(∇ξ(x), ∇ 2 ξ(x)), where the operator ∇ 2 denotes the second order differential. For these functions, in a manner similar to that of Theorem 3.3.3, we can prove a Rice formula obtaining

E C ξ (0) 1 [0,κ 1 ] (κ(x)) dσ 1 (x) = σ 2 (D)E 1 [0,κ 1 ] (κ(0)) ∥∇ξ(0)∥ 2 ξ(0) = 0 p ξ(0) (0) = σ 2 (D) √ 2π E 1 [0,κ 1 ] (κ(0)) ∥∇ξ(0)∥ 2 ξ(0) = 0 .
The independence between ∇ξ(0) and (ξ(0), ∇ 2 ξ(0)) allows writing a regression model that simplifies the last expression. Moreover,

E[σ 1 (C ξ (0))] = √ λ 2 σ 2 (D) √ 2π E   ξ 2 x (0) λ 2 + ξ 2 y (0) λ 2   = √ λ 2 σ 2 (D) √ 2π 1 2π ∞ 0 2π 0 ρ 2 e -1 2 ρ 2 dθ dρ = √ λ 2 σ 2 (D) 2 .
As a bonus, we get L = √ λ 2 /2. Furthermore, in order to obtain an interpretation for the distribution of κ over the level set of ξ, we take the ratio of the two last expectations obtaining

E C ξ (0) 1 [0,κ 1 ] (κ(x)) dσ 1 (x) E[σ 1 (C ξ (0))] = 1 √ λ 2 2 π E 1 [0,κ 1 ] (κ(0)) ∥∇ξ(0)∥ 2 ξ(0) = 0 .
Using independence, we can write it as

2 π ∞ 0 2π 0 E 1 [0,ρ √ λ 2 κ 1 ] ξ xx (0) cos 2 θ -2ξ xy (0) cos θ sin θ + ξ yy (0) sin 2 θ ξ(0) = 0 × ρ 2 e -ρ 2 2 2π dρ dθ. (68) 
A regression model shows that the following relationship is true

[ξ xx (0) cos 2 θ -2ξ xy (0) cos θ sin θ + ξ yy (0) sin 2 θ ξ(0) = 0 ] L = N (0, σ 2 (θ, λ 4 , λ 22 , λ 2 )),
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where

λ 4 := E[ξ 2 xx (0)] = E[ξ 2 yy (0)] λ 22 := E[ξ 2
xy (0)] and

-λ 2 = E[ξ(0)ξ xx (0)] = E[ξ(0)ξ yy (0)]. Then Eqn. (68) = 1 2π 2 ∞ 0 2π 0 κ 1 √ λ 2 ρ/σ(θ,λ 4 ,λ 22 ,λ 2 ) -κ 1 √ λ 2 ρ/σ(θ,λ 4 ,λ 22 ,λ 2 )
ρ 2 e -ρ 2 /2 e -u 2 /2 dρ dθ du

= 1 π 2 ∞ 0 2π 0 κ 1 √ λ 2 ρ/σ(θ,λ 4 ,λ 22 ,λ 2 ) 0 ρ 2 e -ρ 2 /2 e -u 2 /2 dρ dθ du := K(κ 1 ).
The density of this distribution is

d dκ 1 K(κ 1 ) = √ λ 2 π 2 ∞ 0 2π 0 ρ 3 /σ(θ, λ 4 , λ 22 , λ 2 )e -ρ 2 /2 ×e -1 2 (κ 1 √ λ 2 ρ/σ(θ,λ 4 ,λ 22 ,λ 2 )) 2 dρ dθ = √ λ 2 π 2 ∞ 0 2π 0 σ 3 (θ, λ 4 , λ 22 , λ 2 ) (σ 2 (θ, λ 4 , λ 22 , λ 2 ) + κ 2 1 λ 2 ) 2 v 3 e -v 2 /2 dv dθ = 2 √ λ 2 π 2 2π 0 σ 3 (θ, λ 4 , λ 22 , λ 2 ) (σ 2 (θ, λ 4 , λ 22 , λ 2 ) + κ 2 1 λ 2 ) 2 dθ.
The last part of this subsection aims at computing some second-order Rice formulas. Let us first introduce the correlation of dislocations at distance R defined as g(R) in [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF]. To define this quantity, we first consider the second factorial moment of the random variable N ψ D (0) that is

E[#{x ∈ D : ψ(x) = 0}(#{x ∈ D : ψ(x) = 0} -1)] = D×D A(x 1 , x 2 )p ψ(x 1 ),ψ(x 2 ) (0, 0) dx 1 dx 2 ,
where using Rice's formula, we get

A(x 1 , x 2 ) := E[|det ∇ψ(x 1 )| |det ∇ψ(x 2 )| ψ(x 1 ) = ψ(x 2 ) = 0 ].
Using invariance with respect to rotations and translations, it turns out that

A(x 1 , x 2 ) = A((0, 0), (∥x 1 -x 2 ∥ 2 , 0)) = A((0, 0), (R, 0)) := g(R).
In the last equality we have set

R := ∥x 1 -x 2 ∥ 2 .
Moreover, by dropping the absolute value of the determinant of the Jacobian of ψ we can introduce

B(x 1 , x 2 ) := E[det ∇ψ(x 1 ) det ∇ψ(x 2 ) ψ(x 1 ) = ψ(x 2 ) = 0 ].
Thus, the charge correlation function (cf. [START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF]) is defined as

g Q (R) := B((0, 0), (R, 0)).
A elementary closed expression for g(R) was obtained in [START_REF] Azaïs | Rice formulas and Gaussian waves II[END_REF][START_REF] Berry | Errata: "Phase singularities in isotropic random waves[END_REF] using an expression for the absolute value function as a Fourier integral. Nevertheless, the computation is not trivial. The interested reader can consult these references . Also, the function g Q (R) can be written as the conditional expectation of a sum of products of four standard Gaussian random variables. Consider for example the first term, i.e.

E ξ x (0, 0)η y (0, 0)ξ x (R, 0)η y (R, 0) ψ(0, 0) = ψ(R, 0)) = 0 .
Then, the random variables representing the derivatives are regressed on the vector (ψ(0, 0), ψ(R, 0)). An elementary Gaussian calculation gives the result.

Gravitational stochastic microlensing

In this section, we only sketch an application to gravitational cosmology. The main reason to present it is that the Rice formula used is shown for a non-Gaussian process. However, it is more an illustration than a real formal mathematical development.

It should be noted that all of the material corresponding to this subsection comes from the article by Peters et al. [START_REF] Petters | A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula[END_REF]. In addition, for background, this work had to be supplemented by the book [START_REF] Petters | Singularity theory and gravitational lensing[END_REF].

Let {ξ i } be g independent random variables identically distributed on the disk of radius R in R 2 . They are considered as the positions of the stars. We can define the following random field

ψ g (x) := 1 2 κ c ∥x∥ 2 2 -1 2 γ(x 2 1 -x 2 2 ) + m g j=1 ln ∥x -ξ j ∥ 2 2 ,
where x := (x 1 , x 2 ) and κ c , γ are physical constants and m represents the mass of the stars. Outside of the random points

{ξ i } g =1 the potential ψ g is C ∞ (R 2 , R).
The following random function is known as the delay function for the gravitational lens systems

T y (x) := 1 2 ∥x -y∥ 2 2 -ψ g (x).
The lensing map is defined as η(x) := ∇T y (x) + y = x -∇ψ g (x).

Given the definitions, we easily obtain

η(x) = ((1 -κ c + γ)x 1 , (1 -κ c -γ)x 2 ) -2m g j=1 x -ξ j ∥x -ξ j ∥ 2 2 .
A lensed image is a solution x ⋆ of the equation ∇T y (x) = 0. That is

η(x ⋆ ) = y.
These images correspond to the stationary points of the function T y and are classified as local maximum, local minimum and saddle point whenever the image is not degenerated. Otherwise, we say that they are degenerate. We are interested in computing the number of non-degenerate images with positive parity N + which are defined as N + := N max + N min . It is easy to show that in these images, the Jacobian of η, i.e. det(∇η(x)), is always positive.

It is interesting, for gravitational studies, to calculate the expected number of N + generated for a point source y. The number of such images on a set D ⊂ R 2 is N + (y) := #{x ∈ D : η(x) = y, det(∇η(x)) > 0}.

Consider f : R 2 → R a continuous function with bounded support, then by the area formula we obtain

R 2 f (y)E[N + (y)] dy = D E f (η(x)) det(∇η(x))1 ]0, +∞[ (det(∇η(x))) dx = R 2 f (y) D E det(∇η(x))1 ]0, +∞[ (det ∇η(x)) η(x) = y p η(x) (y) dx dy.
Although the function η has singularities in the positions of the stars ξ i these are infinite singularities. That is lim x→ξ i ∥η(x)∥ 2 = +∞. Therefore, if we observe only those y that are in the bounded support of f , we have that the domain of η for each ω is restricted to an open set that does not contain the points ξ i . This implies that the function η restricted to this set is a C ∞ function. Then the hypothesis for applying the area formula holds.

Moreover, we get for almost all y

E[N + (y)] = D E det(∇η(x))1 ]0, +∞[ (det(∇η(x))) η(x) = y p η(x) (y) dx.
Using the definitions and some non-trivial work, it can be shown that the above formula holds for all y. Moreover, in [START_REF] Petters | A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula[END_REF] the formula is used to obtain its asymptotic when the number of stars g tends to infinity. An interesting but still open problem is to get the same asymptotic for the variance of N + (y).

Kostlan-Shub-Smale systems

Consider a rectangular system P = 0 of j homogeneous polynomial equations in d > j variables. We assume that the equations have the same degree n > 1.

Let P := (X 1 , . . . , X j ), we can write each polynomial X ℓ in the form Its cardinality is N P n if d-1 = j. Shub and Smale [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF] showed that if d-1 = j then E N P n = 2n (d-1)/2 . In [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF]Chapter 12], this result was obtained by using the Kac-Rice formula. Letendre in [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] tackled the case d -1 > j, i.e. the case of homogenous polynomials of degree n in d variables, obtaining the following result first shown by Kostlan in [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] E

X ℓ (t) := |z|=n a (ℓ) z t z ,
[L n (C P (0))] = 2n j/2 π (d-j)/2 Γ[ 1 2 (d -j)] ,
where Γ is the Gamma function. Following Letendre's method and making some simplifications, we will obtain this result using the Kac-Rice formula.

Each X ℓ is homogeneous, and the zero set of P is the intersection of the zero sets of X ℓ . Then the set C P (0) is a subset of the real projective space RP d-1-j .
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Standard multinomial formula shows that for all s, t ∈ R d we have

r n (s, t) := E[X ℓ (s)X ℓ (t)] = ⟨s, t⟩ n , where ⟨•, •⟩ is the usual inner product in R d .
Consequently, we see that the distribution of the system P is invariant under the action of the orthogonal group in R d . We also see that the distribution depends of course on n and this will be omitted for P for ease of notation. Let us observe that the parameter t can be considered in the unit sphere of R d , that is S d-1 .

In the following, we must consider the derivative of X ℓ , ℓ = 1, . . . , j.

Since the parameter space is the unit sphere S d-1 , the derivative is taken in the sense of the sphere, that is, the spherical derivative X ′ ℓ (t) of X ℓ (t) is the orthogonal projection of the free gradient on the tangent space t ⊥ of S d-1 at t.

The k-th component of X ′ ℓ (t) with respect to a given basis of the tangent space is denoted by X ′ ℓk (t). We will use Rice's formula slightly modified to make it valid on S d-1 . As the process P satisfies the hypotheses of Remark 3. E det(∇P (t)∇P (t) T )

1 2 P (t) = 0 p P (t) (0)σ d-1 ( dt),
where p P (t) (0) represents the density of P (t) in 0. Since E[X 2 ℓ (t)] = 1, P (t) and ∇P (t) are independent, which allows to release the conditioning into the expectation. Moreover, since p P (t) (0) = 1/ (2π) j , if ∇P (e 0 ) represents the generic element matrix X ′ ℓk (0), we finally obtain

E[L n (C P (0))] = σ d-1 (S d-1 ) (2π) j 2
E det(∇P (e 0 )∇P (e 0 ) T )

1 2 = n j 2 σ d-1 (S d-1 ) (2π) j 2 E det(∇z(e 0 )∇z(e 0 ) T ) 1 2 
, where ∇z(e 0 ) is N (0, I (d-1)j ) and I (d-1)j represents the (d -1)j × (d -1)j identity matrix. A Gaussian calculation [40, Lemma 5.4. p. 3077]) gives E det(∇z(e 0 )∇z(e 0 ) T )

1 2 = (2π) j/2 σ d-1-j (S d-1-j ) σ d-1 (S d-1 ) , yielding E[L n (C P (0))] = n j/2 σ d-1-j (S d-1-j ) = 2n j/2 π (d-j)/2 Γ[ 1 2 (d -j)]
. We now calculate the variance of this random variable. Note that it has also been computed by Letendre in [START_REF]Variance of the volume of random real algebraic submanifolds[END_REF] and Letendre and Puchol in [START_REF] Letendre | Variance of the volume of random real algebraic submanifolds II[END_REF]. This result is sketched in [START_REF] Armentano | Central limit theorem for the volume of the zero set of kostlan-shub-smale random polynomial systems[END_REF]. We will consider this problem using a different method, the case where d -1 = j being treated in [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF].

Let us start with some remarks on notation. Recall that we denote by S d-1 the unit sphere in R d . Let us denote by κ d the hypervolume of the (d -1)dimensional unit sphere. The variables s and t denote points on S d-1 and ds and dt denote the corresponding geometric measure.

Hyperspherical coordinates: For

θ := (θ 1 , . . . , θ d-2 , θ d-1 ) ∈ [0, π[ d-2 × [0, 2π[ we write x (d-1) (θ) := (x (d-1) 1 (θ), . . . , x (d-1) d (θ)) ∈ S d-1 in the following way x (d-1) k (θ) :=              k-1 j=1 sin(θ j ) • cos(θ k ), k ≤ d -1 d-1 j=1 sin(θ j ), k = d
with the convention that 0 1 = 1. We will use several times in the following that for h : [-1, 1] → R a continuous function, it turns out that (69)

S d-1 ×S d-1 h(⟨s, t⟩) ds dt = κ d κ d-1 π 0 sin d-2 (θ)h(cos(θ)) dθ.
The proof consists in the use of a reference system with hyperspherical coordinates.

For ℓ = 1, . . . , j, we define the standardized derivative as

(70) X ′ ℓ (t) := X ′ ℓ (t) √ n and P ′ (t) := (X ′ 1 (t), . . . , X ′ j (t)),
where X ′ ℓ (t) is a row vector. For t ∈ S d-1 , we also define Z(t) := (Z 1 (t), . . . , Z jd (t)) := (P (t), P ′ (t)).

The covariances

ρ kℓ (s, t) := E(Z k (s)Z ℓ (t)), k, ℓ = 1, . . . , jd,
are obtained by routine calculations. They are simplified using the invariance under isometries. For instance, if

k = ℓ ≤ j ρ kℓ (s, t) = ⟨s, t⟩ n := cos n (θ), θ ∈ [0, π[,
where θ is the angle between s and t.

When the indices k or ℓ are larger than j, the covariances involve derivatives of r n .

In fact, we can prove that Z is a vector of jd standard normal random variables whose covariances depend upon the quantities

A(θ) := - √ n cos n-1 (θ) sin(θ), (71) 
B(θ) := cos n (θ) -(n -1) cos n-2 (θ) sin 2 (θ), C(θ) := cos n (θ), D(θ) := cos n-1 (θ).
Thus, we can write the variance-covariance matrix of the vector

X ℓ (s), X ℓ (t), X ′ ℓ (s) √ n , X ′ ℓ (t) √ n , in the following form      A 11 A 12 A 13 A T 12 I d-1 A 23 A T 13 A 23 I d-1     
, where,

A 11 := 1 C C 1 , A 12 := 0 0 . . . 0 -A 0 . . . 0 , A 13 := A 0 . . . 0 0 0 . . . 0 ,
and

A 23 := diag([B, D, . . . , D]) (d-1)×(d-1)
, where diag([a 1 , a 2 , . . . , a k ]) k×k stands for the k-square diagonal matrix with the generic element a i on its diagonal. Moreover, when dealing with the conditional distribution of (P ′ (s), P ′ (t))

given that P (s) = P (t) = 0 the following expressions appear for the common variance σ 2 and the correlation ρ depending on θ

(72) σ 2 (θ) := 1 - A 2 (θ) 1 -C 2 (θ) ; ρ(θ) := B(θ)(1 -C 2 (θ)) -A 2 (θ)C(θ) 1 -C 2 (θ) -A 2 (θ) .
After scaling θ := z/ √ n, we obtain the following bounds using the definitions given above. The proof is elementary and the reader can consult the article [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF] for details. Lemma 4.5.1. - [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF]. There exists 0 < α < 1 2 such that for n sufficiently large and z/ √ n < π/2 it holds that

|A| ≤ z exp(-αz 2 ), |B| ≤ (1 + z 2 ) exp(-αz 2 ), |C| ≤ |D| ≤ exp(-αz 2 ),
and for z ⩾ z 0 ,

0 ≤ 1 -σ 2 ≤ Cz 2 exp(-2αz 2 ), |ρ| ≤ C(1 + z 2 ) exp(-αz 2 ).
All functions on the left-hand side are evaluated at θ = z/ √ n.

Lemma 4.5.2. - [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF]. It is easy to show using the definitions that the following limits hold

cos 2n z/ √ n ---→ n→∞ exp(-z 2 ) A ---→ n→∞ -z exp(-z 2 /2) B ---→ n→∞ (1 -z 2 ) exp(-z 2 /2) C and D ---→ n→∞ exp(-z 2 /2) σ 2 z/ √ n ---→ n→∞ 1 -(1 + z 2 ) exp(-z 2 ) 1 -exp(-z 2 ) ρ z/ √ n ---→ n→∞ exp(-z 2 /2)(1 -z 2 -exp(-z 2 )) 1 -(1 + z 2 ) exp(-z 2 ) .
Let us apply the Rice formula for the second moment of the zero set volume by writing the variance as

Var [L n (C P (0))] = E L 2 n (C P (0)) -(E[L n (C P (0))]) 2 .
In the expression above, we have already computed the second term and for the first, we apply Rice's formula for the second moment with a slight modification as before to make it valid on S d-1 (see [START_REF] Azaïs | Wschebor -Level sets and extrema of random processes and fields[END_REF]).

E L 2 n (C P (0)) = S d-1 ×S d-1 E det(P ′ (t)P ′ (t) T ) 1 2 det(P ′ (s)P ′ (s) T ) 1 2 |P (t) = P (s) = 0 4.
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× p P (t),P (s) (0, 0) dt ds, where p P (t),P (s) (•, •) is the density of the vector (P (t), P (s)).

By independence, we can write

p P (t),P (s) (0, 0) = j ℓ=1 p X ℓ (t),X ℓ (s) (0, 0) = 1 (2π) j (1 -⟨t, s⟩ 2n ) j/2
.

Moreover, let P ′ (t)P ′ (t) T = (a ik ). Thus, using the homogeneity of the determinant, we have n -j det(P ′ (t)P ′ (t) T ) = det(a ik /n). Obtaining in this form that all the entries of the matrix (a ik /n) have variance one. Furthermore, we have

(73) E det(P ′ (t)P ′ (t) T ) 1 2 det(P ′ (s)P ′ (s) T ) 1 2 |P (t) = P (s) = 0 = n j E det(P ′ (t)P ′ (t) T ) 1 2 det(P ′ (s)P ′ (s) T ) 1 2 |P (t) = P (s) = 0 ,
where P ′ is defined by (70).

Let us introduce the following function

f j f j (y ′ 11 , . . . , y ′ 1d-1 , . . . , y ′ j1 , . . . , y ′ jd-1 ) := f j (y ′ ) := det(y ′ y ′ T ),
where y ′ := (y ′ 11 , . . . , y ′ 1d-1 , . . . , y ′ j1 , . . . , y ′ jd-1 ) ∈ R j×(d-1) . Furthermore, for any γ > 0 let us define For γ = 1 we have f j = f j 1 . The conditional distribution of P ′ (t), P ′ (s) given that P (t) = 0 and , where

f j γ (y ′ ) := f j (
P (s) = 0 is a Gaussian distribution of dimension 2j × (d -
B 11 = B 22 := diag([σ 2 , 1, . . . , 1]) j(d-1)×j(d-1)
and

B 12 := diag([σ 2 ρ, D, . . . , D]) j(d-1)×j(d-1)
where these quantities are defined by ( 71) and (72).

This result allows us to write the conditional distribution using the joint distribution of the following two (j × (d -1))-dimensional vectors

(M 1 , . . . , M j ) := (M 11 , . . . , M 1d-1 , M 21 , . . . , M 2d-1 , • • • , M j1 , . . . , M jd-1 ) (W 1 , . . . , W j ) := (W 11 , . . . , W 1d-1 , W 21 , . . . , W 2d-1 , • • • , W j1 , . . . , W jd-1 )
where the M ℓk (resp. W ℓk ) are independent standard Gaussian random variables and

E[M ℓ 1 k 1 W ℓ 2 k 2 ] := ρ1 {ℓ 1 =ℓ 2 ,k 1 =k 2 =1} + D1 {ℓ 1 =ℓ 2 ,k 1 =k 2 >1} . ( 74 
)
Using these notations we readily obtain that ( 73) is equal to

n j E f j σ (M 1 , . . . , M j )f j σ (W 1 , . . . , W j )
. This implies that we can write

(75) E L 2 n (C P (0)) = n j S d-1 ×S d-1 E f j σ (M 1 , . . . , M j )f j σ (W 1 , . . . , W j ) p P (t),P (s) (0, 0) dt ds.
As in Section 4.1.1, we denote by (H k (x)) k∈N the Hermite polynomials. Moreover, if (Z, W ) is a centered Gaussian vector with Var(Z) := Var(W ) := 1 and E(ZW ) := ω, the following bi-dimensional Mehler's formula holds

E[H k (Z)H ℓ (W )] = δ k,ℓ ω k k!.
Moreover, since (f j γ ) 2 is a polynomial this fact implies that f j γ ∈ L 2 (R j×(d-1) , φ j×(d-1) (y ′ ) dy ′ ), where φ j×(d-1) is the Gaussian standard density on R j× (d-1) . Using that the tensor Hermite polynomials form an orthogonal basis for this space we obtain (76)

f j γ (y ′ ) = β f j β (γ)H β (y ′ ),
where β := (β 11 , . . . , β 1d-1 , . . . , β j1 , . . . , β jd-1 ),

H β (y ′ ) := H β 11 (y ′ 11 ) . . . H β 1d-1 (y ′ 1d-1 ) . . . H β j1 (y ′ j1 ) . . . H β jd-1 (y ′ jd-1 )
, and

f j β (γ) := 1 β! R j×(d-1) f j γ (y ′ )H β (y ′ )φ j×(d-1) (y ′ ) dy ′ , with β! := j ℓ=1 d-1 k=1
β ℓk !.
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R j×(d-1) f j γ (y ′ ) 2 φ j×(d-1) (y ′ ) dy ′ = β |f j β (γ)| 2 β! < ∞. Remark 4.5.3. -Note that for j = d -1, f (y ′ ) := f d-1 (y ′ ) = |det y ′ | is true.
Here y ′ is the (d -1) × (d -1) matrix whose columns are the vectors (y ′ ℓ1 , . . . , y ′ ℓd-1 ) for ℓ = 1, . . . , d -1. Furthermore, applying the homogeneity of the determinant we have f d-1 γ (y ′ ) = γf (y ′ ). The lack of this property when j < d -1, implies that we need a different approach to the one of [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF] for obtaining the asymptotic variance.

• Let us calculate the conditional expectation (73). The expansion (76), the two-dimensional Mehler's formula and equality (74) give

n j E f j σ (M 1 , . . . , M j )f j σ (W 1 , . . . , W j ) = n j β (f j β (σ(⟨t, s⟩))) 2 β!(D(⟨t, s⟩)) (|β|-j ℓ=1 β ℓ1 ) (ρ(⟨t, s⟩)) j ℓ=1 β ℓ1 := n j H(⟨t, s⟩),
where |β| :=

j ℓ=1 d-1 k=1 β ℓk .
Some conclusions follow from this last expression. The first one is that the expectation in (73) depends on t, s through ⟨t, s⟩ only. Then using (69) we obtain

E[(L n (C P (0))) 2 ] = κ d κ d-1 π 0 H(cos(θ)) n j (2π) j 1 (1 -cos 2n (θ)) j 2 sin d-2 (θ) dθ = κ d κ d-1 n j-1 2 (2π) j √ nπ 0 H cos(z/ √ n) 1 (1 -cos 2n (z/ √ n)) j 2 sin d-2 (z/ √ n) dz.
The second stems from the form of the integrand. Indeed, we know that

β f j β (γ) 2 β! = R j×(d-1) f j γ (x) 2 φ j×(d-1) (x) dx ⩽ (d -1) j (γ ∨ 1) 2j E sup 1⩽ℓ⩽j,1⩽k⩽d-1 X ′ ℓk (e 0 ) √ n 2j .
Since σ 2 cos((z/ √ n)) ⩽ 1 and ρ is a correlation (and |ρ| ⩽ 1), then (77)

β f j β (σ(cos(z/ √ n))) 2 β! ⩽ C.
Therefore, since d -1 > j, we can interchange the series with the integral obtaining

(78) E[(L n (C P (0))) 2 ] = κ d κ d-1 n j-1 2 (2π) j β √ nπ 0 H β (cos(z/ √ n)) sin d-2 (z/ √ n) (1 -cos 2n (z/ √ n)) j 2 dz,
where

H β (cos(z/ √ n)) := f j β (σ(cos(z/ √ n))) 2 β! D(cos(z/ √ n)) (|β|-j ℓ=1 β ℓ1 ) × (ρ(cos(z/ √ n))) j ℓ=1 β ℓ1 .
First of all, it should be noted that

(E[L n (C P (0))]) 2 n j-(d-1)/2 = n (d-1)/2 (2π) j κ 2 d f j 0 (1) 2 = n (d-2)/2 (2π) j κ d κ d-1 f j 0 (1) 2 √ nπ 0 sin d-2 (z/ √ n) dz.
Thus, using the above results and normalizing we obtain

Var[L(C P (0))] n j-(d-1)/2 = κ d κ d-1 √ nπ 0 n (d-2)/2 (2π) j   |β|⩾1 H β (cos(z/ √ n))   × 1 (1 -cos 2n (z/ √ n)) j/2 sin d-2 (z/ √ n) dz + κ d κ d-1 √ nπ 0 n (d-2)/2 (2π) j f j 0 (σ(cos(z/ √ n))) 2 -f j 0 (1) 2 (79) × sin d-2 (z/ √ n) (1 -cos 2n (z/ √ n)) j/2 dz + κ d κ d-1 √ nπ 0 n (d-2)/2 (2π) j f j 0 (1) 2 1 (1 -cos 2n (z/ √ n)) j/2 -1 × sin d-2 (z/ √ n) dz.
To apply the dominated convergence theorem, we have to look for a uniform bound. The following lemma gives us the solution. The prove is postponed to the end of this section. So we can take the limit under the integral sign. Moreover, let us show that we can interchange limit with the sum sign. We have

G(γ) := β f j β (γ) 2 β! = R j×(d-1) f j γ (x) 2 φ j×(d-1) (x) dx.
Since the function f j γ (x)

2
is a polynomial and has γ as a coefficient, we can prove by using the dominated convergence theorem applied to the formula on the right, that G is a continuous function then if γ n ---→ n→∞ γ we have

G(γ n ) ---→ n→∞ G(γ). Thus lim n→+∞ β f j β (γ n ) 2 β! = β f j β (γ) 2 β!.
The exact expression of the limit is obtained using the results of Lemma 4.5.2. Let us define

J β (z) := f j β 1 -(1 + z 2 ) exp(-z 2 ) 1 -exp(-z 2 ) 1 2 2 β! exp(-z 2 /2) |β| × (1 -exp(-z 2 ) -z 2 ) 1 -(1 + z 2 ) exp(-z 2 ) j ℓ=1 β ℓ1 . (80) It yields lim n→+∞ Var L n (C P (0)) n j/2-(d-1)/4 = κ d κ d-1 (2π) j ∞ 0 |β|⩾1 J β (z) 1 (1 -exp(-z 2 )) j/2 z d-2 dz + κ d κ d-1 (2π) j ∞ 0   f j 0 1 -(1 + z 2 ) exp(-z 2 ) 1 -exp(-z 2 ) 1 2 2 -f j 0 (1) 2   × z d-2 (1 -exp(-z 2 )) j/2 dz + κ d κ d-1 (2π) j f j 0 (1) 2 ∞ 0 1 (1 -exp(-z 2 )) j/2 -1 z d-2 dz.
Finally, we have proved the following theorem. 

n j/2-(d-1)/4 = κ d κ d-1 (2π) j ∞ 0   |β|⩾0 J β (z) 1 (1 -exp(-z 2 )) j/2 -f j 0 (1) 2   z d-2 dz.
This is the same result that Letendre [START_REF]Variance of the volume of random real algebraic submanifolds[END_REF] obtained before using another method.

Finally , we give the proof of Lemma 4.5.4.

