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In the design context of Near-Zero Energy Buildings (nZEBs) and smart cities, robust and versatile optimization methods are needed to be coupled to simulation tools. In this way, the paper presents optimization algorithms coupled to a software with a capability to precisely simulate solar radiation availability by using a graphical pixel counting technique and by integrating with external models via Functional Mockup Interface (FMI). The optimization is based on mono-and multi-objective algorithms to solve a case study problem with two objectives to optimize: i) the cooling energy demand and ii) the payback period. Then, an economic viability model is presented, considering construction aspects such as insulation thickness, energy consumption and the number of installed solar panels. The algorithms are applied and compared for a building based on the BESTEST 910 case, considering tropical weather of Rio de Janeiro, Brazil. Both algorithms succeed, but with different characteristics related to computer run time and accuracy.

Introduction

Energy and environment have been a major global concern in recent years. According to the last Brazilian Energy Balance [START_REF]Brazilian energy balance[END_REF], 51% of electricity consumption in the year 2018 was attributed to residential, commercial and public buildings. Also, energy used in buildings for heating, cooling and lighting comprises up to 23% of global energy-related CO 2 emissions, with one-third of those from direct fossil fuel consumption [START_REF] Infiltration | Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations[END_REF][START_REF] Rogelj | Mitigation pathways compatible with 1.5 c in the context of sustainable development[END_REF]. Consequently, these data reveal the urgent need of building energy performance improvement dealing with sustainable design concepts. Therefore, it is imperative to use simulation tools for the design of optimal energyefficient and environmentally friendly buildings.

The International Energy Agency (IEA), through Annex 52 titled "Towards Net Zero Energy Solar Buildings", is making an international effort to the standardization of the Net Zero Energy Building definition [START_REF]SHC Task 40/ECBCS Annex 52, Towards Net Zero Energy Solar Buildings[END_REF]. In the European Union, with the current directive [5,6], the general trend is to design "nearly zero energy building", with very high energy performance and nearly zero or very low amount of energy required. This energy should be covered largely by energy from renewable sources, including energy from renewable sources produced on-site or nearby [5,6]. Several studies have been carried out on the nZEB subject such as the impact of comfort parameters on the air conditioning energy demand for residential nZEBs [7] and the optimization of building envelope design for nZEBs in Mediterranean climate with multi-objective optimization algorithm [8]. Other investigations can be mentioned such as [9] or [10] on the enhancement of building energy efficiency through building information modeling.

The design of sustainable buildings is not a simple task as it must achieve high levels of performance at the lowest possible cost, with the possibility of a large space of solutions and many physical processes that lead to conflicting objectives. To deal with these difficulties it is worth to apply computational methods of design optimization [START_REF] Evins | A review of computational optimisation methods applied to sustainable building design[END_REF]. A recent review on the use of genetic algorithms for building retrofitting optimization is proposed in [START_REF] Costa-Carrapiço | A systematic review of genetic algorithmbased multi-objective optimisation for building retrofitting strategies towards energy efficiency[END_REF]. Several recent illustrations of multi-objective optimization can be mentioned as [START_REF] Pasichnyi | Data-driven strategic planning of building energy retrofitting: The case of stockholm[END_REF] for energy policies at larger scales or [14] and [START_REF] Milic | Evaluation of energy renovation strategies for 12 historic building types using lcc optimization[END_REF] for building stocks retrofit. In [START_REF] Mohamed | Fulfillment of net-zero energy building (nzeb) with four metrics in a single family house with different heating alternatives[END_REF] multi-optimization approach is used to choose among several energy efficiency measures. Last, [17] investigate the retrofitting of social houses by combining dynamic building energy simulations and multi-objective optimization.

There are several ways to solve optimization problems. The weighted sum is a classical approach to solve a multi-objective optimization problem, assigning weights to each normalized objective that is converted to a single-objective problem, which is solved using a monoobjective algorithm [START_REF] Fabrizio Ascione | Optimization of building envelope design for nzebs in mediterranean climate: Performance analysis of residential case study[END_REF]. Another approach is the Pareto multi-objective optimization, where a range of solutions are sought that enclose the trade-off among the objectives. Regarding multiobjective algorithms, the most commonly used is the NSGA-II (Non-dominated Sorting Genetic Algorithm-II), a robust multi-objective optimization genetic algorithm [19]. A reference-point based variation named NSGA-III is suggested in [START_REF] Deb | An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints[END_REF].

A comprehensive review of all significant research applying computational optimization to sustainable building design problems, covering 74 works with a focus on different fields of sustainable building design is presented in [START_REF] Evins | A review of computational optimisation methods applied to sustainable building design[END_REF]. Furthermore, a methodology and an environment allowing the interoperability of numerical tools for the holistic optimization of buildings is presented in [21], with an optimization case study based in a real building.

