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Benchmarking an algorithm for expensive high-dimensional objectives on the bbob and bbob-largescale testbeds
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We report benchmarks for a recently developed algorithm on the bbob and bbob-largescale benchmarking testbeds in COCO. This algorithm is designed for expensive high-dimensional multimodal objectives (such as arise in hyperparameter optimization or via simulations), and this regime introduces challenges for benchmarking. In particular, while the COCO experimental procedure yields evidence that this algorithm improves on the state of the art, the COCO framework also exhibits shortcomings for the very low evaluation budgets involved here. Consequently, we also report the results of ad hoc experiments that demonstrate a more obvious if less rigorous advantage for the algorithm over its nearest competition.

INTRODUCTION

The paper [START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF] introduces an optimization algorithm designed to handle intrinsically high-dimensional (𝐷 ⪆ 40, and with all dimensions relevant) optimization problems for very expensive (≥ 1 minute/evaluation) multimodal objective functions. This regime includes problems of fundamental interest (e.g., optimizing the results of simulations) that push against fundamental limits of benchmarking tools: for example, high dimensionality and multimodality coupled with low function evaluation budgets preclude achieving global minima as a realistic goal. Meanwhile, while the algorithm in [START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF] is carefully designed with such problems in mind, its runtime overhead introduces an additional challenge: benchmarking itself becomes very expensive.

The COmparing Continuous Optimizers (COCO) platform [START_REF] Hansen | COCO: A platform for comparing continuous optimizers in a black-box setting[END_REF] enables automated benchmarking and performance comparisons for optimization algorithms. In this paper, we benchmark the algorithm in [START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF]-hereinafter referred to as EXPLO2 in the text and EE in the COCO plots-on the bbob [5, 10] and bbob-largescale [START_REF] Elhara | COCO: the large scale blackbox optimization benchmarking (BBOB-largescale) test suite[END_REF] test suites, as well as performing a more ad hoc evaluation to address gaps in COCO for low function evaluation budgets.

ALGORITHM PRESENTATION

If 𝑑 is the distance matrix of a finite subset of R 𝐷 and 𝑡 ≥ 0, then 𝑍 𝑗𝑘 = exp(-𝑡𝑑 𝑗𝑘 ) is a positive definite matrix [START_REF] Steinwart | Support vector machines[END_REF], hence invertible. With this in mind, the corresponding weighting 𝑤 is the solution of 𝑍𝑤 = 1, where 1 denotes a vector of all ones; the magnitude of 𝑍 is ∑ 𝑗 𝑤 𝑗 [START_REF] Leinster | Entropy and Diversity: the Axiomatic Approach[END_REF]. Magnitude is a very general scale-dependent notion of an effective number of points that encodes rich geometrical data [START_REF] Leinster | The magnitude of a metric space: from category theory to geometric measure theory[END_REF]. Meanwhile, the components of a weighting meaningfully encode a notion of effective size per point.

Moreover, 𝑍 is a radial basis function (RBF) interpolation matrix [START_REF] Martin D Buhmann | Radial basis functions: theory and implementations[END_REF] and the equation 𝑍𝑤 = 1 amounts to defining a weighting 𝑤 as the vector whose components are coefficients for interpolating the unit function. So if {𝑥 𝑗 } 𝑛 𝑗=1 are points in R 𝐷 with distance matrix 𝑑 and 𝑦 𝑗 ∶= 𝑓 (𝑥 𝑗 ) for 𝑓 ∶ R 𝐷 → R, then the RBF interpolation is 𝑓 (𝑥) ≈ 𝑦𝑍 -1 𝜁 (𝑥), where 𝜁 𝑘 (𝑥) ∶= exp(-𝑡⋃︀ 𝑥 -𝑥 𝑘 ⋃︀) and we treat 𝑦 and 𝜁 respectively as row and column vectors.

EXPLO2 constructs a surrogate on a box in R 𝐷 that convexly combines i) the differential magnitude due to a new point in relation to a dynamically curated subset of prior evaluation points, and ii) the RBF interpolation relative to those same points. These two functions respectively embody notions of exploration and exploitation, and over the course of the algorithm the surrogate shifts from the former to the latter. Successive evaluation points are determined by optimizing the surrogate with an inner large-scale algorithm (default: fmincon).