Remark 4.5.6. -The symmetrization argument used in step 3 of Section 3.2 of [START_REF] Armentano | Asymptotic variance of the number of real roots of random polynomial systems[END_REF] gives that the integral over

[ √ n π 2 ,
√ nπ] of each term in the expansion (78) is equal to the integral of the same term on [0, √ n π 2 ] except for a multiplication by (-1) (n-1)|β| .

In this form, the uniform bound obtained for applying the dominated convergence theorem in the latter interval is also used for the former.

• Consider the first term of the sum (79). Using the lemma 4.5.1, it turns out that there exists n 0 such that for z/ √ n < π 2 with n > n 0 and for z ⩾ z 0 , which implies

|ρ| ⩽ C(1 + z 2 ) exp(-αz 2 ) and D ⩽ exp(-αz 2 ).
According to Remark 4.5.6, it is enough to work in the interval [0,

√ n π 2 ]
. In that way we get, for z ⩾ z 0

|β|⩾1 f j β σ(cos(z/ √ n)) 2 β!(D(cos(z/ √ n))) (|β|-j ℓ=1 β ℓ1 ) × ρ(cos(z/ √ n)) j ℓ=1 β ℓ1 ⩽ C   |β|⩾1 f j β (σ(cos(z/ √ n))) 2 β!   (1 + z 2 ) exp(-αz 2 ) ⩽ C(1 + z 2 ) exp(-αz 2 ).
Above, we used (77).

It remains to consider the integral over the interval [0, z 0 ]. But now the integrand can be bounded on [0, z 0 ] by

C 1 (1 -cos 2n (z/ √ n)) j 2 n (d-2)/2 sin d-2 (z/ √ n) ⩽ C 1 (1 -exp(-2αz 2 )) j 2 z d-2 ,
and the function on the right-hand side is integrable whenever j < d -1. In this way, applying the dominated convergence theorem, we obtain

lim n→+∞ κ d κ d-1 n (d-2)/2 (2π) j √ nπ 0   |β|⩾1 H β (cos(z/ √ n))   × sin d-2 (z/ √ n) (1 -cos 2n (z/ √ n)) j/2 dz = κ d κ d-1 1 (2π) j ∞ 0   |β|⩾1 J β (z)   1 (1 -exp(-z 2 )) j/2 z d-2 dz.
The exact expression of the function J β (z) (see ( 80)) is obtained using Lemma 4.5.2.

To complete the proof of the lemma, we need to consider the remaining terms in (79). First, let us consider

I n := κ d κ d-1 n (d-2)/2 (2π) j √ nπ 0 f j 0 (σ(cos(z/ √ n))) 2 -f j 0 (1) 2 × 1 (1 -cos 2n (z/ √ n)) j/2 sin d-2 (z/ √ n) dz.
But

f j 0 (σ(cos(z/ √ n))) 2 -f j 0 (1) 2 = R j×(d-1) f j σ (x)φ j×(d-1) (x) dx 2 - R j×(d-1) f j (x)φ j×(d-1) (x) dx 2 ⩽ C R j×(d-1) f j σ (x)φ j×(d-1) (x) dx - R j×(d-1) f j (x)φ j×(d-1) (x) dx ⩽ C1 {z⩽z 0 } + C R j×(d-1) f j σ (x)φ j×(d-1) (x) dx - R j×(d-1) f j (x)φ j×(d-1) (x) dx 1 {z>z 0 } . ( 82 
)
To find an upper bound for the second term of the last sum, we use the following general result.

Let G : R M → R be a function such that |G(x)| ⩽ C ∥x∥ m , m ∈ N ⋆ , where without loss of generality we take ∥x∥ := sup i |x i |. Consider two sequences of positive numbers {σ i } M i=1 and {γ i } M i=1 and denote ∥σ∥ := sup i σ i and ∥γ∥ := sup i γ i . Also consider

W := (W 1 , . . . , W M ) L = N (0, I M ). We have |E[G(σ 1 W 1 , σ 2 W 2 , . . . , σ M W M ) -G(γ 1 W 1 , γ 2 W 2 , . . . , γ M W M )]| ⩽ C √ 2M (∥σ∥ ∨ ∥γ∥) M i=1 |σ i -γ i | σ i ∧ γ i (E[∥W ∥ 2m ]) 1 2 ,
where the symbols ∨ and ∧ denote the supremum and infimum respectively. Applying this result to the second term of the last sum in (82) and using that σ(cos(z/ √ n)) ⩽ 1 and |1 -σ| ⩽ C exp (-2αz 2 ) for z > z 0 , we obtain

f j 0 (σ(cos(z √ n))) 2 -f j 0 (1) 2 ⩽ C1 {z⩽z 0 } + C exp (-2αz 2 )1 {z>z 0 } .
Now, the dominated convergence theorem can be applied and again by the results of Lemma 4.5.2 we get

lim n→+∞ I n = κ d κ d-1 (2π) j ∞ 0   f j 0 1 -(1 + z 2 ) exp(-z 2 ) 1 -exp(-z 2 ) 1 2 2 -f j 0 (1) 2   × 1 (1 -exp(-z 2 )) j/2 z d-2 dz.
Finally we will consider the last term J n .

J n := κ d κ d-1 n (d-2)/2 (2π) j √ nπ 0 f j 0 (1) 2 1 (1 -cos 2n (z/ √ n)) j/2 -1 × sin d-2 (z/ √ n) dz. (83) By setting R := cos n (z/ √ n), we have (84) 1 (1 -cos 2n (z/ √ n)) j/2 -1 ⩽ C R 2 (1 -R 2 ) j 2 , with |R| ⩽ exp(-αz 2 ) ∧ 1 if z < π 2 √
n. Thus the integrand in (83) can be bounded with the bound computed in (84), depending on z < z 0 or z ⩾ z 0 . That is, on the interval close to zero or on the other. In the first case, we use

n (d-2)/2 1 (1 -cos 2n (z/ √ n)) j/2 -1 sin d-2 (z/ √ n) ⩽ C z d-2 (1 -exp (-2αz 2 )) j/2 ,
the last function above is an integrable function since j < d -1. On the large interval, we get

n (d-2)/2 1 (1 -cos 2n (z/ √ n)) j/2 -1 sin d-2 (z/ √ n) ⩽ C exp(-2αz 2 ) z d-2 (1 -exp(-2αz 2 0 )) j/2
, the last function above being again an integrable function. Since these two bounds allow applying the dominated convergence theorem, it turns out that

lim n→+∞ J n = κ d κ d-1 (2π) j f j 0 (1) 2 ∞ 0 1 (1 -exp(-z 2 )) j/2 -1 z d-2 dz.
That completes the proof of Lemma 4.5.4.

Local time and length of curves of level set

Let X : Ω × R d → R, d ⩾ 2, be a stationary centered continuous Gaussian process and F be its spectral measure assumed not to be concentrated in a Borel set of zero Lebesgue measure. Let T be a bounded open set of R d . We will consider regularizations of the trajectories of X by means of convolutions of the form X ε (t) = Ψ ε * X(t), ε > 0, where Ψ ε is an approximation of unity when ε tends to zero and satisfies some regularity conditions. The aim of this section is to approximate the local time of X over T at a given level u, say L X (u, T ), by the length of curves of the u level set of process X ε , say σ d-1 (C T,Xε (u)). Some of the results that will be presented in Sections 4.6.1 and 4.6.2 have been partially discussed in [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF]. We can cite some references of papers that have dealt on the same subject in the case where d = 1. More precisely if N Xε (u) represents the number of crossings of the level u by the process X ε on the interval [0, 1], Wschebor [START_REF]Wschebor -Surfaces aléatoires[END_REF] has shown that, in the case of Brownian motion, the appropriately normalized random variable N Xε (0) tends to L X (0, [0, 1]), as ε → 0, in L p (Ω) for any p ⩾ 1, and a similar result applies to multiparameter Brownian motion. Azaïs and Florens [START_REF] Azaïs | Approximation du temps local des processus gaussiens stationnaires par régularisation des trajectoires[END_REF] have extended this result to a class of stationary Gaussian processes.

We start with some considerations on the local time of X on T . 4.6.1. Local time. -We define the local time as the density of the occupation measure of X. This definition was used for example by Berman ([13]). More precisely, if A denotes a Borel set in R, we define the occupation measure µ T (ω, A) of X by

µ T (ω, A) := σ d {t ∈ T, X(ω, t) ∈ A}.
The local time L X (u, T ), when it exists, is any function satisfying

µ T (ω, A) = A L X (ω, u, T ) du,
for almost every ω. Another formulation is that the local time, when it exists, is the Radon-Nikodym derivative

L X (u, T ) := dµ T dσ 1 (u).
By Proposition 1 of [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF], the local time of X, denoted by L X (•, T ), exists Palmost surely and is L 2 (λ 1 × P ). One can also refer to Theorem 22.1 of [START_REF]Occupation densities[END_REF]. One reason why this result is true is that

T ×T (r 2 (0) -r 2 (s -t)) -1/2 ds dt < ∞,
where r stands for the covariance of process X. The finiteness of the last integral comes from the following lemma whose proof is given in Lemma 1 of [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF].

Lemma 4.6.1. -There exists C > 0, such that for all (s, t) ∈ T ×T , r 2 (0)r 2 (s -t) ⩾ C ∥s -t∥ 2 d , where T is the closure of the set T . We now state the identity of the second moment of local time. Proposition 4.6.2. -For all any level u ∈ R, we have

E L 2 X (u, T ) = T ×T p X(s),X(t) (u, u) ds dt,
where p X(s),X(t) (•, •) is the density of vector (X(s), X(t)).

Proof of Proposition 4.6.2. The proof is given in [START_REF]Occupation densities[END_REF] (see equality (25.5)). However, we give here a sketch of the proof which we will use later. Proposition 4.6.3 ensues from Proposition 1 of [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF].

Proposition 4.6.3. -There exists a version of L(•, T ) such that ∀u ∈ R,

η δ (u) := 1 2δ T 1 {t,|X(t)-u|<δ} dt, δ > 0, converges in L 2 (Ω) to L X (u, T ).
Let u ∈ R. By computing E[η 2 δ (u)], we obtain:

E η 2 δ (u) = 1 2δ 2 u+δ u-δ u+δ u-δ T ×T
p X(s),X(t) (x, y) ds dt dx dy.

Using Lemma 4.6.1, we easily obtain that the function

(x, y) → T ×T p X(s),X(t) (x, y) ds dt
is continuous at (x, y) and then using Proposition 4.6.3, we obtain

E[η 2 δ (u)] ---→ δ→0 T ×T p X(s),X(t) (u, u) ds dt = E[L 2 X (u, T )].
Another interesting way to prove Proposition 4.6.2 is to apply Theorem 1 of [START_REF] Doukhan | Asymptotics for the local time of a strongly dependent vector-valued Gaussian random field[END_REF]. Indeed, in this theorem, the authors expand the local time L X (u, T ) in terms of Hermite polynomials. More precisely, if (H k (x)) k∈N is the Hermite orthogonal basis of L 2 (R, φ(x) dx), i.e.

H k (x) := (-1) k φ -1 (x) d k dx k (φ(x)),
where φ denotes the standard Gaussian density on R, they show the following theorem.

Theorem 4.6.4. -Let u ∈ R a fixed level. The following expansion of the local time L X (u, T ) holds in L 2 (Ω):

L X (u, T ) = 1 r(0) φ u r(0) k∈N 1 k! H k u r(0) T H k X(s)/ r(0) ds.
Using this last expansion and Mehler's formula (see [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]), we obtain

E[L 2 X (u, T )] = 1 r(0) φ 2 u r(0) q∈N 1 q! H 2 q u r(0) T ×T r(s -t) r(0) q ds dt.
The following equality can be found in [33, Eq. ( 39)]. For 0 ⩽ |w| < 1 and x ∈ R, we have

q∈N 1 q! H 2 q (x)w q = 1 √ 1 -w 2 exp x 2 w 1 + w .
Thus, applying this last equality to x := u/ r(0) and to w := r(s -t)/r(0), we obtain

E[L 2 X (u, T )] = 1 2π T ×T 1 r 2 (0) -r 2 (s -t) exp - u 2 r(0) + r(s -t) ds dt = T ×T p X(s),X(t) (u, u) ds dt.
This completes the proof of Proposition 4.6.2.

Let f : T → R be a bounded function. More generally that before, we are interested in a canonical renormalization of the ordinary local time, given by, ∀u ∈ R

L f X (u, T ) := T f (t)L X (u, dt).
Geman and Horowitz proved in [START_REF]Occupation densities[END_REF]Theorem 6.4] the following identity.

Theorem 4.6.5. -For any Borel function

h(t, x) ⩾ 0 on T × R, T h(t, X(t)) dt = R T h(t, x)L X (x, dt) dx.
Remark 4.6.6. -This equality is still valid for any Borel function h(t, x), which is not necessarily positive, provided that one of the two integrals is finite. This is for example the case when h is bounded. • Remark 4.6.7.

-If we take h(t, x) := 1 A (x), where A is a Borel set of R, we find the usual definition of local time. If we take h(t, x) := g(x), where g is a bounded Borel function, we get the known occupation formula

T g(X(t)) dt = R g(x)L X (x, T ) dx.
• Let us define the measure µ f as

µ f (A) := A T f (t)L X (x, dt) dx, where A is any Borel set of R. Since f is bounded, µ f (A) ⩽ Cσ d (T ) < ∞.
The measure µ is a finite and its Fourier transform is

µ f (z) := R e izx dµ f (x) = R e izx T f (t)L X (x, dt) dx, z ∈ R.
By Theorem 4.6.5 and Remark 4.6.6 applied to h(t, x) := e izx f (t), we have µ f (z) = T e izX(t) f (t) dt, so by applying Lemma 4.6.1 and since function f is a bounded one, we obtain

E | µ f (z)| 2 = T ×T f (t)f (s)E[e iz(X(s)-X(t)) ] ds dt = T ×T f (t)f (s)e -z 2 (r(0)-r(s-t)) ds dt ⩽ T ×T |f (s)| |f (t)| e -Cz 2 ∥s-t∥ 2 d ds dt ⩽ C (1 + |z|) d .
We deduce from these inequalities that

E +∞ -∞ | µ f (z)| 2 dz ⩽ C,
and we conclude that, with probability one,

+∞ -∞ | µ f (z)| 2 dz < ∞.
Thus by Plancherel's theorem we proved that

+∞ -∞ E (L f X (x, T )) 2 dx < ∞,
and then for almost all x ∈ R, E (L f X (x, T )) 2 < ∞. Then, we aim at giving a generalization of Propositions 4.6.2 and 4.6.3 for the renormalized local time L f X (•, T ). Let us state the following two propositions. Proposition 4.6.8. -For any level u ∈ R, the random variable η f δ (u) defined by

η f δ (u) := 1 2δ T f (t)1 {t,|X(t)-u|<δ} dt, δ > 0, converges in L 2 (Ω) towards L f X (u, T ).
Since function f is bounded and (x, y) → T ×T p X(s),X(t) (x, y) ds dt is continuous at (x, y), as an immediate consequence we deduce as above the following proposition, Proposition 4.6.9. -For any level u ∈ R, we have

E (L f X (u, T )) 2 = T ×T f (s)f (t)p X(s),X(t) (u, u) ds dt.
Proof of Proposition 4.6.8. To prove this proposition, it is sufficient to prove the following lemma.

Lemma 4.6.10. -For any x, h ∈ R, we have • Taking h(t, x) := f (t)1 A (x), with A = ]u -δ, u + δ[ in Theorem 4.6.5, we obtain

E L f X (x + h, T ) -L f X (x, T ) 2 ⩽ Cθ(h) ⩽ C |h| , where θ(h) := (h 2 + |h| d-1 )1 {d̸ =3} + h 2 ln(1/
η f δ (u) = 1 2δ u+δ u-δ L f X (x, T ) dx.
This implies that

E η f δ (u) -L f X (u, T ) 2 = E 1 2δ u+δ u-δ L f X (x, T ) -L f X (u, T ) dx 2 ⩽ 1 2δ u+δ u-δ E L f X (x, T ) -L f X (u, T ) 2 dx ⩽ Cδ ---→ δ→0 0.
That will end the proof of Proposition 4.6.8. Let us prove Lemma 4.6.10.

Proof of Lemma 4.6.10. It is sufficient to prove the inequality of the lemma for x, x + h not belonging to a set N , such that σ 1 (N ) = 0. Indeed, if it is possible to do so, then we can define L f X (x, T ) for x ∈ N as limit in L 2 (Ω) of L f X (y, T ) as y → x, with y / ∈ N and this version of the canonical renormalization of the ordinary local time will satisfy the required inequality for all x, x + h ∈ R. By Theorem 4.6.5 and Remark 4.6.6 applied to h(t, x) := 1, we have

σ d (T ) = R L X (x, T ) dx < ∞. Now, since f is bounded, we have ∀x ∈ R, L f X (x, T ) ⩽ CL X (x, T ). There- fore, L f X (•, T ) ∈ L 1 (R).
Lebesgue's differentiation theorem ensures the existence of a σ 1 -null measure set N such that if x / ∈ N then

lim δ→0 η f δ (x) = lim δ→0 1 2δ x+δ x-δ L f X (y, T ) dy = L f X (x, T ).
So, applying Fatou's lemma and the fact that function

(x, y) → T ×T f (s)f (t)p X(s),X(t) (x, y) ds dt
is continuous at (x, y), we get that for all x, x + h / ∈ N ,

E L f X (x + h, T ) -L f X (x, T ) 2 = E lim δ→0 η f δ (x + h) -η f δ (x) 2 = E lim δ→0 1 2δ 2 T f (t) 1 {t:|X(t)-(x+h)|<δ} -1 {t:|X(t)-x|<δ} dt 2 ⩽ T ×T f (s)f (t) p X(s),X(t) (x + h, x + h)
-2p X(s),X(t) (x + h, x) + p X(s),X(t) (x, x) ds dt.

A simple calculation shows that the right-hand side of the last inequality is bounded by

C T ×T 1 (r 2 (0) -r 2 (s -t)) 1 2 × h 2 + 1 -exp(-ah 2 (r 2 (0) -r 2 (s -t)) -1 ) ds dt,
where a > 0 is a fixed number and C is locally bounded as function of x. Lemma 4.6.1 gives the required result.

Remark 4.6.12. -It is interesting to note that Proposition 4.6.8 implies, without particular effort, that for any level u, v ∈ R and for all bounded functions f, g : T → R, we have

E L f X (u, T )L g X (v, T ) = T ×T f (s)g(t)p X(s),X(t) (u, v) ds dt.
• To finish this section on the local time, we complete the statement of Theorem 4.6.4 due to Doukhan and León([24]) to the renormalized local time.

and then

E L f X (u, T )Z f (u, T ) = 1 r(0) φ u r(0) k∈N 1 k! H k u r(0) × R H k x/ r(0) E L f X (x, T )L f X (u, T ) dx.
Applying Remark 4.6.12, we get

E L f X (u, T )Z f (u, T ) = 1 r(0) φ 2 u r(0) T ×T f (s)f (t) × 1 r 2 (0) -r 2 (s -t) × k∈N 1 k! H k u r(0) 1 √ 2π R H k x/ r(0) × exp   - x r(0) -u r(s -t)/ r(0) 2 2(r 2 (0) -r 2 (s -t))    dx ds dt.
The following formula can be found in [31, (8), page 804]. For 0 ⩽ α < 1, k ∈ N and z ∈ R,

1 √ 2π ∞ -∞ exp -1 2 (x -z) 2 H k (αx) dx = (1 -α 2 ) k/2 H k αz √ 1 -α 2 .
We make the change of variable x = βy for β ̸ = 0. For 0 ⩽ α < 1, β ̸ = 0, k ∈ N and z ∈ R, we obtain

1 √ 2π ∞ -∞ exp(-1 2 (βx -z) 2 )H k (αβx) dx = 1 β (1 -α 2 ) k/2 H k αz √ 1 -α 2 .
We apply this last formula to

β := r(0) r 2 (0) -r 2 (s -t) , z := ur(s -t) r(0) r 2 (0) -r 2 (s -t)
and to

α := r 2 (0) -r 2 (s -t) r(0) .
We obtain

E L f X (u, T )Z f (u, T ) = 1 r(0) φ 2 u r(0) T ×T f (s)f (t) × k∈N 1 k! H k u r(0) r(s -t) r(0) k H k ur(s -t) r(0) |r(s -t)| ds dt.
We consider the following equality in [33, (39)]). For 0 ⩽ |w| < 1 and x, y ∈ R,

q∈N 1 q! H q (x)H q (y)w q = 1 √ 1 -w 2 exp -w 2 (x 2 + y 2 ) + 2wxy 2(1 -w 2 ) .
We apply this last inequality by choosing

x := u r(0) , y := ur(s -t) r(0) |r(s -t)| and w := r(s -t) r(0) , getting E L f X (u, T )Z f (u, T ) = φ 2 u r(0) × T ×T f (s)f (t) × 1 r 2 (0) -r 2 (s -t) × exp u 2 r(s -t) r(0)(r(0) + r(s -t)) ds ds = E L f X (u, T ) 2 ,
yielding Theorem 4.6.13. Now we will approximate the renormalized local time L f X (u, T ) over T at u, by an appropriate normalization of functionals of the u-level set of the smoothed process X ε .

Approximation to the length of curves of level

set. -Let X : Ω × R d → R, d ⩾ 2,
be a continuous Gaussian isotropic process of zero mean and F its spectral measure. We assume that F is not concentrated in a zero Lebesgue measure Borel set of R d .

We assume that the covariance of process X, say r, is C 2 (R d , R) except at the origin. Note that this implies that R d ∥x∥ 2 d dF (x) = +∞. We consider regularizations of the trajectories of X by means of convolutions of the form X ε (t

) := Ψ ε * X(t), ε > 0, Ψ ε (t) := 1 ε d Ψ( t ε ), where Ψ is C 2 (R d , R
) with compact support, nonnegative, depending only on the norm and such that R d Ψ(t) dt = 1.

Note that X ε : Ω×R d → R is still a centered continuous Gaussian stationary isotropic process and is C 2 (R d , R).

Let T be an open bounded set of R d and let u be a fixed level. Let also f : T → R be a continuous bounded function. The objective of this paragraph is to approximate the renormalized local time L f X (u, T ), by functionals of the u level set of the regular approximating process X ε . We need some definitions.

Let us define

θ d := E[∥ξ∥ d ],
where ξ is a standard Gaussian vector of R d . We will note r ε the covariance of X ε , ε > 0 and by r (ε) that of X and X ε , that is r -Since R d ∥x∥ 2 d dF (x) = +∞, Fatou's lemma implies that lim ε→0 µ ε = +∞. We then deduce that for ε small enough and for all t ∈ T , the vector (X ε (t), ∇X ε (t)) has a density.

(ε) (t) := E[X ε (t)X(0)]. Since X ε is isotropic, E[∇X ε (0)∇X ε (0) t ] = µ ε I d , where µ ε := - ∂ 2 r ϵ ∂t 2 i ( 0 
• We define the functional

ξ f ε (u) := θ -1 d √ µ ε C D r T,Xε (u) f (t) dσ d-1 (t), ε > 0.
We will show the following theorem.

Theorem 4.6.15. -The random variable

ξ f ε (u) converge in L 2 (Ω) towards L f X (u, T ) as ε tends to zero.
Proof of Theorem 4.6.15. Proposition 4.6.8 ensures that it is sufficient to show that

lim δ→0 lim ε→0 E ξ f ε (u) -η f δ (u) 2 = 0. Let Σ := E η f δ (u) 2 + E ξ f ε (u) 2 -2E ξ f ε (u)η f δ (u) .
Propositions 4.6.8 and 4.6.9 imply that

lim δ→0 E η f δ (u) 2 = T ×T f (s)f (t)p X(s),X(t) (u, u) ds dt := α(u). Let us consider E ξ f ε (u) 2 .
We claim that assumptions of Theorem 3.3.9 are fulfilled. It remains to show that for any (s, t) ∈ T × T with s ̸ = t, the vector (X ε (s), X ε (t)) has a density. This fact follows from Lemma 4.6.16 whose proof is given in [19, Lemma 2].

Lemma 4.6.16.

-∃C > 0, ∃ε 0 > 0, ∀ε ⩽ ε 0 , ∀(s, t) ∈ T × T , one has r 2 ε (0) -r 2 ε (s -t) ⩾ C ∥s -t∥ 2 d .
To finish the argument, the Borel-Tsirelson-Ibragimov-Sudakov inequality (see in [START_REF] Adler | Taylor -Random fields and geometry[END_REF]Theorem 2.1.1]) ensures in the one hand that

E sup x∈T ∇ 2 X ε (x) (s) 1,d 2d < ∞.
On the other hand, we use the fact that f is a continuous bounded function on T to verify the hypothesis H 7 . In this way it is enough to establish that ∀u ∈ R, we have

T ×T E ∥∇X ε (s)∥ d ∥∇X ε (t)∥ d X ε (s) = X ε (t) = u × p Xε(s),Xε(t) (u, u) ds dt < ∞,
where p Xε(s),Xε(t) (•, •) is the density of vector (X ε (s), X ε (t)). The proof of this last fact can be found for example in [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF]Proposition 2]. The Rice formula of the second order follows from the application of Theorem 3.3.9. That is, we have

E ξ f ε (u) 2 = θ -2 d T ×T f (s)f (t) ×E ∥∇X ε (s)/ √ µ ε ∥ d ∥∇X ε (t)/ √ µ ε ∥ d X ε (s) = X ε (t) = u ×p Xε(s),Xε(t) (u, u) ds dt.
Remark 4.6.17. -Note that ∀u ∈ R, almost surely

C D r T,Xε (u) = C T,Xε (u) 
.

•

To apply the dominated convergence theorem we need an upper bound for the expression within the integral in last equality. Let us quote the following lemma cited as Appendix 1 in [START_REF] Berzin | Approximation du temps local des surfaces gaussiennes[END_REF]. Lemma 4.6.18. -Let (Y, Z, X 1 , X 2 ) be a centered Gaussian vector taking its values into R 2d+2 , while Y and Z take their values in R d and

X 1 , X 2 in R. Let us suppose that E[X 2 1 ] = E[X 2 2 ] = σ 2 , E[X 1 X 2 ] = γ with σ 4 -γ 2 ̸ = 0, then ∀u ∈ R E ∥Y ∥ d ∥Z∥ d X 1 = X 2 = u ⩽ E ∥Y ∥ 2 d 1 2 E[∥Z∥ 2 d ] 1 2 1 + 4σ 2 (σ 2 + γ) -2 u 2 .
In particular if, for all s, t ∈ T , with s ̸ = t, we choose Y := ∇X ε (s) and Z := ∇X ε (t), X 1 := X ε (s) and X 2 := X ε (t), thus σ 2 := r ε (0) and γ := r ε (s-t). Lemma 4.6.16 ensures that assumptions of Lemma 4.6.18 are satisfied. Moreover, note that since for all (s, t) ∈ T × T , r ε (0) + r ε (s -t) converges uniformly to r(0) + r(s -t) > 0 when ε tends to zero, so for all (s, t) ∈ T × T , r ε (0) + r ε (s -t) ⩾ C > 0 for ε sufficiently small.

We deduce that for all s, t ∈ T , with s ̸ = t and ε ⩽ ε 0 , we have

|f (s)| |f (t)| × E ∥∇X ε (s)/ √ µ ε ∥ d ∥∇X ε (t)/ √ µ ε ∥ d X ε (s) = X ε (t) = u ×p Xε(s),Xε(t) (u, u) ds dt ⩽ C 1 + 4 r ε (0)u 2 (r ε (0) + r ε (s -t)) 2 1 r 2 ε (0) -r 2 ε (s -t) × exp - u 2 r ε (0) + r ε (s -t) ⩽ C 1 ∥s -t∥ d ∈ L 1 (T × T ).
We deduce that

lim ε→0 E ξ f ε (u) 2 = θ -2 d T ×T f (s)f (t) × lim ε→0 E ∥∇X ε (s)/ √ µ ε ∥ d ∥∇X ε (t)/ √ µ ε ∥ d X ε (s) = X ε (t) = u × p Xε(s),Xε(t) (u, u) ds dt,
provided that the limit inside the integral exists.