This interest in tools that enable building optimization is the main motivations of this work, intending to bring an optimization tool integrated to a BES tool, as well as assisting the design of more efficient building projects.

In this paper, two optimization algorithms are integrated into a Building Energy Simulation (BES) tool to optimize energy and construction economic viability. The optimization considers sophisticated graphical resources such as pixel counting to accurately and rapidly assess the sunlit radiation on PV panels and building facades. In order to promote more in-depth analyses of different optimization approaches, a comparison between mono-and multi-objective algorithms to optimize a multi-criteria problem is performed.

The article is organized as follows. The building energy simulation program Domus and the building economic analysis model are described in Section 2. Then, the mono-and multiobjective optimization models are presented in Section 3. A presentation of the case study and its optimization results is carried out in Section 4. To conclude, final remarks are addressed in Section 5.

Methodology

The building energy simulation program Domus

The whole-building hygrothermal and energy simulation program Domus is used as the building energy simulation tool, being able to compute the room air temperature using the lumped multizone model [START_REF] Mendes | Domus 2.0: a whole-building hygrothermal simulation program[END_REF][START_REF] Mendes | A simulation environment for performance analysis of HVAC systems[END_REF]. The energy balance of the zones is performed considering heat exchanged with walls, windows, occupants, lighting, equipment and HVAC systems. Domus has been used in a variety of studies as in [24] that presented integrated calculation of the hygrothermal behavior of indoor climate, building porous envelope and central HVAC system. The work presented in [25] validates several cross and single-sided natural ventilation models implemented in Domus. Another example is the study presented by [START_REF] Freire | Capacitive effect on the heat transfer through building glazing systems[END_REF] to analyze the modeling level needed to successfully evaluate the heat transfer through window glazing materials in whole-building simulation.

Photovoltaic panels (PV) are numerically coupled in Domus in the work presented by [START_REF] Freire | Numerical simulation of building-integrated photovoltaic systems[END_REF]. Using Domus, the user can select any building zone external surface to add photovoltaic panels to the building envelope as a building-integrated photovoltaic (BIPV) strategy. The BIPV effect on the heat transfer through the building envelope is also considered on energy performance assessment, including information on the number of panels, panel size, thermophysical properties and model. The pixel counting technique provides accurate calculation of direct solar radiation on the solar panels (Figure 1), regardless of the geometry and the presence of shading elements.

Among the possibilities of using pixel counting in building simulation, there is the one presented in [START_REF] Paula De Almeida Rocha | A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection[END_REF] for designing shading devices considering energy efficiency, daylight, and fading protection. An extensive validation presented in [START_REF] Paula De Almeida Rocha | Experimental validation and comparison of direct solar shading calculations within building energy simulation tools: Polygon clipping and pixel counting techniques[END_REF] and [30] shows how the use of this technique could bring an accurate and fast assessment of sunlit surface fraction even for complex geometries.

Domus has been written in C++ with an OpenGL based graphical interface and can consider moisture sorption effects. Additional information is available at http://domus.pucpr.br/ (in portuguese). 

Economic analysis

To assess the economic viability of the project, a simple economic analysis, based on the payback-time, is proposed according to [START_REF] Wang | Handbook of Air Conditioning and Refrigeration[END_REF][START_REF] Berger | An innovative method for the design of high energy performance building envelopes[END_REF]. The objective is to calculate the time required to pay for the investment in insulation and solar panels using the commercialization of the energy generated by the photovoltaic system. The energy consumption with ventilation and solar power equipment maintenance is also considered. Although HVAC equipment's cost can also be reduced according to demand, this specific cost is not considered in this model.

The economic viability of the project τ years comes from the solution of the following equation:

C inv + C eg + C ec + C m τ = 0 , ( 1 
)
where C inv $ , C eg $ , C ec $ and C m $ are the investment cost, the energy generation cost, the energy consumption cost and the maintenance cost, respectively. Rearranging the equation, the economic viability of the project can be expressed as:

τ = -C inv C eg + C ec + C m . ( 2 
)
In addition, the following convention is adopted: negative costs that spend financial resources (C inv , C ec and C m ); positive costs that generate financial resources (C eg ). The investment cost C inv $ is evaluated according to:

C inv = -A c p , 0 -p i A i l i , (3) 
with A m 2 as the area of the solar panels, c p , 0 $ . m -2 the installation cost of solar panels, p i $ . m -3 the insulation price, A i m 2 the surface of the insulation and l i m the length of insulation. The energy generation cost C eg is given by:

