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Automatic crack tip detection and stress intensity factors estimation of curved cracks from digital images
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With the development of full-field measurement techniques, it has been possible to analyze crack propagation experimentally with an increasing level of robustness. However, the analysis of curved cracks is made difficult and almost unexplored because the possible analysis domain size decreases with crack curvature, leading to an increasing uncertainty level. This paper proposes a digital image correlation technique, augmented by an elastic regularization, combining finite element kinematics on an adapted mesh and a truncated Williams' expansion. Through the analysis of two examples, the proposed technique is shown to be able to address the experimental problems of crack tip detection and stress intensity factors estimation along a curved crack path.

INTRODUCTION

With the development of full-field measurement techniques, it has been possible to analyze experimentally crack propagation with an increasing level of robustness. The improvement of the robustness is directly related to the increasing amount of data available for the analysis. For crack tip fields analysis, this robustness basically depends on the size of the domain used for experimental stress intensity factors extraction.

The analysis of curved cracks is made difficult and almost unexplored because the possible extraction domain size, and thus the maximum robustness, decreases as the crack curvature is increasing. The experimental estimation of the crack tip position is also a difficult question in this context.

The most common practice to estimate stress intensity factors (SIF) at the tip of a crack relies on a post-processing of the displacement or strain/stress fields. Analyzing the displacement field leads to a least-squares projection onto an appropriate basis. This technique has been used either in numerical simulations e.g. [START_REF] Duarte | A generalized finite element method for the simulation of three-dimensional dynamic crack propagation[END_REF] or in the post-processing of experimental 2D or 3D full displacement field measurements e.g. [START_REF] Mcneill | Estimation of stress intensity factor by digital image correlation[END_REF][START_REF] Abanto-Bueno | Investigation of crack growth in functionally graded materials using digital image correlation[END_REF][START_REF] Yoneyama | Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation[END_REF][START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF][START_REF] Lopez-Crespo | Study of a crack at a fastener hole by digital image correlation[END_REF][START_REF] Réthoré | Digital volume correlation analyses of synchrotron tomographic images[END_REF].

Extracting SIF from strain/stress fields is usually based on Linear Elastic Fracture Mechanics theory and path independent integrals. This kind of technique is extremely popular for numerical simulations and it has been used in a number of different cases in 2D or in 3D: quasi-static crack propagation, cohesive fracture, confined plasticity, fretting with contact and friction between the crack faces, dynamic crack propagation.

The interaction integral has also been used to extract SIF in 2D [START_REF] Réthoré | Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral[END_REF] and in 3D [START_REF] Rannou | Three dimensional experimental and numerical analysis of a fatigue crack[END_REF] from experimental displacement fields measured by digital image or volume correlation.

However, due to the derivation of the displacement field to obtain the strain field, the noise sensitivity of this class of strain/stress based techniques is higher than for displacement based methods. Even if the noise sensitivity of the interaction integral can be optimized [START_REF] Réthoré | Noise-robust stress intensity factor determination from kinematic field measurements[END_REF], it has been shown in [START_REF] Réthoré | Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements[END_REF] that displacement based techniques have lower noise sensitivity. The conclusion of this paper is that the best accuracy is obtained when SIF are directly estimated, i.e. when they are among the degrees of freedom of the problem to solve as in [START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF]. This remark applies not only for experimental displacement fields but also for numerical simulations for which different strategies have been proposed for direct estimation of SIF. These strategies have been developed in the context of the eXtended Finite Element Method (X-FEM) [START_REF] Liu | Xfem for direct evaluation of mixed mode sifs in homogeneous and bi-materials[END_REF][START_REF] Chahine | Crack-tip enrichment in the xfem method using a cut-off function[END_REF] and they recover optimal convergence in terms of SIF if the underlying partition of unity finite element functions are inactivated over the SIF extraction zone [START_REF] Xiao | Implementation of hybrid crack element on a general finite element mesh and in combination with xfem[END_REF][START_REF] Réthoré | Hybrid analytical and extended finite element method (HAX-FEM): A new enrichment procedure for cracked solids[END_REF][START_REF] Passieux | Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid x-fem[END_REF]. The latter two references make use of the coupling between an X-FEM model and an analytical basis based on a truncation of the Williams' series [START_REF] Williams | On the stress distribution at the base of a stationary crack[END_REF]. The coupling of the two models is achieved either by a partition of the energy over an overlapping domain [START_REF] Réthoré | Hybrid analytical and extended finite element method (HAX-FEM): A new enrichment procedure for cracked solids[END_REF] or with a Mortar method [START_REF] Passieux | Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid x-fem[END_REF]. These two methods were shown to be able to simulate the propagation of a crack under loading conditions leading to a curved crack path [START_REF] Réthoré | Mixed-mode crack propagation using a hybrid analytical and extended finite element method[END_REF][START_REF] Passieux | Local/global non-intrusive crack propagation simulation[END_REF].

