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Abstract—In this paper, we derive an asymptotic anal-
ysis and optimization of coded CPM systems using both
unstructured and protograph-based LDPC codes ensembles.
First, we present a simple yet effective approach to design
unstructured LDPC codes : by inserting partial interleavers
between LDPC and CPM, and allowing degree-1 and degree-
2 variable nodes in a controlled pattern, we show that
designed codes perform that can operate very close to
the maximum achievable rates. Finally, the extension to
protograph based codes is discussed. We provide some simple
rules to design good protograph codes with good threshold
properties.

I. INTRODUCTION

C
ONTINUOUS phase modulation (CPM) is a class of

constant envelope modulation that achieves very

good power and bandwidth efficiency. The constant en-

velope makes this family very powerful when the sys-

tem contains cheap nonlinear amplifiers or when the

communication channel induces non linearities such as

satellite communication systems or GSM networks. Due

to the complexity of the decoder [1], implementing an

optimal detector on embedded receivers restricts the use

of CPM to some limited schemes (binary Minimum Shift

keying (MSK), binary Gaussian MSK (GMSK)...). Then

[2] shows that the CPM modulator can actually be seen

as a time-invariant continuous phase encoder (CPE) con-

catenated with a time-invariant memoryless modulator

(MM). Taking advantage of this decomposition and the

advent of turbo codes [3], CPM has greatly benefited from

the concept of iterative decoding [4]–[7]. Today, CPM

regained large attention as a good choice for different strin-

gent wireless communication systems, such as aeronautical

communication systems.

Surprisingly, only few works studied concatenated CPM

schemes with Low-Density Parity-Check (LDPC) codes.

The first related work is due to [8], [9] where density

evolution has been used to study of the concatenatation

of an LDPC code and Minimum Shift Keying (MSK).

In [10], a Bit Interleaved Coded-Modulation approach

to optimize M–ary CPFSK modulations. Finally, [11]–

[13] have considered a non systematic irregular-repeat-

accumulate (IRA) like code. The proposed structure re-

places the IRA accumulator with a CPM modulator. This

has been motivated by the fact that CPM can be seen as a

phase accumulator. The proposed scheme finally results

in the concatenation of a non systematic Low-Density

Generator-Matrix code with CPM. Besides, most of the

proposed concatenated systems consider a full interleaver

between the LDPC code and the CPM for the asymptotic

analysis. Lately, a new class of structured LDPC codes,

called protograph codes, has been studied extensively. First

introduced by Thorpe [14], protographs show very good

thresholds and low encoder/decoder complexity imple-

mentation. In the context of CPM, no study has been made

to evaluate the performance and to design protograph-

based LDPC codes.

In this paper, we propose an asymptotic analysis to de-

sign unstructured LDPC codes for general Rimoldi-based

CPM schemes. By introducing partial interleavers, the

optimization can be efficiently performed solving a simple

linear optimization problem. The second contribution is

the asymptotic analysis and design of protograph-based

LDPC coded CPMs. The presented design approach can

be directly extended to any CPM class, or generally to

any trellis coded modulation. In particular, we find out

that optimized AWGN [15] protographs do not exhibit

necessarily good performance when concatenated with

CPM over an additive white Gaussian noise (AWGN)

channel.

The paper is structured as follows. In Section II, the sys-

tem model of the transmitter and the receiver is described.

Section III introduces the asymptotic analysis and its

inherent assumptions for unstructured LDPC codes. Proto-

graph code analysis and design are derived in Section IV.

Finally, simulation results are discussed in Section V.

II. SYSTEM DESCRIPTION

We consider a serially concatenated coded scheme

where a binary LDPC encoder is concatenated with a CPM

modulator. At the transmitter, a binary message vector

u ∈ GF (2)K is first encoded using an LDPC code of rate

R = K/N to produce a codeword c ∈ GF (2)N . K is

the number of information bits, N the codeword length

and GF (2) is the binary Galois field. An LDPC code

is usually defined using its corresponding binary sparse

parity check matrix H of size M ×N with M = N −K.