EXPERIMENTAL PROCEDURE

We ran EXPLO2 with default settings as described in [START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF] and with 𝑛 ∥ = 32 parallel workers on the entire bbob suite for 25 × 𝐷 evaluations according to [START_REF] Hansen | COCO: The Experimental Procedure[END_REF]. We also ran EXPLO2 in the same way on the multimodal functions 𝑓 15 , . . . , 𝑓 19 in the bbob-largescale suite for 2 × 𝐷 evaluations. 1 The limited budget and function selection were due to runtime overhead, as discussed in the sequel.

As [START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF] details, a representative set of algorithms to benchmark against for low-dimensional, expensive, multimodal functions is NEWUOA, MCS, GLOBAL, SMAC-BBOB, and *-CMA-ES with * ∈ {lmm, DTS, lq}. Of these, only NEWUOA is well-suited to problems with hundreds of dimensions. Indeed, most of these algorithms have not even been benchmarked for dimension 40 in COCO as of this writing, and even NEWUOA eventually scales poorly with dimension [START_REF] Ros | Benchmarking the NEWUOA on the BBOB-2009 function testbed[END_REF]. Thus it is also important to perform large-scale benchmarking of EXPLO2, and to compare its performance to fmincon, which EXPLO2 is a wrapper for and is itself a large-scale algorithm.

This experimental procedure was useful, but still insufficient to adequately characterize the regime for which EXPLO2 was designed and where it exhibits advantage over competing algorithms, viz. very expensive high-dimensional multimodal objectives. In particular, this procedure did not yield plots in COCO that readily conveyed meaningful information (e.g., an "expensive plot" option does not appear to be available for the bbob-largescale suite). We therefore also performed a more ad hoc comparison of EXPLO2 to VD-CMA-ES [START_REF] Akimoto | Comparison-based natural gradient optimization in high dimension[END_REF], the best performing large-scale algorithm for structured multimodal functions in [START_REF] Varelas | Benchmarking large scale variants of cma-es and l-bfgs-b on the bbob-largescale testbed[END_REF]. As Figures 10111213show, EXPLO2 performs better with respect to evaluation counts, regardless of parallelism. However, it also incurs a very large runtime overhead.

CPU TIMING

In fact, the CPU timing of EXPLO2 is orders of magnitude higher than competing algorithms, as it wraps a large amount of dense linear algebra (albeit with carefully controlled runtime, and also with prospects for eventually achieving sparsity) around an inner optimizer. Therefore, EXPLO2 is only indicated instead of *-CMA-ES for objectives whose evaluation requires on the order of minutes or more. For example, the bbob data presented here took roughly a week to generate; the bbob-largescale data was similarly very time-consuming. For this reason, precise timing measurements were largely pointless, and high function evaluation budgets were impractical.

RESULTS

Results from experiments according to [START_REF] Hansen | COCO: The Experimental Procedure[END_REF] and [START_REF] Hansen | COCO: Performance Assessment[END_REF] on the benchmark functions given in [START_REF] Elhara | COCO: the large scale blackbox optimization benchmarking (BBOB-largescale) test suite[END_REF]5] are presented in Figures 1,23, and 4-8; see also Table 1. 2 The experiments were performed and plots produced with COCO [START_REF] Hansen | COCO: A platform for comparing continuous optimizers in a black-box setting[END_REF], version 2.4. Additionally, our ad hoc experiments with VD-CMA-ES are presented in Figures 10111213.

The expected runtime (ERT), used in Table 1, depends on a given target precision, 𝐼 target = 𝑓 opt + Δ𝑓 , and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach 𝑓 t , summed over all trials and divided by the number of trials that actually reached 𝑓 t [START_REF] Hansen | COCO: The Experimental Procedure[END_REF][START_REF] Price | Differential evolution vs. the functions of the second ICEO[END_REF]. Statistical significance is tested with the rank-sum test for a given target Δ𝑓 t using, for each trial, either the number of needed function evaluations to reach 𝑓 t (inverted and multiplied by -1), or, if the target was not reached, the best Δ𝑓value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration.