The use of the Williams' series (obtained for a straight crack) to track curved cracks requires that the size of the extraction domain over which they are used as displacement basis functions is small compared to the local crack curvature. For numerical simulations, the performance of the direct SIF extraction is related to the ratio between the extraction domain size and the mesh size in the vicinity of the crack tip.

The mesh is thus refined to obtain an objective performance level given the extraction domain size appropriate to the crack curvature. From the experimental point of view, the existing technique for direct SIF estimation from digital images was proposed in [START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF].

In the latter, the optical flow equation is solved over a circular domain centered at the presupposed crack tip and Williams' series are used as displacement basis functions.

The performance of the SIF extraction in terms of accuracy and noise sensitivity is again linked to the extraction domain size which has to be as large as possible. This constraint is not compatible with the analysis of curved cracks for which the extraction domain has to be compared to the crack curvature. For this reason, the method proposed in [START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF] is not suitable for the experimental analysis of curved cracks. This is also the case for the methods cited above that can be used for extracting mixed-mode SIF, but not along curved crack.

Concerning the determination of the crack tip position from experimental displacement fields, the crack tip coordinates can be included in the least-squares minimization process between the experimental displacement field and the analytical basis [START_REF] Yoneyama | Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation[END_REF]. However, a more robust approach relies on the concept of an elastic crack tip and its detection using the first super-singular term of the Williams' expansion [START_REF] Hammam | Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue[END_REF]. This approach reveals robust with respect to a non-linear process zone due to plasticity [START_REF] Henninger | Enriched kinematic fields of cracked structures[END_REF],

diffuse damage [START_REF] Leplay | Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation[END_REF] or cohesive fracture [START_REF] Réthoré | Identification of a cohesive zone model from digital images at the micron-scale[END_REF]. It has been shown to be robust enough for real time detection of crack propagation for load shedding in fatigue crack propagation experiments [START_REF] Durif | Controlling stress intensity factors during a fatigue crack propagation using digital image correlation and a load shedding procedure[END_REF]. This paper is aimed at proposing a methodology that allows for the analysis of curved cracks using digital images. It includes the detection of the crack path, the detection of the crack tip and the estimation of SIF and higher order terms like the T -stress.

The proposed method uses a truncated Williams' expansion as the displacement basis function in the crack tip vicinity. The direct estimation of the Williams' expansion terms is obtained through a condensation of the degrees of freedom of a finite element model using mesh adaptation at the crack tip. The issue of decreasing noise robustness due decreasing extraction domain size, required by the crack curvature, is solved by adding a supplementary elastic regularization term to the optical flow equation. The paper is organized as follows: first the methodology for direct SIF estimation is described, then the formulation of the optical flow equation with elastic regularization is detailed. Then, the implementation of the methodology is described. Last, two examples are analyzed.

The first example consists of the analysis of artificially generated images and the second example considers an experiment on a sample geometry and loading conditions leading to a curved crack propagation.