c is a binary vector that belongs to the null space of H
if Hc

⊤ = 0 where ⊤ is the transposition operator. Based

on the matrix H , an LDPC code can be represented by its

corresponding Tanner graph [16] (see Fig. 2). This later

consists in two sets of nodes: the variable nodes (circular

vertices) associated with the codeword bits (columns of

H) and the check node (square vertices) associated with

the parity check constraints (rows of H). An edge joins

a variable nodes (VN) n to a check nodes (CN) m if

H(m,n) = 1. Irregular LDPC codes are usually defined

with their edge-perspective degree distribution polynomi-

als λ(x) =
∑dv

i=1 λix
i−1 and ρ(x) =

∑dc

j=2 ρjx
j−1 where

λi (resp. ρj) is the proportion of edges in the Tanner

graph connected to variable nodes (VN) of degree i (resp.



to check nodes (CN) of degree j) and dv (reps. dc) is

maximum VN (resp. CN) degree.

Each code word c is interleaved, Gray-mapped into M–

ary symbols α = {αi}i and finally encoded by the CPM

modulator:

s(t,α) =

√

2Es

T
cos (2πf0t+ θ(t,α) + θ0)

= ℜ[sb(t,α)ej2πf0t] (1)

with

θ(t,α) = πh
N−1
∑

i=0

αiq(t− iT ), q(t) =

{

∫ t

0
g(τ)dτ

1/2, t > L

f0 is the carrier frequency, θ0 the initial phase shift, θ(t,α)
the information carrying phase, g(t) the frequency pulse,

h = k/p the modulation index, L the memory and ℜ(.) the

real part. Practically, the shape of q(t) (rectangular (REC),

raised-cosine (RC), ...) and L determine the smoothness of

the signal.

At the receiver side, the decoder is formed by the

soft input soft output (SISO) CPM detector followed by

a SISO LDPC decoder separated by partial interleavers

as shown in Fig. 2. It implies a random interleaving

of LDPC codewords bits using a different interleaving

patterns among variable nodes of the same degree. This

is in contrast with approaches that mainly consider full

interleaving between the LDPC code and the CPM as

classically done for serially concatenated schemes. The

rationale behind this design will be made clearer when

presenting the asymptotic analysis. The SISO CPM is

based on Rimoldi decomposition [2] which splits the

CPM modulator into a serial concatenation of the CPE,

represented by a trellis, and the MM, seen as a filter bank.

The phase of the CPM signal can then be described as:

s(t,α) =
√

2Es/Tcos(2πf0t+ ψ(t,α) + ψ0) (2)

where the information symbols α are taken in

{±1, ...,±(M−1)} whatever the parity of M is and figure

in the tilted phase as:

ψ(τ + nT,α) =

[

2πh
n−L
∑

i=0

αi + 4πh
L−1
∑

i=0

αn−iq(τ + iT )

+W (τ)

]

mod 2π , 0 ≤ τ ≤ T

where W (τ) is a data independent term [2].

This decomposition provides a trellis of pML−1 states

defined by the tuple σn = [Un−1, ..., Un−L+1, Vn] where

Vn = [
∑n−L

i=0 Ui]mod p, while the MM is formed by pML

different pulses {si(t)}i corresponding to CPE output

symbols Xn = [Un, ..., Un−L+1, Vn], where Ui is a M–

ary modified data digit [2].

The transmitted signal s(t,α) is corrupted with an addi-

tive white Gaussian noise (AWGN), having a double-sided

power spectral density N0/2. From Eq. (2), the complex

baseband representation of the noised signal becomes:

y(t) =
√

2Es/Texp{jψ(t,α}+ n(t) , t > 0 (3)

The outputs of receiver matched filters bank {s∗(T−t)}
are sampled once each (n + 1)T to obtain the correla-

tor output y
n = [yni =

∫ (n+1)T

nT
y(l)s∗i (l)dl]1≤i≤pML .
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Fig. 1: Probability density function of the LLRs at the output of
GSM GMSK decoder vs symetric Gaussian distribution when a priori
mutual information is 0.5. mO (resp. m1) is the expected value of LLRs
associated with bits 0 (resp. 1).

It can be shown that {yn}n are sufficient statistics to

estimate symbols. Furthermore, considering any orthonor-

mal expansion of receiver matched filters bank, the joint

probability density function of y
n can be simplified to

p(yn/Xn) ∝ exp{2Re(yni )/N0} [4]. This measure can

be used to compute branch metrics of the CPE trellis

exploiting the BCJR algorithm [17]. The outer decoder is

implemented with the belief propagation (BP) algorithm

[18].