Because of the runtime overhead of EXPLO2, our experiments used a fixed budget of 25 function evaluations per dimension (i.e., 25 × DIM function evaluations in total). 3 As [START_REF] Hansen | COCO: The Experimental Procedure[END_REF] points out, algorithms are only comparable up to the smallest budget given to any of them, corresponding in this case to log 10 25 ≈ 1.40 on the horizontal axis for Figures 2-3 and 4-7, and to log 10 2 ≈ 0.3 for Figure 8. This corresponds in our case exactly to the location of crosses (×), which indicate where bootstrapping of experimental data begins to estimate results for larger numbers of function evaluations. At the same time, we used 𝑛 ∥ = 32 parallel workers, 4and log 10 (25⇑32) ≈ -0.107. Thus allowing for parallel resources (see §5.1) suggests comparing EXPLO2 at the value log 10 25 on the horizontal axes with the other algorithms at log 10 (25⇑32), except for *-CMA-ES, which is parallelizable. 5 6 To summarize, as the dimension of structured multimodal problems grows, EXPLO2 outperforms NEWUOA, particularly when taking parallelism into account; meanwhile, the quadratic scaling with dimension of non-large-scale *-CMA-ES algorithms puts them at an increasing disadvantage since EXPLO2 has essentially no runtime dependence on dimension other than through its inner solver, which here is the default large-scale interior-point fmincon algorithm. Finally, on structured multimodal functions, EXPLO2 outperforms VD-CMA-ES, which is otherwise the best-performing large-scale algorithm that we are aware of.

Parallel performance

While EXPLO2 is parallelized (at marginal cost to performance), to the best of our knowledge no competing technique is except for *-CMA-ES. Indeed, as [START_REF] Gao | Distributed Gauss-Newton optimization method for history matching problems with multiple best matches[END_REF] points out, most surrogate-based derivativefree optimizers-including NEWUOA-require sequential function evaluations. Though parallel algorithms exist [START_REF] Raphael T Haftka | Parallel surrogate-assisted global optimization with expensive functions-a survey[END_REF][START_REF] Rehbach | Comparison of parallel surrogate-assisted optimization approaches[END_REF][START_REF] Xia | GOPS: efficient RBF surrogate global optimization algorithm with high dimensions and many parallel processors including application to multimodal water quality PDE model calibration[END_REF], these are relatively few in number outside the context of Bayesian optimization (which is unsuitable for high-dimensional problems), and parallel techniques appropriate for high-dimensional problems have been considered in our design and/or benchmarking.

With this in mind, since our experiments use 𝑛 ∥ = 32, exceeding our per-dimension evaluation budget of 25, it is obvious that EXPLO2 can outperform any of the competing algorithms considered here on the number of rounds of parallel function evaluations, except for *-CMA-ES, which becomes (depending on the variant employed) illsuited for use or less performant than EXPLO2 in high dimensions. 

REMARKS

Some of the most important optimization problems in science and industry involve expensive objectives, e.g., the results of simulations. This fact and the experience of the present paper suggests introducing additional functionality in COCO to allow more precise benchmarking for extremely low function evaluation budgets. Experiments on EXPLO2 along similar lines to those presented here indicate that using generic CMA-ES as the inner optimizer incurs a collateral runtime cost orders of magnitude beyond that of fmincon even for 𝐷 = 2, which precludes careful benchmarking of that alternative.