C eg = E p A p s , ( 4 
)
where E p kWh . m -2 is the electricity produced by the panels computed by the Domus simulation program according to the model [START_REF] Freire | Numerical simulation of building-integrated photovoltaic systems[END_REF]. The quantity p s $ . kWh -1 is the selling price of electricity. The energy consumption cost C ec is:

C ec = -E ac + E v p e , (5) 
with E ac kWh being the electric energy consumption of the air conditioning system, directly computed by Domus and p e $ . kWh -1 the electric energy price. The ventilation system energy consumption E v kWh is given by:

E v = S f p t q , ( 6 
)
where S f p kW . m -3 . s is the specific fan power [START_REF] Ventilation Centre | Technical Note AIVC 65: Recommendations on Specific Fan Power and Fan System Efficiency[END_REF], t h is the time of use and q m 3 . s -1 the ventilation airflow rate. Last, C m $ is the photovoltaic system maintenance cost is based in the interest compound formulation [START_REF] Mohamed | Fulfillment of net-zero energy building (nzeb) with four metrics in a single family house with different heating alternatives[END_REF][START_REF] Lewin | An early book on compound interest[END_REF][35][START_REF] Franco | Methods for the sustainable design of solar energy systems for industrial process heat[END_REF] and given by:

C m = -1.0 + ω A c p , 0 , (7) 
where the coefficient ω -represents a ratio cost on an annual base. The maintenance cost is defined as exponential since its probability distribution describes failure may appear at any time [START_REF] Mohamed | Fulfillment of net-zero energy building (nzeb) with four metrics in a single family house with different heating alternatives[END_REF][35][START_REF] Franco | Methods for the sustainable design of solar energy systems for industrial process heat[END_REF][37]. At last, Equation (2) can be presented in full as:

τ = A c p , 0 + p i A i l i E p A p s -E ac + E v p e -1.0 + ω A c p , 0 . ( 8 
)
Before that, τ is the number of years that verifies equation (1) and consequently fulfills the objective of paying the investment cost by means of the energy generated by the photovoltaic system.

Optimization

The main objective of this work is the coupling of an optimization model with a BES modeling an accurate assessment of direct solar radiation availability. This section describes the two adopted approaches that are used to solve the multi-criteria problem by employing mono-and multi-objective strategies. The coupling interface to perform the communication between the Domus tool and optimization models is the FMI [START_REF]FMI-Standard Functional Mock-up Interface[END_REF]. The latter is a free standard defining a container and an interface to carry exchanges of information between dynamic model. It can be used for co-simulation, where each model has its own numerical solver, or for model exchange, where the connection is done to a numerical solver. The second option is employed here. Each model is exported into a Functional Mock-up Unit (FMU) so that the exchange between models can be operated.

Parameter space for the optimization problem

The algorithm starts with the initialization step, where Domus utilizes the user-defined input configurations to define the parameters space Ω :

Ω = Np i = 1 Ω i , ( 9 
)
where N p the total number of parameters and Ω i is the space for each parameter considering the user-defined minimum and maximum values and given by:

Ω i = { p i ∈ R | p min i ⩽ p i ⩽ p max i } . ( 10 
)
The group of parameters to be optimized p is composed of elements of the parameter space Ω and given by:

p = ( p i ) for i = {1..N p } . ( 11 
)
The set Ω is transmitted to the optimization FMU through the FMI interface.

The objectives space Γ is the space generated for evaluation of the objective functions for all values in Ω and given by:

Γ = No i = 1 J i (Ω) , ( 12 
)
where N o is the number of objectives and J i is the objective function for each i-objective.

Mono-objective optimization with a surrogate-based algorithm

The purpose of mono-objective optimization is to find the most efficient building configuration in terms of energy consumption and economic viability. Since only one objective can be optimized in this approach, two terms are combined in one balanced objective function J:

J(p) = w 1 • J 1 (p) + w 2 • J 2 (p) , ( 13 
)
with J 1 being the relative value of cooling energy demand:

J 1 (p) = E ac (p) -E min ac E max ac -E min ac ,
and J 2 the relative value of the economic model result:

J 2 (p) = τ (p) -τ min τ max -τ min ,
where min and max are the minimal and maximal values expected for each objective and w 1 and w 2 are weights to balance the objectives. The optimization search for the set of parameters:

p • = min p J(p). ( 14 
)
The optimization technique chosen is the Bayesian one that attempts to find the global optimum in a minimum number of steps. The model used in this technique for approximating the objective function is called a surrogate model. The Bayesian optimization considers an acquisition function that directs sampling to areas where an improvement over the current best observation is likely [39][40][START_REF] Wang | Prediction of tubular solar still performance by machine learning integrated with bayesian optimization algorithm[END_REF]. The surrogate model-based optimization algorithms will be referred to in this work as Kriging model.