In this paper, we assume the following scheduling: a

global iteration ℓ is composed of one BCJR forward-

backward recursion for the CPM detector followed by one

BP iteration (one data-pass plus check-pass update) for the

LDPC code. We further assume partial interleavers each

one is associated with the VNs set of the same degree.

This assumption is in essence equivalent to [20], but it

becomes crucial to ensure a practical optimization as it

will be shown hereafter.

III. ANALYSIS OF UNSTRUCTURED LDPC CODES

Using density evolution techniques for generalized CPM

schemes can be a computationally challenging task, there-

fore, we mainly consider an EXIT analysis to have insights

for the design. First introduced in [19], EXIT chart is

a common asymptotic tool that is used to analyze the

convergence of iterative systems. The aim of this section

is to define the maximum achievable rates that can be

obtained with unstructured LDPC codes for CPM. This

upper bound will be used later to evaluate the performance

of protograph codes. When using EXIT charts, it is com-

monly assumed that exchanged extrinsic log-likelihood

ratio (LLR) can be modelled by consistent and Gaussian-

distributed messages. For SISO CPM, Fig. 1 shows that the

Gaussian approximation remains acceptable for exchanged

messages. Thereby, we can evaluate all messages by only

tracking their variance σ2 or their mean m = σ2/2. It is

then possible to compute associated mutual information

(MI) using a monodimensional function of σ2 noted J(σ)
[19]:

J(σ) = 1− Ex(log2(1 + e−x)), x ∼ N(σ2/2, σ2)

Let Tcpm(.) denotes the input-output EXIT transfer

characteristic (also referred to as EXIT curve) of the SISO

CPM demodulator implicitly depending on the signal to

noise ratio Es/N0:

Icpm,vn = Tcpm(Ivn,cpm) (4)



Fig. 2: LDPC code ensemble for joint detection and decoding.

where Icpm,vn (resp. Ivn,cpm) denotes the a priori (resp.

the extrinsic) MI associated with a priori LLR messages

at the input (resp. extrinsic LLRs at the output) of the

SISO CPM decoder and corresponding bits. Analytic

expressions of Tcpm(.) are not available, but they can

be evaluated by Monte Carlo simulations. In practice,

Tcpm(.) is approximated by a polynomial curve fitting.

Based on the commonly observed generalization of the

results of [21] for the binary erasure channel, an upper

bound on the maximum achievable code rate, given an

Es/N0, for the outer code can be efficiently estimated

using the area under the CPM detector EXIT curve, i.e.:

R ≤ R∗ =
∫ 1

0
Tcpm(Ivn,cpm)d(Ivn,cpm).

Under the Gaussian approximation, the combined EXIT

function Iℓvn,cn for the VN and the SISO CPM module for

a variable node of degree i at the ℓth iteration is then given

[22] by:

Iℓvn,cn =

dv
∑

i=1

λiI
ℓ
vn,cn(i) (5)

with:














Iℓvn,cn(i) =

J

(

√

(i− 1)[J−1(Iℓ−1
cn,vn)]2 + [J−1(Iℓcpm,vn(i))]

2

)

Iℓcpm,vn(i) = Tcpm
(

J(
√
iJ−1(Iℓ−1

cn,vn))
)

(6)

where:

• Iℓvn,cn(i) is the average MI associated with LLR

messages passed from a VN of degree i to CNs.

• Iℓ−1
cn,vn the average MI associated with LLR messages

from CNs to VNs.

• Iℓcpm,vn(i) is the average MI for degree-i VN asso-

ciated with LLR messages from the CPM decoder

to the LDPC decoder. Notice that without the partial

interleavers, we are not allowed to write Eq. (6).

Figure 3 plots different VN trajectories as function of

node degrees. Notice that VNs EXITs do not start from

the origin (0, 0) and that degree-1 VN EXIT corresponds

actually to the EXIT transfer function of the SISO CPM

decoder. Because it joins the point (1, 1), we are allowed

to consider degree-1 VNs as in [8].

For a degree-j CN, the MI Iℓ−1
cn,vn associated with

extrinsic LLRs passed from CN to VN at iteration ℓ − 1
and relative coded bits is known, under reciprocal channel

approximation [20], as:

Iℓ−1
cn,vn = 1−

dc

∑

j=2

ρjJ(
√

j − 1J−1
(

1− Iℓ−1
vn,cn)

)

(7)

�
�����

���
�����

� �
��
�
�
��
� �
��
�
�

	 	
� 	
� 	

 	
� �
	

	
�

	
�

	



	
�

�

��������������������������������������

�����������������������������������

Fig. 3: VN and CN EXIT at Es/N0 = −2dB.

