

Analyse de réparations collées par thermographie InfraRouge

Matthias Barus, Hélène Welemane, Valérie Nassiet, Marie-Laetitia Pastor, Arthur Cantarel, Francis Collombet, Laurent Crouzeix, Yves-Henri Grunevald

▶ To cite this version:

Matthias Barus, Hélène Welemane, Valérie Nassiet, Marie-Laetitia Pastor, Arthur Cantarel, et al.. Analyse de réparations collées par thermographie InfraRouge: Optimisation de la réponse thermique du joint structural. GDR week du GDR CNRS 3671 MIC, Nov 2017, Talence, France. pp.0. hal-03665346

HAL Id: hal-03665346 https://hal.science/hal-03665346

Submitted on 11 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: <u>http://oatao.univ-toulouse.fr/</u> Eprints ID: 19554

To link this article :

To cite this version:

Barus, Matthias and Welemane, Hélène and Nassiet, Valérie and Pastor, Marie-Laetitia and Cantarel, Arthur and Collombet, Francis and Crouzeix, Laurent and Grunevald, Yves-Henri *Analyse de réparations collées par thermographie InfraRouge : optimisation de la réponse thermique du joint structural.* In: GDR week du GDR CNRS 3671 MIC, 14 November 2017 -17 November 2017 (Talence, France). (Unpublished) Ecole Nationale d'Ingénieurs de Tarbes

Laboratoire Génie de Production

ANALYSE DE RÉPARATIONS COLLÉES PAR THERMOGRAPHIE INFRAROUGE : OPTIMISATION DE LA RÉPONSE THERMIQUE DU JOINT STRUCTURAL

Matthias BARUS¹

H. WELEMANE¹, V. NASSIET¹, M.L. PASTOR², , A. CANTAREL², F. COLLOMBET³, L. CROUZEIX³, Y.H. GRUNEVALD⁴

¹ Université de Toulouse, INP ENIT-LGP, Tarbes, France
² Institut Clément Ader, IUT de Tarbes, Dpt GMP, Tarbes, France
³ Université de Toulouse, UT3 Toulouse, France
⁴ Composites Expertise et Solutions, Castanet Tolosan, France

15 novembre 2017

CONTEXTE : ÉTUDE D'UN JOINT COLLÉ PAR THERMOGRAPHIE INFRAROUGE

Structure primaire endommagée

[Bombardier, 2016]

Réparation structurale fixée par collage structural [USA Departement of defense, 2002]

- Conservation du profil aérodynamique [Baker et al., 2015]
- Meilleure répartition des efforts mécaniques [Maldague, 1993]
- Technique de réparation non certifiée

CND du joint structural par Thermographie InfraRouge (TIR) active

CONTEXTE : ÉTUDE D'UN JOINT COLLÉ PAR THERMOGRAPHIE INFRAROUGE

Banc d'essais thermiques par TIR active

Maîtrise de la stimulation thermique et des conditions aux limites

Réponse thermique du joint de colle

Difficulté : faible contraste thermique

Modification du comportement thermique de la matrice époxyde

DÉFINITION DU JOINT CHARGÉ

Objectif :

Créer un nouveau matériau joint à base époxyde et aux propriétés thermiques discriminantes

Représentation schématique d'une réparation par collage structural en forme de marche d'escalier

Paramètres à définir :

- Nature du **comportement** du joint chargé ?
- **Type** d'additifs ?
- Fraction volumique des additifs ?

DÉFINITION DU JOINT CHARGÉ

Post-traitement en température relative :

Isoler la réponse thermique du joint de colle

DÉFINITION DU JOINT CHARGÉ : NATURE DU COMPORTEMENT

Joint isolant :

15 novembre 2017

DÉFINITION DU JOINT CHARGÉ : NATURE DU COMPORTEMENT

Eléments constitutifs du modèle numérique par EF de l'éprouvette réparée : défaut de collage

DÉFINITION DU JOINT CHARGÉ : NATURE DU COMPORTEMENT

DÉFINITION DU JOINT CHARGÉ : TYPE D'ADDITIFS

[Das et al., 2003 ; Xie et al., 2002]

[Gaska et al., 2012; Zhou et al., 2010]

Matériaux :

- Colle époxyde ($\lambda = 0,226 \text{ W.m}^{-1}.\text{K}^{-1}$)
- Alumine Al_2O_3 ($\lambda = 35 \text{ W.m}^{-1}.\text{K}^{-1}$)
- **Nitrure de bore BN** (λ = 300 W.m⁻¹.K⁻¹)

Particules Al₂O₃

Particules BN

Estimation de la conductivité du joint chargé :

- Fraction volumique : 60 %
- Al₂O₃ : particules sphériques

- [Lee et al., 2006]
- ⇒ loi de Maxwell-Garnet
- BN : particules sous forme de plaquettes ⇒ loi de **Lichtenecker**

[Zhu et al, 2010]] [Zhu et al, 2010]]

DÉFINITION DU JOINT CHARGÉ : TYPE D'ADDITIFS

Contraste fort en présence de vides Profondeur d'inspection plus importante

DÉFINITION DU JOINT CHARGÉ : FRACTION VOLUMIQUE D'ADDITIFS

- Utilisation d'une colle époxyde pâteuse avant polymérisation
- Géométrie des particules en **plaquettes**
- Optimisation de la procédure de mélange

Mélange non optimisé

Mélange optimisé

Microscopie optique du joint chargé BN

ELABORATION DU JOINT CHARGÉ ET DES ASSEMBLAGES RÉPARÉS

Epaisseur du joint : 0,3 mm

Calibration de l'épaisseur du joint

Application de la colle chargée

Maintien en position de l'assemblage

COMPARAISON DES COMPORTEMENTS : JOINT CHARGÉ / NON CHARGÉ

INTRODUCTION DE DÉFAUTS DANS LE JOINT CHARGÉ

Zones non collées

Représentatives d'un défaut réel

Préparation d'une éprouvette réparée avec défaut de collage

COMPARAISON DES COMPORTEMENTS : JOINT CHARGÉ / NON CHARGÉ

15 novembre 2017

COMPARAISON DES COMPORTEMENTS : JOINT CHARGÉ / NON CHARGÉ

CONCLUSIONS ET PERSPECTIVES

- Etude numérique de l'influence du comportement thermique :
 - Comportement conducteur : amélioration de la détection des défauts de collage
 - Choix d'un type d'additif
- Etude expérimentale :
 - Assemblage sans défaut : bonne corrélation avec les résultats numériques
 - Amélioration de la détection des défauts de collage par TIR
- Etude de la tenue mécanique du joint chargé:
 - Statique
 - Fatigue
- Post traitement des données thermiques
- Amélioration de la réponse thermique du joint :
 - Formulation du joint colle (type d'additif, morphologie des particules...)

MERCI DE VOTRE ATTENTION