The mono-objective optimization starts after the space parameters definition, with the generation of the initial set of data points, denoted Ω s , generated using the Latin Hypercube Sampling (LHS) technique:

Ω s = { p s } Ns s=1 , ( 15 
)
where N s is the number of initial data points defined by the user. The set of initial points Ω s is transmitted back to Domus to compute Γ s , the set of objective function for each element of Ω s :

Γ s = { J(p s )} Ns s=1 , (16) 
The results are provided to the Kriging model. This sampling enables a first rough approximation of the objective function by the surrogate model. The second part of the process starts with Domus receiving a new group of parameters p ⋆ provided by the Kriging model to improve the approximation of the objective function. Domus apply the parameters to the project and execute a new simulation returning the J(p ⋆ ) as an objective function result to the Kriging model.

The optimization process ends when reaching the total number of simulations (N tot = N s + N k ) -where N k is the user-defined maximum number of kriging iterations -or satisfied one of the following criteria:

γ 1 ⩽ η 1 or γ 2 ⩽ η 2 , ( 17 
)
where η 1 and η 2 are user-defined values and λ, the number of previous iterations considered to evaluate the convergence. The criteria γ 1 and γ 2 assess the relative magnitude changes in the objective function and in the candidate parameters that result in the minor objective value, respectively:

γ 1 = k i = k-λ ∥ J(p • i+1 ) -J(p • i ) ∥ 2 ∥ J(p • i ) ∥ 2 , γ 2 = k i = k-λ ∥ p • i+1 -p • i ∥ 2 ∥ p • i ∥ 2 . ( 18 
)
The adopted methodology used to implement a mono-objective optimization tool in the Domus software is illustrated in Figure 2a and the FMU developed was implemented integrated with Python scripts based on Gaussian Process Regression (GPR) using the Scikit-optimize library available into the scikit-learn library [42], using the quasi-Newton method as a minimization function. A procedure chart of the whole process is illustrated in Figure 2b. Furthermore, Table 1 lists the computer programs involved for the mono-objective optimization procedure. Note that Python is used at several levels: for generating the initial data-set (Latin Hypercube Sampling), for the optimization using the Kriging model and for the stopping criteria.

Multi-objective optimization with NSGA-III

The purpose of the multi-objective optimization is to find the Pareto optimal parameters set and its corresponding objective function values (Pareto front). Since it is not computationally feasible to investigate all the parameters set to find the true Pareto front, it is imperative to use an approach to identify a set of solutions (the best-known Pareto set) that represent the Pareto optimal set as much as possible [START_REF] Fabrizio Ascione | Optimization of building envelope design for nzebs in mediterranean climate: Performance analysis of residential case study[END_REF]. The approach used is the Reference-point Based Non-dominated Sorting Approach (NSGA-III). Based on the NSGA-II algorithm, the Referencepoint Based approach emphasizes population members who are non-dominated yet close to a set of supplied reference points [43].

The objectives that compose the objective space are the cooling energy demand J 1 : and economic viability J 2 :

J 1 (p) = E ac (p) ,
J 2 (p) = τ (p) .
As a multi-objective optimization, it is possible to optimize both objectives at the same time. Figure 3 presents the methodology adopted for the multi-objective optimization using Domus and the FMI interface, with an FMU elaborated employing NSGA-III library available in DEAP [START_REF] Fortin | DEAP: Evolutionary algorithms made easy[END_REF].

The multi-objective model presents two new parameters in addition to what is presented for the mono-objective. The first one is the population's size N u , which can ensure diversity in the obtained solutions and must be defined according to the number of objectives [43]. The second configuration is the number of generations N g . For each generation, Domus will perform N u simulations for each generation required. Both are user-defined configurations. Other more specific configurations for the NSGA-III are kept in the default value.

After Domus supplying the space parameters definition to the NSGA-III model, an initial generation set, denoted Ω g , is created:

Ω g = { p u } Nu u=1 , (19) 
This first generation set Ω g is transmitted back to Domus to compute Γ g , the set with objective function values for each element of Ω g :

Γ g = { E ac (p u ), τ (p u ) } Nu u=1 , ( 20 
)
After concluded the initialization step, the optimization process starts with Domus receiving a new generation set Ω g provided by the NSGA-III model to improve the best-known Pareto Front. Domus simulates each element of this set and returns the new Γ g to the optimization model.

The optimization process ends when reaching the user-defined total number of generations N g , or through direct intervention, in case the user believes the optimization achieved a satisfactory result. The procedure chart for the multi-objective optimization is very similar to the one illustrated in Figure 2b. Instead, the LHS and Kriging model are performed by the NSGA entirely. Table 1 lists the computer programs involved for the multi-objective optimization procedure. Here, the Python NSGA-III algorithm from the DEAP library is employed. 