Threshold at Es/N0 =-2.7dB

λ1 0.1028 ρ4 0.65

λ2 0.5506 ρ5 0.35

λ9 0.0.055

λ10 0.2917

TABLE I: Optimized LDPC codes for design rate R = 0.5 for binary
GMSK

Combining Eqs. (5) and (7) will finally give the recur-

sion Ψ:

Iℓvn,cn = Ψ
(

λ(x), ρ(x), Tcpm(.), I(ℓ−1)
vn,cn

)

Thanks to the partial interleavers, the obtained recursion is

a linear function with respect to parameters λi, i = 1 . . . dv
for a given ρ(x) and a given signal to noise ratio (SNR).

With concentrated ρ(x) [22], rate maximization design is

equivalent to maximizing the cost function
∑

i λi/i under:

[C0] Mixture :
∑

i

λi = 1

[C1] Convergence: Ψ(λ(x), ρ(x), Tcpm(.), y) > y

[C2] Stability: λ1 < 1/





dc
∑

j=2

ρj(j − 1)T ′
cpm(1)



 [23]

where T ′
cpm(.) is the derivative of Tcpm(.). This system

is efficiently solved by classical linear programming us-

ing discretization of the convergence constraint for y ∈
[0,1]. Figure 4 depicts the achievable rates R∗ versus

the optimized design rates for GSM GMSK (M=2, L=3,

BT=0.3, h=1/2, Gaussian). One can observe from Table I,

that the optimization results in rate-1/2 LDPC profiles that

perform asymptotically very close to the achievable rates.

Similar curves can be made for the quaternary 2RC and

octal 2REC. The correspoding optimized rate-1/2 LDPC

profiles are (λ(x) = 0.1232 + 0.6210x + 0.0014x8 +
0.2545x9, ρ(x) = 0.8x2+0.2x3) (resp. (λ(x) = 0.2343+
0.6011x+ 0.164x10, ρ(x) = 0.35x+ 0.65x2). Associated

results are shown in the last section. We point out that we

can easily get even more closer to the capacity curve by

increasing the maximum variable node degree dv .

IV. ASYMPTOTIC ANALYSIS OF PROTOGRAPH CODES

Now, we will consider protograph based LDPC codes

[14]. Protograph is a small Tanner graph described by a

base matrix H where the element H(q, r) is the number

of edges between the VN r and the CN q. Unlike LDPC

codes, parallel edges are allowed.
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Fig. 4: Achievable and designed rates for GSM GMSK system.

For this class of codes, EXIT charts cannot predict ac-

curately the threshold, i.e. the lowest value of Es/N0 that

insures reliable decoding assuming infinite code length and

a large enough number of turbo iterations. Instead, we use

protograph or multidimensional EXIT [24].

For ease of presentation and notation, we use hereafter

the following notations relative to the ℓth iteration:

• IℓE,v(q, r): extrinsic MI between the code bits asso-

ciated with VN r and the LLRs sent from this VN to

CN q.

• IℓE,c(q, r):extrinsic MI sent from CN q and the LLRs

sent from this CN to VN r.

• IAPP (r): a posteriori MI of a VN of degree r.

• IℓA,cpm(r) and IℓE,cpm(r): a priori and extrinsic MI

at the input (resp. output) BCJR demodulator relative

to VN r.

From the VN r (resp. CN q) perspective, IℓE,c(q, r)

(resp. IℓE,v(q, r)) is nothing but the a priori knowledge

got from CN q (resp. VN r).

Once the different PEXIT equations have been obtained,

we track the evolution of the MI for a given SNR. The

threshold is then defined as the lowest value of Es/N0,

that insures IAPP (r) converges to 1 ∀r. For a given size

of the protograph, we will use some heuristics inspired

from the unstructured LDPC code optimization, to design

the general structure of the base matrix. Once a good

protograph is chosen, the lifting is done carefully with

respect to random circulant permutations coupled with

PEG [25] and ACE [26] algorithms.