Finally, though the runtime overhead of EXPLO2 scales favorably with dimension, it is still high for any given function evaluation: the surrogate is complicated and even a large-scale inner optimizer takes resources. EXPLO2 is therefore only suited for highdimensional functions that are very expensive to evaluate, and it will generally be advisable to evaluate the suitability of *-CMA-ES as well in any particular application. 
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Figure 1 :

 1 Figure 1: Expected running time (ERT in number of 𝑓 -evaluations as log 10 value) divided by dimension versus dimension. The target function value is chosen such that the best algorithm from BBOB 2009 just failed to achieve an ERT of 10×DIM. Different symbols correspond to different algorithms given in the legend of 𝑓 1 and 𝑓 24 . Light symbols give the maximum number of function evaluations from the longest trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms with 𝑝 < 0.01 and Bonferroni correction number of dimensions (six). Legend: ○: EE mul25par32lamLin, ♢: GLOBAL pal noiseless, ⋆: MCS huyer noiseless, ▽: NEWUOA ros noiseless, : SMAC-BBOB hutter noiseless, △: fmincon pal noiseless, : lmm-CMA-ES auger noiseless.

Figure 2 :

 2 Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for all functions and subgroups in 10-D. The targets are chosen from 10 (︀-8..2⌋︀ such that the best algorithm from BBOB 2009 just not reached them within a given budget of 𝑘 × DIM, with 31 different values of 𝑘 chosen equidistant in logscale within the interval {0.5, . . . , 50}. As reference algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers. multi-modal fcts weakly structured multi-modal fcts all fcts
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 3 Figure 3: As in Figure 2, but for 20-D.
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 56 Figure 5: As in Figure 4, but for 𝑓 9 , . . . , 𝑓 16 .
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 91011 Figure 9: As in Figure 8, but for dimensions 320 (top row) and 640 (bottom row).

Figure 12 :Figure 13 :

 1213 Figure 12: As in Figure 10, but for the Griewank-Rosenbrock function F8F2 (without rotations or shifts, but otherwise corresponding to 𝑓 19 in the BBOB testbed) on (︀-5, 5⌋︀ 𝐷 for 𝐷 = 20. Note that VD-CMA-ES often terminates before the budget is reached.

Table 1 :

 1 Expected runtime (ERT in number of function evaluations) divided by the respective best ERT measured during BBOB-2009 in dimension 20.
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  As in Figure4, but for dimension 40 and 𝑓 3 , 𝑓 4 , 𝑓 7 , 𝑓 15 , . . . , 𝑓 19 . As in Figure4, but for dimension 80 (top row) and 160 (bottom row) and 𝑓 16 , . . . , 𝑓 19 on the bbob-largescale testbed. The Rastrigin function 𝑓 15 has degenerate results for all algorithms and so is not shown. Note that[START_REF] Hansen | COCO: The Experimental Procedure[END_REF] points out that algorithms are only comparable up to the smallest budget given to any of them, corresponding in our case exactly to the location of crosses (×), which indicate where bootstrapping of experimental data begins to estimate results for larger numbers of function evaluations. These locations are very far to the left, though EXPLO2 (here indicated as EE) is consistently a top performer there.