Results and discussion

Mono-objective model implementation verification

In order to verify the implementation of the optimization model in the FMI interface, a standalone test was carried out based on the Ackley function (Figure 4). The objective function 

Domus

Building simulation program that evaluates the multi-objective function Python DEAP-NSGA-III to improve the pareto front and carry the multi-objective optimization of this test is: A python script was developed to perform the validation of the implementation of optimization. The validation used the scikit-learn library for optimization and the LHS method to generate the initial set of samples, a total of 300 iterations with the first 5 being the initial set. The results bring the convergence of the minimum objective function (Figure 5a), where it is possible to observe that after 196 iterations the optimization algorithm calculated a value around 0.04 as the minimum objective value and no more variation until the end. The respective parameters are presented in Figure 5b.

J(p 1 , p 2 ) = -20 exp   -0.2 1 
The results show that despite the function having many local minima, the optimization algorithm successfully managed to locate the region of the global minimum in less than 100 iterations, in the following iterations it was possible to get even closer to the global minima, showing a satisfactory performance even considering that no more in-depth study of model configuration was performed. 

Multi-objective model implementation verification

The validation of the utilization of NSGA-III in Domus through the FMI interface was done using the test case using DTLZ2 multi-objective problem, presented in the documentation of the library DEAP. The results presented a good agreement with the reference result of the DTLZ2.

Presentation of the case study

The basic test building (Figure 6) is located in Rio de Janeiro, Brazil, where cooling loads are considerably high. The geometry consists of a rectangular shaped single zone (8 m wide x 6 m long x 2.7 m high) with no interior partitions and 5.88 m 2 (2 windows of 2.1 m wide x 1.4 m high) North-oriented windows located at 0.6 m from the ground. Based on the BESTEST 910 high mass building model, this building is a heavyweight type construction with characteristics described in Tables 7 and 8 of Appendix 5. There is also a 1 -m horizontal overhang across the entire width of the wall with windows at the roof level. Adapting to Brazilian standards, the size of windows has been reduced from 12 m 2 to 5.88 m 2 . The window glazing properties (Table 9 of Appendix 5) correspond to the NFRC-102 ones (Window 5, 1995). The original orientation of the base case has been changed from South to North, as the analysis is carried out for the southern hemisphere. The floor was defined as adiabatic as a simplification of the model. A ventilation air change rate is assumed to be equal to 0.5 ach (air changes per hour). Internal heat gain of 200 W (60% radiative, 40% convective, 100% sensible) is considered as a constant during the whole period. The mechanical system is 100% convective air system, 100% efficient with no duct losses and no capacity limitation, no latent heat extraction, non-proportional-type dual setpoint thermostat with deadband (heating < 20 o C, cooling > 27 o C). For further details refer to Section 5.2.1 of ANSI/ASHRAE Standard 140-2007.

The choice of a case study based on the BESTEST 910 model was done because it is a well-known high mass building. Another point that influenced the choice was the presence of insulation in the composition of the BESTEST 910 vertical walls, with the objective of optimizing the thickness of the insulation material. In addition to the BESTEST 910 model previously described, solar panels will be included on the roof for the cooling demand system of the building.

Regarding the configuration of the economic model for the present case study, the parameters defined are shown in Table 2. These values are based on local market costs at the time of the investigation [START_REF]General information database: BIG[END_REF][START_REF]Chamber of Electric Energy Commercialization (CCEE)[END_REF][START_REF]Solar Panels Information and Brazil[END_REF]. 

The need of optimizing the original case

The optimization need was evaluated using a period from the 10 th to the 13 th of January (summer in Brazil). Figures 7a and7b enable to verify the influence of each element on the thermal loads of the building. The first one presents the gains ϕ from the walls for the case study without optimization and the second one other relevant gains in the zone. It is possible to conclude that the window glass does not generate considerable heat gain inside the zone for the evaluation period, with a maximum value close to 150 W . The vertical walls indeed represent a significant influence, with values close to 1200 W .

Windows may have a greater impact on the building envelope cooling loads depending on parameters such as window-to-wall ratio, azimuth, frame quality and thermophysical properties of both opaque and translucid components. In the present case, we have modified the BESTEST case, by reducing the size of the windows and by providing a large overhang, which decreases significantly the importance of the window thermal gains when compared to those associated to the heat transmitted through the opaque parts.