In pursuit of our goal, we use the decomposition given in [61, p. 60], that is for τ := s -t, where s, t ∈ T and ε > 0

∇X ε (0) = ξ ε + (X ε (0)α ε + X ε (τ )β ε ) ∇X ε (τ ) = ξ ⋆ ε -(X ε (τ )α ε + X ε (0)β ε )
, where ξ ε and ξ ⋆ ε are centered Gaussian vectors taking values in R d , with joint Gaussian distribution, each of them independent of (X ε (0), X ε (τ )), such that, if ∇r ε stands for the Jacobian of the X ε covariance function,

α ε := r ε (τ )∇r ε (τ ) r 2 ε (0) -r 2 ε (τ ) β ε := - r ε (0)∇r ε (τ ) r 2 ε (0) -r 2 ε (τ ) Var(ξ ε ) = Var(ξ ⋆ ε ) = -∇ 2 r ε (0) - r ε (0) r 2 ε (0) -r 2 ε (τ ) ∇r ε (τ )∇r ε (τ ) t Cov(ξ ε , ξ ⋆ ε ) = -∇ 2 r ε (τ ) - r ε (τ ) r 2 ε (0) -r 2 ε (τ ) ∇r ε (τ )∇r ε (τ ) t .
With these notations, we obtain

lim ε→0 E ξ f ε (u) 2 = θ -2 d T ×T f (s)f (t) × lim ε→0 E ξ ε - ∇r ε (s -t)u r ε (0) + r ε (s -t) √ µ ε d × ξ ⋆ ε + ∇r ε (s -t)u r ε (0) + r ε (s -t) √ µ ε d ×p Xε(s),Xε(t) (u, u) ds dt.
Using Remark 4.6.14, one can show that for all s, t ∈ T ,

∇r ε (s -t) √ µ ε ---→ ε→0 0 and ∇ 2 r ε (s -t) µ ε ---→ ε→0 0. Furthermore, r ε (s -t) ---→ ε→0 r(s -t), so lim ε→0 E ξ f ε (u) 2 = α(u).
Now to finish the proof of theorem, we need to compute the term

E ξ f ε (u)η f δ (u) . We have E ξ f ε (u)η f δ (u) = 1 2δ T f (s) θ -1 d √ µ ε E C D r T,Xε (u) f (t)1 |X(s)-u|<δ dσ d-1 (t) ds.
We are going to use the first order Rice formula given in Theorem 3.3.3. For any fixed s ∈ T , the process Y is defined as

Y (t) := f (t)1 |X(s)-u|<δ , t ∈ T .
This model is not part of the proposed models but a slight modification allows us to include it in those studied. As before when we applied the Rice formula of the second order, we check that the hypotheses making the formula valid are verified. We obtain

E ξ f ε (u)η f δ (u) = 1 2δ T T θ -1 d f (s)f (t) × E ∥∇X ε (t)/ √ µ ε ∥ d 1 |X(s)-u|<δ X ε (t) = u × p Xε(t) (u) dt ds,
where p Xε(t) (•) stands for the density of the random variable X ε (t).

Since function f is bounded, ∀ε ⩽ ε 0 and ∀s, t ∈ T θ -1 d |f (s)| |f (t)| E ∥∇X ε (t)/ √ µ ε ∥ d 1 |X(s)-u|<δ X ε (t) = u × p Xε(t) (u) ⩽ C.
The dominated convergence theorem applies. Using once again Remark 4.6.14, we can show that for s, t ∈ T ,

∇r (ε) (s -t) √ µ ε ---→ ε→0 0. Furthermore r (ε) (s -t) ---→ ε→0 r(s -t). Thus lim ε→0 E ξ f ε (u)η f δ (u) = T T θ -1 d 2δ f (s)f (t) × lim ε→0 E ∥∇X ε (t)/ √ µ ε ∥ d 1 |X(s)-u|<δ X ε (t) = u × p Xε(t) (u) dt ds = T T θ -1 d 2δ f (s)f (t)E ∥ξ∥ d 1 |X(s)-u|<δ X(t) = u × p X(t) (u) dt ds,
where p X(t) (•) stands for the density of the random variable X(t), and ξ is a standard Gaussian vector taking values in R d , independent of (X(s), X(t)), for all s, t ∈ T . Therefore

lim ε→0 E ξ f ε (u)η f δ (u) = T T 1 2δ f (s)f (t)E[1 |X(s)-u|<δ X(t) = u ] × p X(t) (u) dt ds = 1 2δ u+δ u-δ T T f (s)f (t) p X(s),X(t) (u, v) ds dt dv.
By using the already mentioned continuity of the function

(x, y) → T ×T f (s)f (t)p X(s),X(t) (x, y) ds dt, 144 CHAPTER 4. APPLICATIONS
we finally obtain that

lim δ→0 lim ε→0 E ξ f ε (u)η f δ (u) = α(u).
This completes the proof of the theorem.

4.6.3. Rate of convergence. -In the same context as before, and for technical reasons, we renormalize the functional ξ f ε (u) at point u as follows. We consider

V f ε (u) := θ -1 d √ µ ε r ε (0) C T,Xε/ √ rε(0) (u) f (t) dσ d-1 (t), ε > 0,
where f : T → R is still a continuous and bounded function and

T is an open bounded set of R d .
As in the previous section, we can prove that

V f ε (u) converges in L 2 (Ω) towards the renormalized local time L f X/ √ r(0)
(u, T ). We are aiming at giving the rate of this convergence.

We will make the following additional hypothesis on the covariance r of process X. It is assumed that the covariance can be written as r(t) = r(0) -∥t∥ 2α d L(∥t∥ d ), 0 < α < 1, where lim x→0 + L(x) = C L > 0, where L ⩾ 0 is even and has two continuous derivatives except at the origin, which satisfy |x| L ′ (|x|) = O(1) and x 2 L ′′ (|x|) = O(1) as x → 0. Moreover, in case where α = 1/2 and d = 2, we further assume that function L has a continuous third derivative except at the origin, which satisfies

|x| L ′ (|x|) = o(1), x 2 L ′′ (|x|) = o(1) and x 3 L ′′′ (|x|) = O(1) as x → 0.
The rate will then depend on the value of α. We will draw largely on the results achieved in [START_REF] Berzin | Level crossings and local time for regularized Gaussian processes[END_REF], where the framework was the same but in case where d = 1. We study the convergence of

Ξ ε (f, g) := ε -a(α) [ln(1/ε)] -b(α) R g(u) V f ε (u) -L f X/ √ r(0) (u, T ) du := ε -a(α) [ln(1/ε)] -b(α) V ε (f, g),
where g : R → R is C 2 (R, R) and also L 2 (φ(x) dx).

We also assume that g ′ and g ′′ are L 2 (φ(x) dx). Furthermore, in case where α = 1/2 and d > 2, we suppose that g ′′ belongs to L 4 (φ(x) dx).

The Hermite coefficients of function g being denoted by c n , n ∈ N, we set for

x ∈ R Hg(x) := xg ′ (x) -g ′′ (x) = ∞ n=1 nc n H n (x).
Thus the following series is convergent,

∞ n=0 n 2 n!c 2 n < ∞. (86) 
Let us introduce some notations and hypothesis. We define the constants C α and ℓ α as

C α := C L R d R d Ψ(v)Ψ(w) ∥v -w∥ 2α d dv dw = C L R d Φ(w) ∥w∥ 2α d dw,
where Φ = Ψ * Ψ is the convolution product of Ψ with itself and

ℓ α := C α 2r (0) 
.

The constants C Ψ and K 1/2 are

C Ψ := 1 2d R d ∥w∥ 2 d [Φ(w) -2Ψ(w)] dw, and 
K 1/2 := C L R d Ψ(w) ∥w∥ d dw.
We denote by φ m (resp. N m ) the standard Gaussian density (resp. random variable) on R m , for m ∈ N -{0} with the convention that φ 1 = φ. For k := (k 1 , k 2 , . . . , k m ) ∈ N m and x := (x 1 , x 2 , . . . , x m ) ∈ R m , we set

|k| := k 1 + k 2 + • • • + k m , k! := k 1 !k 2 ! • • • k m ! and H k (x) := 1⩽j⩽m H k j (x j ).
We define the function h : R d → R:

for x = (x 1 , x 2 , . . . , x d ) ∈ R d , h(x) := θ -1 d ∥x∥ d -1 = ∞ q=0 k∈N d |k|=q a(k) H k (x),
where for

k ̸ = 0, (87) a(k 
) := θ -1 d k! R d ∥x∥ d H k (x)φ d (x) dx,
and a(k) := 0 for k = 0. Note that since the polynomial H n is odd when n is odd, the summation on q begins at q = 2 since all the indices k i , i = 1, . . . , d such |k| = q have to be even. Also define

χ 2 d (α) := R d ∂ 2 Φ ∂x 2 1 (v) ∥v∥ 2α d dv,
and if d = 2 (and α = 1/2)

σ := 2 √ π χ 2 2 (1/2)
.

When α ⩾ 1 2 we suppose that the process X has a spectral density s. In the case where α = 1/2 , we will make the assumption that the open set T is a rectangle.

Asymptotic equivalence symbol ≡ This symbol will be reserved for the asymptotic equivalence of real deterministic sequences.

Asymptotic equivalence symbol ≃ For a set of random variables X n , the notation

X n = o P (1) means that X n Prob. ---→ n→∞ 0. Furthermore, if Y n is a set of random variables such that X n = Y n + o P (1), we will note X n ≃ Y n .
Let us state the following two theorems.

Theorem 4.6.19. -The random variable V ε (f, g) satisfies E[V 2 ε (f, g)] = O(ε 4α + ε 2 ln(1/ε) + ε 4(1-α) ).
Morover:

1. If α < 1 2 , a(α) = 2α, b(α) = 0 and the limit of the variance divided by ε 4α is

ℓ 1 := ℓ 2 α ∞ n=1 n 2 n!c 2 n T ×T f (t)f (s) r(t -s) r(0) n dt ds. 2. If α > 1 2 , a(α) = 2(1 -α), b ( 
α) = 0 and the limit of the variance divided by ε 4(1-α) is

ℓ 2 := 2 a(2, 0, . . . , 0) C L χ 2 d (α) 2 ∞ q=2 q-2 ℓ=(q-4)∨0 (q -2)!c 2 q-2 q -2 ℓ 2 q -2 -ℓ × T ×T f (t)f (s) r(t -s) r(0) ℓ d i,j=1 - 1 r(0) ∂r ∂t i (t -s) ∂r ∂t j (t -s) q-2-ℓ - ∂ 2 r ∂t i ∂t j (t -s) ℓ-(q-4)
dt ds.

3. if α = 1/2 and d > 2, a(α) = 1, b(α) = 0 and the limit of the variance divided by ε 2 is ℓ 1 + ℓ 2 + ℓ 3 + ℓ 4 , where ℓ 3 is

ℓ 3 := C Ψ r(0) ∞ n=1 nn!c 2 n T ×T f (t)f (s) r(t -s) r(0) n-1 d i=1 ∂ 2 r ∂t 2 i (t -s) dt ds,
and ℓ 4 is

ℓ 4 := 2 ℓ 1/2 r(0) a(2, 0, . . . , 0) C L χ 2 d (1/2) ∞ q=2 c q-2 c q qq! T ×T f (t)f (s) r(t -s) r(0) q-2 d i=1 ∂r ∂t i (t -s) 2 dt ds. 4. if α = 1/2 and d = 2, a(α) = 1, b(α) = 1/2
and the limit of the variance divided by ε 2 ln(1/ε) is

ℓ 5 := a 2 (2, 0)σ 2 T f 2 (t) dt E g 2 X(0)/ r(0) .
Before stating Theorem 4.6.20, let us define the following random variable

ξ ε . For t ∈ T , we let ξ ε (t) := (X ε (t) -X(t))/ε. Theorem 4.6.20. - 1. If α < 1 2 , a(α) = 2α, b(α) = 0, we have Ξ ε (f, g) L 2 (Ω) ----→ ε→0 X(f, g)
where

X(f, g) := ℓ α ∞ -∞ Hg(x)L f X/ √ r(0) (x, T ) dx = ℓ α T f (t) X(t)/ r(0)g ′ X(t)/ r(0) -g ′′ X(t)/ r(0) dt. 2. If α > 1 2 , a(α) = 2(1 -α), b(α) = 0, we have Ξ ε (f, g) L 2 (Ω) ----→ ε→0 Y (f, g)
where

Y (f, g) := - a(2, 0, . . . , 0) C L χ 2 d (α) d j=1 ∞ k=2 c k-2 k! 1 r(0) k-2 × R dk K f (λ 1 + λ 2 + • • • + λ k ) 148 CHAPTER 4. APPLICATIONS × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) dZ X (λ 1 ) dZ X (λ 2 ) . . . dZ X (λ k ),
and where we set for λ ∈ R d , λ := (λ (1) , λ (2) , . . . , λ (d) ) and

(88) K f (λ) := T f (t)e i⟨λ, t⟩ dt,
and we denoted by ⟨•, •⟩ the canonical scalar product in R d .

k is the set of permutations of {1, 2, . . . , k}, dZ X is the random spectral measure associated with X and the integral is an Itô-Wiener integral (see [START_REF]Major -Multiple Wiener-Itô integrals[END_REF]). 3. If α = 1/2 and d > 2, a(α) = 1, b(α) = 0, the random variable ξ ε converges vaguely to ξ (see the Section 5.1 of Appendix 5 for definition of the vague convergence) and the random variable Ξ ε (f, g) converges stably and vaguely to X(f, g) + Y (f, g) + Z(f, g) (see also the Section 5.2 of Appendix 5 for definition of the stable vague convergence), where

Z(f, g) := K 1/2 r(0) T f (t)g ′′ X(t)/ r(0) dt + 1 r(0) T f (t)g ′ X(t)/ r(0) ξ(t) dt, with T f (t)g ′ X(t)/ r(0) ξ(t) dt := lim ε→0 1 r(0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt,
the last convergence being stable vague convergence. Furthermore for all x(•) belonging to L 2 (T ),

L T f (t)g ′ X(t)/ r(0) ξ(t) dt X(•) = x(•) = N 0; C Ψ T ×T f (t)f (s) d i=1 ∂ 2 r ∂t 2 i (t -s) g ′ x(t)/ r(0) ×g ′ x(s)/ r(0) dt ds . 4. if α = 1/2 and d = 2, a(α) = 1, b(α) = 1/2, the random variable Ξ ε (f, g)
stably converges when ε → 0 to N (f, g) (see the Section 5.2 of Appendix 5 for definition of the stable convergence), where

N (f, g) := a(2, 0)σ T f (t)g X(t)/ r(0) d W (t) ,
and W is a standard Brownian sheet in R 2 independent of X.

Remark 4.6.21. -Note that in case where α > 1 2 , if we assume that f is a constant function whose value is one and that the open set T is a rectangle with the form T = d ℓ=1 ]a ℓ , b ℓ [, then the function K f can be expressed as follows

K f (λ) = d ℓ=1 exp(iλ (ℓ) b ℓ ) -exp(iλ (ℓ) a ℓ ) /iλ (ℓ) ,
for λ := (λ (1) , λ (2) 

, . . . , λ (d) ) ∈ R d .
So that in the very special case where T = introo01 d , the kernel has the following particular form

K f (λ) = d ℓ=1 exp(iλ (ℓ) ) -1 /iλ (ℓ) .
Thus, the corresponding result stated in 2. can be linked to [18, Theorem 2 (iii)].

• Proof of Theorem 4.6.19. We apply the coarea formula established in Corollary 2.3.4 to the Borel set B := T and to the functions

h : R d × R → R, G : T ⊂ R d → R, defined by h(t, u) := f (t)g(u); G := X ε r ε (0) .
We deduce on the one hand that

R g(u)V f ε (u) du = θ -1 d √ µ ε T f (t)g X ε (t)/ r ε (0) ∥∇X ε (t)∥ d dt.
On the other hand, Theorem 4.6.5 applied to the functions h(t, u) := f (t)g(u) and to X := X/ r(0) yields that

R g(u)L f X/ √ r(0) (u, T ) du = T f (t)g X(t)/ r(0) dt.
By combining the two previous expressions, we finally get

V ε (f, g) = T f (t) θ -1 d √ µ ε g X ε (t)/ r ε (0) ∥∇X ε (t)∥ d -g X(t)/ r(0) dt. Thus V ε (f, g) = T f (t)g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) dt + T f (t) g X ε (t)/ r ε (0) -g X(t)/ r(0) dt × T ×T f (t)f (s) r ε (t -s) r ε (0) n dt ds.
Let us state and prove a lemma.

Lemma 4.6.22.ε -2α (r(0) -r ε (0)) → C α as ε goes to zero.

Proof of Lemma 4.6.22.

r ε (0) = R d Φ(w)r(εw) dw.
Using the form of the covariance r and the fact that R d Φ(t) dt = 1, we easily obtain

ε -2α (r(0) -r ε (0)) = R d Φ(w)L(ε ∥w∥ d ) ∥w∥ 2α d dw.
Convergence follows from that of L, i.e. from the fact that

lim x→0 + L(x) = C L > 0.
By writing 1 -r ε (0)/r(0) as

1 - r ε (0) r(0) = r(0) -r ε (0) ( r ε (0) + r(0)) r(0) ,
and by using Lemma 4.6.22, we get on the one hand that

ε -4α 1 - r ε (0) r(0) 2 ---→ ε→0 ℓ 2 α .
On the other hand,

n-1 k=0 r ε (0) r(0) k 2 2 ⩽ n 2 and ∞ n=1 n!n 2 c 2 n < ∞.
These arguments plus the fact that f is a bounded function will be used to apply Lebesgue's dominated convergence theorem giving the following convergence: ∀α in ]0, 1[, we have

ε -4α E U 2 2 ---→ ε→0 ℓ 1 . (89) 
We are now interested in the asymptotic variance of V 2 . According to Mehler's formula

E V 2 2 = ∞ n=1 n!c 2 n T ×T f (t)f (s) × r ε (t -s) r(0) n -2 r (ε) (t -s) r(0) n + r(t -s) r (0) 
n dt ds.

We divide the integration domain T × T into two parts, namely T

ε , defined by:

T (1) ε := {(s, t) ∈ T × T ; ∥t -s∥ d ⩽ M ε} and 
T (2) ε := {(s, t) ∈ T × T ; ∥t -s∥ d > M ε}
where M will be chosen later (in Lemmas 4.6.23 and 4.6.24). Let us denote by A ε the term corresponding to the domain T

ε . Our attention is focused on finding an upper bound for this term. Since f is bounded, we have

|A ε | ⩽ C ∞ n=1 n!c 2 n T (1) ε r ε (t -s) r(0) n - r(t -s) r(0) n + r (ε) (t -s) r(0) n - r(t -s) r(0) n dt ds. 
Using the fact that for all s and t ∈ T ,

r(t -s) r(0) ⩽ 1, r ε (t -s) r(0) ⩽ 1 and r (ε) (t -s) r(0) ⩽ 1,
we easily obtain the following bound

|A ε | ⩽ C ∞ n=1 n!nc 2 n T (1) ε r ε (t -s) -r(t -s) + r (ε) (t -s) -r(t -s) dt ds.
At this stage of the proof, we need a lemma.

Lemma 4.6.23.

-∃C > 0, ∃ε 0 > 0, ∃M > 0, ∀ε ⩽ ε 0 , ∀(s, t) ∈ T × T , we have sup r (ε) (s -t) -r(s -t) ; |r ε (s -t) -r(s -t)| ⩽ C ε 2α 1 {∥s-t∥ d ⩽M ε} +ε 2 ∥s -t∥ 2α-2 d 1 {∥s-t∥ d >M ε} .
Let us suppose for a moment that the lemma is proved. In this vein we obtain

|A ε | ⩽ Cσ d (T (1) ε ) ∞ n=1 n!nc 2 n ε 2α .
Using inequality (86), we finally get

|A ε | ⩽ Cε d+2α .
Thus, we have shown that

A ε = o(ε 4α + ε 2 ).
Let us proceed to the proof of Lemma 4.6.23.

Proof of Lemma 4.6.23. For τ := s -t, while s, t ∈ T , the difference between the two terms r (ε) (τ ) and r(τ ) is expressed and using that function Ψ is a density, we obtain

r (ε) (τ ) -r(τ ) = R d Ψ(v) [r(τ -εv) -r(τ )] dv = R d Ψ(v) L(∥τ ∥ d ) ∥τ ∥ 2α d -L(∥τ -εv∥ d ) ∥τ -εv∥ 2α d dv.
Since Ψ has compact support in R d , it is always possible to choose a number

N > 0 such that if ∥v∥ d > N then Ψ(v) = 0. Let M = 4N . Since the function L is bounded on a compact set, obviously, if ∥τ ∥ d ⩽ M ε, then r (ε) (τ ) -r(τ ) ⩽ Cε 2α .
Let us now choose τ such that ∥τ ∥ d > M ε and v such that ∥v∥ d ⩽ N , then ∥τ -εv∥ d ⩾ 3N ε. Thus we can make a second order expansion of r(τ -εv) in the neighbourhood of τ . Using the fact that Ψ is a density function and in addition is an even function as depending on the norm, we can express

r (ε) (τ ) -r(τ ) as (90) r (ε) (τ ) -r(τ ) = 1 2 {∥v∥ d ⩽N } Ψ(v) × ε 2    d i=1 d j=1 v i v j ∂ 2 r ∂τ i ∂τ j (τ -θεv)    dv,
with 0 ⩽ θ < 1 depending on ε, τ and v. Now for x ̸ = 0, we can express

∂ 2 r ∂x 2 i (x), for i = 1, . . . , d, as - ∂ 2 r ∂x 2 i (x) = 2α ∥x∥ 2α-4 d L(∥x∥ d ) ∥x∥ 2 d + 2(α -1)x 2 i + ∥x∥ 2α-3 d L ′ (∥x∥ d ) (4α -1)x 2 i + ∥x∥ 2 d + x 2 i ∥x∥ 2α-2 d L ′′ (∥x∥ d ).
Since L has two continuous derivatives except at the origin, which satisfies

|x| L ′ (|x|) = O(1) and x 2 L ′′ (|x|) = O(1) as x → 0 and lim x→0 + L(x) = C L , we can conclude that ∂ 2 r ∂x 2 i (x) = O(∥x∥ 2α-2 d
), as soon as x lives in a compact set.

We have thus proved that, for τ , v, θ and ε such that

∥τ ∥ d > M ε, ∥v∥ d ⩽ N , 0 ⩽ θ < 1 and ε ⩽ ε 0 , ∂ 2 r ∂x 2 i (τ -θεv) = O(∥τ -θεv∥ 2α-2 d ) = O(∥τ ∥ 2α-2 d ), since ∥τ ∥ 2-2α d ⩽ 2 1-α ∥τ -θεv∥ 2-2α d as soon as ∥τ ∥ d > 4N ε = M ε.
We can argue in a similar way for the other terms ∂ 2 r ∂τ i ∂τ j (τ -θεv), for i, j = 1, . . . , d

and i ̸ = j. Finally, using that R d Ψ(v) ∥v∥ 2 d dv < ∞, we have proved that for ∥τ ∥ d > M ε and ε ⩽ ε 0 , r (ε) (τ ) -r(τ ) ⩽ Cε 2 ∥τ ∥ 2α-2 d .
Thus the lemma follows for the term r (ε) (τ ) -r(τ ). Now to finish the proof of the lemma, we consider the second difference term r ε (τ ) -r(τ ). In the same way as before, we can write this term as

r ε (τ ) -r(τ ) = R d Φ(v) [r(τ -εv) -r(τ )] dv = R d Φ(v) L(∥τ ∥ d ) ∥τ ∥ 2α d -L(∥τ -εv∥ d ) ∥τ -εv∥ 2α d dv.
The same kind of arguments could be considered by replacing the Ψ function with the Φ function and would give the expected result. This completes the proof of the lemma. Returning to our proof of the theorem, we consider the second term B ε corresponding to the region T

ε . As for the proof concerning the set T

ε , we bound B ε as follows.

|B ε | ⩽ C ∞ n=1 n!nc 2 n T (2) ε r ε (t -s) -r(t -s) + r (ε) (t -s) -r(t -s) dt ds.
The second part of Lemma 4.6.23 yields the bound

|B ε | ⩽ Cε 2 T ×T ∥t -s∥ 2α-2 d dt ds.
And since d -2 + 2α > 0, one finally proved that

|B ε | ⩽ Cε 2 .
We have shown that

E[S 2 2 ] = O(ε 4α + ε 2 ). Using the convergence established in (89) it turns out that if α < 1 2 , ε -4α E[S 2 2 ] ---→ ε→0 ℓ 1 .
Now consider the case where α = 1/2 and prove that

ε -2 E[S 2 2 ] ---→ ε→0 ℓ 1 + ℓ 3 .
We have already proven that

ε -2 E U 2 2 ---→ ε→0 ℓ 1 .
Thus let us show that

ε -2 E V 2 2 ---→ ε→0 ℓ 3 ,
and that

ε -2 E[U 2 V 2 ] ---→ ε→0 0.
We first compute E V 2 2 . As in the previous part, we split E V 2 2 into two parts, A ε and B ε . We saw that

A ε = O(ε d+2α ) = o(ε 2 ). Let us examine the second term B ε and show that ε -2 B ε ---→ ε→0 ℓ 3 . We have B ε = ∞ n=1 n!c 2 n T (2) ε f (t)f (s) × r ε (t -s) r(0) n -2 r (ε) (t -s) r(0) n + r(t -s) r(0) n dt ds.
Using equality (90), we obtain

B ε = ∞ n=1 n!c 2 n T (2) ε f (t)f (s) 1 r(0) n ×      r(t -s) + 1 2 {∥v∥ d ⩽N } Φ(v) × ε 2   d i=1 d j=1 v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv)   dv   n -2   r(t -s) + 1 2 {∥v∥ d ⩽N } Ψ(v) × ε 2   d i=1 d j=1 v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv)   dv   n +r n (t -s)    dt ds.
We expand the terms into each parenthesis using the binomial expansion. We get

B ε = ∞ n=1 n!c 2 n T (2) ε f (t)f (s) 1 r(0) n × n k=1 n k ε 2 2 k r n-k (t -s)        d i,j=1 R d Φ(v)v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv) dv   k -2   d i,j=1 R d Ψ(v)v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv) dv   k      dv dt ds := B (1) ε + B (2) ε ,
where the term B

ε corresponds to the term obtained for k = 1 and the term B

ε stands for the remaining ones (k ⩾ 2).

Let us deal with the first term B

(1) ε which will give the limit.

1 ε 2 B (1) ε = 1 2r(0) ∞ n=1 nn!c 2 n T (2) ε f (t)f (s) r(t -s) r(0) n-1 ×   d i,j=1 R d (Φ(v) -2Ψ(v)) v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv) dv   dt ds.
Let us see that we can apply Lebesgue's dominated convergence theorem. At this point in the proof, we state a lemma whose proof was demonstrated in that of Lemma 4.6.23 and which is valid not only for α = 1 2 but also for all ranges of 0 < α < 1.

Lemma 4.6.24. -∃C > 0, ∃ε 0 > 0, ∃M > 0, ∀ε ⩽ ε 0 , ∀(s, t) ∈ T × T , such that ∥t -s∥ d ⩾ M ε and for all v ∈ R d such that ∥v∥ d ⩽ M 4
, then for all i, j = 1, . . . , d, we have

∂ 2 r ∂t i ∂t j (t -s -θεv) ⩽ C ∥t -s∥ 2α-2 d , for all 0 ⩽ θ < 1.
Thus, taking α = 1/2 and using (86) knowing that f is bounded, we can bound the integrand appearing in the expression of

B (1) ε /ε 2 by C ∥t -s∥ -1 d .
Moreover, since d -1 > 0, we have (91)

T ×T ∥t -s∥ -1 d dt ds < ∞.
All the ingredients are gathered to justify the exchange of the limit with the series and the integral, which gives

lim ε→0 1 ε 2 B (1) ε = 1 2r(0) ∞ n=1 nn!c 2 n T ×T f (t)f (s) r(t -s) r(0) n-1 ×   d i,j=1 ∂ 2 r ∂t i ∂t j (t -s) R d (Φ(v) -2Ψ(v)) v i v j dv   dt ds.
To finish with this term, noting that the functions Φ and Ψ depend only on the norm, we finally express the last convergence as

lim ε→0 1 ε 2 B (1) ε = ℓ 3 . Let us show that 1 ε 2 B (2) ε ---→ ε→0 0.
Using the previous lemma, we bound the terms

1 r(0) k ×      d i,j=1 R d Φ(v)v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv) dv   k -2   d i,j=1 R d Ψ(v)v i v j ∂ 2 r ∂t i ∂t j (t -s -θεv) dv   k    by C ∥t -s∥ -1 d k which is also bounded by C ∥t -s∥ -1 d × C M ε k-1 .
In that way, we obtain the following bound.

B (2) ε ⩽ C ∞ n=2 n!c 2 n n k=2 n k ε 2 2 k C M ε k-1 × T (2) ε ∥t -s∥ -1 d r(t -s) r(0) n-k dt ds. Thus 1 ε 2 B (2) ε ⩽ C ∞ n=2 n!c 2 n n k=2 n k C M ε k-1 × T (2) ε ∥t -s∥ -1 d r(t -s) r(0) n-k dt ds.
By making the change of variable k -2 = ℓ we obtain

1 ε 2 B (2) ε ⩽ Cε ∞ n=2 n!c 2 n n-2 ℓ=0 n ℓ + 2 C M ε ℓ × T (2) ε ∥t -s∥ -1 d r(t -s) r(0) n-2-ℓ dt ds.
Now for n ⩾ 2 we use the bound,

n ℓ + 2 ⩽ n(n -1) n -2 ℓ getting 1 ε 2 B (2) ε ⩽ Cε ∞ n=2 n(n -1)n!c 2 n n-2 ℓ=0 n -2 ℓ C M ε ℓ × T (2) ε ∥t -s∥ -1 d r(t -s) r(0) n-2-ℓ dt ds = Cε ∞ n=2 n(n -1)n!c 2 n × T (2) ε ∥t -s∥ -1 d r(t -s) r(0) + C M ε n-2 dt ds.
At this stage of the demonstration, we have to prove a lemma.

Lemma 4.6.25. -For ε small enough and M large enough,

r(t -s) r(0) + C M ε < 1, for all s, t ∈ T (2) 
ε . Let us assume for a moment that the lemma is proved. Using (86) and (91), we obtain the bound

1 ε 2 B (2) ε ⩽ Cε.
To conclude, we have proved that in case α = 1 2 ,

ε -2 E V 2 2 ---→ ε→0 ℓ 3 .
Before going further in the proof, let us show Lemma 4.6.25.