DIRECT SIF ESTIMATION

For the direct estimation of SIF, a truncation of the Williams' expansion is used in combination with a finite element model. This section details how these two descriptions are combined to obtain a direct SIF estimation. These descriptions require that two coordinate systems are defined (see Figure 1):

• the global frame (X,Y ) associated with the structure • the local frame at the crack tip (x, y) aligned with the crack

In the following, we adopt a finite element discretization for the displacement field. The discretized displacement field reads:

u u u FE (X) = ∑ k=1...2N u k N N N k (X) = [N] {U}, (1) 
where N is number of nodes, leading to 2N degress of freedom (DOF), and N N N k the finite element shape functions. Odd, respectively even, k index corresponds to a DOF along X, respectively Y . A compact notation is adopted in the following: to collect the values of the displacement at the evaluation points, a matrix form of this equation is also used:

[N] {U}, where [N] is a matrix that collects the value of the 2N shape functions at the evaluation points and {U} the vector that collects the values of the displacement DOF.

Note that [N] has 2N columns and as many lines as points where the shape functions are evaluated. For clarity, the positions of these evaluation points are omitted by the notation.

Williams' series

For a 2D elastic body with a semi-infinite straight crack subjected to a mechanical load, an analytical solution for the displacement field was proposed by [START_REF] Williams | On the stress distribution at the base of a stationary crack[END_REF]. The displacement is decomposed over a double series of φ φ φ n j solution fields that satisfy stress-free conditions along the crack faces. Two fracture modes (indexed by j) are usually distinguished: mode I (opening mode) and mode II (shear mode). These elementary solutions are indexed by n, and are written as follows:

φ φ φ n I (r, θ) = r n/2 κe inθ/2 - n 2 e i(4-n)θ/2 + ( n 2 + (-1) n )e -inθ/2 (2) 
and

φ φ φ n II (r, θ) = ir n/2 κe inθ/2 + n 2 e i(4-n)θ/2 -( n 2 -(-1) n )e -inθ/2 . (3) 
In these equations, i is the pure imaginary number, r the distance to the crack tip and θ the angle with respect to the coordinate system (x, y) aligned with the crack. Hence, adopting complex notations, the position of a material point is defined by z which can be expressed as x + iy or by r e iθ . κ is the Kolossov's constant, namely, κ = (3ν)/(1 + ν)

for plane stress or κ = (3 -4ν) for plane strain conditions, where ν is the Poisson's ratio.

This family of solutions is the appropriate basis to describe the displacement field around the tip of a crack. Usually, only n ≥ 0 terms are considered because n < 0 terms exhibit an infinite strain energy density at the crack tip. An actual displacement field u u u w , determined over the previously introduced basis is:

u u u w = ∑ j=I,II ∑ n=n m ...n M a n j φ φ φ n j (z) . (4) 
In this equation, n m and n M define the truncation of the Williams' expansion that is considered and φ φ φ n j the projection of φ φ φ n j onto the X,Y coordinate system.

Condensation

On the sample surface, the displacement field is described using a finite element model.

Within the extraction domain Ω K surrounding the crack tip, a condensation technique is used in order to reduce the finite element kinematics to the truncated Williams'

expansion. The condensation is written as a linear operator between the finite element DOF of the entire mesh U and the reduced basis U r :

{U} = [L] {U r }. (5) 
For the nodes outside the extraction domain, the condensation operator L reduces to a diagonal matrix. For the nodes within the extraction domain, the displacement is given by the φ φ φ n j functions evaluated at the corresponding node position. The expression of the condensation operator L is thus given by