Figures 7a and7b show the influence of different parts on thermal loads. The first one presents envelope related thermal gains while the second one compares the thermal gains through windows with the gain associated to the ventilation. The solar radiation thermal gain is related to the solar radiation passing through the windows, which is low due to very high position of the sun combined with the presence of the overhang. The window conduction loads are not high either when compared to the walls due to the difference between the areas and the thermal properties of the materials used in the simulation. As mentioned in the paragraph above, the glazing part does not play the major role for the modified BESTEST case, during the evaluation period (10 th to the 13 th of January) for the optimization analysis, with a maximum value close to 150 W . The vertical walls indeed represent a significant influence, with values close to 1200 W . Similar analysis can be carried out using Figure 11 for the whole year. Note that these results stand for the case study without optimization.

The windows model Domus uses is based on an unsteady finite-difference based model presented in [START_REF] Freire | Capacitive effect on the heat transfer through building glazing systems[END_REF][START_REF] Freire | Analysis of Two Different Approaches to Solve the Heat Transfer Through Single-and Double-Glazing Systems in Whole Building Energy Simulation[END_REF][START_REF] Castillo | An algorithm to determine radiative properties of glazing systems using simple window performance indicators[END_REF][START_REF] Castillo | Validation and Application of a Numerical Code for Energy Performance of Glazing Systems based on Semi-Transparent Organic Photovoltaic Elements[END_REF]. To calculate direct solar radiation gains on external and internal surfaces, Domus uses a pixel counting technique since it provides accuracy and rapidness for any geometry as demonstrated in [START_REF] Paula De Almeida Rocha | A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection[END_REF][START_REF] Paula De Almeida Rocha | Experimental validation and comparison of direct solar shading calculations within building energy simulation tools: Polygon clipping and pixel counting techniques[END_REF][30][START_REF] Paula De Almeida Rocha | Domus method for predicting sunlit areas on interior surfaces[END_REF] and mentioned in Section 2.1. The vertical walls generate more heat gain in all scenarios, including the one with minimum insulation thickness. Moreover, in Figures 8a andFigures 8b, it is possible to observe the differences comparing low and high thicknesses of insulation. As in the Bestest case, the floor is considered adiabatic.

The internal temperature and external climate temperature have a strong influence on the thermal gains as shown in Figure 9. Figure 10 presents the effect of the activation of the cooling system on the thermal gains.

The effect of insulation on the activation periods of the cooling system (Figure 10) is noticeable. Since conduction loads in the present case have a high impact on energy demand and consumption, the insulation of all vertical walls and the ceiling are defined as the first parameter to be optimized (denoted l i ). The second parameter will be ventilation airflow (denoted q v ). Since air quality or mould growth is not presently monitored, the expected effect of ventilation in a tropical climate on the air conditioning system should be optimized to its lowest value. Finally, the third parameter is the number of solar panels (denoted n p ), for energy production, also considering the cost of the equipment by means of the economic model. As remarked in Figure 12, there is a significant sink of solar radiation that can be directly used for solar panels to reduce the use of fossil energy. The use of solar panels is enhanced as the peak of cooling demand occurs during the day (Figure 10). Considering the described parameters, the set of parameters p for the case study can be defined as:

p = (l i , q v , n p ) . (21) 
Consequently, the set of optimized parameters can be described as:

p • = (l • i , q • v , n • p ) . ( 22 
)
The reduction of solar conversion efficiency is noticeable for the hottest periods (Figure 12). Even so, during most of the year, the energy generated by the PV system is sufficient to supply the need for cooling demand. The temperature effect on the PV efficiency is part of the implementation of the model in Domus, as presented in [START_REF] Freire | Numerical simulation of building-integrated photovoltaic systems[END_REF]. Energy demand E ac and solar panel energy production E p , considering the maximum number of solar panels that can be installed.

Mono-objective optimization

Results

The mono-objective optimization considers N s = 25 initial LHS samples and more N k = 50 kriging iterations with stopping criteria and configurations as described in Table 3. From a N tot = 75, the optimization finished after reaching convergence in γ 1 with 37 kriging iterations and a total of simulation runs. Figure 13 shows the cooling demand comparing original design based on the BESTEST 910, the optimized design and also comparing with a randomly configured design (Table 4), while Figures 14a and14b show the individual calculated costs and the economic viability of the project in terms of τ years , respectively. The optimized design correctly fulfills both the objectives of reducing both cooling demand throughout the year and the payback time with the investments in solar panels and insulation . Table 3. Mono-objective optimization configuration. For comparison purposes, Figures 15b show the thermal gain for the optimized project, where it is possible to see a considerable reduction in the gain from the walls due to the increase of insulation thickness defined by the optimizer.