	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob f3, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 15 instances v2.4 3 Rastrigin separable	NEWUOA ro EE mul25p best 2009 Fraction of function,target pairs	0 bbob f4, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 15 instances v2.4 4 Skew Rastrigin-Bueche separ 0.0 0.2 0.4 0.6 0.8 1.0	EE mul25p NEWUOA ro best 2009 Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob f7, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 15 instances v2.4 7 Step-ellipsoid	EE mul25p NEWUOA ro best 2009 Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 15 instances log10(# f-evals / dimension) 2 v2.4 from refalgs/best2009-bbob.tar.gz 31 targets RLs/dim: 0.5..50 bbob f15, 40-D 15 Rastrigin	NEWUOA ro EE mul25p best 2009
	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob f16, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 15 instances v2.4 16 Weierstrass	EE mul25p NEWUOA ro best 2009 Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob f17, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 15 instances v2.4 17 Schaffer F7, condition 10	NEWUOA ro EE mul25p best 2009 Fraction of function,target pairs	0 bbob f18, 40-D log10(# f-evals / dimension) 2 31 targets RLs/dim: 0.5..50 from refalgs/best2009-bbob.tar.gz 30, 15 instances v2.4 18 Schaffer F7, condition 1000 0.0 0.2 0.4 0.6 0.8 1.0	NEWUOA ro EE mul25p best 2009 Fraction of function,target pairs	0 30, 15 instances log10(# f-evals / dimension) 2 v2.4 from refalgs/best2009-bbob.tar.gz 31 targets RLs/dim: 0.5..50 bbob f19, 40-D 19 Griewank-Rosenbrock F8F2 0.0 0.2 0.4 0.6 0.8 1.0	NEWUOA ro EE mul25p best 2009
	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	Figure 7: 0 2 4 6 log10(# f-evals / dimension) m2DLBFGS EE on bbo LBFGS Var LMCMA14 V R2ES Vare R10ES Var V2D-CMA V VkD-CMA V LMCMA17 V sepCMA Va VD-CMA Va CMA Varel bbob-largescale f16, 80-D 51 targets: 100..1e-08 1, 15 instances v2.4 16 Weierstrass 0 0.0 0.2 0.4 0.6 0.8 1.0 Fraction of function,target pairs bbob-largescale f17, 80-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 17 Schaffer F7, condition 10	EE on bbo m2DLBFGS LBFGS Var LMCMA14 V R10ES Var R2ES Vare LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va CMA Varel VD-CMA Va Fraction of function,target pairs	0 bbob-largescale f18, 80-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 18 Schaffer F7, condition 1000 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo LBFGS Var m2DLBFGS R10ES Var LMCMA14 V R2ES Vare LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va VD-CMA Va CMA Varel Fraction of function,target pairs	0 1, 15 instances 2 log10(# f-evals / dimension) 4 6 v2.4 51 targets: 100..1e-08 bbob-largescale f19, 80-D 19 Griewank-Rosenbrock F8F2 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo m2DLBFGS LBFGS Var LMCMA14 V R10ES Var R2ES Vare sepCMA Va VkD-CMA V V2D-CMA V LMCMA17 V CMA Varel VD-CMA Va