A. Transfer Function of CPM

As in Section III, the EXIT transfer characteristic of

CPM detector seen by the VN r is formally given by:

I lE,cpm(r) = F (I l−1
A,cpm(r), Es/N0) (8)

B. Transfer Function of the Protograph

If H(q, r) 6= 0, the VN to CN update equation ∀(q, r) ∈
{1, ...,M} × {1, ..., N}, is given by:

IℓE,v(q, r) = J





√

∑

s6=i

H(s, r)
[

J−1(Iℓ−1
E,c (s, r)

]2

+

(H(q, r)− 1)
[

J−1(Iℓ−1
E,c (q, r)

]2

+
[

J−1(IℓE,cpm(r)
]2

)

(9)

Otherwise, IℓE,v(q, r) = 0.

Using reciprocal channel approximation, CN to VN

update is given by:

IℓE,c(q, r) = 1− J





√

∑

s6=j

H(q, s)
[

J−1(1− IℓA,c(q, s)
]2

+

(H(q, r)− 1)
[

J−1(1− IℓA,c(q, r)
]2

)

(10)

If H(q, r) = 0, then IℓE,c(q, r) = 0.

Seen as an a priori of the SISO CPM component, the

MI sent from a VN r to the CPM demodulator is:

IℓA,cpm(r) = J

(
√

∑

s

H(s, r)
[

J−1(IℓA,v(s, r))
]2

)

(11)

Combining Eqs. (8), (9), (10) and (11), we can compute

the threshold. At the end of each iteration, the a posteriori

MI can be evaluated for r = 1...N by:

IAPP (r) = J
(

√

∑

s

H(s, r)
[

J−1(IℓA,v(s, r))
]2

+

[

J−1(IℓE,cpm(r))
]2

)

(12)

Remark: Equation (12) is different from [27], where

the computation of IAPP is averaged over all VNs, which

actually induces partial interleaver per VN degree.

C. Choice of Protograph Ensemble

Inspired from the analysis of obtained profiles and parity

check matrix pattern in Section III, the protograph set is

described by a relatively small base matrix that follows

a certain pattern and contains small proportion of degree-

1, some degree-2 and high-degree VNs. Assuming this,

combined with some simple heuristics drawn from our

experiments, we observed that good protographs can be

found with good encoding properties if we consider base

matrices of the following form:

H =









x1,1 x1,2 0 0 1 1 0 0
x2,1 x2,2 0 1 0 1 1 0
x3,1 x3,2 1 0 0 0 1 1
x4,1 x4,2 0 0 0 0 0 1









(13)

In this paper, to limit the size of the protograph en-

semble, xq,r/∀(q, r) ∈ {1, ..., 4} × {1, 2} are limited

to {1, 2, 3}. Using a computer-based search, some good

protographs are found and depicted in Fig. 5.

V. SIMULATION RESULTS

This section gives simulation results for binary LDPC

code optimization for GSM GMSK, quaternary 2RC

(M=4, gray mapping, L=2, h=1/4, raised cosine) and octal

2REC (M=8, gray mapping, L=2, h=1/4, rectangular) with

protograph codes of rate R = 0.5. Simulations were per-

formed using around 5000 information bits and 250 turbo

iterations. Table II summarizes the achieved thresholds

for protographs depicted in Fig. 5. Thresholds of rate-1/2

AR3A and AR4JA from [15] are shown for comparison.

We can observe that it is possible to operate at less than

0.3-0.4 dB away from the capacity with an average gain

which is 1.5-4 dB better than the AWGN protographs and



(a) Binary GSMK (b) Quateranary 2RC (c) Octal 2REC

Fig. 5: Optimized protographs for different CPM systems.

AR3A AR4JA
CPM

protograph
Unstructured

LDPC R∗

binary GMSK -0.45 -0.20 -2.11 -2.7 -2.76

quaternary 2RC 3.36 3.68 1.36 0.7 0.62

Ocatl 3RC 7.29 7.92 3.79 2.256 2.25

TABLE II: Optimized asymptotic thresholds Es/N0 in dB for
protograph-based and unstructured LDPC codes with design rate R =

0.5
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Fig. 6: BER and FER of optimized protographs for GMSK.

a small loss in comparison to the designed unstructured

LDPC codes. Figure 6 shows bit error rate (BER), frame

error rate (FER) and predicted error probability (PEP)