Proof of Lemma 4.6.25. On the one hand, let us notice that for δ > 0 small enough and s, t ∈ T

ε , such that ∥t -s∥ d ⩽ δ, we have

r(t -s) r(0) = r(t -s) r(0) , and 
1 - r(t -s) r(0) = L(∥t -s∥ d ) r(0) ∥t -s∥ d ⩾ M C L r(0) ε,
where we defined

C L := inf {s,t∈T } {L(∥t -s∥ d )} > 0. Thus for s, t ∈ T (2) ε , such that ∥t -s∥ d ⩽ δ 1 - r(t -s) r(0) - C M ε ⩾ M ε C L r(0) - C M 2 > 0,
for M sufficiently large. On the other hand, one can choose ε sufficiently small so that

sup {s,t∈T,∥t-s∥ d ⩾δ} r(t -s) r(0) + C M ε ⩽ η < 1.
This completes the proof of the lemma.

Let us now prove that in the case α = 1/2,

ε -2 E[U 2 V 2 ] ---→ ε→0 0.
Using the Mehler's formula once again, we obtain

1 ε 2 E[U 2 V 2 ] = ∞ n=1 n!c 2 n T ×T f (t)f (s) 1 ε 1 - r ε (0) r(0) n × 1 ε r ε (t -s) r ε (0) r(0) n - r (ε) (t -s) r ε (0) r(0) n dt ds.
Working in the same way as for the terms U 2 , A ε and B ε , we easily obtain

1 ε 2 |E[U 2 V 2 ]| ⩽ C ∞ n=1 n 2 n!c 2 n 1 ε 1 - r ε (0) r(0) × 1 ε T ×T r ε (t -s) -r (ε) (t -s) dt ds .
Using Lemmas 4.6.22 and 4.6.23, inequalities (86) and (91), we find the following bound

1 ε 2 |E[U 2 V 2 ]| ⩽ C T ×T 1 {∥s-t∥ d ⩽M ε} + ε ∥s -t∥ -1 d 1 {∥s-t∥ d >M ε} dt ds ⩽ C ε d + ε ⩽ Cε = o(1).
For α = 1/2 we have proved that

ε -2 E[S 2 2 ] ---→ ε→∞ ℓ 1 + ℓ 3 .
Now, consider the term S 1 .

Our goal is to establish that E[S 2 1 ] = O(ε 4(1-α) + ε 2 ln(1/ε)). For this purpose, let us prove Proposition 4.6.26.

Proposition 4.6.26. - 1. If d -4 + 4α > 0, 1 ε 4(1-α) E[S 2 1 ] ---→ ε→0 ℓ 2 . 2. If d -4 + 4α < 0 or (d = 3 and α = 1 4 ), E[S 2 1 ] = O(ε 2 ). 3. If d = 2 and α = 1/2, 1 ε 2 ln(1/ε) E[S 2 1 ] ---→ ε→0 ℓ 5 .
Remark 4.6.27. -The proposition highlights the fact that the term S 1 will prevail when α > 1/2 or when α = 1/2 and d = 2. In the case where α > 1/2,

1 ε 4(1-α) E[S 2 1 ] ---→ ε→0 ℓ 2 .
Parts 1, 2 and 4 of Theorem 4.6.19 will then follow. Furthermore, in case where α = 1/2 and d > 2, this proposition implies that

1 ε 2 E[S 2 1 ] ---→ ε→0 ℓ 2 . • Proof of Proposition 4.6.26. Let us calculate E[S 2 1 ]. E[S 2 1 ] = T ×T f (t)f (s)E g X ε (t)/ r ε (0) g X ε (s)/ r ε (0) × h(∇X ε (t)/ √ µ ε ) h(∇X ε (s)/ √ µ ε ) dt ds.
As in the previous section, we divide the integration domain T × T into two parts T

(1) ε and T

ε . Let ℓ 1 (ε) be the integral over T

ε . Making the change of variable t -s = εw, we obtain

ℓ 1 (ε) = ε d {(w,t):(t-εw,t)∈T ×T,∥w∥ d ⩽M } f (t)f (t -εw) × E g X ε (εw)/ r ε (0) g X ε (0)/ r ε (0) h(∇X ε (εw)/ √ µ ε ) × h(∇X ε (0)/ √ µ ε ) dt dw.
Since the function f is assumed to be bounded, we can bound the following expression. For any (w, t) such that (t -εw, t) ∈ T × T ,

f (t)f (t -εw)E g X ε (εw)/ r ε (0) g X ε (0)/ r ε (0) h(∇X ε (εw)/ √ µ ε ) h(∇X ε (0)/ √ µ ε ) ⩽ CE g 2 X ε (0)/ r ε (0) h 2 (∇X ε (0)/ √ µ ε ) = CE g 2 X ε (0)/ r ε (0) E h 2 (∇X ε (0)/ √ µ ε ) = CE g 2 (N 1 ) E h 2 (N d ) < ∞,
the finiteness is justified by the fact that g is L 2 (φ(x) dx).

So we have proved that

ℓ 1 (ε) = O(ε d ).
We now consider the integral on T

(2) ε denoted by ℓ 2 (ε). Since the product h • g is L 2 (R d+1 , φ d+1 (x) dx), the following expansion converges in this space. For

x := (x 1 , x 2 , . . . , x d , x d+1 ) ∈ R d+1 , h(x 1 , x 2 , . . . , x d )g(x d+1 ) = ∞ q=2 k∈N d+1 |k|=q b(k) H k (x), (92) 
where for k :

= (k 1 , k 2 , . . . , k d , k d+1 ) ∈ N d+1 , b(k) := a(k 1 , k 2 , . . . , k d )c k d+1 .
With these notations, we have

ℓ 2 (ε) = T (2) ε f (t)f (s) ∞ q=2 ∞ q ′ =2 k∈N d+1 |k|=q m∈N d+1 |m|=q ′ b(k)b(m) × E[ H k (U ε (t)) H m (U ε (s))] dt ds,
where

U ε (t) := ∂X ε ∂t 1 (t)/ √ µ ε , ∂X ε ∂t 2 (t)/ √ µ ε , . . . , ∂X ε ∂t d (t)/ √ µ ε , X ε (t)/ r ε (0) .
First of all, let us note that if k, m ∈ N d+1 are such that |k| ̸ = |m|, then for all s, t ∈ T × T , E[ H k (U ε (t)) H m (U ε (s))] = 0 and the expression above turns out to be a sum of orthogonal terms in L 2 (Ω).

Indeed, to prove this, we need a generalization of Mehler's formula given in Taqqu ([59], Lemma 3.2) or in Berzin ([16], Lemma 3.9) via the following lemma.

Lemma 4.6.28. -Let X = (X i ) i=1,n and Y = (Y j ) j=1,n be two standard Gaussian vectors in R n such that for

1 ⩽ i, j ⩽ n, E[X i Y j ] = ρ ij , then for k, m ∈ N n , we have E[ H k (X) H m (Y )] = a ij ⩾0 j a ij =k i i a ij =m j k!m! 1⩽i,j⩽n ρ a ij ij a ij ! 1 |k|=|m| .
The previous lemma allows us to write

ℓ 2 (ε) = T (2) ε f (t)f (s) ∞ q=2 k,m∈N d+1 |k|=|m|=q b(k)b(m)E[ H k (U ε (t)) H m (U ε (s))] dt ds = T (2) ε ∞ q=2 k,m∈N d+1 |k|=|m|=q f (t)f (s)b(k)b(m)k!m!A (q) ε (k, m, s, t) dt ds,
where for q ⩾ 2 and k, m ∈ N d+1 such that |k| = |m| = q and (s, t) ∈ T

ε ,

A (q) ε (k, m, s, t) := a i,j ⩾0 j a i,j =k i i a i,j =m j A (q) ε (k, m, s, t, a),
where for a := (a i,j ) 1⩽i,j⩽d+1 ,

A (q) ε (k, m, s, t, a) := 1⩽i,j⩽d          - ∂ 2 r ε ∂t i ∂t j (t -s) µ ε     a i,j 1 a i,j !      × 1⩽i⩽d         ∂r ε ∂t i (t -s) √ µ ε r ε (0)     a i,d+1 1 a i,d+1 !     × 1⩽j⩽d         - ∂r ε ∂t j (t -s) √ µ ε r ε (0)     a d+1,j 1 a d+1,j !     × r ε (t -s) r ε (0) a d+1,d+1 1 a d+1,d+1 ! .
Let us see that in case where d-4+4α > 0, we can apply Lebesgue's dominated convergence theorem and that

1 ε 4(1-α) ℓ 2 (ε) ---→ ε→0 ℓ 2 .
Let us fix q ⩾ 2, k, m ∈ N d+1 such that |k| = |m| = q, a := (a i,j ) 1⩽i,j⩽d+1 and (s, t) ∈ T

ε . Recall that all the indices k i , i = 1, . . . , d are even and that (k 1 , k 2 , . . . , k d ) ̸ = (0, 0, . . . , 0). We want to find an upper bound for ε -4(1-α) A (q) ε (k, m, s, t, a). We have to consider three cases. Case 1. d i,j=1 a i,j ⩾ 2. In this case, ∃i 0 , j 0 ∈ {1, . . . , d} such that a i 0 ,j 0 ⩾ 2 or ∃i 0 , j 0 , i 1 , j 1 ∈ {1, . . . , d} such that (i 0 , j 0 ) ̸ = (i 1 , j 1 ) and such that a i 0 ,j 0 ⩾ 1 and a i 1 ,j 1 ⩾ 1.

Since ∀i, j = 1, . . . , d, ∂ 2 r ε ∂t i ∂t j (t -s)/µ ε ⩽ 1, an upper bound for

ε -4(1-α) 1⩽i,j⩽d ∂ 2 r ε ∂t i ∂t j (t -s)/µ ε a i,j is ∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) ε -2(1-α) µ ε 2 or ∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) ε -2(1-α) µ ε × ∂ 2 r ε ∂t i 1 ∂t j 1 (t -s) ε -2(1-α) µ ε .
Now on the one hand, (93)

∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) = ∥v∥ d ⩽ M 4 Φ(v) ∂ 2 r ∂t i 0 ∂t j 0 (t -s -εv) dv,
and by Lemma 4.6.24, we deduce that (94)

∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) ⩽ C ∥t -s∥ 2α-2 d .
On the other hand, we consider the expression of µ ε .

µ ε = - ∂ 2 r ε ∂t 2 1 (0) = - 1 ε 2 R d ∂ 2 Φ ∂v 2 1 (v)r(-εv) dv = ε -2(1-α) R d ∂ 2 Φ ∂v 2 1 (v)L(ε ∥v∥ d ) ∥v∥ 2α d dv.
We deduce that (95)

µ ε ε -2(1-α) ---→ ε→0 C L χ 2 d (α).
Finally,

∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) ε -2(1-α) µ ε is bounded by C ∥t -s∥ 2α-2 d . To conclude with this case, 1⩽i⩽d ∂r ε ∂t i (t -s)/( √ µ ε r ε (0)) a i,d+1 × 1⩽j⩽d ∂r ε ∂t j (t -s)/( √ µ ε r ε (0)) a d+1,j × r ε (t -s) r ε (0) a d+1,d+1
is bounded by one. Wrapping up these inequalities,

ε -4(1-α) A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ 4(α-1) d 1⩽i,j⩽d+1 1 a i,j ! .
Case 2. Indeed, otherwise we would have d i=1 k i = 1 or d j=1 m j = 1, which cannot happen since all indices k i (resp. m j ), i = 1, . . . , d are even and there exists at least one index i such that k i ̸ = 0 (resp. m j ).

Thus ∃i 0 , j 0 ∈ {1, . . . , d} such that a i 0 ,j 0 = 1 and ∃i 1 , j 1 ∈ {1, . . . , d} such that a i 1 ,d+1 ⩾ 1 and a d+1,j 1 ⩾ 1.

As previously

ε -2(1-α) 1⩽i,j⩽d ∂ 2 r ε ∂t i ∂t j (t -s)/µ ε a i,j
in bounded by

∂ 2 r ε ∂t i 0 ∂t j 0 (t -s) ε -2(1-α) µ ε and then by C ∥t -s∥ 2α-2 d . Similarly, ε -2(1-α) 1⩽i⩽d ∂r ε ∂t i (t -s)/( √ µ ε r ε (0)) a i,d+1 × 1⩽j⩽d ∂r ε ∂t j (t -s)/( √ µ ε r ε (0)) a d+1,j × r ε (t -s) r ε (0) a d+1,d+1
is bounded by

  ∂r ε ∂t i 1 (t -s)/( r ε (0)) ε -2(1-α) µ ε   ×   ∂r ε ∂t j 1 (t -s)/( r ε (0)) ε -2(1-α) µ ε   .
Arguments similar to those given in the proof of Lemma 4.6.24 lead to

∂r ε ∂t i 1 (t -s) ⩽ C ∥t -s∥ 2α-1 d .
Moreover, as before, we get the bound ε -2(1-α) µε ⩽ C. Finally, we obtain the bound

ε -4(1-α) A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ 6α-4 d 1⩽i,j⩽d+1 1 a i,j ! ⩽ C ∥t -s∥ 4(α-1) d 1⩽i,j⩽d+1
1 a i,j ! .

Case 3. Indeed, otherwise we would have d i=1 k i = 0 or 1 or d j=1 m j = 0 or 1, which is impossible. Thus ∃i 0 ∈ {1, . . . , d} (resp. ∃j 0 ∈ {1, . . . , d}) such that a i 0 ,d+1 ⩾ 2 (resp. a d+1,j 0 ⩾ 2) or ∃i 0 , i 1 ∈ {1, . . . , d} (resp. ∃j 0 , j 1 ∈ {1, . . . , d}), i 0 ̸ = i 1 (resp. j 0 ̸ = j 1 ) such that a i 0 ,d+1 ⩾ 1 and a i 1 ,d+1 ⩾ 1 (resp. a d+1,j 0 ⩾ 1 and a d+1,j 1 ⩾ 1). We proceed as for the other two cases to establish the following bound.

ε -4(1-α) A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ 4(2α-1) d 1⩽i,j⩽d+1 1 a i,j ! ⩽ C ∥t -s∥ 4(α-1) d 1⩽i,j⩽d+1 1 a i,j ! .
Finally, if we gather the three cases, we have shown that for fixed q ⩾ 2 and k, m ∈ N d+1 such that |k| = |m| = q and (s, t) ∈ T

ε ,

ε -4(1-α) A (q) ε (k, m, s, t) ⩽ C ∥t -s∥ 4(α-1) d a i,j ⩾0 j a i,j =k i i a i,j =m j 1⩽i,j⩽d+1 1 a i,j !
, which provides recalling that f is bounded, the following bound

ε -4(1-α) f (t)f (s)b(k)b(m)k!m!A (q) ε (k, m, s, t) ⩽ C ∥t -s∥ 4(α-1) d |b(k)| |b(m)| k!m! a i,j ⩾0 j a i,j =k i i a i,j =m j 1⩽i,j⩽d+1 1 a i,j ! .
At this stage of the proof let us state a lemma.

Lemma 4.6.29. -Let X = (X i ) i=1,n and Y = (Y j ) j=1,n be two standard Gaussian vectors in R n and G ∈ L 2 (R n , φ n (x) dx), with the following expansion in this space:

For x := (x 1 , . . . , x n ) ∈ R n , G(x 1 , . . . , x n ) = ∞ q=0 k∈N n |k|=q g(k) H k (x). Then ∞ q=0 k,m∈N n |k|=|m|=q |g(k)| |g(m)| E[ H k (X) H m (Y )] < ∞.
In particular, if for

1 ⩽ i, j ⩽ n, E[X i Y j ] = 1, then (96) 
∞ q=0 k,m∈N n |k|=|m|=q |g(k)| |g(m)| a i,j ⩾0 j a i,j =k i i a i,j =m j k!m! 1⩽i,j⩽n 1 a i,j ! < ∞.
Recalling that d -4 + 4α > 0 and applying this lemma to n := d + 1 and to the function hg and thus (96) to coefficients b(k) defined by (92) , we get (97)

T ×T ∥t -s∥ 4(α-1) d dt ds ×        ∞ q=2 k,m∈N d+1 |k|=|m|=q |b(k)| |b(m)| a i,j ⩾0 j a i,j =k i i a i,j =m j k!m! 1⩽i,j⩽d+1 1 a i,j !        < ∞.
We are therefore able to apply Lebesgue's dominated convergence theorem. 

= 1/2 ), ℓ 2 (ε) = O(ε 2 ln(1/ε)), so that E[S 2 1 ] = O(ε 2 ln(1/ε))
. This is the required bound. However, this way does not give the explicit limit, only an upper bound. We will therefore have to examine this case separately in order to prove the Proposition 4.6.26-3.

• Let us return to the case d -4 + 4α > 0 and to the proof of Proposition 4.6.26-1. We have proven that

lim ε→0 1 ε 4(1-α) ℓ 2 (ε) = T ×T f (t)f (s) ∞ q=2 k,m∈N d+1 |k|=|m|=q b(k)b(m)k!m! 168 CHAPTER 4. APPLICATIONS × a i,j ⩾0 j a i,j =k i i a i,j =m j lim ε→0 ε -4(1-α) A (q) ε (k, m, s, t, a) dt ds.
Before considering the four different cases that will give the limit, let us make some remarks about some covariance limits.

Using the expression for the second derivative of r ε given in (93), we easily get that for s, t ∈ T with s ̸ = t and for i, j = 1, d,

(98) lim ε→0 ∂ 2 r ε ∂t i ∂t j (t -s) = ∂ 2 r ∂t i ∂t j (t -s),
and in the same manner,

lim ε→0 ∂r ε ∂t i (t -s) = ∂r ∂t i (t -s).
Also for s, t ∈ T , we have

lim ε→0 r ε (t -s) = r(t -s).
In this way and using the convergence given in (95) we obtain

lim ε→0 ∂ 2 r ε ∂t i ∂t j (t -s) ε -2(1-α) µ ε = C L χ 2 d (α) -1 ∂ 2 r ∂t i ∂t j (t -s)
and

lim ε→0 ∂r ε ∂t i (t -s) ε -(1-α) √ µ ε r ε (0) = 1 r(0) C L χ 2 d (α) -1/2 ∂r ∂t i (t -s).
Let us fix q ⩾ 2, k, m ∈ N d+1 such that |k| = |m| = q, a := (a i,j ) 1⩽i,j⩽d+1 and (s, t) ∈ T × T .

From the above, we have to consider four cases.

-Case 1. It corresponds to situations where: Using the previous convergence, we have

lim ε→0 ε -4(1-α) A (q) ε (k, m, s, t, a) = 0.
-Case 2. For this case, This configuration is equivalent to the existence of indices i 0 , j 0 ∈ {1, . . . , d}, such that a i 0 ,j 0 = 2, a d+1,d+1 = q -2 and a i,j = 0 otherwise. With this configuration, we have

lim ε→0 ε -4(1-α) A (q) ε (k, m, s, t, a) = 1 2 C L χ 2 d (α) -2 - ∂ 2 r ∂t i 0 ∂t j 0 (t -s) 2 1 (q -2)! r(t -s) r(0) q-2
.

In this case, we have k = (0, . . . , 0, 2

↑ i 0 , 0, . . . , 0, q -2)
and m = (0, . . . , 0, 2

↑ j 0 , 0, . . . , 0, q -2)
where "

2 ↑ i 0
" means that 2 is in position i 0 .

-Case 3. For this case, This configuration is equivalent to the existence of indices i 0 , j 0 ∈ {1, . . . , d}, such that a i 0 ,j 0 = 1, a i 0 ,d+1 = 1, a d+1,j 0 = 1, a d+1,d+1 = q -3 and a i,j = 0 otherwise. With this configuration, we have

lim ε→0 ε -4(1-α) A (q) ε (k, m, s, t, a) = C L χ 2 d (α) -2 - ∂ 2 r ∂t i 0 ∂t j 0 (t -s) - 1 r(0) ∂r ∂t i 0 (t -s) ∂r ∂t j 0 (t -s) × 1 (q -3)! r(t -s) r(0) q-3 . So k = (0, . . . , 0, 2 ↑ i 0 , 0, . . . , 0, q -2)
and m = (0, . . . , 0, 2 ↑ j 0 , 0, . . . , 0, q -2).

-Case 4. Here, This configuration is equivalent to the existence of indices i 0 , j 0 ∈ {1, . . . , d} such that a i 0 ,d+1 = 2, a d+1,j 0 = 2, a d+1,d+1 = q -4 and a i,j = 0 otherwise. With this configuration we have

lim ε→0 ε -4(1-α) A (q) ε (k, m, s, t, a) = 1 4 C L χ 2 d (α) -2 - 1 r(0) ∂r ∂t i 0 (t -s) ∂r ∂t j 0 (t -s) 2 × 1 (q -4)! r(t -s) r (0) q-4 
.

So we have k = (0, . . . , 0, 2 ↑ i 0 , 0, . . . , 0, q -2)

and m = (0, . . . , 0, 2 ↑ j 0 , 0, . . . , 0, q -2).

If we combine the four cases, we have proven that

lim ε→0 1 ε 4(1-α) ℓ 2 (ε) = T ×T f (t)f (s) C L χ 2 d (α) -2 × d i,j=1
a(0, . . . , 0, 2 ↑ i , 0, . . . , 0)a(0, . . . , 0, 2

↑ j , 0, . . . , 0) ×    ∞ q=2 2(q -2)!c 2 q-2 - ∂ 2 r ∂t i ∂t j (t -s) 2 r(t -s) r(0) q-2 + ∞ q=3 4(q -2)(q -2)!c 2 q-2 - ∂ 2 r ∂t i ∂t j (t -s) - 1 r(0) ∂r ∂t i (t -s) ∂r ∂t j (t -s) × r(t -s) r(0) q-3 + ∞ q=4 (q -2)(q -3)(q -2)!c 2 q-2 × - 1 r(0) ∂r ∂t i (t -s) ∂r ∂t j (t -s) 2 r(t -s) r(0) q-4
dt ds.

Now since for all i = 1, . . . , d, one has a(0, . . . , 0, 2 ↑ i , 0, . . . , 0) = a(2, 0, . . . , 0), we finally proved that

lim ε→0 1 ε 4(1-α) ℓ 2 (ε) = ℓ 2 , and since ℓ 1 (ε) = O(ε d ) and d -4 + 4α > 0, one can conclude that lim ε→0 1 ε 4(1-α) E[S 2 1 (ε)] = ℓ 2 .
This gives Proposition 4.6.26-1 .

To finish the proof it remains to show Proposition 4.6.26-3. So let us suppose that d = 2 and that α = 1/2. Our goal is now to prove the following convergence:

1 ε 2 ln(1/ε) E[S 2 1 ] ---→ ε→0 ℓ 5 .
First we look at the term ℓ 1 (ε) which we have seen to be O(ε

2 ). So ℓ 1 (ε) = o(ε 2 ln(1/ε)).
Consider the second term ℓ 2 (ε), which, as we saw earlier, is equal to

ℓ 2 (ε) = T (2) ε ∞ q=2 k,m∈N 3 |k|=|m|=q f (t)f (s)b(k)b(m)k!m!A (q) ε (k, m, s, t) dt ds,
where for q ⩾ 2 and k, m ∈ N 3 such that |k| = |m| = q and (s, t) ∈ T

ε ,

A (q) ε (k, m, s, t) := a i,j ⩾0 j a i,j =k i i a i,j =m j A (q) ε (k, m, s, t, a),
where for a := (a i,j ) 1⩽i,j⩽3 ,

A (q) ε (k, m, s, t, a) := 1⩽i,j⩽2          - ∂ 2 r ε ∂t i ∂t j (t -s) µ ε     a i,j 1 a i,j !      × 1⩽i⩽2         ∂r ε ∂t i (t -s) √ µ ε r ε (0)     a i,3 1 a i,3 !     × 1⩽j⩽2         - ∂r ε ∂t j (t -s) √ µ ε r ε (0)     a 3,j 1 a 3,j !     × r ε (t -s) r ε (0) a 3,3 1 
a 3,3 ! .
Let us fix q ⩾ 2, k, m ∈ N 3 such that |k| = |m| = q, a := (a i,j ) 1⩽i,j⩽3 and (s, t) ∈ T

ε . We want to find an upper bound for ε

-2 [ln(1/ε)] -1 A (q) ε (k, m, s, t, a).
Applying the same type of reasoning as before, we distinguish four cases. Case 1.

2 i,j=1 a i,j ⩾ 3.
In this case, we obtain

ε -2 [ln(1/ε)] -1 A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ -3 2 ε[ln(1/ε)] -1 1⩽i,j⩽3 1 a i,j ! , and (99) 
T (2) ε ∥t -s∥ -3 2 dt ds ⩽ Cε -1 .
Case 2.

2

i,j=1 a i,j = 1. In this case, we get

ε -2 [ln(1/ε)] -1 A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ -1 2 [ln(1/ε)] -1 1⩽i,j⩽3 1 a i,j ! , and (100) 
T (2) ε ∥t -s∥ -1 2 dt ds ⩽ C.
Case 3.

2

i,j=1 a i,j = 0. In this case, we have

ε -2 [ln(1/ε)] -1 A (q) ε (k, m, s, t, a) ⩽ C[ln(1/ε)] -1 1⩽i,j⩽3 1 a i,j ! , and (101) 
T (2) ε 1 dt ds ⩽ C.
Case 4.

2

i,j=1 a i,j = 2 and 2 i=1 a i,3 + 2 j=1 a 3,j ⩾ 1. In this case, we obtain

ε -2 [ln(1/ε)] -1 A (q) ε (k, m, s, t, a) ⩽ C ∥t -s∥ -2 2 ε 1 2 [ln(1/ε)] -1 1⩽i,j⩽3 1 a i,j ! , and (102) 
T (2) ε ∥t -s∥ -2 2 dt ds ⩽ C ln(1/ε).
Let us denote by B(k, m) the following set:

B(k, m) :=    a = (a i,j ) i,j=1,2,3 : 3 j=1 a i,j = k i , 3 i=1 a i,j = m j , 2 i,j=1 a i,j ⩾ 3 or 2 i,j=1 a i,j = 1 or 2 i,j=1 a i,j = 0 or 2 i,j=1 a i,j = 2 with 2 i=1 a i,3 + 2 j=1 a 3,j ⩾ 1    .
Summarizing all the cases and using (99), ( 100), ( 101), ( 102) and (97), it is clear that

ε -2 [ln(1/ε)] -1 T (2) ε ∞ q=2 k,m∈N 3 |k|=|m|=q |f (t)| |f (s)| |b(k)| |b(m)| k!m! × a∈B(k,m) A (q) ε (k, m, s, t, a) dt ds ⩽ C[ln(1/ε)] -1 ∞ q=2 k,m∈N 3 |k|=|m|=q |b(k)| |b(m)| k!m! a i,j ⩾0 j a i,j =k i i a i,j =m j 1⩽i,j⩽3 1 a i,j ! ⩽ C[ln(1/ε)] -1 ---→ ε→0 0.
To conclude, we have shown that

(103) ε -2 [ln(1/ε)] -1 ℓ 2 (ε) ≡ 2a 2 (2, 0) ε 2 ln( 1 ε ) T (2) ε f (t)f (s) ∞ q=0 q!c 2 q r ε (t -s) r ε (0) q × ∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (t -s)/µ ε 2 dt ds.
Remark 4.6.31. -This last part of the proof highlights the fact that

ε -1 [ln(1/ε)] -1/2 S 1 ≃ ε -1 [ln(1/ε)] -1/2 a(2, 0) T f (t)g X ε (t)/ r ε (0) × H 2 ∂X ε ∂t 1 (t)/ √ µ ε + H 2 ∂X ε ∂t 2 (t)/ √ µ ε dt. • CHAPTER 4. APPLICATIONS
To obtain the asymptotic variance, we split the set T

(2) ε into two sets, U δ and V ε,δ , defined by U δ := {(s, t) ∈ T × T : ∥s -t∥ 2 > δ} and V ε,δ := {(s, t) ∈ T (2) ε : ∥s -t∥ 2 ⩽ δ} , where δ > 0 is fixed and will eventually tend to zero. The corresponding integrals will be denoted respectively by L 1,δ (ε) and L 2,δ (ε). On the one hand, using the convergence given in (95), we know that

εµ ε ---→ ε→0 C L χ 2 2 (1/2).
On the other hand, using Lebesgue's dominated convergence theorem, it is straightforward to prove that

ln(1/ε)L 1,δ (ε) ---→ ε→0 2a 2 (2, 0) (C L χ 2 2 (1/2)) 2 U δ f (t)f (s) ∞ q=0 q!c 2 q r(t -s) r(0) q × ∂ 2 r ∂t 2 1 (t -s) 2 + 2 ∂ 2 r ∂t 1 ∂t 2 (t -s) 2 + ∂ 2 r ∂t 2 2 (t -s) 2 dt ds.
Thus, using once again the convergence given in (95), we get

ε -2 [ln(1/ε)] -1 ℓ 2 (ε) ≡ L 2,δ (ε) ≡ 2a 2 (2, 0) (C L χ 2 2 (1/2)) 2 [ln(1/ε)] -1 × V ε,δ f (t)f (s) ∞ q=0 q!c 2 q r ε (t -s) r ε (0) q × ∂ 2 r ε ∂t 2 1 (t -s) 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s) 2 + ∂ 2 r ε ∂t 2 2 (t -s) 2 dt ds.
Inspired by Lemma 4.6.23 and using the additional assumptions made on the function L, we pinpoint that for (s, t) ∈ T × T , such that M ε ⩽ ∥t -s∥ 2 and for all i, j = 1, 2,

∂ 2 r ε ∂t i ∂t j (t -s) - ∂ 2 r ∂t i ∂t j (t -s) ⩽ C ε ∥t -s∥ 2 2 , which implies that ∂ 2 r ε ∂t i ∂t j (t -s) 2 - ∂ 2 r ∂t i ∂t j (t -s) 2 ⩽ C ε ∥t -s∥ 3 2 .
Moreover, using Lemmas 4.6.23 and 4.6.22, we can prove that, for all q ∈ N,

r ε (t -s) r ε (0) q -1 ⩽ Cq ∥t -s∥ 2 .
Finally, we also have the following inequality

∂ 2 r ∂t i ∂t j (t -s) 2 ⩽ C ∥t -s∥ -2 2 .
Using (99), (100), the fact that ∞ q=1 qq!c 2 q < ∞ and Lebesgue's dominated convergence theorem, we easily obtain that

L 2,δ (ε) ≡ 2a 2 (2, 0) (C L χ 2 2 (1/2)) 2   ∞ q=0 q!c 2 q   [ln(1/ε)] -1 V ε,δ f (t)f (s) × ∂ 2 r ∂t 2 1 (t -s) 2 + 2 ∂ 2 r ∂t 1 ∂t 2 (t -s) 2 + ∂ 2 r ∂t 2 2 (t -s) 2 dt ds.
To conclude this section, we have proven that

ε -2 [ln(1/ε)] -1 E[S 2 1 ] ≡ 2a 2 (2, 0) (C L χ 2 2 (1/2)) 2 E g 2 X(0)/ r(0) U δ (ε), where U δ (ε) := [ln(1/ε)] -1 V ε,δ f (t)f (s) ∂ 2 r ∂t 2 1 (t -s) 2 +2 ∂ 2 r ∂t 1 ∂t 2 (t -s) 2 + ∂ 2 r ∂t 2 2 (t -s) 2 dt ds.
To carry out this proof, let us focus on the term U δ (ε).