L =                    1 . . . 1 φ φ φ n m I (r i o , θ i o ) . . . φ φ φ n M I (r i o , θ i o ) φ φ φ n m II (r i o , θ i o ) . . . φ φ φ n M II (r i o , θ i o ) . . . . . . . . . . . . . . . . . . φ φ φ n m I (r N , θ N ) . . . φ φ φ n M I (r N , θ N ) φ φ φ n m II (r N , θ N ) . . . φ φ φ n M II (r N , θ N )                    . (6) 
In this equation, i o is the index of the first node in the extraction domain which contains all the nodes with an index between i o and N. Using this description, the 2(i o -1) first degrees of freedom in U r are standard finite element degrees of freedom but the 2N w last degrees of freedom correspond to the amplitude of the N W functions for mode I and mode II:

U r =                                u 1 . . . u 2(i o -1)
a n m I . . .

a n M I a n m II . . . a n M II                                . ( 7 
)

Mesh adaptation

The Williams' expansion is written in a polar coordinate system. It is thus convenient to use this description over a circular domain. The finite element mesh is thus adapted to have an explicit description of a circle of radius r tip centered at the crack tip (see to be a good compromise between accuracy and computational cost.

DIGITAL IMAGE CORRELATION

To follow crack propagation, a series of digital images is captured and then analyzed.

However, at each step (image), the analysis reduces to the study of a pair of images: f , the reference image associated with the reference state of the structure, and g namely the deformed image associated with the deformed state. A matrix-vector format is also adopted for the images data. For an image f , F is a column vector that contains the grey level of each pixel in the area covered by the mesh. Within this formalism, the pixel integration (discrete summation over the pixels) simply writes as a scalar product between two column vectors.

Optical flow

The optical flow equation states that the grey level variation between the reference state f and the deformed state g is due to only the passive (no source term) advection of image texture ( the grey level is an intrinsic property of a material point):

f (X p ) = g(X p + u(X p )), (8) 
X p giving the position of a pixel in the global coordinate system. A non-linear leastsquares resolution scheme of this equation adopted in the following [START_REF] Besnard | finite-element' displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF]. After the finite element discretization of the displacement has been introduced and the equation is linearized with respect to the solution increment dU = U -U p , where U p is the solution at the previous iteration, a linear system is obtained:

[M] {dU} = {b}. (9) 
In this equation, the following expression is adopted for M:

[M] = [N] T [∇F] [∇F] [N] , (10) 
and b is given by

{b} = [N] T [∇F] {F -G} (11) 
In these equation ∇F is the vector containing the values of the image gradient , computed by a central finite difference method, at each pixel.

Elastic regularization

To compensate for the use of a small extraction domain, an elastic regularization of the optical flow is adopted. Let K be the elastic finite element stiffness matrix calculated for the adapted mesh, then Equation ( 9) is augmented by adding a weighted equilibrium gap energy [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis of fractured samples[END_REF] [

M] + ω( c ) [K] T [P] T [P] [K] {U} = {b} + [M] {U p }. (12) 
In this equation, ω( c ) is a scalar parameter weighting the regularization. It has been shown that the regularization introduces a mechanical low-pass filter which cut-off wave length c can be controlled [START_REF] Leclerc | Digital volume correlation: what are the limits to the spatial resolution[END_REF]. P is a selection matrix that allows to select the DOF to be controlled by the elastic regularization. It formally reads as a diagonal matrix with 1 if the corresponding degree of freedom is regularized, and 0 if not. In the present case the degrees of freedom hold by the nodes inside the extraction domain Ω K are not regularized as they are constrained by the condensation operator L that intrinsically prescribes divergence free elastic stress. The nodes on the boundary of the structure that are submitted to non stress free conditions are not regularized as well (see Figure 1). This system is solved very efficiently with a preconditioned conjugate gradient solver using U p as an initial solution. The convergence is typically reached within 3 to 5 iterations.