(respectively marked dotted curves, marked dashed curves

and marked solid curves) for GMSK. No error floors are

observed before 10−5. Asymptotic PEP can be evaluated

through described EXIT analysis for a given SNR [15]:

after the ℓth iteration, the expected bit error probability

associated with a VN r is related to the a posteriori MI

IAPP (r) in Eq. (12):

Pb(r) =
1

2
erfc

(

J−1(IAPP (r))

2
√
2

)

(14)

VI. CONCLUSION

We introduced a general framework for the design of

unstructured and protograph-based LDPC codes for CPM

systems. The discussed method can support any CPM

scheme as well as any trellis-based detector. We provided

some unstructured LDPC and protograph examples that

can achieve good performances. Future investigations will

be made to predict error floors region and the best trade

off between threshold and error floor performance.

REFERENCES

[1] John B Anderson, Tor Aulin, and Carl-Erik Sundberg, Digital phase

modulation, Springer, 1986.
[2] Bixio E Rimoldi, “A decomposition approach to cpm,” IEEE trans.

Inf. Theory, vol. 34, no. 2, pp. 260–270, 1988.
[3] Claude Berrou and Alain Glavieux, “Near optimum error correcting

coding and decoding: Turbo-codes,” IEEE Trans. Commun., vol.
44, no. 10, pp. 1261–1271, 1996.

[4] Par Moqvist and Tor M Aulin, “Serially concatenated continuous
phase modulation with iterative decoding,” IEEE Trans. Commun.,
vol. 49, no. 11, pp. 1901–1915, 2001.

[5] Alexandre Graell i Amat, Charbel Abdel Nour, and Catherine
Douillard, “Serially concatenated continuous phase modulation for
satellite communications,” IEEE Trans. Wireless Commun., vol. 8,
no. 6, pp. 3260–3269, 2009.

[6] Krishna R Narayanan and Gordon L Stuber, “A serial concatenation
approach to iterative demodulation and decoding,” IEEE Trans.

Commun., vol. 47, no. 7, pp. 956–961, 1999.
[7] R Chaggara, ML Boucheret, C Bazile, E Bouisson, A Ducasse,

and JD Gayrard, “Continuous phase modulation for future satel-
lite communication systems in ka band,” in Information and

Communication Technologies: From Theory to Applications, 2004.

International Conference on Proceedings. 2004. IEEE, 2004, pp.
269–270.

[8] Krishna R Narayanan, Ibrahim Altunbas, and R Sekhar
Narayanaswami, “Design of serial concatenated msk schemes based
on density evolution,” IEEE Trans. Commun., vol. 51, no. 8, pp.
1283–1295, 2003.

[9] KR Narayanan, I Altunbas, and R Narayanaswami, “On the design
of ldpc codes for msk,” in Global Telecommunications Conference,

2001. GLOBECOM’01. IEEE. IEEE, 2001, vol. 2, pp. 1011–1015.
[10] Aravind Ganesan, Capacity estimation and code design principles

for continuous phase modulation (CPM), Ph.D. thesis, Texas A&M
University, 2003.

[11] Ming Xiao and Tor Aulin, “Irregular repeat continuous phase
modulation,” IEEE Commun. Lett., vol. 9, no. 8, pp. 723–725,
2005.

[12] Shi Cheng, Matthew C Valenti, and Don Torrieri, “Coherent
continuous-phase frequency-shift keying: parameter optimization
and code design,” IEEE Trans. Wireless Commun., vol. 8, no. 4,
pp. 1792–1802, 2009.

[13] Ming Xiao and Tor M Aulin, “On analysis and design of low
density generator matrix codes for continuous phase modulation,”
IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3440–3449, 2007.

[14] J. Thorpe, “Low-density parity-checks codes (ldpc) constructed
from protographs,” IPN Progress Report, pp. 42–154, 2003.

[15] Liva G., Block Codes Based on Sparse Graphs for Wireless

Communication systems, Ph.D. thesis, University of Bologna, 2006.
[16] R Tanner, “A recursive approach to low complexity codes,” IEEE

trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.
[17] Lalit Bahl, John Cocke, Frederick Jelinek, and Josef Raviv, “Op-

timal decoding of linear codes for minimizing symbol error rate
(corresp.),” IEEE trans. Inf. Theory, vol. 20, no. 2, pp. 284–287,
1974.
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