The hypotheses made on function L, allow us to write the following asymptotic equality, for (s, t) ∈ T × T , and for all i, j = 1, 2:

∂ 2 r ∂t i ∂t j (t -s) 2 = C 2 L (t i -s i ) 2 (t j -s j ) 2 ∥t -s∥ 6 2 + o 1 ∥t -s∥ 2 2 . Furthermore, sup {(s,t)∈T ×T,∥s-t∥ 2 ⩽δ} |f (s) -f (t)| ---→ δ→0 0.
The last convergence and the last asymptotic equality plus the fact that

lim ε→0 [ln(1/ε)] -1 V ε,δ ∥t -s∥ -2 2 dt ds ⩽ (2π)λ 2 (T ) < ∞ imply that U δ (ε) = U (1) δ (ε) + U (2) 
δ (ε), where

U (1) δ (ε) = C 2 L [ln(1/ε)] -1 V ε,δ f 2 (t) ∥t -s∥ -2 2 dt ds, and 
lim δ→0 lim ε→0 U (2) 
δ (ε) = 0.

Now we consider

T -δ := {t ∈ R 2 : dist(t, T c ) > δ}.
With this notation we have

U (1) δ (ε) = C 2 L T -δ f 2 (t) dt [ln(1/ε)] -1 × {w∈R 2 ,M ε⩽∥w∥ 2 ⩽δ} ∥w∥ -2 2 dw + W δ,ε ,
where

lim δ→0 lim ε→0 W δ,ε = 0. Since lim ε→0 [ln(1/ε)] -1 {w∈R 2 ,M ε⩽∥w∥ 2 ⩽δ} ∥w∥ -2 2 dw = 2π
and

lim δ→0 T -δ f 2 (t) dt = T f 2 (t) dt,
we finally proved that

lim ε→0 ε -2 [ln(1/ε)] -1 E[S 2 1 ] = 4πa 2 (2, 0) (χ 2 2 (1/2)) 2 E g 2 X(0)/ r(0) T f 2 (t) dt = a 2 (2, 0)σ 2 T f 2 (t) dt E g 2 X(0)/ r(0) = ℓ 5 .
The proposition ensues.

Let us return to the proof of Theorem 4.6.19. By Remark 4.6.27, we already know that parts 1, 2 and 4 of Theorem 4.6.19 follow from the last proposition. Let us show part 3 of the theorem. Suppose that α = 1/2 and d > 2. We pointed out in Remark 4.6.27, that in this case,

1 ε 2 E[S 2 1 ] ---→ ε→0 ℓ 2 .
We also proved that in case where α

= 1 2 , 1 ε 2 E[S 2 2 ] ---→ ε→0 ℓ 1 + ℓ 3 .
So to finish with part 3 of the theorem it only remains to prove that in the case where α = 1/2 and d > 2, we have

1 ε 2 E[S 1 S 2 ] ---→ ε→0 1 2 ℓ 4 .
We will prove this result in the more general case where α = 1/2 (and d ⩾ 2). First, we compute 1

ε 2 E[S 1 S 2 ]. 1 ε 2 E[S 1 S 2 ] = 1 ε 2 T ×T f (t)f (s) × E g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) g X ε (s)/ r ε (0) -g X(s)/ r(0) dt ds.
As we did before, we split the integration domain T × T into two parts T

(1) ε and T

(2)

ε . Let us call c 1 (ε) (resp. c 2 (ε)) the integral over T (1) ε (resp. T (2) 
ε ). Let us focus first on the first term c 1 (ε).

|c 1 (ε)| ⩽ C E g 2 (N 1 ) 1 2 E h 2 (N d ) 1 2 × E g X ε (0)/ r ε (0) -g X(0)/ r(0) 2 1 2 1 ε 2 σ 2d (T (1) ε ) ⩽ Cε d-2 E g X ε (0)/ r ε (0) -g X(0)/ r(0) 2 1 2 
.

By calculating the last expectation with Mehler's formula (see Lemma 4.6.28), we obtain

E g X ε (0)/ r ε (0) -g X(0)/ r(0) 2 = 2 ∞ n=1 c 2 n n! 1 - r (ε) (0) r(0) r ε (0) n ---→ ε→0 0, since r (ε) (0)/ r(0) r ε (0) ⩽ 1 and ∞ n=1 c 2 n n! < ∞.
So we have proved that the term c 1 (ε) ---→ ε→0 0 whether the dimension d is greater than or equal to two or strictly greater than two. Let us now tackle the second term c 2 (ε). We obtain the following decomposition:

c 2 (ε) = 1 ε 2 T (2) ε f (t)f (s)E g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) × ∞ n=1 c n 1 - r ε (0)/r(0) n H n X ε (s)/ r ε (0) dt ds + 1 ε 2 T (2) ε f (t)f (s)E g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) × ∞ n=1 c n r ε (0)/r(0) n H n X ε (s)/ r ε (0) -H n X(s)/ r(0) dt ds := d 1 (ε) + d 2 (ε).
Let's first look at the first term d 1 (ε) which will give the limit.

With the same notations as in the proof of Proposition 4.6.26 and by applying Mehler's formula (see Lemma 4.6.28), we obtain

d 1 (ε) = 1 ε 2 T (2) ε f (t)f (s) ∞ q=2 k∈N d+1 |k|=q b(k)c q 1 - r ε (0) r(0) q × E H k (U ε (t))H q X ε (s)/ r ε (0) dt ds = T (2) ε f (t)f (s) ∞ q=2 k∈N d+1 |k|=q a(k 1 , k 2 , . . . , k d )c k d+1 c q × 1 ε 1 - r ε (0) r(0) q q! r ε (t -s) r ε (0) k d+1 × 1 ε     ∂r ε ∂t 1 (t -s) √ µ ε r ε (0)     k 1     ∂r ε ∂t 2 (t -s) √ µ ε r ε (0)     k 2 . . .     ∂r ε ∂t d (t -s) √ µ ε r ε (0)     k d dt ds.
Let us justify that we can interchange the limit in ε with the integral and the sum.

On the one hand, for q ⩾ 2, we first bound the term 1 ε 1 -

rε(0) r(0) q by q 1 ε 1 -rε(0) r(0) . Then taking into account that 1 ε 1 -rε(0) r(0) ---→ ε→0 ℓ 1/2 , we finally see that 1 ε 1 - rε(0) r (0) 
q has an upper bound Cq, for ε small enough.

On the other hand, arguing as in the proof of Proposition 4.6.26, we know that for q ⩾ 2 and |k| = q, there exists at least one index i 0 ∈ {1, . . . , d} such that

k i 0 ⩾ 2.
Thus we have an upper bound for

1 ε     ∂r ε ∂t 1 (t -s) √ µ ε r ε (0)     k 1     ∂r ε ∂t 2 (t -s) √ µ ε r ε (0)     k 2 . . .     ∂r ε ∂t d (t -s) √ µ ε r ε (0)     k d r ε (t -s) r ε (0) k d+1 .
To conclude, it is sufficient to justify that the following series is finite

∞ q=2 k∈N d+1 |k|=q |b(k)| |c q | qq! < ∞.
Here again, we refer to the proof of Proposition 4.6.26 and Lemma 4.6.29 which we will adapt to the new situation.

The following function G is L 2 (R d+1 , φ d+1 (x) dx), with the following expansion in this space. For x := (x 1 , . . . , x d+1 ) ∈ R d+1 ,

G(x 1 , . . . , x d+1 ) := h(x 1 , x 2 , . . . , x d )g(x d+1 ) = ∞ q=2 k∈N d+1 |k|=q b(k) H k (x).
Also the function H g ∈ L 2 (R, φ 1 (x) dx). Recall that, for x ∈ R,

Hg(x) = xg ′ (x) -g ′′ (x) = ∞ n=1 c n nH n (x). Thus ∞ q=2 k∈N d+1 |k|=q |b(k)| |c q | qq! < ∞.
So we proved that

lim ε→0 d 1 (ε) = ℓ 1/2 r(0) a(2, 0, . . . , 0) C L χ 2 d (1/2) ∞ q=2 c q-2 c q qq! × T ×T f (t)f (s) r(t -s) r(0) q-2 d i=1 ∂r ∂t i (t -s) 2 dt ds = ℓ 4 2 .
It only remains to show that d 2 (ε) ---→ ε→0 0.

d 2 (ε) = T (2) ε f (t)f (s) ∞ q=2 k∈N d+1 |k|=q b(k)c q q! × 1 ε 2         ∂r ε ∂t 1 (t -s) √ µ ε r(0)     k 1     ∂r ε ∂t 2 (t -s) √ µ ε r(0)     k 2 . . .     ∂r ε ∂t d (t -s) √ µ ε r(0)     k d × r ε (t -s) r ε (0) r(0) k d+1 -     ∂r (ε) ∂t 1 (t -s) √ µ ε r(0)     k 1     ∂r (ε) ∂t 2 (t -s) √ µ ε r(0)     k 2 . . .     ∂r (ε) ∂t d (t -s) √ µ ε r(0)     k d × r (ε) (t -s) r ε (0) r(0) k d+1   dt ds.
Still with the same type of arguments as those given previously, and considering the case where the even indices k i , for i = 1, . . . , d, are such that d i=1 k i ⩾ 4, we apply Lebesgue's dominated convergence theorem and the limit gives zero. So we consider only the remaining terms for which there is an index i 0 = 1, . . . , d such that k i 0 = 2, k i = 0 for i ̸ = i 0 , i = 1, . . . , d and k d+1 = q -2. We get

lim ε→0 d 2 (ε) = a(2, 0, . . . , 0) lim ε→0 T (2) ε f (t)f (s) ∞ q=2 c q-2 c q q! d i=1 1 ε 2 ×         ∂r ε ∂t i (t -s) √ µ ε r(0)     2 r ε (t -s) r ε (0) r(0) q-2 -     ∂r (ε) ∂t i (t -s) √ µ ε r(0)     2 r (ε) (t -s) r ε (0) r(0) q-2      dt ds.
Let us justify that this limit is zero. For i = 1, . . . , d, s, t ∈ T (2) ε and q ⩾ 2, we bound the following term

A ε (q, t -s) := 1 ε 2     ∂r ε ∂t i (t -s) √ µ ε r(0)     2 r ε (t -s) r ε (0) r(0) q-2 -     ∂r (ε) ∂t i (t -s) √ µ ε r(0)     2 r (ε) (t -s) r ε (0) r(0) q-2 ⩽ C 1 ε (q -2) r ε (t -s) -r (ε) (t -s) + ∂r ε ∂t i (t -s) - ∂r (ε) ∂t i (t -s) .
On the one hand, by applying Lemma 4.6.23, we can bound r ε (t -s) -r (ε) (t -s) by Cε 2 ∥t -s∥ -1 d . On the other hand, using arguments similar to the one given for prove this lemma, one can show that if we let τ := t -s,

1 ε ∂r ε ∂t i (τ ) - ∂r (ε) ∂t i (τ ) = {∥v∥ d ⩽N } (Φ(v) -Ψ(v)) ×    d j=1 v j ∂ 2 r ∂τ i ∂τ j (τ -θεv)    dv,
with 0 ⩽ θ < 1 depending on ε, τ and v. This equality involves two things. The first is that

∂r ε ∂t i (t -s) - ∂r (ε) ∂t i (t -s)
can be bounded by Cε ∥t -s∥ -1 d .

The second is that

1 ε ∂r ε ∂t i (τ ) - ∂r (ε) ∂t i (τ ) ---→ ε→0 
0, since the functions Φ and Ψ are even functions. Finally, we collect the following facts

A ε (q, t -s) ⩽ Cq ∥t -s∥ -1 d , and A ε (q, t -s) ---→ ε→0 0.
To conclude, using that

∞ q=2 k∈N d+1 |k|=q |b(k)| |c q | qq! < ∞, we deduce that ∞ q=2 |c q-2 | |c q | qq! < ∞.
Moreover, since d ⩾ 2, we know that T ×T ∥t -s∥ -1 d dt ds < ∞.

All the ingredients are gathered to apply once again Lebesgue's dominated convergence theorem, leading to the required limit:

lim ε→0 d 2 (ε) = 0.
That complete the proof of Theorem 4.6.19.

Let us now prove Theorem 4.6.20.

Proof of Theorem 4.6.20. We begin by showing part 1 of the theorem. So let us suppose that α < 1 2 . In this case we have seen in the proof of Theorem 4.6.19 that the random variable

Ξ ε (f, g) is equivalent in L 2 (Ω) to ε -2α S 2 , itself equivalent in L 2 (Ω) to ε -2α U 2 , where U 2 = ∞ n=1 c n T f (t) 1 - r ε (0) r(0) n H n X ε (t)/ r ε (0) dt.
Let us see that the random variable ε -2α U 2 is in turn equivalent in L 2 (Ω) to the following random variable X(f, g).

X(f, g) := ℓ α ∞ n=1 nc n T f (t)H n X(t)/ r(0) dt.
The proof is very similar to the one given to prove that ε -4α E U 2 2 tends to ℓ 1 . It consists in using Mehler's formula and the fact that ε -2α 1 -r ε (0)/r(0) ---→ ε→0 ℓ α and that ∞ n=1 n!n 2 c 2 n < ∞. This being so, let us recall that the function Hg was defined in the introduction by,

Hg(x) = xg ′ (x) -g ′′ (x) = ∞ n=1 nc n H n (x).
Thus the limit random variable X(f, g) can be expressed as

X(f, g) = ℓ α T f (t)Hg X(t)/ r(0) dt.
By applying Theorem 4.6.5 to the function h(t, x) := f (t)Hg(x) and to X := x/ r(0), this random variable can also be expressed as

X(f, g) = ℓ α R Hg(x)L f X/ √ r(0) (x, T ) dx,
which is the required result. This ends proof of part 1.

We shall now tackle the proof of part 2. Let us suppose that α > 1 2 . We have seen in Theorem 4.6.19 that the random variable

Ξ ε (f, g) is equivalent in L 2 (Ω) to T 1 = ε -2(1-α) S 1 , thus Ξ ε (f, g) ≃ T 1 ,
where

T 1 = ε -2(1-α) T f (t)g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) dt,
and recall that for

x := (x 1 , x 2 , . . . , x d ) ∈ R d , h(x 1 , x 2 , . . . , x d ) = ∞ q=2 k∈N d |k|=q a(k) H k (x),
while coefficients a(k) are defined by (87). Thus, to study the convergence of Ξ ε (f, g) it is enough to consider that of T 1 .

Let us define the following random variable:

W ε (g) := ε -2(1-α) T f (t)g X ε (t)/ r ε (0) h 2 ∇X ε (t) √ µ ε dt,
where

h 2 (x 1 , x 2 , . . . , x d ) := k∈N d |k|=2 a(k) H k (x) = d j=1
a(0, . . . , 0, 2 ↑ j , 0, . . . , 0)H 2 (x j ) = a(2, 0, . . . , 0)

d j=1 H 2 (x j ).
It is almost obvious that E (T 1 -W ε (g)) 2 ---→ ε→0 0. Just look at the way we

showed that E[T 2 1 ] ---→ ε→0 ℓ 2 , to see that E[W 2 ε (g)] ---→ ε→0 ℓ 2 and that E[T 1 W ε (g)] ---→ ε→0 ℓ 2 .
Thus to study the convergence of T 1 it is enough to consider that of W ε (g).

We have

W ε (g) = a(2, 0, . . . , 0) d j=1 ε -2(1-α) × T f (t)g X ε (t)/ r ε (0) H 2 ∂X ε ∂t j (t)/ √ µ ε dt := a(2, 0, . . . , 0) d j=1 W (j) ε (g).
We fix j ∈ {1, 2, . . . , d}. To simplify the notation, we will study the asymptotic behavior of W (j) ε (g). Given the form of the assumed limit, this will be sufficient since the convergence will take place in L 2 (Ω). Using the Hermite coefficients of the function g we obtain

W (j) ε (g) = ε -2(1-α) T f (t) × ∞ k=2 c k-2 H k-2 X ε (t)/ r ε (0) H 2 ∂X ε ∂t j (t)/ √ µ ε dt.
Let us justify the interchange of the sum and the integral. This is a consequence of the following facts. On the one hand, let us define the Cauchy sequence

(D N ) N in L 2 (Ω). D N := N k=2 c k-2 T f (t)H k-2 X ε (t)/ r ε (0) H 2 ∂X ε ∂t j (t)/ √ µ ε dt.
On the other hand, defining in L 2 (φ(x) dx),

g N := g - N k=2 c k-2 H k-2 ,
one has

E T f (t)g N X ε (t)/ r ε (0) H 2 ∂X ε ∂t j (t)/ √ µ ε dt 2 ⩽ λ d (T ) T f 2 (t)E g 2 N X ε (t)/ r ε (0) H 2 2 ∂X ε ∂t j (t)/ √ µ ε dt = λ d (T ) T f 2 (t) dt E g 2 N X ε (0)/ r ε (0) E H 2 2 ∂X ε ∂t j (0)/ √ µ ε = 2!λ d (T ) T f 2 (t) dt ∥g N ∥ 2 2,φ ----→ N →∞ 0, while ∥•∥ 2,φ represents the L 2 (R, φ(x) dx) norm.
Finally, we obtain

W (j) ε (g) = ε -2(1-α) ∞ k=2 c k-2 × T f (t)H k-2 X ε (t)/ r ε (0) H 2 ∂X ε ∂t j (t)/ √ µ ε dt.
Denoting by dZ X (λ) the random spectral measure corresponding to X, Ψ the Fourier transform of Ψ and dZ ε (λ) := Ψ(ελ) dZ X (λ), we have the following representation for W (j) ε (g).

W (j) ε (g) = ε -2(1-α) ∞ k=2 c k-2 T f (t)H k-2 1 r ε (0) R d e i⟨λ, t⟩ dZ ε (λ) H 2 1 √ µ ε R d iλ (j) e i⟨λ, t⟩ dZ ε (λ) dt,
where we noted λ := (λ (1) , λ (2) , . . . , λ (j) , . . . , λ (d) ).

For (λ, t) ∈ R d × T , let ω (j) 1 and ω (j) 2 be ω (j) 1 (λ, t) := 1 r ε (0) e i⟨λ, t⟩ , ω (j) 2 (λ, t) := iλ (j) √ µ ε e i⟨λ, t⟩ .
The functions ω

1 (•, t) and ω (j) 2 (•, t) are orthogonal with respect to the measure Ψ(ελ) 2 s(λ) dλ, where we recall that s is the spectral density of the process X. Thus we can use the Itô's formula for the Wiener-Itô integral (see [START_REF]Major -Multiple Wiener-Itô integrals[END_REF], Theorem 4.3, p. 37), obtaining

W (j) ε (g) = ∞ k=2 T (j) k (ε),
where

T (j) k (ε) := ε -2(1-α) c k-2 T f (t) 1 k! R dk Π∈Π k ω (j) ξ(Π(1)) (λ 1 , t)ω (j) ξ(Π(2)) (λ 2 , t) . . . ω (j) ξ(Π(k)) (λ k , t) dZ ε (λ 1 ) dZ ε (λ 2 ) . . . dZ ε (λ k ) dt, with ξ(n) = 1 n ⩽ k -2 2 otherwise
and where Π k is the set of permutations of {1, 2, . . . , k}. Thus

T (j) k (ε) = - c k-2 ( r ε (0)) k-2 ε -2(1-α) µ ε 1 k! R dk K f (λ 1 + λ 2 + • • • + λ k ) × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) dZ ε (λ 1 ) dZ ε (λ 2 ) . . . dZ ε (λ k ) almost surely,
where K f is given by (88).

Since by (95) we know that

µ ε ε -2(1-α) ---→ ε→0 C L χ 2 d (α),
to obtain the asymptotic behavior of T

k (ε) it is enough to consider the convergence of the term below. Define

M (j) k (ε) := - c k-2 ( r ε (0)) k-2 1 k! R dk K f (λ 1 + λ 2 + • • • + λ k ) × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) dZ ε (λ 1 ) dZ ε (λ 2 ) . . . dZ ε (λ k ).
The second moment of this random variable is

E M (j) k (ε) 2 = c 2 k-2 (r ε (0)) k-2 1 k! R dk |K f (λ 1 + λ 2 + • • • + λ k )| 2 × Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) s(λ 1 )s(λ 2 ) . . . s(λ k ) × Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 dλ 1 dλ 2 . . . dλ k .
At this stage of the proof, we must state a lemma whose proof is given just after the proof of the part 2 of the theorem. with respect to the Lebesgue measure in (R d ) k can be written as

H (j) ε (λ 1 , λ 2 , . . . , λ k ) := |K f (λ 1 + λ 2 + • • • + λ k )| 2 × Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) s(λ 1 )s(λ 2 ) . . . s(λ k ) × Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 .
Then µ ε weakly ----→ ε→0 µ, where µ is a finite measure in (R d ) k with density H (j) with respect to the Lebesgue measure in (R d ) k given by

H (j) (λ 1 , λ 2 , . . . , λ k ) := |K f (λ 1 + λ 2 + • • • + λ k )| 2 Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) s(λ 1 )s(λ 2 ) . . . s(λ k ).
It implies that 

lim ε→0 (R d ) k H (j) ε (λ 1 , λ 2 , . . . , λ k ) dλ 1 dλ 2 . . . dλ k = (R d ) k H (j) (λ 1 , λ 2 , . . . , λ k ) dλ 1 dλ 2 . . . dλ k .
Suppose that this lemma is proved. Let us define

M (j) k (0) := - c k-2 r(0) k-2 1 k! R dk K f (λ 1 + λ 2 + • • • + λ k ) × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) dZ X (λ 1 ) dZ X (λ 2 ) . . . dZ X (λ k ).
This Itô-Wiener integral is well defined since by Lemma 4.6.32 we have

E M (j) k (0) 2 = c 2 k-2 (r(0)) k-2 1 k! R dk H (j) (λ 1 , λ 2 , . . . , λ k ) dλ 1 dλ 2 . . . dλ k < ∞. Furthermore (104) lim ε→0 E M (j) k (ε) 2 = E M (j) k (0) 2 . 
Consider now

D (j) k (ε, λ 1 , λ 2 , . . . , λ k ) := - c k-2 ( r ε (0)) k-2 1 √ k! K f (λ 1 + λ 2 + • • • + λ k ) × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) s(λ 1 ) s(λ 2 ) . . . s(λ k ) Ψ(ελ 1 ) Ψ(ελ 2 ) . . . Ψ(ελ k ), and 
D (j) k (0, λ 1 , λ 2 , . . . , λ k ) := - c k-2 ( r(0)) k-2 1 √ k! K f (λ 1 + λ 2 + • • • + λ k ) × Π∈Π k λ (j) Π(k-1) λ (j) Π(k) s(λ 1 ) s(λ 2 ) . . . s(λ k ).
On the one hand the convergence appearing in (104) means that D

(j) k (ε, •) 2 2 converges to D (j) k (0, •) 2 2
in L 2 with respect to the Lebesgue measure in (R d ) k .

On the other hand, the random variable D

(j) k (ε, •) converges pointwise to D (j) k (0, •) as ε → 0. Lebesgue theorem implies that D (j) k (ε, •) -D (j) k (0, •) 2 L 2 ---→ ε→0 0 in the L 2 -norm with respect to the Lebesgue measure in (R d ) k . That is 188 CHAPTER 4. APPLICATIONS M (j) k (ε) L 2 (Ω) ----→ ε→0 M (j)
k (0) and finally as ε → 0 we proved that ( 105)

T (j) k (ε) L 2 (Ω) ----→ ε→0 T (j) k (0), where 
T (j) k (0) := 1 C L χ 2 d (α) M (j)
k (0).

We will now prove that

W (j) ε (g) = ∞ k=2 T (j) k (ε) L 2 (Ω) ----→ ε→0 ∞ k=2 T (j) k (0).
First,

E W (j) ε (g) 2 ---→ ε→0 2 1 C L χ 2 d (α) 2 ∞ k=2 k-2 ℓ=(k-4)∨0 (k -2)!c 2 k-2 × k -2 ℓ k -2 -ℓ 2 × T ×T f (t)f (s) r(t -s) r(0) ℓ 1 r(0) ∂r ∂t j (t -s) 2(k-2-ℓ) (-1) k-2-ℓ × - ∂ 2 r ∂t 2 j (t -s) ℓ-(k-4)
dt ds.

A similar argument gives the result when the sum begins with N + 1. Using convergence given in (105) this implies that

lim ε→0 E   ∞ k=N +1 T (j) k (ε) 2   = ∞ k=N +1 E T (j) k (0) 2 .

And since

∞ k=2 E T (j) k (0) 2 < ∞, then (106) lim N →∞ lim ε→0 E   ∞ k=N +1 T (j) k (ε) 2   = 0.
On the one hand 

E   ∞ k=2 T (j) k (ε) -T (j) k ( 
⩽ C    E   ∞ k=N +1 T (j) k (ε) 2   + E   N k=2 T (j) k (ε) -T (j) k (0) 2   + E   ∞ k=N +1 T (j) k (0) 2      ,
and using once again convergence given in (105) we obtain

lim ε→0 E   ∞ k=2 T (j) k (ε) -T (j) k (0) 2   ⩽ C    lim ε→0 E   ∞ k=N +1 T (j) k (ε) 2   + E   ∞ k=N +1 T (j) k (0) 2      . On the other hand, since ∞ k=2 E T (j) k (0) 2 < ∞ and E T (j) k 1 (0)T (j) k 2 (0) = 0 for k 1 ̸ = k 2 , we deduce that (107) lim N →∞ E   ∞ k=N +1 T (j) k (0) 2   = 0.
Using the convergences given in (106) and (107) we finally obtain

lim N →∞ lim ε→0 E   ∞ k=2 T (j) k (ε) -T (j) k (0) 2   ⩽ C    lim N →∞ lim ε→0 E   ∞ k=N +1 T (j) k (ε) 2   + lim N →∞ E   ∞ k=N +1 T (j) k (0) 2      = 0. We thus proved that lim ε→0 E ∞ k=2 T (j) k (ε) -T (j) k (0) 2 = 0. Thus W (j) ε (g) L 2 (Ω) ----→ ε→0 ∞ k=2 T (j) k (0) and W ε (g) = a(2, 0, . . . , 0) d j=1 W (j) ε (g) L 2 (Ω) ----→ ε→0 a(2, 0, . . . , 0) d j=1 ∞ k=2 T (j) k (0) = Y (f, g).
That yields item 2 of the theorem. 

in (R d ) k . That is χ ε (γ 1 , γ 2 , . . . , γ k ) := R dk e i⟨λ 1 , γ 1 ⟩ e i⟨λ 2 , γ 2 ⟩ . . . e i⟨λ k , γ k ⟩ × |K f (λ 1 + λ 2 + . . . λ k )| 2 Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) × s(λ 1 )s(λ 2 ) . . . s(λ k ) Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 dλ 1 dλ 2 . . . dλ k = R dk e i⟨λ 1 , γ 1 ⟩ e i⟨λ 2 , γ 2 ⟩ . . . e i⟨λ k , γ k ⟩ T ×T f (t)f (s)e i⟨λ 1 +λ 2 +•••+λ k , t-s⟩ dt ds × Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) s(λ 1 )s(λ 2 ) . . . s(λ k ) × Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 dλ 1 dλ 2 . . . dλ k = T ×T f (t)f (s)
R dk e i⟨λ 1 , γ 1 +t-s⟩ e i⟨λ 2 , γ 2 +t-s⟩ . . . e i⟨λ k , γ k +t-s⟩

× Π∈Π k Υ∈Π k λ (j) Π(k-1) λ (j) Π(k) λ (j) Υ(k-1) λ (j) Υ(k) s(λ 1 )s(λ 2 ) . . . s(λ k ) × Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 dλ 1 dλ 2 . . . dλ k dt ds.
We have to consider three cases depending on the permutations that appear in the last expression.