	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f16, 160-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 16 Weierstrass	m2DLBFGS LBFGS Var EE on bbo LMCMA14 V R10ES Var R2ES Vare VkD-CMA V V2D-CMA V LMCMA17 V sepCMA Va CMA Varel VD-CMA Va Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f17, 160-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 17 Schaffer F7, condition 10	EE on bbo LBFGS Var m2DLBFGS LMCMA14 V R10ES Var R2ES Vare LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va VD-CMA Va CMA Varel Fraction of function,target pairs	0 bbob-largescale f18, 160-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 18 Schaffer F7, condition 1000 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo LBFGS Var m2DLBFGS R2ES Vare LMCMA14 V R10ES Var LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va CMA Varel VD-CMA Va Fraction of function,target pairs	0 1, 15 instances 2 log10(# f-evals / dimension) 4 6 v2.4 51 targets: 100..1e-08 bbob-largescale f19, 160-D 19 Griewank-Rosenbrock F8F2 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo LBFGS Var m2DLBFGS LMCMA14 V R2ES Vare R10ES Var V2D-CMA V LMCMA17 V sepCMA Va VkD-CMA V VD-CMA Va CMA Varel
	Figure 8: #FEs/D	0.5	1.2	3		10	50	#succ	#FEs/D	0.5	1.2	3	10	50	#succ
	f21		6.3e+1:36	4.0e+1:77	4.0e+1:77		1.6e+1:456	4.0e+0:1094	15/15		f23	6.3e+0:29	4.0e+0:118	2.5e+0:306	2.5e+0:306	1.0e+0:1614	15/15
	EE	3.5(2)		2.9(3)	2.9(2)		1.3(1.0)	6.6(12)	1/15	EE	1.5(2)		11(14)	∞	∞	∞ 501	0/15
	GLOBA 9.2(0.7)		5.2(0.8)	5.2(0.8)		1.0(0.2)	1.00(0.9)	15/15	GLOBA 1.8(2)		2.9(1)	1.7(0.2)	1.7(0.2)	1.00(0.7)	15/15
	MCS h 0.99(0.5)		1.0(0.7)	1.0(0.7)		31(44)	36(39)	14/15	MCS h 1.5(0.9)		18(26)	29(31)	29(31)	124(103)	5/15
	NEWUO 1.8(0.2)		0.99(0.2)	0.99(0.2)		1.4(3)	2.9(2)	15/15	NEWUO 7.2(19)		2.8(6)	2.1(3)	2.1(3)	3.5(4)	15/15
	lmm-C 3.5(1)		2.5(1)	2.5(1)		1.3(0.1)	4.3(9)	11/15	lmm-C 1.9(3)		8.2(5)	408(548)	408(296)	∞ 8823	0/15
	SMAC-7.5(4)		4.2(7)	4.2(8)		2.7(4)	5.2(3)	4/15	SMAC-1.5(2)		5.0(4)	46(68)	46(75)	∞ 2000	0/15
	fminc 0.81(0.3)	0.64(0.2)	0.64(0.3)		0.96(0.9)	0.92(1)	15/15	fminc 4.9(5)		4.8(7)	3.2(2)	3.2(2)	4.4(4)	15/15
	f22		6.3e+1:45	4.0e+1:68	4.0e+1:68		1.6e+1:231	6.3e+0:1219	15/15		f24	2.5e+2:208	1.6e+2:918	1.0e+2:6628	6.3e+1:9885	4.0e+1:31629	15/15
	EE	2.4(0.7)		2.8(3)	2.8(3)		2.6(3)	2.9(3)	2/15	EE	0.40(0.2)	∞	∞	∞	∞ 501	0/15
	GLOBA 7.9(0.6)		5.8(0.9)	5.8(0.9)		2.0(0.9)	1.0(1)	15/15	GLOBA 31(95)		∞	∞	∞	∞ 3e4	0/15
	MCS h 1(0.3)		0.99(0.4)	0.99(0.3)		33(76)	20(27)	13/15	MCS h 1.8(1)		2.7(4)	12(33)	∞	∞ 8e4	0/15
	NEWUO 1.5(0.2)		1.2(0.3)	1.2(0.4)		1.00(1)	1.4(3)	15/15	NEWUO 1.1(2)		1.2(2)	4.3(5)	247(334)	∞ 2e5	0/15
	lmm-C 3.1(2)		5.8(2)	5.8(11)		5.9(13)	3.8(8)	11/15	lmm-C 0.74(0.2)	1.1(0.5)	1.4(0.8)	1.2(0.9)	1.2(1)	3/15
	SMAC-10(13)		7.2(22)	7.2(9)		4.2(7)	2.0(2)	7/15	SMAC-0.65(1)		10(5)	∞	∞	∞ 2000	0/15
	fminc 0.99(0.4)	2.5(0.2)	2.5(7)		2.9(4)	3.5(9)	15/15	fminc 0.51(0.3)	12(1)	886(1345)	∞	∞ 4e5	0/15
	Data produced with COCO v2.4									
	produced with COCO v2.4									