Parametric study

The parametric study was carried out by setting the parameters at the optimized values and varying only one for each analysis. The results presented in Figures 16 to 17 show the expected energy consumption and the payback as a function of the insulation thickness and number of panels.

Finally, the weighted sum objective J is shown in Figures 18a to 18c varying all the parameters. In each result, the line representing the optimized parameter value is also displayed.

Starting from Figure 18, it is possible to observe that the optimum value found is in the region that would be expected, being an intermediate value within the range for insulation and number of panels and the minimum value for ventilation. Analyzing each objective separately, Figure 16 shows how the increase in insulation thickness and the number of panels tend to reduce the demand for cooling. The former, due to the reduction in heat exchange with the external environment. The latter, due to the shading effect that the solar panels generate on the roof. Figure 17 shows how the effect of the cost of installation and maintenance of the construction components affects the payback-time, in which for the two parameters presented the optimal value is located somewhere in the intermediate range of the parameters. In all cases, the optimizer had to make a trade-off in search of the optimum value that best brings the weight balance defined for the case study, from 50% for E a c and 50% for τ . 

Multi-objective optimization

The study using the multi-objective optimization comprises a total of generations of N g = 50 and a of N u = 16 individuals, which represents 800 runs. No convergence-based stopping criterion is defined for this multi-objective optimization. The criteria adopted are the total number of generations and the self intervention to conclude the optimization when the result seems appropriate.

The optimization results are presented in the form of the Pareto-front related to the values of J 1 and J 2 . In Figure 19a, the Pareto-front is presented in its final position, not only after 50 generations but also for previous ones (5 and 15). Including these predecessor generations, it is possible to verify that with 15 generations, the location of the front is considerably close to the final one, hence, 15 generations seems to be enough to optimize the case study. With 5 generations, the individual's location is close to the place of the final Pareto-front, which can be a possible optimization although the coarse generation process. The result of multi-objective optimization after 50 generations is denoted as best-known Pareto-front.

Figure 19b aims to compare the result of mono-objective optimization with the Pareto-front obtained from multi-objective optimization. Generation 4 is chosen for comparison because it has a number of simulations (64 runs) similar to the total performed in the mono-objective (62 runs), thus having a comparable computer run time needed to reach the results. From this result, it is possible to observe that despite the mono-optimization being close to the Paretofront (considering the entire objective space), the multi-objective optimization shows better performance with the same computational effort. Figure 20a presents the annual cooling demand, while Figure 20b the payback-time, for three different elements of the Pareto-front, One element is associated to a lower value for cooling demand (Bias in E ac ). A second one is linked to a lower value for the payback-time (Bias in τ ), and the last element is the one with an average result, among the objectives. Figure 20c shows the three selected elements of the Pareto-front and Table 5, the respective parameters and objective values.

The results presented in Figures 20a and20b demonstrate the considerable variation between elements of the Pareto-front within each objective. It is also interesting to note how the monoobjective optimization had a result very similar to the Mean multi-objective element in the cooling demand but presented the highest result among all in the optimization of τ . Such behaviour demonstrates that a better balance of the weights defined in the weighted approach may be necessary. Table 6 presents the computer CPU run time required to compute the solution for the monoand multi-objective optimization, using an Intel Core i5-8265U 1.6 GHz CPU and 8 GB RAM. The computational ratio scales with 4 between mono and multi-objective (with 15 generations) using a standard laptop computer. Indeed the number of simulations is higher for the second case. Thus, for building engineers or architects, the mono-objective optimization approach may be an interesting compromise for real case applications. The multi-objective optimization with 50 generations has a very important computational cost compared to the small gains in the pareto front.

Conclusion

In the context of near-zero energy buildings, solar power and low-cost construction, it is of great importance to provide effective optimization algorithms to be combined to building energy simulation tools. Hence, this paper presented optimization models integrated to a BES tool to figs/MultiObjective/pareto_front-eps-converted-to.pdf simplify the optimization procedure. At the same time, when using a communication interface with external models together with optimization algorithms developed in Python scripts, it is possible to improve the tool versatility so that models can be updated or replace without requiring any assistance from the development team, which is of paramount importance as new products can be rapidly available to a growing nZEB market.

Using a case study based on BESTEST 910, adapted to local conditions for a hot Brazilian climate, the objective of the study is to optimize the cooling demand and the investment paybacktime by increasing solar energy generation and reducing the costs associated to the building envelope and to the PV panels associated. The solar panels optimization is one of the highlights of this study because it takes advantage of the high solar radiation in the chosen city as well as the potential of the pixel-counting technique implemented in Domus, in terms of accuracy and rapidness.