Using the condensation, the resolution algorithm is written in term of U r by introducing Equation (5) into Equation ( 12):

[L] T [M] + ω( c ) [K] T [P] T [P] [K] [L] {U r } = [L] T {b} + [L] T [M] [L] {U p r }. ( 13 
)
After convergence is reached, the resolution directly provides estimates of the selected Williams' amplitudes a n j . They are then scaled to obtain the meaningful quantities as SIF or T -stress:

K I = 2µ √ 2π a 1 I , K II = 2µ √ 2π a 1 II , T = 2µ √ 2π a 2 I , ( 14 
)
where µ is the first Lamé constant given by µ = E 2(1+ν) , E being the Young's modulus.

IMPLEMENTATION

In this section, all the steps required to obtain the crack path, crack tip position and SIF estimates are detailed. A graphical overview of the methodology is presented in Figure 2.

Crack path detection

As proposed in [START_REF] Réthoré | Extended digital image correlation with crack shape optimization[END_REF], the correlation residual map η

= | f (X p ) -g(X p + u(X p ))| allows
for a robust positioning of the crack surface. This was used in 2D but also in 3D e.g. [START_REF] Rannou | Three dimensional experimental and numerical analysis of a fatigue crack[END_REF][START_REF] Réthoré | Digital volume correlation analyses of synchrotron tomographic images[END_REF]. The crack surface is defined from the residual map either manually or automatically by tracking the surface of maximum error [START_REF] Réthoré | Extended digital image correlation with crack shape optimization[END_REF][START_REF] Rannou | Three dimensional experimental and numerical analysis of a fatigue crack[END_REF] or using a virtual image correlation technique [START_REF] Réthoré | Curve and boundaries measurement using b-splines and virtual images[END_REF]30]. To get a residual map η suitable for using one of these detection algorithms, a displacement measurement analysis is run for all the images of the experiment using a non-conforming regular mesh. Since the displacement discontinuity at the crack faces are not described, large error levels are obtained on the crack faces.

After the crack surface detection is performed, either for a set of points or a level set function, a mesh adapted to the sample boundaries and the crack faces is generated. It also fulfills the requirements for direct SIF estimation using the condensation method proposed above (explicit description of a circle of radius r tip to define the extraction domain and a circle of radius r int for element removal).

Crack tip detection

Once the crack surface is defined, the crack tip position is tracked along the crack support. The image sequence is analyzed starting from the last state using the adapted mesh and direct SIF estimation. The Williams' expansion is truncated between n m = -3

and n M = 7. Super-singular terms are used following [START_REF] Hammam | Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue[END_REF]. The n = -1 term can be used to detect the equivalent elastic crack tip position. For this purpose, the following property of Williams' functions is used:

∂φ φ φ n j ∂x = n 2 φ φ φ n-2 j . (15) 
Then, suppose that the estimated crack tip position is shifted by a small distance d. If the displacement u u u w is expressed as a function of the Williams' series in the shifted

coordinate system (z = z + d) u u u w = ∑ n≥0, j a n j φ φ φ n j (z) = ∑ n, j ãn j φ φ φ n j (z) , (16) 
using a first order Taylor expansion of φ φ φ n j (z) and Equation ( 15) allows consideration of not only n ≥ 0 terms but also n < 0 terms. Then, one can write the following by considering that the expression of u u u w from Equation 4 has a zero term for n = -1 and mode I:

- d 2 ã1 I + ã-1 I = 0 . ( 17 
)
The crack tip position along the crack faces and coordinate system is progressively corrected until sufficient precision (for the crack tip position) is reached. Because the first order correction only is considered in order to obtain Equation 17, the relation between the actual shift, d, and its estimation from -2 ã-1 I / ã1 I is linear. In practice, this linear dependence is observed to occur for quite a large range of crack tip shifts and convergence is usually obtained in 2 or 3 iterations.

To avoid expensive computational cost due to remeshing, a mesh morphing technique is used to update the mesh between two iterations of the crack tip detection. An elastic finite element simulation, with 0 Poisson's ratio, is run under the following boundary conditions:

• all the nodes inside the extraction domain have a prescribed displacement of d along the local tangent to the crack tip x,

• the displacement of the nodes on the crack faces (except those inside the extraction domain) is along the local tangent to the crack surface only,

• the non-regularized nodes on the mesh boundary are fixed,

• the displacement of all the other nodes on the mesh boundary is along the local tangent to the mesh boundary only.