Case 1 For two different integers, the permutations are the same. We can suppose, without loss of generality, that

Π(k) = Υ(k) = 1 and Π(k -1) = Υ(k -1) = 2. The integral is then T ×T f (t)f (s) R dk e i⟨λ 1 , γ 1 +t-s⟩ e i⟨λ 2 , γ 2 +t-s⟩ . . . e i⟨λ k , γ k +t-s⟩ × λ (j) 1 2 λ (j) 2 2 s(λ 1 )s(λ 2 ) . . . s(λ k ) × Ψ(ελ 1 ) 2 Ψ(ελ 2 ) 2 . . . Ψ(ελ k ) 2 dλ 1 dλ 2 . . . dλ k dt ds = T ×T f (t)f (s) ∂ 2 r ε ∂t 2 j (γ 1 + t -s) ∂ 2 r ε ∂t 2 j (γ 2 + t -s) × r ε (γ 3 + t -s) . . . r ε (γ k + t -s) dt ds.
There are 2k!(k -2)! such cases. Case 2 The permutations coincide for one index and differ for the other two indices. We may assume, again without loss of generality that,

Π(k) = Υ(k) = 1, Π(k -1) = 2 and Υ(k -1) = 3.
As before the integral is

T ×T f (t)f (s) ∂ 2 r ε ∂t 2 j (γ 1 + t -s) ∂r ε ∂t j (γ 2 + t -s) × ∂r ε ∂t j (γ 3 + t -s) r ε (γ 4 + t -s) . . . r ε (γ k + t -s) dt ds.
There are 4k!(k -2)!(k -2) such cases. Case 3 All indices are different. We can suppose that Π

(k) = 1, Π(k -1) = 2, Υ(k) = 3 and Υ(k -1) = 4. The integral is T ×T f (t)f (s) ∂r ε ∂t j (γ 1 + t -s) ∂r ε ∂t j (γ 2 + t -s) ∂r ε ∂t j (γ 3 + t -s) × ∂r ε ∂t j (γ 4 + t -s) r ε (γ 5 + t -s) . . . r ε (γ k + t -s) dt ds.
There are k!(k -2)!(k -2)(k -3) possible cases.

We will consider in detail only one integral, that corresponding to the first case, that is

L ε (γ 1 , γ 2 , . . . , γ k ) := T ×T f (t)f (s) ∂ 2 r ε ∂t 2 j (γ 1 + t -s) ∂ 2 r ε ∂t 2 j (γ 2 + t -s) × r ε (γ 3 + t -s) . . . r ε (γ k + t -s) dt ds.
We will prove that L ε (•) converges uniformly on κ, where κ is any compact set in (R d ) k , as ε → 0, to L 0 (•) defined by

L 0 (γ 1 , γ 2 , . . . , γ k ) := T ×T f (t)f (s) ∂ 2 r ∂t 2 j (γ 1 + t -s) ∂ 2 r ∂t 2 j (γ 2 + t -s) × r(γ 3 + t -s) . . . r(γ k + t -s) dt ds.
Since f is bounded, we have

|L ε (γ 1 , γ 2 , . . . , γ k ) -L 0 (γ 1 , γ 2 , . . . , γ k )| ⩽ C T ×T |r(0)| k-2 ∂ 2 r ε ∂t 2 j (γ 1 + t -s) ∂ 2 r ε ∂t 2 j (γ 2 + t -s) - ∂ 2 r ∂t 2 j (γ 1 + t -s) ∂ 2 r ∂t 2 j (γ 2 + t -s) dt ds + T ×T ∂ 2 r ∂t 2 j (γ 1 + t -s) ∂ 2 r ∂t 2 j (γ 2 + t -s) |r ε (γ 3 + t -s) . . . r ε (γ k + t -s) -r(γ 3 + t -s) . . . r(γ k + t -s)| dt ds
The first integral above is bounded by

C T ×T ∂ 2 r ε ∂t 2 j (γ 1 + t -s) - ∂ 2 r ∂t 2 j (γ 1 + t -s) ∂ 2 r ε ∂t 2 j (γ 2 + t -s) dt ds + T ×T ∂ 2 r ∂t 2 j (γ 1 + t -s) ∂ 2 r ε ∂t 2 j (γ 2 + t -s) - ∂ 2 r ∂t 2 j (γ 2 + t -s) dt ds ⩽ C           K ∂ 2 r ε ∂v 2 j (v) 2 dv   1 2 +   K ∂ 2 r ∂v 2 j (v) 2 dv   1 2    ×   K ∂ 2 r ε ∂v 2 j (v) - ∂ 2 r ∂v 2 j (v) 2 dv   1 2      , while the second integral is bounded by C × sup {v 3 ,...v k ∈K} |r ε (v 3 ) . . . r ε (v k ) -r(v 3 ) . . . r(v k )| ×   K ∂ 2 r ∂v 2 j (v) 2 dv   ,
where K is a compact in R d . We have seen in the proof of Proposition 4.6.26 (see (98)) that for v ̸ = 0,

lim ε→0 ∂ 2 r ε ∂v 2 j (v) = ∂ 2 r ∂v 2 j (v).
Moreover, we have emphasized (see (94)) that for v ∈ K and for j = 1, . . . , d,

∥v∥ d > M ε, ∂ 2 r ε ∂v 2 j (v) ⩽ C ∥v∥ 2α-2 d .
Moreover, a simple calculation shows that when ∥v∥ d ⩽ M ε, we have

∂ 2 r ε ∂v 2 j (v) ⩽ Cε 2α-2 . Furthermore ∂ 2 r ∂v 2 j (v) = O ∥v∥ 2α-2 d
, for any v in a compact set. Now, recalling that α > 1 2 , we have d + 4α -4 > 0. These arguments justify the use of Lebesgue's theorem which implies that

K ∂ 2 r ε ∂v 2 j (v) - ∂ 2 r ∂v 2 j (v) 2 dv ---→ ε→0 0.
Therefore, the two terms tend to zero as ε → 0. Thus lim ε→0 χ ε (•) is continuous on (R d ) k and in particular at point 0 of (R d ) k . Therefore, there exists a finite measure µ such that µ ε → µ and, by Levy's theorem, µ ε → µ weakly. This yields the lemma. So to finish with the proof of the theorem, it remains to prove items 3 and 4. Consider the proof of part 3 of the theorem. We suppose that α = 1/2 and d > 2. Remember that we defined the random variable ξ ε as follows: for t ∈ T , ξ ε (t) := [X ε (t) -X(t)]/ε, T being an open rectangle. Also remember that g ′′ belongs to L 4 (φ(x) dx). Finally, to finish with some notation reminders, we defined the constant K 1/2 by:

K 1/2 = C L R d Ψ(w) ∥w∥ d dw.
As already seen previously, we have split the random variable Ξ ε (f, g) into two terms,

Ξ ε (f, g) = T 1 + T 2 ,
where

T 1 = 1 ε T f (t)g X ε (t)/ r ε (0) h(∇X ε (t)/ √ µ ε ) dt and T 2 = 1 ε T f (t) g X ε (t)/ r ε (0) -g X(t)/ r(0) dt.
We know using Remark 4.6.33 that T 1

L 2 (Ω) ----→ ε→0 Y (f, g). Thus the random variable Ξ ε (f, g) is equivalent in L 2 (Ω) to Y (f, g) + T 2 , i.e. Ξ ε (f, g) ≃ Y (f, g) + T 2 .
Let us look at the term

T 2 . Since g is C 2 (R, R), ∀t ∈ T we can write g X ε (t)/ r ε (0) -g X(t)/ r(0) = X ε (t)/ r ε (0) -X(t)/ r(0) g ′ X(t)/ r(0) + X ε (t)/ r ε (0) -X(t)/ r(0) 2 × 1 0 (1 -u)g ′′ X(t)/ r(0) + u X ε (t)/ r ε (0) -X(t)/ r(0) du.
We split the random variable X ε (t)/ r ε (0) -X(t)/ r(0) into two terms as follows:

X ε (t)/ r ε (0) -X(t)/ r(0) = 1 r ε (0) 1 - r ε (0) r(0) X(t) + ε r ε (0) ξ ε (t).
With this decomposition, we then split T 2 into three terms thus obtaining

T 2 = 1 r ε (0) 1 ε 1 - r ε (0) r(0) T f (t)X(t)g ′ X(t)/ r(0) dt + 1 r ε (0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt + 1 ε T f (t) 1 r ε (0) 1 - r ε (0) r(0) X(t) + ε r ε (0) ξ ε (t) 2 × 1 0 (1 -u)g ′′ X(t)/ r(0) + u X ε (t)/ r ε (0) -X(t)/ r(0) du dt.
Let us define the terms below:

n 2 ε := E X ε (t) -X(t) √ ε 2 ---→ ε→0 n 2 1/2 := 2r(0) K 1/2 r(0) -ℓ 1/2 , since K 1/2 is K 1/2 = C L R d Ψ(w) ∥w∥ d dw = lim ε→0 r(0) -r (ε) (0) ε .
With this notation, we introduce the random variables Z ε and W ε (t, u) setting for all t ∈ T and ∀u ∈ [0, 1]

Z ε (t) := X ε (t) -X(t) n ε √ ε → N (0; 1), and 
W ε (t, u) := X(t)/ r(0) + u X ε (t)/ r ε (0) -X(t)/ r(0) → N (0; v 2 ε (u)), with v 2 ε (u) := 2u 2 c ε -2uc ε + 1, where 0 < c ε := 1 - r (ε) (0) r(0) r ε (0) ---→ ε→0 0.
We obtain

T 2 = 1 r ε (0) 1 ε 1 - r ε (0) r(0) T f (t)X(t)g ′ X(t)/ r(0) dt + 1 r ε (0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt + n 2 ε r ε (0) T f (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt + n 2 ε r ε (0) T f (t)H 2 (Z ε (t)) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt + 1 r ε (0) 1 ε 1 - r ε (0) r(0) 2 T f (t)X 2 (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt + 2 r ε (0) 1 - r ε (0) r(0) T f (t)X(t)ξ ε (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt.
Let us now show that the last three terms converge in probability to zero and that the third term tends in L 2 (Ω) to

n 2 1/2 2r(0) T f (t)g ′′ X(t)/ r(0) dt.
Note that this last term is

K 1/2 r(0) -ℓ 1/2 T f (t)g ′′ X(t)/ r(0) dt.
Let us start with the last convergence proposition.

Since n 2 ε → n 2 1/2 , we compute the second order moment of the following random variable minus its supposed limit, getting

E T f (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt - 1 2 T f (t)g ′′ X(t)/ r(0) dt 2 = T ×T f (t)f (s) [0, 1] 2 (1 -u)(1 -v) ×E g ′′ (W ε (t, u)) -g ′′ X(t)/ r(0) × g ′′ (W ε (s, v)) -g ′′ X(s)/ r(0) du dv dt ds ⩽ C 1 0 E g ′′ (W ε (0, u)) -g ′′ X(0)/ r(0) 2 1 2 du 2 ⩽ C 1 0 E g ′′ (W ε (0, u)) -g ′′ X(0)/ r(0) 2 du.
Let us justify that Lebesgue's theorem can be applied. On the one hand, since g ′′ is L 2 (φ(x) dx), it trivially follows that E g ′′ X(0)/ r(0)

2 ⩽ C.
On the other hand, using that 1

2 ⩽ 1 -1 2 c ε ⩽ v 2 ε (u) ⩽ 1, ∀u ∈ [0, 1] and ε ⩽ ε 0 , we obtain that (108) E g ′′ (W ε (0, u)) 2 ⩽ CE g ′′ (N 1 ) 2 ⩽ C.
So we can interchange the limit in ε and the integral. Therefore it only remains to show that ∀u ∈ [0, 1], one has

(109) lim ε→0 E g ′′ (W ε (0, u)) -g ′′ X(0)/ r(0) 2 = 0.
To do so, we will apply Scheffé's lemma. Let u fixed in [0, 1]. First, note that W ε (0, u) almost surely converges to X(0)/ r(0) and since g is C 2 (R, R), we get that g ′′ (W ε (0, u)) almost surely converges to g ′′ X(0)/ r(0) .

Using that

1 2 ⩽ v 2 ε (u) ⩽ 1 and that v 2 ε (u) ---→ ε→0 1, we have E g ′′ (W ε (0, u)) 2 ---→ ε→0 E g ′′ X(0)/ r(0) 2 .
All the ingredients are gathered to apply the Scheffé's lemma. We conclude that g ′′ (W ε (0, u)) tends in L 2 (Ω) to g ′′ X(0)/ r(0) which is the required result.

Let us now show that the last three terms tend in probability towards zero. Consider A ε , the first term of the sum.

A ε := 1 r ε (0) 1 ε 1 - r ε (0) r(0) 2 T f (t)X 2 (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt. Since 1 ε 1 -rε(0) r(0) ---→ ε→0 ℓ 1/2 , it is only necessary to prove that the random variable T f (t)X 2 (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt is bounded in L 1 (Ω).
Therefore we are bounding the following expectation:

E T f (t)X 2 (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt ⩽ C 1 0 E X 2 (0)g ′′ (W ε (0, u)) du ⩽ C E X 4 (0) 1 2 1 0 E g ′′ (W ε (0, u)) 2 1 2 du ⩽ C,
the last bound is follows from (108). Consider B ε , the second term of the sum.

B ε := 2 r ε (0) 1 - r ε (0) r(0) T f (t)X(t)ξ ε (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt = 2n ε r ε (0) 1 √ ε 1 - r ε (0) r(0) T f (t)X(t)Z ε (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt. Since 1 √ ε 1 - r ε (0) r(0) ---→ ε→0 0 and n ε ---→ ε→0 n 1/2
it is sufficient, as for the previous term A ε , to prove that the random variable

T f (t)X(t)Z ε (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt is bounded in L 1 (Ω).
As before we bound the following expectation.

E T f (t)X(t)Z ε (t) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt ⩽ C E[X 4 (0)] 1 4 E[Z 4 ε (0)] 1 4 1 0 E g ′′ (W ε (0, u)) 2 1 2 du ⩽ C.
Let us consider the last and more difficult term. Since n 2 ε → n 2 1/2 , it suffices to prove the convergence to zero of the following term C ε .

C ε := T f (t)H 2 (Z ε (t)) 1 0 (1 -u)g ′′ (W ε (t, u)) du dt = D ε + F ε ,
where

D ε := T f (t)H 2 (Z ε (t)) 1 0 (1 -u) g ′′ (W ε (t, u)) -g ′′ X(t)/ r(0) du dt, and 
F ε := 1 2 T f (t)H 2 (Z ε (t))g ′′ X(t)/ r(0) du dt.
Let us first consider the term D ε .

E[|D

ε |] ⩽ C E[H 2 2 (Z ε (0))] 1 2 × 1 0 E g ′′ (W ε (0, u)) -g ′′ X(0)/ r(0) 2 1 2 du ---→ ε→0 0.
The last convergence is a consequence of (108) and (109). Finally, it remains to consider the term F ε for which we will prove that E

[F 2 ε ] tends to zero with ε. So let us compute E[F 2 ε ]. E F 2 ε = 1 4 T ×T f (t)f (s)E H 2 (Z ε (t))g ′′ X(t)/ r(0) ×H 2 (Z ε (s))g ′′ X(s)/ r(0) dt ds.
We divide the domain of integration T × T into two parts, namely T Using the fact that g ′′ is L 4 (φ(x) dx), we easily obtain that for all s, t ∈ T ,

E H 2 (Z ε (t))g ′′ X(t)/ r(0) H 2 (Z ε (s))g ′′ X(s)/ r(0) (110) ⩽ E[H 4 2 (Z ε (0))] 1 2 E g ′′ X(0)/ r(0) 4 1 2 ⩽ C.
In this way, we obtain the following bound

f (1) ε ⩽ Cσ 2d (T (1) 
δ ) ⩽ Cδ d .

We are now interested in the second term f

ε . Using the bound given in (110), we can apply Lebesgue's dominated convergence theorem and interchange the limit with the integral. Let us therefore fix a point (s, t) in T

(2) δ and prove that, lim ε→0 E H 2 (Z ε (t))g ′′ X(t)/ r(0) H 2 (Z ε (s))g ′′ X(s)/ r(0) = 0, thus achieving our goal. We compute the last expectation:

E H 2 (Z ε (t))g ′′ X(t)/ r(0) H 2 (Z ε (s))g ′′ X(s)/ r(0) = ∞ k=2 ∞ ℓ=2 c k c ℓ k(k -1)ℓ(ℓ -1) × E H 2 (Z ε (t)) H 2 (Z ε (s)) H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) .
By writing Mehler's formula [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] and using the bound

E X(t)/ r(0) • X(s)/ r(0) ⩽ ρ < 1,
it is easy to obtain the following upper bound

E H 2 (Z ε (t)) H 2 (Z ε (s)) H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) ⩽ C (k -2)(k -3)(k -2)!ρ k-4 1 {k=ℓ} + (k -2)!(k -4)ρ k-5 1 {k-2=ℓ} 200 CHAPTER 4. APPLICATIONS + (ℓ -2)!(ℓ -4)ρ ℓ-5 1 {ℓ-2=k} .
Thus, using Hölder's inequality we get

∞ k=2 ∞ ℓ=2 |c k c ℓ k(k -1)ℓ(ℓ -1)| E H 2 (Z ε (t)) H 2 (Z ε (s)) H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) ⩽ C ∞ k=4 c 2 k k!k(k -1)(k -2)(k -3)ρ k-4 + ∞ k=5 c 2 k k!(k -2)(k -3)(k -4)ρ k-5 1 2 × ∞ k=5 c 2 k-2 k!(k -2)(k -3)(k -4)ρ k-5 1 2    ⩽ C ∞ k=4 c 2 k k!k(k -1)(k -2)(k -3)ρ k-4 + ∞ k=5 c 2 k k!(k -2)(k -3)(k -4)ρ k-5 1 2 × ∞ k=3 c 2 k k!(k + 2)(k + 1)k(k -1)(k -2)ρ k-3 1 2    ⩽ C.
The last bound comes from the following argument.

First, ∞ k=0 c 2 k k! < ∞ (see (86)). Then for all 0 ⩽ ρ < 1, ∞ k=0 c 2 k k!ρ k < ∞ and this series is indefinitely differentiable. Furthermore, for all m ∈ N ⋆ , we have ∞ k=0 c 2 k k!ρ k (m) = ∞ k=m c 2 k k! m i=1 (k -i + 1)ρ k-m < ∞.
And in the same way

∞ k=3 c 2 k k! m+2 i=0 (k + i -2)ρ k-3 < ∞.
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So we have proved that we can interchange the limit with the series. It remains to show that for fixed integers k, ℓ ⩾ 2, we have

lim ε→0 E H 2 (Z ε (t)) H 2 (Z ε (s)) H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) = 0,
and our final goal will be achieved.

On the one hand the distribution of the Gaussian vector

Z ε (t), Z ε (s), X(t)/ r(0), X(s)/ r(0)
converges to that of the Gaussian vector Z(t), Z(s), X(t)/ r(0), X(s)/ r(0)

with covariance matrix         1 0 0 0 0 1 0 0 0 0 1 r(t -s) r(0) 0 0 r(t -s) r(0) 1         .
On the other hand, by Lemma 3.

1 of [59] E H 2 2 (Z ε (t)) H 2 2 (Z ε (s)) H 2 k-2 X(t)/ r(0) H 2 ℓ-2 X(s)/ r(0) ⩽ 4 • 7 k+ℓ • (k -2)!(ℓ -2)! ⩽ C.
These two facts imply that

E H 2 (Z ε (t)) H 2 (Z ε (s)) H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) ---→ ε→0 E H 2 (Z(t))H 2 (Z(s))H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) = E[H 2 (Z(t))H 2 (Z(s))] E H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) = E[H 2 (Z(t))] E[H 2 (Z(s))] E H k-2 X(t)/ r(0) H ℓ-2 X(s)/ r(0) = 0.
In short, we proved that lim ε→0 f

ε = 0. Therefore, we obtain the following bound. For any δ > 0,

lim ε→0 E[F 2 ε ] ⩽ Cδ d .
By taking limit when δ → 0, we obtain the required result, i.e.

lim ε→0 E[F 2 ε ] = 0. 202 CHAPTER 4. APPLICATIONS
To summarize all of this and by using that

1 r ε (0) 1 ε 1 - r ε (0) r(0) ---→ ε→0 ℓ 1/2 r(0) ,
we have shown that

Ξ ε (f, g) ≃ Y (f, g) + T 2 ≃ Y (f, g) + ℓ 1/2 r(0) T f (t)X(t)g ′ X(t)/ r(0) dt + 1 r ε (0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt K 1/2 r(0) -ℓ 1/2 T f (t)g ′′ X(t)/ r(0) dt = Y (f, g) + ℓ 1/2 T f (t) X(t)/ r(0)g ′ X(t)/ r(0) -g ′′ X(t)/ r(0) dt + 1 r ε (0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt + K 1/2 r(0) T f (t)g ′′ X(t)/ r(0) dt = X(f, g) + Y (f, g) + K 1/2 r(0) T f (t)g ′′ X(t)/ r(0) dt + 1 r ε (0) T f (t)g ′ X(t)/ r(0) ξ ε (t) dt.
From now on, the reader is referred to Appendix 5. In the remaining part of this section, we use the same notations and choose H := L 2 (T ) i.e. the set of continuous square-integrable functions on T .

To finish with the proof of the theorem, it remains to show that the random variable

Z ε (f ) := T f (t)g ′ X(t)/ r(0) ξ ε (t) dt
stably and vaguely converges to

Z(f ) := T f (t)g ′ X(t)/ r(0) ξ(t) dt.
Indeed, the stably and vaguely convergence of the random variable Ξ ε (f, g) will be ensured by the application of Theorem 1 of [START_REF] Aldous | On mixing and stability of limit theorems[END_REF] (see also the Appendix 5.2 of Appendix 5). The random vector ξ ε : Ω → H is a centered Gaussian vector, since for all ϕ ∈ H, the real random variable ⟨ϕ, ξ ε ⟩ H has a Gaussian distribution, N (0; ⟨K ξε ϕ, ϕ⟩ H ), where the linear operator K ξε is

K ξε (ϕ)(t) := T r ε (t -s) -2r (ε) (t -s) + r(t -s) ε 2 ϕ(s) ds.
Moreover, for any ϕ ∈ H, by applying Lemma 4.6.23 we can see

⟨K ξε ϕ, ϕ⟩ H ---→ ε→0 ⟨K ξ ϕ, ϕ⟩ H , where 
K ξ (ϕ)(t) := T C Ψ d i=1 ∂ 2 r ∂t 2 i (t -s)ϕ(s) ds.
We deduce by using Section 5.1 of Appendix 5 that

ξ ε v ---→ ε→0 ξ.
Returning to our objective, we discretize the random variable Z ε (f ) in the following way.

The idea is to consider

T = ∪ i∈Im T i,m with T i,m ∩T j,m = ϕ, and card(I m ) = i m . Each T i,m is an open rectangle such that σ d (T i,m ) ----→ m→∞ 0. Let denote t i,m the center of T i,m in this manner we can approximated Z ε (f ) by Z ε,m (f ) defined as follows Z ε,m (f ) := j∈Im f (t j,m )g ′ X(t j,m )/ r(0) T j,m ξ ε (t) dt = j∈Im f (t j,m )g ′ X(t j,m )/ r(0) 1 T j,m , ξ ε H = j∈Im f (t j,m )g ′ X(t j,m )/ r(0) 1 T j,m , ξ ε H := ⟨F m (X), ξ ε ⟩ H . As a first step let us show that, Z ε,m (f ) Sv ---→ ε→0 Z m (f ) := ⟨F m (X), ξ⟩ H .
We will see the convergence of the following characteristic function

E e is⟨Fm(X), ξε⟩ H = R im E[exp(is ⟨F m (X), ξ ε ⟩ H ) | ∩ j∈Im {X(t j,m ) = x j,m }] dP (X(t j,m ),j∈Im) (x j,m , j ∈ I m ) 204 CHAPTER 4. APPLICATIONS = R im E   exp   is j∈Im f (t j,m )g ′ (x j,m r(0)) T j,m ξ ε (t) dt   ∩ j∈Im {X(t j,m ) = x j,m } dP (X(t j,m ),j∈Im) (x j,m , j ∈ I m ). The random variable W ε,m := j∈Im f (t j,m )g ′ x j,m / r(0) T j,m ξ ε (t) dt has a Gaussian distribution so that L W ε,m ∩ j∈Im {X(t j,m ) = x j,m } = N (x j,m , j ∈ I m ) × V -1 22 × V 21;ε;m ; V 11;ε;m -V T 21;ε;m × V -1 22 × V 21;ε;m ,
where by applying Lemma 4.6.23

V 11;ε;m := i,j∈Im f (t i,m )f (t j,m )g ′ x i,m / r(0) g ′ x j,m / r(0) × T i,m ×T j,m r ε (t -s) -2r (ε) (t -s) + r(t -s) ε 2 dt ds ---→ ε→0 V 11;m := i,j∈Im f (t i,m )f (t j,m )g ′ x i,m / r(0) g ′ x j,m / r(0) × T i,m ×T j,m C Ψ d k=1 ∂ 2 r ∂t 2 k (t -s) dt ds, and 
V T 21;ε;m := i∈Im f (t i,m )g ′ x i,m / r(0) × T i,m r (ε) (t -t j,m ) -r(t -t j,m ) ε dt j∈Im ---→ ε→0 0 R im ,
and V 22 is the variance matrix of (X(t i,m ), i ∈ I m ) ∈ R im . From now on we note L X the distribution of the random variable (X(t)) t∈T .

We have therefore shown that

E e is⟨Fm(X), ξε⟩ H ---→ ε→0 R im e -1 2 s 2 V 11;m dP (X(t i,m ),i∈Im) (x i,m , i ∈ I m ) = E   exp   -1 2 s 2 i,j∈Im f (t i,m )f (t j,m )g ′ X t i,m / r(0) g ′ X t j,m / r(0) × T i,m ×T j,m C Ψ d k=1 ∂ 2 r ∂t 2 k (t -s) dt ds   = E e -1 2 s 2 ⟨KξFm(X), Fm(X)⟩ H = H E e -1 2 s 2 ⟨KξFm(X), Fm(X)⟩ H X = x dL X (x)
= E e is⟨Fm(X), ξ⟩ H .

To summarize, we have shown that

Z ε,m (f ) Sv ---→ ε→0 Z m (f ) = ⟨F m (X), ξ⟩ H , such that if x ∈ L 2 (T ) L(Z m (f ) X = x ) = N (0; ⟨K ξ F m (X), F m (X)⟩ H ).
In a second step, we show that

Z m (f ) Sv ----→ m→∞ Z(f ) = f (•)g ′ X(•)/ r(0) , ξ H .
Since X has continuous trajectories, our study can be restricted to such a type of trajectories. We know that

F m (x) L 2 (T ) ----→ m→∞ F (x) := f (•)g ′ x/ r(0)
and since K ξ is a continuous operator, we obtain

⟨K ξ F m (X), F m (X)⟩ H → ⟨K ξ F (x), F (x)⟩ H . Then E e isZm(f ) = H E e isZm(f ) X = x dL X (x) = H e -1 2 s 2 ⟨KξFm(X), Fm(X)⟩ H dL X (x) ----→ m→∞ H
e -1 2 s 2 ⟨KξF (x), F (x)⟩ H dL X (x)

:= E[e isZ(f ) ].

In conclusion we have shown,

Z m (f ) Sv ----→ m→∞ Z(f ) = f (•)g ′ X(•)/ r(0) , ξ H , such that if x ∈ L 2 (T )
L(Z(f ) X = x ) = N 0; K ξ f (•)g ′ x/ r(0) , f (•)g ′ x/ r(0) H .

To complete the proof, we apply Lemma 1.1 of [START_REF] Dynkin | Self-intersection gauge for random walks and for Brownian motion[END_REF]. It is then sufficient to prove that

lim m→+∞ lim ε→0 E {Z ε,m (f ) -Z ε (f )} 2 = 0.
We compute E {Z ε,m (f ) -Z ε (f )} 2 . Applying the Mehler's formula ( [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]), the fact that ∞ n=0 n 2 n!c 2 n < ∞ and Lemma 4.6.23, we easily get

E {Z ε,m (f ) -Z ε (f )} 2 = i,j∈Im T i,m ×T j,m
E f (t i,m )g ′ X(t i,m )/ r(0) -f (t)g ′ X(t)/ r(0)

× f (t j,m )g ′ X(t j,m )/ r(0) -f (s)g ′ X(s)/ r(0) ξ ε (t)ξ ε (s) dt ds

= i,j∈Im T i,m ×T j,m ∞ n=1 ∞ k=1 c n c k nk × E f (t i,m )H n-1 X(t i,m
)/ r(0) -f (t)H n-1 X(t)/ r(0)

× f (t j,m )H k-1 X(t j,m )/ r(0) -f (s)H k-1 X(s)/ r(0) ξ ε (t)ξ ε (s) dt ds This completes the proof of Theorem 4.6.20-3 .

Let us tackle the proof of the last part of that theorem.