Table 2 :

 2 Continuation of Table 1.

	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f16, 320-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 16 Weierstrass	LBFGS Var m2DLBFGS EE on bbo LMCMA14 V R10ES Var R2ES Vare sepCMA Va VkD-CMA V V2D-CMA V LMCMA17 V VD-CMA Va CMA Varel Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f17, 320-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 17 Schaffer F7, condition 10	EE on bbo LBFGS Var m2DLBFGS LMCMA14 V R10ES Var R2ES Vare LMCMA17 V V2D-CMA V sepCMA Va VkD-CMA V VD-CMA Va CMA Varel Fraction of function,target pairs	0 bbob-largescale f18, 320-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 18 Schaffer F7, condition 1000 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo m2DLBFGS LBFGS Var LMCMA14 V R2ES Vare R10ES Var LMCMA17 V sepCMA Va V2D-CMA V VkD-CMA V VD-CMA Va CMA Varel Fraction of function,target pairs	0 1, 15 instances 2 log10(# f-evals / dimension) 4 6 v2.4 51 targets: 100..1e-08 bbob-largescale f19, 320-D 19 Griewank-Rosenbrock F8F2 0.0 0.2 0.4 0.6 0.8 1.0	LBFGS Var m2DLBFGS EE on bbo R2ES Vare R10ES Var LMCMA14 V LMCMA17 V sepCMA Va VkD-CMA V V2D-CMA V VD-CMA Va CMA Varel
	Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f16, 640-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 16 Weierstrass	m2DLBFGS LBFGS Var EE on bbo R2ES Vare R10ES Var LMCMA14 V sepCMA Va V2D-CMA V VkD-CMA V LMCMA17 V VD-CMA Va Fraction of function,target pairs	0.0 0.2 0.4 0.6 0.8 1.0	0 bbob-largescale f17, 640-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 17 Schaffer F7, condition 10	EE on bbo LBFGS Var R2ES Vare R10ES Var m2DLBFGS LMCMA14 V LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va VD-CMA Va Fraction of function,target pairs	0 bbob-largescale f18, 640-D 2 log10(# f-evals / dimension) 4 6 51 targets: 100..1e-08 1, 15 instances v2.4 18 Schaffer F7, condition 1000 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo LBFGS Var m2DLBFGS R10ES Var R2ES Vare LMCMA14 V V2D-CMA V LMCMA17 V VkD-CMA V sepCMA Va VD-CMA Va Fraction of function,target pairs	0 1, 15 instances 2 log10(# f-evals / dimension) 4 6 v2.4 51 targets: 100..1e-08 bbob-largescale f19, 640-D 19 Griewank-Rosenbrock F8F2 0.0 0.2 0.4 0.6 0.8 1.0	EE on bbo LBFGS Var m2DLBFGS R10ES Var R2ES Vare LMCMA14 V LMCMA17 V V2D-CMA V VkD-CMA V sepCMA Va VD-CMA Va

  Hansen, R. Ros, and A. Auger. 2009. Real-Parameter Black-Box Optimization Benchmarking 2009: Presentation of the Noiseless Functions. Technical Report 2009/20. Research Center PPE. http://coco.lri.fr/downloads/download15. 03/bbobdocfunctions.pdf Updated February 2010.

In an appendix of[START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF], we also produced fixed-budget plots of cumulative best values using the same data (and substituting, e.g. DTS-CMA-ES for lmm-CMA-ES) via the web interface of IOHanalyzer[START_REF] Doerr | IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics[END_REF] at https://iohanalyzer.liacs.nl/, but these plots produced neither additional nor conflicting insights.

While[START_REF] Tušar | Anytime Benchmarking of Budget-Dependent Algorithms with the COCO Platform[END_REF] points out how an anytime benchmark of a budget-dependent algorithm such as EXPLO2 can be performed with linear overhead, the cost-to-benefit ratio in our case was still prohibitive. In any event, this would not have made larger budgets any easier (or much more relevant) to obtain.

NB. For benchmarking, it was necessary to simulate parallelism, i.e., we replaced parfor loops in MATLAB code with ordinary for loops.

While *-CMA-ES is easily parallelizable[START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[END_REF][START_REF] Khan | A parallel implementation of the covariance matrix adaptation evolution strategy[END_REF], the quadratic scaling of non-largescale variants with dimension creates a serious disadvantage for high-dimensional problems. In high dimensions it is appropriate to compare EXPLO2 to large-scale variants of CMA-ES[START_REF] Varelas | Benchmarking large scale variants of cma-es and l-bfgs-b on the bbob-largescale testbed[END_REF][START_REF] Varelas | A comparative study of large-scale variants of CMA-ES[END_REF], and our ad hoc experiments in this regard yielded good results.

[START_REF] Gao | Distributed Gauss-Newton optimization method for history matching problems with multiple best matches[END_REF] Also, in an experiment shown in an appendix of[START_REF] Huntsman | Parallel black-box optimization of expensive highdimensional multimodal functions via magnitude[END_REF], we found that EXPLO2 outperformed differential evolution and had performance almost indistinguishable from CMA-ES on the mixed-integer version of 𝑓 15[START_REF] Tušar | Mixed-integer benchmark problems for single-and bi-objective optimization[END_REF] in dimension 𝐷 = 20 (the only function/dimension pair we tried among the mixed-integer suite[START_REF] Tušar | Mixed-integer benchmark problems for single-and bi-objective optimization[END_REF]).
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