Once convergence is reached on the crack tip position, i.e. the correction d being lower than 1 pixel in amplitude, the values of the meaningful Williams' amplitudes are stored as well as the position of the crack tip. Then, a new mesh is generated and the previous image is analyzed. This avoids large mesh distortion and preserves computational cost.

The performance of the proposed methodology will now be evaluated for two examples. Especially, it will be assessed that small extraction domains can be used with the proposed strategy because the elastic regularization preserves from increasing uncertainty on the SIF and estimated crack tip position.

EXAMPLES

The method proposed in the present paper is now tested with two examples. The first example is based on the analysis of artificially deformed images. As the crack tip position and SIF amplitudes are prescribed, this example allows for a quantitative evaluation of the performance of the method. Then the ability of the method to track curved crack paths is illustrated through the analysis of an experiment.

Synthetic images analysis

Starting from a real 128 × 128 pixels image duplicated four times in each direction (see • the RMS relative SIF error that is calculated by taking the standard deviation (RMS) over the propagation steps of the relative gap in SIF (the scatter between the estimated value and the prescribed one normalized by the prescribed value)

• the RMS crack tip position error that is calculated by taking the standard deviation over the propagation steps of the gap between the estimated crack tip position and the prescribed one.

These indicators allow for quantifying the uncertainty on these two output variables (SIF and crack tip position) of the analysis. The evolution of these indicators with respect to c and r tip is detailed below.

Influence of r tip For these analyses, c is set to 400 pixels but r tip is varying between 30 and 100 pixels. Analyses are also conducted with the integrated approach in [START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF]. They are labelled as W-DIC. These analyses were carried out to show how the uncertainty increases when the extraction radius is decreasing. Indeed, in Figure 5, it is observed that the uncertainty of W-DIC analyses exponentially increases when r tip is decreasing.

Conversely, thanks to the elastic regularization, the extraction radius does not influence the results obtained by the proposed method. The averaged RMS relative SIF error is about 1.5 × 10 -3 and the average RMS crack tip position error is about 0.5 pixel. Note that the convergence criterion for crack tip detection is set to 1 pixel. The error obtained for these analyzes on synthetic images should have been lower with a lower convergence criterion. However, a value lower than 1 pixel may be unrealistic for the real experimental case.

This first series of analyses shows that a very small extraction domain size can be used without deteriorating the performances of the method. Indeed, the elastic regularization allows the outer domain (outside the extraction domain) to share far-field information with the analytical model whatever the extraction domain size, thus keeping the uncertainty levels very low. The key parameter thus seems to be the cut-off wave length c .

Influence of c

The extraction domain size is now kept at 40 pixels and c is varying from 0 to 400 pixels. The case c = 0 pixel corresponds to the integrated method W-DIC [START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF]. The evolution of the error indicators is shown in Figure 6. Concerning the crack tip positioning, it is obtained that the elastic regularization is very efficient, meaning that even for low values of c (from 10 pixels), the uncertainty is lower than or about 1 pixel.

For the SIF, the evolution of uncertainty with the cut-off wave length is also sharp and an improvement of the sensitivity is obtained when increasing c . A fit, on a power law, in a logarithmic scale gives a slope of -1 meaning that the SIF uncertainty behaves as

1/ c .
From these two series of analyzes, it is concluded that the proposed method with direct SIF estimation by condensation and elastic regularization allows for estimating SIF and crack tip position even for small extraction domains. The extraction domain can be as small as required by the crack curvature provided there is a layer of about 10 elements along its radius and the cut-off wave length of the elastic regularization is about the extraction domain size.