We suppose that α = 1/2 and d = 2. By Remark 4.6.27, we already know that the term S 1 will prevail when α = 1/2 and d = 2. Moreover, Remark 4.6.31 has emphasized the fact that

T 1 = ε -1 [ln(1/ε)] -1/2 S 1 ≃ T ε := ε -1 [ln(1/ε)] -1/2 a(2, 0) T f (t)g X ε (t)/ r ε (0) × H 2 ∂X ε ∂t 1 (t)/ √ µ ε + H 2 ∂X ε ∂t 2 (t)/ √ µ ε dt.
As in [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF], the proof will proceed in several steps. On the one hand, we prove in forthcoming Proposition 4.6.35 that (X ε , S ε ) stably converges to (X, σ W ).

On the other hand we will consider a discrete version of T ε , defining for m ∈ N ⋆ Furthermore, it is easy to show that T (m) is a Cauchy sequence in L 2 (Ω). It follows, using the asymptotic independence between X and W , that

T (m) L 2 (Ω)
----→ m→∞ a(2, 0)σ T f (t)g X(t)/ r(0) d W (t).

To conclude, i.e. to prove the convergence of T ε , it suffices to prove Lemma 4.6.34 for which a proof is given after that of Proposition 5.2. d 2 i,j (t i+1 -t i )(s j+1 -s j ) , while d i,j ∈ R, for i, j = 0, . . . , m -1.

We want to prove that S where we noted λ := (λ (1) , λ (2) ) and dZ ε (λ) = Ψ(ελ) s(λ) dW (λ), while W is a Brownian sheet in R 2 . Recall that s is the spectral density of process X.

We use notations introduced in Slud [START_REF] Slud | MWI Representation of the Number of Curve-Crossings by a Differentiable Gaussian Process, with Applications[END_REF]. For h ∈ L 2 sym ((R 2 ) 2 ), we define λ (1) µ (1) + λ (2) µ (2) Ψ(ελ) Ψ(εµ) s(λ) s(µ)e i⟨λ+µ, u⟩ du.

I 2 (h) := 1 2! R 2 R 2 f ( 
To obtain convergence of S Proof of Lemma 4.6.36. Let us give some convergence results that will help us to show the lemma. For all i = 0, . . . , m -1 and j = 0, . . . , m -1, 2ε This is an immediate application of Theorem 4.6.19-4, when considering functions f and g identically equal to one. We also use the following convergence result. For all indices, i 1 , i 2 , j 1 , j 2 = 0, . . . , m -1 such that (i 1 ̸ = i 2 and i 1 + 1 ̸ = i 2 and i 2 + 1 ̸ = i 1 ) or such that (j 1 ̸ = j 2 and j 1 + 1 ̸ = j 2 and j 2 + 1 ̸ = j 1 ) or such that ((i 2 = i 1 + 1 or i 2 + 1 = i 1 ) and (j 2 = j 1 + 1 or j 2 + 1 = j 1 )) or such that (i 1 = i 2 and (j 1 + 1 = j 2 or j 2 + 1 = j 1 )), or such that ((i 1 + 1 = i 2 or i 2 + 1 = i 1 ) and j 1 = j 2 ), we have (112) ε -2 [ln(1/ε)] -1

t i 1 +1 t i 1 s j 1 +1 s j 1 t i 2 +1 t i 2 s j 2 +1 s j 2 ∂ 2 r ε ∂t 2 1 (u -v)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (u -v)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (u -v)/µ ε 2 du dv ---→ ε→0 0.
Let us give a sketch of the proof of convergence given in (112).

The convergence to zero of the above integral is straightforward in case where (i 1 ̸ = i 2 and i 1 + 1 ̸ = i 2 and i 2 + 1 ̸ = i 1 ) or such that (j 1 ̸ = j 2 and j 1 + 1 ̸ = j 2 and j 2 + 1 ̸ = j 1 ). Indeed, in such a case, the integration variables u and v appearing in the integral are such that ∥u -v∥ 2 ⩾ δ and as indicated in the proof of Theorem 4.6.19-4, the integral converges to zero. Thus let us focus on the indices such that ((i 2 = i 1 + 1 or i 2 + 1 = i 1 ) and (j 2 = j 1 + 1 or j 2 + 1 = j 1 )).

To this purpose, let us fix t 1 < t 2 < t 3 and s 1 < s 2 < s 3 and consider

A ε := ε -2 [ln(1/ε)] -1 t 2 t 1 s 2 s 1 t 3 t 2 s 3 s 2 ∂ 2 r ε ∂t 2 1 (u -v)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (u -v)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (u -v)/µ ε 2 du dv.
For the previous result obtained in Theorem 4.6.19-4, we know that Also, the case where t 1 < t 2 < t 3 and s 1 < s 2 and

A ε ≡ [ln(1/ε)] -1 t 2 t 2 -δ
B ε := ε -2 [ln(1/ε)] -1 t 2 t 1 s 2 s 1 t 3 t 2 s 2 s 1 ∂ 2 r ε ∂t 2 1 (u -v)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (u -v)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (u -v)/µ ε 2 du dv,
is treated in a same way and gives lim ε→0 B ε = 0. Finally, all the other cases are treated in the same manner by using the fact that for all i, j = 1, 2, and all (u 1 , u 2 ),

(113) ∂ 2 r ε ∂t i ∂t j (u 1 , u 2 ) 2 = ∂ 2 r ε ∂t i ∂t j (-u 1 , u 2 ) 2 = ∂ 2 r ε ∂t i ∂t j (u 1 , -u 2 ) 2 .
To finish with the preliminaries, we will use the next convergence result. For all indices, i 1 , i 2 , i 3 , i 4 , j 1 , j 2 , j 3 , j 4 = 0, . . . , m -1 and for all i = 1, . . . , 4 and Once again, we apply the Schwarz's inequality and Theorem 4.6.19-4. We obtain C ε ≡ D ε , where

k i = 1, 2 (114) 
D ε ⩽ C ε -4 [ln(1/ε)] -2 T 4 1 {M ε⩽∥u 1 -u 2 ∥ 2 ⩽δ} × ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 1 {M ε⩽∥u 3 -u 4 ∥ 2 ⩽δ} ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε 2 × 1 {M ε⩽∥u 1 -u 3 ∥ 2 ⩽δ} du 1 du 2 du 3 du 4 .
We make the change of variables: The ground is now prepared for the proof of the lemma. We compute the fourth moment of the random variable S 

s j 2 × 2 k 1 ,k 2 =1,2 ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 du 1 du 2   2 = 3   m-1 i 1 ,i 2 =0 m-1 j 1 ,j 2 =0 α i 1 ,j 1 α i 2 ,j 2 2ε -2 [ln(1/ε)] -1 t i 1 +1 t i 1 s j 1 +1 s j 1 t i 2 +1 t i 2 s j 2 +1 s j 2 ∂ 2 r ε ∂t 2 1 (u -v)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (u -v)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (u -v)/µ ε 2 du dv 2 .
Now, by applying convergence obtained in (111) and (112), we see that the limit will be held for indices such that i 1 = i 2 and i 2 = j 2 , giving To finish with the proof of the lemma, we conclude by noting that the contribution of the irregular diagrams tends to zero with ε. Indeed, it is enough to apply the formula of the diagram given in (115) and (116) to those diagrams. Then convergence given in (114) yields the required result.

In conclusion, we have proved the convergence of finite dimensional distributions of S ε .

To obtain assertion 1 of Proposition 4.6.35, i.e. the convergence of process S ε , it is enough to prove the tightness of the sequence of this process. Let us prove the following lemma. .

We will only work with the first expectation, say V ε (t 1 , s 1 ), the second would be treated in the same way. Let us suppose that s 1 ⩽ t 1 and prove that V ε (t 1 , s 1 ) := ε -6 [ln( As in the proof of Lemma 4.6.36, we use the diagram formula (see [20, pp. 431 and 432]) to calculate the expectation:

E 6 ℓ=1 H 2 ∂X ε ∂t k ℓ (u ℓ )/ √ µ ε = G∈Γ I G ,
where G is an undirected graph with 12 edges and 6 levels (see [20, p. 431], for definitions), Γ := Γ(2, 2, 2, 2, 2, 2) denotes the set of diagrams having theses properties, and

I G := w∈G(V ) - ∂ 2 r ε ∂t k d 1 (w) ∂t k d 2 (w) (u d 1 (w) -u d 2 (w) )/µ ε ,
where G(V ) denotes the set of edges of G; the edges w are oriented, beginning in d 1 (w) and finishing in d 2 (w). Thus we will have to deal with four kinds of terms corresponding to four kinds of graphs.

Case 1 This case corresponds to the regular diagrams. There are fifteen such diagrams. They are of the form

∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 × ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε 2 × ∂ 2 r ε ∂t k 5 ∂t k 6 (u 5 -u 6 )/µ ε 2 .
The three other cases correspond to the irregular ones. Case 2 There are thirty diagrams with the form

∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 × ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε × ∂ 2 r ε ∂t k 4 ∂t k 5 (u 4 -u 5 )/µ ε × ∂ 2 r ε ∂t k 5 ∂t k 6 (u 5 -u 6 )/µ ε × ∂ 2 r ε ∂t k 3 ∂t k 6 (u 3 -u 6 )/µ ε .
Case 3 There are forty diagrams with the following form

∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε × ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε × ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε × ∂ 2 r ε ∂t k 4 ∂t k 5 (u 4 -u 5 )/µ ε × ∂ 2 r ε ∂t k 5 ∂t k 6 (u 5 -u 6 )/µ ε × ∂ 2 r ε ∂t k 4 ∂t k 6 (u 4 -u 6 )/µ ε .
Case 4 There are 5! diagrams of the form 

∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε × ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/
   ⩽ C(t 1 -s 1 ) 3/2 [ln(1/ε)] -1 ⩽ C(t 1 -s 1 ) 3/2 .
Back to the proof of lemma part 2, we get the following bound

ε -3 [ln(1/ε)] -3/2 t 1 s 1 t 2 c t 1 s 1 t 2 c t 1 s 1 t 2 c 1 {∥u 1 -u 2 ∥ 2 ⩽M ε} ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε × ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε du 1 du 2 du 3 ⩽ ε -3 [ln(1/ε)] -3/2 t 1 s 1 t 2 c t 1 s 1 t 2 c t 1 s 1 t 2 c 1 {∥u 1 -u 2 ∥ 2 ⩽M ε} × ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε du 1 du 2 du 3 ⩽ ε -1 [ln(1/ε)] -3/2 × t 1 s 1 t 2 c t 1 s 1 t 2 c ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε du 2 du 3 ⩽ C(t 1 -s 1 ) 3/2 ,
the last inequality coming from (117).

The same reasoning can be done for the set of integration ∥u 2 -u 3 ∥ 2 ⩽ M ε.

Thus to conclude the proof of inequality given in part b., we only have to consider the set ∥u 1 -u 2 ∥ 2 > M ε and ∥u 2 -u 3 ∥ 2 > M ε. We obtain, by applying Schwarz's inequality and result obtained in part 1 of this lemma The tightness of process S ε follows from [START_REF] Cohen | Istas -Fractional fields and applications[END_REF]Theorem 3.1.10]. Thus the convergence in assertion 1 of Proposition 4.6.35 takes place in the sense of processes convergence. Let us now show assertion 2. Let c i,j , i, j = 0, . . . , m -1, be real constants. As before, it is sufficient to establish the limit distribution of m-1 i=0 m-1 j=0 c i,j X ε (t i , s j ) + S (m) ε (t, s).

ε -3 [ln(1/ε)] -3/2 × t 1 s 1 t 2 c t 1 s 1 t 2 c t 1 s 1 t 2 c ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 1 {∥u 1 -u 2 ∥ 2 >M ε} × ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε 1 {∥u 2 -u 3 ∥ 2 >M ε} ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε du 1 du 2 du 3 ⩽ ε -2 [ln(1/ε)] -1 × t 1 s 1 t 2 c t 1 s 1 t 2 c t 1 s 1 t 2 c ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε 2 du 1 du 2 du 3 1/2 × ε -4 [ln(1/ε)] -2 × t 1 s 1 t 2 c t 1 s 1 t 2 c t 1 s 1 t 2 c ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 1 {∥u 1 -u 2 ∥ 2 >M ε} × ∂ 2 r ε ∂t k 1 ∂t k 2 (u 2 -u 3 )/µ ε 2 1 {∥u 2 -u 3 ∥ 2 >M
This time, we apply of [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]Theorem 1]. Indeed,

m-1 i=0 m-1 j=0 c i,j X ε (t i , s j )
belongs to the first Wiener chaos as Gaussian random variable with finite variance. Furthermore, S

ε (t, s) belongs to the two order one. Mehler's formula allows us to verify the hypothesis appearing in (4) of this theorem. Finally, assumption (iv) is satisfied since, by applying result of the previous part 1, we know that S (m) ε (t, s) converges in distribution to a Gaussian random variable, as well as m-1 i=0 m-1 j=0 c i,j X ε (t i , s j ).

To summarize, we have proved the convergence of finite dimensional distributions of (X ε , S ε ). To conclude, the tightness of processes (X ε , S ε ) follows from that of process S ε proved in part 1. It implies the convergence of (X ε , S ε ) as processes and then ensures the stable convergence of (X ε , S ε ) and of that of S ε (see [START_REF] Podolskij | Understanding limit theorems for semimartingales: a short survey[END_REF]Proposition 1]). This yields proof of Proposition 4.6.35. To conclude with the proof of Theorem 4.6.20, let us prove the last lemma. ) 2 .

E (T (m) ε ) 2 = a 2 (2, 0)ε -2 [ln(1/ε)] -1 m-1 i 1 ,i 2 =0 m-1 j 1 ,j 2 =0
f (a

(m) i 1 , c (m) j 1 )f a (m) i 2 , c (m) j 2 × ∞ k=0 ∞ ℓ=0 c k c ℓ a (m) i 1 +1 a (m) i 1 c (m) j 1 +1 c (m) j 1 a (m) i 2 +1 a (m) i 2 c (m) j 2 +1 c (m) j 2 × E H 2 ∂X ε ∂t 1 (t)/ √ µ ε + H 2 ∂X ε ∂t 2 (t)/ √ µ ε H k X ε (a (m) i 1 , c (m) 
j 1 ) r ε (0) × H 2 ∂X ε ∂s 1 (s)/ √ µ ε + H 2 ∂X ε ∂s 2 (s)/ √ µ ε H ℓ X ε (a (m) i 2 , c (m) 
j 2 ) r ε (0) dt ds.

We proceed as in the proof of Proposition 4.6.26-3. It is straightforward, by using the asymptotic equality given in (103), to prove that

E (T (m) ε ) 2 ≡ 2a 2 (2, 0)ε -2 [ln(1/ε)] -1 m-1 i 1 ,i 2 =0 m-1 j 1 ,j 2 =0
f (a

(m) i 1 , c (m) 
j 1 )f (a (m) i 2 , c (m) j 2 ) × ∞ q=0 q!c 2 q a (m) i 1 +1 a (m) i 1 c (m) j 1 +1 c (m) j 1 a (m) i 2 +1 a (m) i 2 c (m) j 2 +1 c (m) j 2
r ε (a

(m) i 1 -a (m) i 2 , c (m) 
j 1 -c (m) j 2 ) r ε (0) q × ∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (t -s)/µ ε 2 dt ds.
Using convergence result given by (112), we obtain that 

E (T (m) ε ) 2 ≡ 2a 2 (2, 0)ε -2 [ln(1/ε)] -1 m-1 i=0 m-1 j=0 f 2 (a (m) i , c (m) j ) 
×E H 2 ∂X ε ∂t 1 (t)/ √ µ ε + H 2 ∂X ε ∂t 2 (t)/ √ µ ε H k X ε (t)/ r ε (0) × H 2 ∂X ε ∂s 1 (s)/ √ µ ε + H 2 ∂X ε ∂s 2 (s)/ √ µ ε H ℓ X ε (a (m) i , c (m) 
j ) r ε (0) dt ds.

As for the previous term and using the asymptotic equality (103), we have This completes the proof of Lemma 4.6.34 and also ends the proof of Theorem 4.6.20.

E T ε T (m) ε ≡ 2a 2 (2, 0)ε -2 [ln(1/ε)] -1 m-1 i=0 m-1 j=0 f a (m) i , c (m) j × 
m-1 i 1 ,i 2 =0 m-1 j 1 ,j 2 =0 f a (m) i 2 , c (m) j 2 × ∞ q=0 q!c 2 q a (m) i 1 +1 a (m) i 1 c (m) j 1 +1 c (m) j 1 a (m) i 2 +1 a (m) i 2 c (m) j 2 +1 c (m) j 2   r ε t -a (m) i 2 , c (m) j 2 r ε (0)   q f (t) × ∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s)/µ ε 2 + ∂ 2 r ε ∂t 2 
on the same probability space (Ω, F, P). This sequence converges in the sense of S v if for all B ∈ F and F ∈ C cyl (H) we have This definition has an equivalent expression when Ω is a metric space and F is its Borel σ-algebra. For any bounded and continuous function G : R → R and for any random variable Y : Ω → R we have

E[G(Y )F (X n )] ---→ n→∞ E[G(Y )F (X)].
Furthermore, the above characterization implies also that for all Y random variable (Y, π E (X n ))

Sv -→ (Y, π E (X)).

Finally we can extend as usual, this property to consider the case where Y n Prob.

---→ n→∞ Y in probability. Thus, it holds

(Y n , π E (X n )) Sv -→ (Y, π E (X)).

  N G [a,b] (y) := #{t ∈ [a, b] : G(t) = y}. leading to the following formula I f (y)N G [a,b] (y) dy = b a f (G(t)) G ′ (t) dt.

( 2 )

 2 E[σ d-1 (C B,X (y))] = B E[∥∇X(x)∥ d X(x) = y ]p X(x) (y) dx.

  we will denote by D r G the following setD r G := {x ∈ D : ∇G(x) is of rank j} . Also C D r G (y) (resp. C D r Q,G (y)) denotes the level set, C D r G (y) := C G (y) ∩ D r G (resp. C D r Q,G (y) := C Q,G(y) ∩ D r G ). From now on, σ d denotes the Lebesgue measure on R d . We use the symbol T for the transpose operator. For a set A ⊂ R d , A c denotes its complement on R d and if A ⊂ D, A c 1 denotes its complement on D. The class of sets B(R d ) is the Borel σ-algebra in R d . Also R + is the set of positive real numbers including +∞, ∥•∥ d denotes the Euclidean norm in R d . For x ∈ R d , B(x, r) (resp. B(x, r)), r > 0, is the open ball (resp. closed) of center x and radius r, that is B(x, r) := {z ∈ R d , ∥z -x∥ d < r} (resp. B(x, r) := {z ∈ R d , ∥z -x∥ d ⩽ r}).

  j (C A,g (y)) dy = R j σ d-j (C A,φ (y -a)) dσ j (y) = R j σ d-j (C A,φ (y)) dσ j (y).

  j (φ -1 (y) ∩ A) dy, this completes the proof of Lemma 2.3.9 for the affine functions. Lemma 2.3.10. -Let O an open set of R d , A ⊆ O a Borel set of R d and g : O -→ R j , j ≤ d be a continuously differentiable Lipschitz function with Lipschitz constant, Lip(g). Thus we haveR j σ d-j (C D r A,g (y)) dy ⩽ ω j ω d-j ω d Lip j (g)σ d (A).Above, ω d denotes the volume of the unit ball of R d . Remark 2.3.11. -In particular, we obtain that Proposition 2.3.7 is true for Borel sets A of null Lebesgue measure in R d . • To prove Remark 2.3.11, we need a lemma. Lemma 2.3.12. -Let g : R d → R j , be a locally Lipschitz function. Then the function g is Lipschitz on any compact set K of R d .

CHAPTER 2 .

 2 A PROOF OF THE COAREA FORMULA Proof of Remark 2.3.11. Since g is C 1 on R d then it is locally Lipschitz on R d . By Lemma 2.3.12, we know that function g is then a Lipschitz function on any compact of R d , an in particular on K n := [-n, n] d , ∀n ∈ N ⋆ . Thus, let A be a Borel set of R d such that σ d (A) = 0 and let A n := ]-n, n[ d ∩ A, n ∈ N ⋆ . By Lemma 2.3.10, one gets R j σ d-j (C D r

d

  , there exists a covering ((U ℓ i ) i∈I ℓ ) ℓ∈N of A of closed subsets of O such that for all ℓ |U | denotes the Euclidean diameter U , or |U | := sup x,y∈U ∥x -y∥ d .

  Lipschitz on D which is an open and convex set of R d . Let D 1 be an open and bounded subset of D and Y : D 1 ⊂ R d → R a continuous function such that supp(Y ) ⊂ D r X| D 1

  Using first that supp(Y ) is a compact subset of R d included in the open set Γ(λ), we can prove that there exists an open set O contained in R d such that: supp(Y ) ⊂ O ⊂ O ⊂ Γ(λ).

  y), i = 1, . . . , m. Let us use the fact that supp(Y ) is a compact set of R d and that O is open, in the following way. Consider ω ∈ supp(Y ). Given that supp(Y ) ⊂ O ⊂ Γ(λ), there exist two open sets U (ω) and U (ω) containing {ω} and R ω > 0, U (ω) ⊂ U (ω) ⊂ O such that the restriction f λ | U (ω) has an inverse on the open ball B(f λ (ω), R ω /2) and the restriction f λ | U (ω) has an inverse on the open ball

1 . 3

 13 in the case where we have chosen the bounded open set D 1 of R d equal to D convex (bounded). Now suppose that D is a convex open set of R d , which can be unbounded. The function X : D ⊂ R d → R j is a function of class C 1 (D, R j ) such that ∇X is Lipschitz and the function Y : D 1 ⊂ R d → R is a continuous function defined on D 1 , an open and bounded subset of R d included in D such that supp(Y ) ⊂ D r X |D 1

  j , Y (•) and ∥∇X(•)∥ j,d are assumed uniformly bounded on the support of Y , the bounds not depending on ω (∈ Ω). Proposition 3.1.8. -If X and Y satisfy the assumption A 0 , then the hypotheses H 2 and H 4 are satisfied. Proof of Proposition 3.1.8. For almost all ω ∈ Ω the field X(ω) : D

  y, u, ẋ) remains continuous. Furthermore, we made the hypothesis that the function u -→ D R×R dj g(x, y, u, ẋ) d ẋ dy dx is continuous. These facts and a weak version of Lebesgue's dominated convergence theorem allow to verify hypothesis H 5 . The same is true for the hypothesis H 3 .

Remark 3 . 2 . 4 .

 324 -In the same way as in Remark 3.1.10 we can generalize this proposition considering D an open and convex set not necessarily bounded.

  7. -As in Remark 3.1.10, we can generalize the theorem and the Remark 3.2.6 by considering that D is an open and convex possibly unbounded set. • Proof of Theorem 3.2.5. Let us consider ∀n ∈ N ⋆ , the sets

  an open set included in D. Now consider the restrictions X |Dn and Y |Dn . It is clear that if Y satisfies (39) and if X and Y satisfy one of the three assumptions B i , i = 1, 2, 3 then ∀n ∈ N ⋆ , Y |Dn satisfies (39) and X |Dn and Y |Dn satisfy one of the three assumptions A i , i = 1, 2, 3, where we have replaced the open set D by the open set D n . Indeed, it suffices for this to point out that ∀n ∈ N

Remark 3 . 3 . 7 . 3 . 3 . 3 .

 337333 -In the same way as in Remark 3.3.4, one can replace in the theorem the hypothesis "for almost all ω ∈ Ω, ∇X(ω) is Lipschitz", by the hypothesis "almost surelyL X := sup x∈D ∇ 2 X(x) (s) j,d < ∞",since almost surely the process ∇X will be Lipschitz with Lipschitz constant L X . • Remark 3.3.8. -We can generalized this theorem in the case where D is a convex open not necessarily bounded.In what follows, we discuss only the second moment, but see Remark 3.3.12 for the k-th moment. • Rice formula for the k-th moment. -Theorem 3.3.3 will allow to state a general Rice formula for the second moment.

  where D is an open set of R d . Let us state the following hypotheses D i , i = 1, . . . , 4. -D 1 : It is the assumption E 1 , plus the following hypothesis: ∀x ∈ D, the vector (X(x), ∇X(x)) has a density. -D 2 : It is the assumption E 2 , plus the following hypothesis: ∀x ∈ D, the vector (Z(x), ∇Z(x)) has a density. -D 3 : It is the assumption E 3 , plus the following hypothesis: the function F verifies assumption (F F ) appearing in assumption C 3 . -D 4 : It is the assumption E 4 , plus the following hypothesis: the process X satisfies the assumption (S).

Remark 3 . 3 .

 33 10. -As in Remark 3.3.4, we can replace in the theorem the hypothesis that for almost all ω

  2.7 following Theorem 3.2.5, respectively for the convex open set D × D and for the open and bounded set D × D -∆ contained in D × D. Moreover, if X and Y satisfy the hypothesis H 7 then X et Y |D×D-∆ satisfy the hypothesis H 6 , since ∀x ∈ D × D,

  Theorem 4.1.1. --The Rice formula of the first order holds if and only if λ 2 < ∞, and ∀y ∈ R and t > 0 we have

  and we end up evoking again Lemma 4.1.3.

Lemma 4 . 1 . 3 .

 413 -There exists δ > 0 such that

4. 2 .

 2 SEA MODELING APPLICATIONS 107 3.3.4 applies and we have for all y

where 1 . 1 ! 4 . 5 . 1 .

 11451 z := (z 1 , . . . , z d ) ∈ N d and |z| := d k=1 z k ; 2. a (ℓ) z := a (ℓ) z 1 ...z d ∈ R, ℓ = 1, . . . , j, |z| = n; 3. t := (t 1 , . . . , t d ) and t z := d k=1 t z k k .We say that P has the Kostlan-Shub-Smale (KSS for short) distribution if the coefficients a (ℓ) z are independent random variables of zero mean normally distributed with variances . . . z d ! . Expectation of the volume. -We are interested in the set of zeros of P and we denote this set by C P (0) and its volume by L n (C P (0)) if d-1 > j.

  3.4 according to Theorem 3.3.3 we obtain E[L n (C P (0))] = S d-1

4. 5 . 2 .

 52 Asymptotic of the volume variance. -Letendre in [41] p.4 and Letendre and Puchol in [42, p. 3] studied the asymptotic variance of the volume of the zero set when the degree n goes to infinity and in the case where d-1 > j.

Lemma 4 . 5 . 4 .

 454 -Each term appearing in the integrands of the sum (79) is bounded by a Lebesgue integrable function on [0, ∞[ of the variable z.

) for any i = 1 ,

 1 . . . d and I d stands for the identity matrix in R d . Remark 4.6.14.

d i,j=1 a i,j = 1 .

 1 Note that we necessarily have d i=1 a i,d+1 ⩾ 1 and d j=1 a d+1,j ⩾ 1.

Remark 4 . 6 .

 46 30. -Before doing so, notice that we have highlighted the following results: for 0 < α < 1,ℓ 2 (ε) ⩽ Cε 4(1-α) Thus if d -4 + 4α < 0, ℓ 2 (ε) = O(ε d ) = O(ε 2 ). Moreover, if d -4 + 4α = 0, ℓ 2 (ε) = O(ε 4(1-α) ln(1/ε)) and if d = 3 (and then α = 1 4 ), thus we proved that ℓ 2 (ε) = O(ε 3 ln(1/ε)) = O(ε 2 ). Remember that ℓ 1 (ε) = O(ε d ) = O(ε 2 ).We have finally proved that in the case d -4 + 4α < 0 or (d = 3 and α = 1 4 ), E[S 2 1 ] = O(ε 2 ). The proof of Proposition 4.6.26-2 is therefore complete. In case where d -4 + 4α = 0 and d = 2 (and then α

Lemma 4 . 6 . 32 .

 4632 -Let (µ ε ) be a sequence of finite measures in (R d ) k such that their density H (j) ε

  (s, t) ∈ T × T : ∥t -s∥ d ⩽ δ} and T (2) δ := {(s, t) ∈ T × T : ∥t -s∥ d > δ} where δ > 0 is chosen such that sup {s,t∈T,∥t-s∥ d ⩾δ} {|r(t -s)/r(0)|} ⩽ ρ < 1.The corresponding integrals are denoted by f

1 - 1 +

 11 s) × f (t i,m )f (t j,m ) r(t i,m -t j,m ) r(0) nf (t)f (t j,m ) r(t -t j,m ) r(0) n-1 -f (s)f (t i,m ) r(s -t i,m ) r(0) nf (t)f (s) r(t -s) r(0)

2 a

 2 j )/ r ε (0) ×ε -1 [ln(1/ε)] -1/for i = 0, . . . , m, a (m) i := a + ih m , c (m) i := c + ih ′ m , with h m := b-a m and h ′ m := d-c m .The stable convergence of (X ε , S ε ) implies that T

2 .