Two optimization approaches were tested using free-available libraries. A mono-objective model that aims to be more specific with a single optimized result, even when operating with more than one objective. And a multi-objective model, bringing more detailed results and pro- 
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 1 Figure 1. Domus solar panels with sunlit calculations based on pixel counting.
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 2 Figure 2. Adopted methodology (a) and procedure chart b for the mono-objective optimization.
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 3 Figure 3. Adopted methodology for the multi-objective optimization.

Figure 4 .

 4 Figure 4. Ackley Function.

Figure 5 .

 5 Figure 5. Convergence plot of the minimum objective function J (a) and the respective parameters to obtain the minimum value of J (b).
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 6 Figure 6. Base building (modified Case 910).
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 7 Figure 7. Wall thermal gains (a) and other significant thermal gains (b) for the original project.
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 89 Figure 8. Wall thermal gains for minimum value of insulation (5 mm) (a) and for maximum value of insulation (300 mm) (b).
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 10 Figure 10. Cooling demand for different values of insulation.
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 1112 Figure 11. Histogram of thermal gains during 1 year for zone walls thermal gains(a) and other significant thermal gains(b).
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 13 Figure 13. Annual cooling demand for optimized, original and a random project.
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 214 Figure 14. Costs (a) and τ value (b) for optimized, original and a random project.
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 15 Figure 15. Optimized project wall thermal gains (a) and other thermal gains (b).
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 16 Figure 16. Parametric analysis of the energy consumption varying the insulation thickness (a) and the number of panels (b).
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 17 Figure 17. Parametric analysis of the construction cost modifying the insulation thickness (a) and the number of panels (b).
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 18 Figure 18. The optimized objective concerning the variation of insulation thickness (a), ventilation airflow (b) and the number of panels (c).
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Table 1 .

 1 List of computer programs used.

		Computer program	Role
	Mono-obj.	Python Domus Python	Latin Hypercube Sampling for the generation of the initial set of data-points Building simulation program that evaluates the mono-objective function Kriging model to improve the approximation of the objective function
		Python	Scikit-optimize library for the stopping criteria
	Multi -obj.		

Table 2 .

 2 Economic model configuration parameters (taken in October 2020).
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Table 4 .

 4 Parameters of the projects

	Project	li mm	qv m3/h	np -	Eac kWh	τ years
	Original	61	64.8	1	2943.79	10
	Optimized	160	5.0	17	1898.13	3.66
	Random	210	107.57	20	3024.66	4.52

Table 5 .

 5 Parameters and objectives for Pareto-front bias analyses.

	Project	li mm	qv m3/h	np -	Eac kWh	τ years
	Bias in Eac	299.6	5.0	26	1779	2.7
	Mean	144.0	5.0	17	1888	2.15
	Bias in Np	43.3	5.0	17	2307	1.99

Table 6 .

 6 Run time, comparing mono-and multi-objective approaches.

	Optimization	Number of simulations Run time h
	Mono	62	3.39
	Multi-Gen 15	240	11.8
	Multi-Gen 50	800	35.7

Table 9 .

 9 Window properties (NSI/ASHRAE Standard 140-2007).

	Element	Properties
	Extinction coeficiente	0.0196 mm
	Number of panes	2
	Pane thickness	3.175 mm
	Air-gap thickness	13 mm
	Index of refraction	1.526
	Normal direct-beam transmittance through one pane	0.86156
	Thermal Conductivity of glass	1.06 W/mK
	Conductance of each glass pane	333 W/m 2 .K
	Combined radiative and convective coefficient of air gap	6.297 W/m 2 K
	Exterior combined surface coefficient	21.00 W/m 2 K
	Interior combined surface coefficient	8.29 W/m 2 K
	U-value from interior air to ambient air	3.0 W/m 2 K
	Hemispherical infrared emittance of ordinary uncoated glass	0.9
	Density of glass	2500 kg/m 3
	Specific heat of glass	750 J/kgK
	Interior shade devices	None
	Double-pane shading coefficient at normal incidence	0.907
	Double-pane solar heat gain coefficient at normal incidence	0.789
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viding more freedom to wisely select the optimization objectives. It is possible to conclude that the multi-objective optimization presents better results, although with a higher computational burden until reaching a result close to the best-known Pareto-front (around 15 generations and 11h of run time). The single-objective optimization can satisfy the purpose of optimizing the desired parameters, reaching the stopping criteria after less than 4 hours of simulation. However, as it is possible to observe in Section 4.6, it does not find the closest value to the global-optimum region.

Further work is intended to include window type in the optimization process and promote the use of different mono-objective optimization algorithms to increase reliability. In addition, more sophisticated stopping criteria for multi-objective optimization can bring an important evolution for the methodology. Furthermore, the pixel counting can be more explored for evaluation of 

Construction parameters of the case study