Mixed mode crack propagation experiment

An experiment is conducted using a conventional tensile electromechanical device. The geometry of the sample, inspired from [START_REF] Grégoire | Dynamic crack propagation under mixed-mode loading -comparison between experiments and x-fem simulations[END_REF], is a rectangular plate of 140 mm×70 mm with a hole of 30 mm in diameter, see Figure 7. The hole center is aligned along the transverse (Y ) direction and it is shifted by 25 mm from the specimen center along X direction. The specimen thickness is 10 mm, leading to an approximation of the 3D state by a 2D plane strain hypothesis. The material is a commercial PolyMethyl Methacrylate (PMMA) (Perspex). Its elastic properties, within the strain rate range of the quasi-static experiment conducted herein, are taken to E = 5GPa for the Young's modulus and ν = 0.32 for the Poisson's ratio.

A pre-notch is machined manually before the specimen is submitted to a compressive load along X at a constant speed of 0.1 mm/min. The pre-notch of about 35 mm length from the hole center, with an angle of 30 o with respect to the X axis, is chosen for generating mixed-mode conditions at initiation and growth. It is expected that the crack runs along X and progressively reaches the specimen axis, leading to a pure mode I situation.

During the experiment, grey scale images of 4872 × 3248 pixels, with 8-bit digitization, are acquired. The camera is mounted with a 200 mm Nikon lens, resulting in a physical pixel size of 32.5 µm. The sample surface is prepared using white and black spray paints, see Figure 7. 113 images are captured before complete failure. Crack initiation occurs at images number 27. In the results presented below, the time scale is shifted so that crack initiation occurs at t=0. The time is in fact a virtual time standing for the image number.

First, an analysis with a regular mesh of quadrangular elements of 64-pixel side is performed. The two components of the displacement field for the last image are displayed in Figure 8. The discontinuity of the displacement field across the crack faces is clearly evidenced for the two displacement components, unlike it is smoothed by the regular finite element mesh. Crack openings of about 20 pixels are obtained at this loading step. From this analysis, an correlation error map η is computed and then used to determine the crack path as shown in initiation and it changes sign during propagation. However, the values for K II are very low in amplitude and this is difficult to interpret. The values of K Ieq just after initiation are slightly lower than the value obtained at initiation. This is due to the finite thickness of the pre-notch that leads to a lower singularity and thus an estimated value for K Ieq at initiation higher than the one produced by a sharp crack. Then the value of K Ieq is slightly decreasing as the crack propagates. This should be linked to the variation in the crack tip speed as obtained in Figure 16 but also to the variation of the T -stress induced by structural effects as observed in Figure 15.

CONCLUSION

In this paper, a methodology is proposed to experimentally estimate crack tip position and SIF along curved crack paths using digital images. The method is based on a digital image correlation technique using finite elements with mesh adaptation and a truncated i in the proposed strategy, there is no need for boundary conditions other than stress free conditions. The biases that may be introduced by considering idealized, Dirichlet or non-zero Neumann, conditions are thus avoided. This problem was already emphasized in the literature for 3D stationary cracks [START_REF] Roux | Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2d and 3d cracks[END_REF] or for the identification of material parameters [START_REF] Réthoré | A fully integrated noise robust strategy for the identification of constitutive laws from digital images[END_REF].

ii performing a finite element simulation of crack propagation requires a criterion for the crack angle and a crack growth law. Concerning the crack angle, the max hoop stress criterion has shown its ability to capture the crack bifurcation in a brittle material such PMMA. Common pratices for crack growth are to suppose that the crack propagates at a constant value of K Ieq , or to adopt a Paris' like regularization of the Griffith's law. It is clearly shown by the results of this paper that, for the analyzed case, the relation between K Ieq and the crack tip velocity is much more complex. In Figure 15, it is observed that K Ieq starts decreasing from step 50 whereas it is observed on Figure 16 that the crack is accelerating from this step. This point was not emphasized in this paper for which the focus is kept on the technical aspects. However, the results presented (which are probably among the first ones for a curved crack) migh open a discussion e.g. on the effect of the crack curvature or of the T -stress on the crack velocity. 