 2 Furthermore,(X ε , S ε ) Stable ----→ ε→0 (X, W ),where W is a standard Brownian sheet in R 2 independent of X.Proof of proposition 4.6.35.1. For m ∈ N ⋆ , a = t 0 < t 1 < • • • < t m = b and c = s 0 < s 1 < • • • < s m = d, let S (m) ε (t, s) := j [S ε (t i+1 , s j+1 ) -S ε (t i+1 , s j ) -S ε (t i , s j+1 ) + S ε (t i , s j )] = j ε -1 [ln(1/ε)] -1/2

ε

  (t, s) converges in law to N 0; σ 2 . For this purpose and as in the proof of Theorem 4.6.20-2, we have the following representation for S

  j ε -1 [ln(1/ε)] -1/2

  λ)f (µ) dW (λ) dW (µ).By using the Itô's formula for the Wiener-Itô integral (see [45, Theorem 4.3 p. 37]), we obtainS (m) ε (t, s) = I 2 (h (m)

ε

  (t, s), we use[START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] Theorem 1]. Convergences given in (111) and in (112) in the proof of the forthcoming lemma give the required convergence appearing in part 1 of the later Theorem 1. So we just verify condition (i) in proving the following lemma.

E

  {S (m) ε (t, s)} 4 = 3σ 4 .

s 2 s 2 -δ t 2 +δ t 2 s 2 +δ s 2 1 ∥u -v∥ 2 2 11√ 2 )

 222222 {∥u-v∥ 2 ⩾M ε} du dv = δ 2 [ln(1/ε)] {∥u-v∥ 2 ⩾M ε/δ} du dv ⩽ Cδ 2 [ln(1/ε)] -1 ln( -ln(M ε/(2δ)) ,thus lim δ→0 lim ε→0 A ε = 0, and lim ε→0 A ε = 0.

u 1 - 1 M ε⩽∥v∥ 2 ⩽δ 1 ∥v∥ 2 2 dv 2 T

 1122 u 2 = v 1 and u 3 -u 4 = v 2 , getting D ε ⩽ C [ln(1/ε)] -×T 1 {∥u 1 -u 3 ∥ 2 ⩽δ} .Consequently, we obtain lim ε→0 D ε ⩽ Cδ 2 , and lim ε→0 D ε = 0.

2 = 3σ 4 .

 24 σ 2 (t i+1 -t i )(s j+1 -s j )  

Lemma

  

Proof of Lemma 4 . 6 . 34 .

 4634 We can write E[(T ε -T (m) ε ) 2 ] = E[T 2 ε ] + E[(T (m) ε ) 2 ] -2E[T ε T (m) ε]. By Theorem 4.6.19-4, 

∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 +2 ∂ 2 r ε ∂t 1 2 + ∂ 2 r ε ∂t 2 2 (E 2 T f 2 (t) dt = ℓ 5 .] = ℓ 5 .

 121222255 ∂t 2 (t -s)/µ ε t -s)/µ ε 2 dt ds. Now using the convergence result given by (111), we finally get that lim ε→0 To complete the proof of Lemma 4.6.34, it remains to show that lim m→+∞ lim ε→0 E[T ε T (m) ε Let us compute E[T ε T

× ∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (t -s)/µ ε 2

 1222222 dt ds = 2a 2 (2, 0)ε -2 [ln(1/ε)] -1

2 (t -s)/µ ε 2 × ∂ 2 r ε ∂t 2 1 (t -s)/µ ε 2 + 2 ∂ 2 r ε ∂t 1 ∂t 2 (t -s)/µ ε 2 + ∂ 2 r ε ∂t 2 2 (t -s)/µ ε 2

 221222222 dt ds.Using the convergence result 112), we obtain thatE[T ε T (m) ε ] ≡ 2a 2 (2, 0)ε -2 [ln(1/ε)] dt ds.As for the previous term the convergence result (111) yields that lim ε→0 E[T ε T (m) taking the limit on m, we obtainlim m→+∞ lim ε→0 E[T ε T (m) ε ] = ℓ 5 .

E[ 1 B

 1 (ω)F (X n (ω))] ---→ n→∞ E[1 B (ω)F (X(ω))].

  Remark 2.3.6. -The hypotheses that h is bounded and B is compact imply that the left-hand side integral of (4) is finite and the formula holds. • Proof of Theorem 2.3.1 and Corollary 2.3.4. First, we will show, in the line of [60, pp. 60-67], the following proposition. Proposition 2.3.7. -Let g : R d → R j , j ≤ d be a continuously differentiable function defined on R d . Then for any A ∈ B(R d ) we have

	A	det ∇g(x)∇g(x) T 1/2 dx =	R j	σ d-j (C D r A,g (y)) dy.

) dy, provided that one of the two integrals is finite.

Remark 2.3.2. -If f is mesurable and positive the equality (3) is true and in this case the integrals can be infinite. • Remark 2.3.3. -The additional assumptions that f is bounded and B is a compact set imply that the left-hand side integral is finite and that the formula (3) is true. • Corollary 2.3.4. -Let h be a mesurable function, h : R d × R j → R and G : D ⊂ R d → R j , j ⩽ d, be a function satisfying the hypothesis H 0 where D is an open set. For all Borel set B subset of D, we have (4) B h(x, G(x)) det ∇G(x)∇G(x) T 1/2 dx = Remark 2.3.8. -Proposition 2.3.7 remains true if one assumes that the function g is only locally Lipschitz on R d instead of being C 1 on R d . In this case, the function g is almost surely differentiable on R d and the measure σ d-j which appears in the right-hand side of the previous equality is replaced by the Euclidean Hausdorff measure H d-j . We invite the reader to consult [60, Theorem 4.12, p. 61] for more details. • Proof of Proposition 2.3.7. As we have indicated, the proof is based on the notes

  2.3.10. We can always assume that A is a compact. Indeed, since A is a Borel set of R d , it can be written, except for a zero measure set, as a nondecreasing union of compacts. Remark 2.3.11 following Lemma 2.3.10 and Beppo Levi's theorem allow us to show Proposition 2.3.7 only in the compact case.

	Lemma 2.3.14. -Proposition 2.3.7 holds if A ⊆ D r g .
	Proof of Lemma 2.3.14.

  and B is a compact subset of D. Remark 2.3.2 allows us to prove Corollary 2.3.4. Indeed, applying this remark to the measurable and positive function f := 1 I and to the Borel set B ∩ A where I (resp. A) is some Borel set of R j (resp. R d ), and B is a Borel subset of D, allows to establish Corollary 2.3.4 for functions h of the form 1 A×I . Still by a standard approximation argument, Remark 2.3.5 and Corollary 2.3.4 follow. In the same way as for Remark 2.3.3, we obtain Remark 2.3.6. This completes the proof of Theorem 2.3.1 and of Corollary 2.3.4.

  The functions f 1 or f 2 are locally integrable by the hypothesis H ⋆ 2 or H ⋆ 3 . This completes the proof of the part 1 of the proposition. Let us prove part 2. First, we assume that X and Y satisfy the hypotheses H 1 and H 2 . Applying Corollary 2.3.4 to the function

  1 , a bounded and open set included in D. Moreover, we will have to adapt the assumptions for Y to the open set D 1 instead of D and to X |D 1 . In this way, the assumptions H 2 and H 4 will still hold for X |D 1 and Y defined on D 1 .•

	Proof of Remark 3.1.10. We prove this remark in the same way as Proposition
	3.1.8. As in the proof of Theorem 3.1.3, we use that the open set D 1 is
	contained in D which is convex. This allows us to apply, as on page 35, Rolle's
	theorem and that ∇X is Lipschitz on D.

  where D is an open and convex bounded set of R d , such that for almost all ω∈ Ω, ∇X(ω) is Lipschitz. Let Y : Ω × D ⊂ Ω × R d → R be a continuous process. If Y satisfies[START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] and if X and Y satisfy one of the three assumptions B ⋆ i , i = 1, 2, 3 and the hypotheses H 6 and H ⋆ 6 or if X and Y satisfy the assumption B ⋆ 4 , then for all y ∈ R j we have

  D n is an open set contained in D. We consider the restrictions X |Dn and Y |Dn . It is clear that if Y satisfies (39) and if X and Y satisfy one of the assumptions B ⋆ In B ⋆ i the assumption B i is replaced by A i . Also, X |Dn and Y |Dn satisfy the hypothesis H ⋆ 6 , where the open set D is replaced by the open set D n . We apply Theorem 3.2.8 to X |Dn and to Y |Dn (resp. |Y | |Dn ) and obtain ∀y ∈ R j and ∀n ∈ N

i , i = 1, 2, 3, then ∀n ∈ N ⋆ , Y |Dn satisfies (39) and X |Dn and Y |Dn satisfy one of the assumptions B ⋆ i , i = 1, 2, 3. * ,

  s j1 , s j2 , . . . , s jd ; s 11 , s 21 , . . . , s j-11 , s 12 , s 22 , . . . , s j-12 , . . . , s 1d , s 2d , . . . , s j-1d ) -→ u, s 11 , s 21 , . . . , s j-11 , i1 + s j1 , s 12 , s 22 , . . . , s j-12 ,

	1 λ j	-	j-1 i=1	λ i s

•

  Remark 3.3.12. -Under the same type of hypotheses as those given in the theorem, or later in Remark 3.3.14, one can propose a general Rice formula for the moments of order k of the process Y integrated on the level set of the random field X, and this ∀y ∈ R j . • Remark 3.3.13. -Theorem 3.3.9 and also Remarks 3.3.11, 3.3.12 and 3.3.14 can be generalized to D, a convex open set R d not necessarily bounded. Remark 3.1.10 arguments can be followed mutatis mutandis. • Proof of Theorem 3.3.9. The idea is to apply Remark 3.2.7 according to Theorem 3.2.5 for the convex and open set D × D and the bounded open set D 1 = D × D -∆, to the processes X and Y as

  Chapter 7). Now for each t > 0 and y ∈ R we define the level set

	C ζ D (t, y) := {p ∈ D : ζ(t, p) = y}
	and the following functional

  3.2. Then we can apply Remark 3.3.4 with condition B 3 and hypothesis (S) replacing condition C 3 .

	Moreover, the density of E(0, 0), at the point y > 0, is the Rayleigh density
	(y/σ 2 ζ )e -1 2 y 2 /σ 2 ζ , that exists and is continuous if σ 2 ζ := Var(ζ(0, 0)) > 0.
	For each t > 0 and y > 0 we define the level set
	C E

D (t, y) := {p ∈ D : E(t, p) = y} and the functional

  |h|)1 {d=3} , for h sufficiently small and where the constante C is locally bounded as function of x.

Remark 4.6.11. -This lemma highlights the fact that since d ⩾ 3, the renormalized local time L f X (•, T ) almost surely admits a continuous version as function of x.

  Remark 4.6.33. -It is obvious using Proposition 4.6.26-1 that T 1 converges in L 2 (Ω) to Y (f, g) in the more general case where d + 4α -4 > 0. Thus, the last convergence prevails in the particular case where α = 1/2 and d > 2. • Proof of Lemma 4.6.32. Let χ ε (γ 1 , γ 2 , . . . , γ k ) be the Fourier transform of µ ε

  Remember that T is an open rectangle. If T has the following form, T =]a, b[×]c, d[, let us define for t:= (t 1 , t 2 ) ∈ T , S ε (t) := ε -1 [ln(1/ε)] -1/2

	×	a	t 1	c	t 2	H 2	∂X ε ∂u 1	(u)/	√ µ ε + H 2	∂X ε ∂u 2	(u)/ √ µ ε	du.

  -2 [ln(1/ε)] -1 (t i+1 -t i )(s j+1 -s j ).

	+2	∂ 2 r ε ∂t 1 ∂t 2	(u -v)/µ ε	2	+	∂ 2 r ε 2 ∂t 2	(u -v)/µ ε	2	du dv
	---→ ε→0 σ 2 (111)							
		t i+1 t i	s j+1 s j	t i+1 t i	s j+1 s j	1 ∂t 2 ∂ 2 r ε	(u -v)/µ ε	2

  × ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε ∂ 2 r ε ∂t k 2 ∂t k 4 (u 2 -u 4 )/µ ε × ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε du 1 du 2 du 3 du 4 ---→To prove this convergence, we first notice that by applying Schwarz's inequality and using the results of convergence (112), we easily obtain the required convergence to zero of the previous integral for most cases. The only case left to consider is the following. Let us fix t 1 < t 2 , s 1 < s 2 and k i fixed, for i = 1, . . . , 4. Let us considerC ε := ε -4 [ln(1/ε)] -2 ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε ∂ 2 r ε ∂t k 2 ∂t k 4 (u 2 -u 4 )/µ ε ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε du 1 du 2 du 3 du 4 .As before, applying Schwarz's inequality and working as in the proof of Theorem 4.6.19-4, we point out that this integral is O(1/ ln(1/ε)) if we integrate on the set{∥u 1 -u 2 ∥ 2 ⩽ M ε or ∥u 1 -u 3 ∥ 2 ⩽ M ε or ∥u 2 -u 4 ∥ 2 ⩽ M ε or ∥u 3 -u 4 ∥ 2 ⩽ M ε or ∥u 1 -u 2 ∥ 2 > δ or ∥u 1 -u 3 ∥ 2 > δ or ∥u 2 -u 4 ∥ 2 > δ or ∥u 3 -u 4 ∥ 2 > δ}.Thus, we only have to consider the behavior of the integral on the set{M ε ⩽ ∥u 1 -u 2 ∥ 2 ⩽ δ and M ε ⩽ ∥u 1 -u 3 ∥ 2 ⩽ δand M ε ⩽ ∥u 2 -u 4 ∥ 2 ⩽ δ and M ε ⩽ ∥u 3 -u 4 ∥ 2 ⩽ δ}.

	ε -4 [ln(1/ε)] -2	t i 1 +1	s j 1 +1	t i 2 +1	s j 2 +1	t i 3 +1	s j 3 +1	t i 4 +1	s j 4 +1
		t i 1	s j 1		t i 2	s j 2		t i 3		s j 3	t i 4	s j 4
			t 2	s 2	t 2	s 2	t 2	s 2	t 2	s 2
			t 1	s 1	t 1	s 1	t 1	s 1	t 1	s 1

ε→0 0.

E

  {S (m) ε (t, s)} 4 = ,j 2 ,j 3 ,j 4 =0 α i 1 ,j 1 α i 2 ,j 2 α i 3 ,j 3 α i 4 ,j 4 × ε -4 [ln(1/ε)] -2 du 1 du 2 du 3 du 4 .4.6. LOCAL TIME AND LENGTH OF CURVES OF LEVEL SETwhere G is an undirected graph with 8 edges and 4 levels (for definitions, see[20, p. 431]), Γ := Γ(2, 2, 2, 2) denotes the set of diagrams having theses properties, and-∂ 2 r ε ∂t k d 1 (w) ∂t k d 2 (w) (u d 1 (w) -u d 2 (w) )/µ ε ,where G(V ) denotes the set of edges of G; the edges w are oriented, beginning in d 1 (w) and finishing in d 2 (w).The diagrams are called regular (see[20, p. 432]) if their levels can be matched in a such way that no edges pass between levels in different pairs, otherwise they are called irregular. Consider all the regular diagrams. Their contribution, say R ε , is given byR ε := ,j 2 ,j 3 ,j 4 =0 α i 1 ,j 1 α i 2 ,j 2 α i 3 ,j 3 α i 4 ,j 4 ,k 2 ,k 3 ,k 4 =1,2 2 ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 2 ∂ 2 r ε ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε 2 +2 ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε 2 2 ∂ 2 r ε ∂t k 2 ∂t k 4 (u 2 -u 4 )/µ ε 2 +2 ∂ 2 r ε ∂t k 1 ∂t k 4 (u 1 -u 4 )/µ ε 2 2 ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε 2 du 1 du 2 du 3 du 4 ,j 2 ,j 3 ,j 4 =0 α i 1 ,j 1 α i 2 ,j 2 α i 3 ,j 3 α i 4 ,j 4 ∂t k 3 ∂t k 4 (u 3 -u 4 )/µ ε 2 du 1 du 2 du 3 du 4 i 1 ,j 1 α i 2 ,j 2 ε -2 [ln(1/ε)] -1
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	To calculate the expectation, we use the diagram formula (see [20, pp. 431 and 432]): (115) E 4 ℓ=1 H 2 ∂X ε i 1 ,i 2 =0 j 1 ,j 2 =0 t i 1 s j 1 t i 2 ∂t k ℓ (u ℓ )/ √ µ ε = ×2  ∂ 2 r = 3  m-1 m-1 t i 1 +1 s j 1 +1 t i 2 +1 s j 2 +1
	(116)	I G :=							
		w∈G(V )						
		m-1	m-1						
	i 1 ,i 2 ,i 3 ,i 4 =0 j 1 × ε -4 [ln(1/ε)] -2	t i 1 +1	s j 1 +1	t i 2 +1	s j 2 +1	t i 3 +1	s j 3 +1	t i 4 +1	s j 4 +1
			t i 1	s j 1	t i 2	s j 2	t i 3	s j 3	t i 4	s j 4
	×								
	k 1 = 3	m-1	m-1 i 1 ,i 2 ,i 3 ,i 4 =0 j 1 t i 1 +1 s j 1 +1 m-1 m-1	t i 2 +1	s j 2 +1	t i 3 +1	s j 3 +1	t i 4 +1	s j 4 +1
	t i 1 t i 1 +1 E H 2 ∂X ε ∂t k 1 j 1 × ε -4 [ln(1/ε)] -2 i 1 ,i 2 ,i 3 ,i 4 =0 s j 1 +1 s j 1 (u 1 )/ t i 1 s j 1 k 1 ,k 2 ,k 3 ,k 4 =1,2 ×H 2 ∂X ε ∂t k 3 (u 3 )/ √ µ ε H 2 t i 2 √ µ ε H 2 t i 2 +1 s j 2 +1 s j 2 ∂X ε ∂t k 2 t i 2 s j 2 t i 3 t i 3 (u 2 )/ t i 3 +1 ∂X ε ∂t k 4 (u 4 )/ √ µ ε s j 3 +1 s j 3 √ µ ε s j 3 × k 1 ,k 2 ,k 3 ,k 4 =1,2 2 ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε ∂ 2 r ε 2	t i 4 t i 4 +1 t i 4	s j 4 s j 4 +1 s j 4

G∈Γ

I G , ε α

  4.6.37. -For any (s, t) ∈ T × T and ε > 0, we haveE {S ε (t) -S ε (s)} 6 ⩽ C ∥t -s∥ 3 2 .Proof of Lemma 4.6.37. Let t := (t 1 , t 2 ) ∈ T and s := (s 1 , s 2 ) ∈ T . Let us compute E {S ε (t) -S ε (s)} 6 . E {S ε (t) -S ε (s)} 6 = ε -6 [ln(1/ε)] -3

	E		a	t 1		c	t 2	H 2	∂X ε ∂u 1	(u)/ √ µ ε + H 2	∂X ε ∂u 2	(u)/	√ µ ε	du
	-	a	s 1	c	s 2	H 2	∂X ε ∂u 1	(u)/ √ µ ε + H 2	∂X ε ∂u 2	(u)/ √ µ ε	du	6
	⩽ Cε -6 [ln(1/ε)] -3				
	E		t 1 s 1		c	t 2	H 2	∂X ε ∂u 1	(u)/ √ µ ε + H 2	∂X ε ∂u 2	(u)/	√ µ ε	du	6
	+ E				a	s 1	t 2 s 2	H 2	∂X ε ∂u 1	(u)/ √ µ ε + H 2	∂X ε ∂u 2	(u)/ √ µ ε	du	6

  1/ε)] -3 E ε (t 1 , s 1 ) = ε -6 [ln(1/ε)] -3 ,k 2 ,k 3 ,k 4 ,k 5 ,k 6 =1,2 du 1 du 2 du 3 du 4 du 5 du 6 .

					t 1 s 1	c	t 2	H 2	∂X ε ∂u 1	(u)/ √ µ ε
				+ H 2			∂X ε ∂u 2	(u)/	√ µ ε	du
		t 1	t 2	t 1	t 2			t 1		t 2	t 1	t 2	t 1	t 2	t 1	t 2
		s 1	c	s 1	c	s 1	c		s 1	c	s 1	c	s 1	c
	k 1 E	6 ℓ=1	H 2	∂X ε ∂t k ℓ	(u ℓ )/	√ µ ε			

6

⩽ C(t 1 -s 1 ) 3 , that will be enough to ensure the required result.
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  µ ε 4.6. LOCAL TIME AND LENGTH OF CURVES OF LEVEL SET 217× ∂ 2 r ε ∂t k 2 ∂t k 4 (u 2 -u 4 )/µ ε × ∂ 2 r ε ∂t k 3 ∂t k 5 (u 3 -u 5 )/µ ε × ∂ 2 r ε ∂t k 4 ∂t k 6 (u 4 -u 6 )/µ ε × ∂ 2 r ε ∂t k 5 ∂t k 6 (u 5 -u 6 )/µ ε .As in the proof of Lemma 4.6.36 let us give and show in the forthcoming lemma two preliminaries results which will help us to treat the previous four cases.∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε 2 du 1 du 2 ⩽ C(t 1 -s 1 ). ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε × ∂ 2 r ε ∂t k 2 ∂t k 3 (u 2 -u 3 )/µ ε ∂ 2 r ε ∂t k 1 ∂t k 3 (u 1 -u 3 )/µ ε du 1 du 2 du 3 ⩽ C(t 1 -s 1 ) 3/2 .Proof of Lemma 4.6.38. Let us begin with the proof of part 1 of the lemma.By using the parity property of the function∂ 2 r ε ∂t k 1 ∂t k 2 >M ε} du ⩽ C(t 1 -s 1 ). us now turn to the part 2 of the lemma and establish a first result.∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε du 1 du 2 (117) ⩽ C(t 1 -s 1 ) 3/2 . ∂ 2 r ε ∂t k 1 ∂t k 2 (u 1 -u 2 )/µ ε du 1 du 2 ∂ 2 r ε ∂t k 1 ∂t k 2 (u)/µ ε (t 1 -s 1 -u 1 )(t 2 -c -u 2 ) du ⩽ C(t 1 -s 1 )[ln(1/ε)] -3/2 -1 1 {∥u∥ 2 ⩽M ε} + 1 ∥u∥ 2 1 {∥u∥ 2 >M ε} du ⩽ C(t 1 -s 1 )[ln(1/ε)] -3/2 -s 1 ) + (t 1 -s 1 ) 1/2

	Indeed, we have								
	ε -1 [ln(1/ε)] -3/2		t 1		t 2	t 1		t 2
				s 1	c		s 1	c		
	= 4ε -1 [ln(1/ε)] -3/2				
			t 1 -s 1	t 2 -c				
		×								
			0		0					
	Lemma 4.6.38. -						
	t 1 t 1 -s 1 t 2 s 1 c 2. ε -3 [ln(1/ε)] -3/2 1. ε -2 [ln(1/ε)] -1 t 1 s 1 c × 0 ε × t 1 t 2 t 2 -c s 1 c t 2 t 1 s 1 t 2 c 0    (t 1 t 1 -s 1 t 1 s 1 0	t 2 t 2 -c c 0	2 ∥u∥ 2 1	1 {∥u∥ 2 >M ε} du	1/2
												described in the formula
	(113), inequality (94) and convergence given in (95), we get
	ε -2 [ln(1/ε)] -1	t 1 s 1	c	t 2	t 1 s 1	c	t 2	∂ 2 r ε ∂t k 1 ∂t k 2	(u 1 -u 2 )/µ ε	2	du 1 du 2
	= 4ε -2 [ln(1/ε)] -1				
	×	0	t 1 -s 1	0	t 2 -c		∂ 2 r ε ∂t k 1 ∂t k 2	(u)/µ ε
	× 1 {∥u∥ 2 Let ε -1 [ln(1/ε)] -3/2 t 1 -s 1 0 t 2 -c 0 ε -2 1 {∥u∥ 2 ⩽M ε} + 1 ∥u∥ 2 2 t 1 t 2 t 1 t 2
							s 1	c			s 1	c

2 (t 1 -s 1 -u 1 )(t 2 -c -u 2 ) du ⩽ C(t 1 -s 1 )[ln(1/ε)] -1

  ε} du 1 du 2 du 3 -u 2 ∥ 2 >M ε} × 1 ∥u 2 -u 3 ∥ 2 2 1 {∥u 2 -u 3 ∥ 2 >M ε} du 1 du 2 du 3 1/2 ⩽ C(t 1 -s 1 ) 3/2 .That ends the proof of Lemma 4.6.38. We turn back now to the proof of Lemma 4.6.37. The first case is treated directly by using part 1 of Lemma 4.6.38. The second cases uses first part 1 of Lemma 4.6.38 and second Schwarz's inequality and again part 1 of Lemma 4.6.38. The third case is a straightforward application of part 2 of Lemma 4.6.38. Finally, the last case is solved by applying Schwarz's inequality and again part 1 of Lemma 4.6.38. That yields Lemma 4.6.37.

												1/2
	⩽ C(t 1 -s 1 ) [ln(1/ε)] -2							
	×	t 1 s 1	c	t 2	t 1 s 1	c	t 2	t 1 s 1	c	t 2	1 ∥u 1 -u 2 ∥ 2 2	1 {∥u 1

(85) L f X (u, T ) = 1 r(0) φ u r(0)

Proof of Theorem 4.6.13. Let us define the random variable Z f (u, T ) as the right-hand side of (85) that is

On the one hand, by Proposition 4.6.9, we already know that

T ×T f (s)f (t)p X(s),X(t) (u, u) ds dt.

On the other hand, using Mehler's formula, we obtain

q ds dt.

And as we saw in the second way of proving Proposition 4.6.2, we use [START_REF] Hille | A class of reciprocal functions[END_REF]Eq. (39)] to obtain

in Theorem 4.6.5. We thus obtain the equality

Thus, we can split Ξ ε (f, g) into two terms

The proof will proceed as follows.

We are going to prove that

So we can already see that in case where α ̸ = 1 2 , the term S 1 only matters when α > 1/2 and we will show in this case that E[T 2 1 ] → ℓ 2 . Similarly, the term S 2 will only play a role when α < 1 2 and in this case we will prove that E[T 2 2 ] → ℓ 1 . The case where α = 1/2 is a little more delicate and we will treat it each time separately. First let us consider the term

Using the Hermite expansion of g, we can write the term S 2 as

We split S 2 into two terms:

We first study the asymptotic variance of U 2 . Using the Mehler's formula [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF],

we obtain

VAGUE CONVERGENCE AND STABLE CONVERGENCE

Vague convergence

Let H be a separable Hilbert space. We denote by ⟨•, •⟩ H the scalar product in H. We define the finite dimensional weak convergence of a sequence of probability measures {µ n } ∞ n=1 defined in this space, called vague convergence. If for any ϕ ∈ H the following functional

converges when n → ∞ toward a functional J(ϕ), we say that the sequence of measures converges vaguely. It is easy to show that J(0) = 1. Moreover, the functional J is positive definite i.e. if α 1 , . . . , α m are scalars and if ϕ 1 , . . . , ϕ m in H then we have that

This last property is a consequence of the same property verified by the J n . Using Kolmogorov's consistency theorem, we can define a measure µ in H. Nevertheless, it happens that it is only finitely additive. To explain this last assertion, let {e i } ∞ i=1 be a complete and orthonormal system in H. Let us define π e i 1 ,...,e i k the orthogonal projection on the linear span of the set of vectors {e i 1 , . . . , e i k }, i.e.

We can define the following sequence of measure in R k By Levy-Cramer theorem on the convergence of probability measures in R k , we know that there exits a probability measure in R k , which we denote by µ e i 1 ,...,e i k , such that µ

where w ---→ n→∞ denotes the weak convergence of probability measures. Moreover, the collection of these measures is consistent in the sense of Kolmogorov. They therefore define a cylindrical measure µ on H. To have the σ-additivity, we need an additional condition of tightness. If this last condition is not satisfied, we say that µ is a weak probability measure. We must denote this convergence by

Consider an example provided by Gaussian measures. Let X be a random vector X : Ω → H with a distribution µ, a probability measure defined on H. Let L(H) be the vector space of continuous linear operators from H to H. We then say that µ is Gaussian if for all ϕ ∈ H the real random variable ⟨ϕ, X⟩ H has a Gaussian distribution, N (E[⟨ϕ, X⟩ H ]; Var(⟨ϕ, X⟩ H )). There exists m ∈ H, and K µ ∈ L(H), self-adjoint and nonnegative, such that the following properties are verified

K µ is the covariance operator while m is the mean. The distribution of X is characterized by m and K µ . We can show that K µ is a trace-class operator, i.e. it has a finite trace. Let T r(K µ ) = ∞ i=1 ⟨K µ e i , e i ⟩ H < +∞. Note that if ∥•∥ H is the norm induced by the scalar product in H, one has

From now on, we assume without loss of generality that m = 0. The following formula is immediate

2 <Kµϕ,ϕ> , for any ϕ ∈ H.

It is easy to prove that for a sequence of Gaussian measures {µ n } ∞ n=1 we have

the last convergence takes place in the operator norm. The operator K µ could be non trace-class, then in such a case it can only define a weak Gaussian measure.

Stable convergence

In this section, we introduce the notion of stable convergence of measures, but adapted to the framework of the vague convergence. To begin with, let us consider an equivalent definition of vague convergence whose proof is routine.

A continuous and bounded function F : H → R is said cylindrical if there exists a finite dimensional subspace E ⊂ H such that F (y) = F (π E (y)), ∀y ∈ H, where π E is the ortogonal projection on E. The set of these functions is denoted by C cyl (H).

We have the following result. Let X n be a sequence of random variables taking values in H with µ n := L(X n ) then

Above, µ could in principle be a weak probability measure. To introduce the notion of stable vague convergence (denoted as S v ) we assume that the all H-valued random variables of the sequence X n are defined