  It contains: n = 0 rigid body translations n = 1 usual asymptotic terms that are weighted by stress intensity factors n = 2 rigid body in-plane rotation and T -stress n > 2 sub-singular terms, i.e. the corresponding elastic stress field is not singular at the crack tip.

Figure 1 )

 1 Figure 1). The nodes along the crack path are split to allow displacement discontinuity across the crack faces. For using the first super-singular Williams' component to detect the crack tip position along the crack faces (see Section 4.2), it is required that a small disc around the crack tip is discarded from the analysis. The finite element mesh thus also explicitly describes a circle of radius r int . The elements inside this circle are removed from the initial finite element mesh. The element size is refined in the extraction domain Ω K to control the interpolation error between the finite element description and the analytical Williams' functions in the condensation operator. A factor of 10 between the element size and the radius of the extraction domain r tip has shown, in the present work,

Figure 3 (

 3 Figure 3(a)), a series of 7 1024 × 1024 pixels images is generated. For generating these images, the same sub-pixel grey level interpolation as for digital image correlation is used, i.e. cubic splineinterpolation. The displacement field used to deforme the reference image consists of a mode I singular field, n = 1. The amplitude a 1 I of the prefactor of

Figure 9 .Figure 12 , 5 . 2 . 2 .

 912522 Figure 12, negative values of K I are reported. These negative values correspond to a globally compressive loading of the specimen and they are allowed by the non-zero finite thickness of the machined pre-notch. Indeed, crack faces are allowed to close due to the pre-notch thickness resulting in negative K I values. The equivalent mode I SIF K Ieq , in the sense of the maximum hoop stress, is also plotted in Figure12. A values of K Ieq at initiation is 2.23 MPa.m 1/2 . After this initiation phase, the crack starts propagating with a kink due to the high mode mixity of the loading. The propagation phase is analyzed below.

  Williams' expansion. The two descriptions are coupled through a condensation of the finite element degrees of freedom onto the Williams' coefficients. The analysis of a curved crack path requires a small extraction domain compared to the crack curvature.The decrease of the robustness of the extraction of the crack tip position and the SIF is compensated herein by using an elastic regularization over the finite element adapted mesh. It is shown by the first example in the paper, that the robustness of the proposed methodology does not depend on the extraction domain size, which can thus be chosen as small as required by the crack curvature, but on the cut-off wave length of the elastic regularization. However, a cut-off wave length of the order of the extraction domain size ensures robust extraction of crack tip position and SIF. The ability of the proposed methodology to track curved cracks is then illustrated through the analysis of an experiment. Initiation and crack propagation are analyzed and robust estimates of SIF, T -stress and crack length are obtained. A fast and complete implementation of the method is also detailed in the paper. Compared to direct finite element simulations of the experiment, the approach proposed in the paper offers the following capabilities:
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 12103 Figure 1. Shematic representation of a sample with a crack. Definition of: the global coordinate system (X,Y ), the local coordinate system (x, y), the extraction domain Ω K and its radius r tip and the radius r int of the zone of removed elements at the crack tip.

Figure 4 .

 4 Figure 4. SIF (a) and crack tip position (b) obtained for r tip = 40, h = 4 and c = 400, compared to the prescribed solution.

Figure 5 .

 5 Figure 5. Relative RMS SIF error and RMS crack tip position error as a function of the extractiondomain size for the proposed method and the integrated method (W-DIC) in[START_REF] Roux | Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches[END_REF].

Figure 6 .

 6 Figure 6. Relative RMS SIF error and RMS crack tip position error as a function of the cut-off wave length c of the elastic regularization.
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 810910121013141516 Figure 8. Horizontal and vertical displacement map (in pixel) for the last image and a regular finite element mesh with 64-pixel elements.