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This paper addresses the topic of output feedback stabilization of general 1-D reaction-diffusion PDEs in the presence of a saturation in the measurement. The boundary control and the second boundary condition take the form of Dirichlet/Neumann/Robin boundary conditions. The measurement is selected as a boundary Dirichlet trace. The boundary measurement, as available for feedback control, is assumed to be subject to a saturation. In this context, we achieve the local exponential stabilization of the reactiondiffusion PDE while estimating a subset of the domain of attraction of the origin.

Introduction

Due to their physical limitations, actuators and sensors are inherently subject to saturation mechanisms. These saturation mechanisms introduce stringent constraints on the design of control laws [START_REF] Bernstein | A chronological bibliography on saturating actuators[END_REF]Michel 1995, Hippe 2006). Even in the most favorable case of finite-dimensional linear time invariant (LTI) systems, saturation mechanisms introduce harmful nonlinear phenomena characterized by multiple equilibrium points and bounded domains of attraction [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF]. Since saturation mechanisms are ubiquitous in practical applications, the topic of feedback stabilization of finite-dimensional LTI systems despite the presence of input saturations has been intensively studied [START_REF] Benzaouia | Stabilization of linear systems with saturation: a Sylvester equation approach[END_REF][START_REF] El Haoussi | An LMI-based approach for robust stabilization of time delay systems containing saturating actuators[END_REF][START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF][START_REF] Wei | Robust stabilization of uncertain switched non-linear systems subject to actuator[END_REF], Zaccarian and Teel 2011). In this context, one of the most fruitful approaches takes advantage of Lyapunov's direct method augmented with the use of a generalized sector condition (Tarbouriech et al. 2011, Lem. 1.6). This allows the derivation of 1) sufficient linear matrix inequality (LMI) conditions ensuring the local stability of the closed-loop plant; 2) a subset of the domain of attraction of the studied equilibrium point. A distinguished featured of the generalized sector condition is that this condition does not constrain the system trajectories so that the saturation mechanism is never active during the transient. Instead, the generalized sector condition can be used to compute initial conditions within the domain of attraction despite the actual activation of the saturation mechanism during the transient.

This paper is concerned with the feedback stabilization of infinite-dimensional systems, and particularly of partial differential equations (PDEs) (Liu et. al 2020, Zine andEl Alami 2020), in the presence of a saturation mechanism. So far, this field of research has been mostly concerned with the case of input saturations. Such a problem was originally studied in (Slemrod 1989, Lasiecka and[START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] in the case of saturation mechanisms defined for control input functions evaluated in 2. Notation, problem description, and spectral reduction

Notation

Real finite-dimensional spaces R n are endowed with the Euclidean norm denoted by • . The corresponding induced norms of matrices are also denoted by • . For any vectors x, y ∈ R n , we note x y when each component of x is less than or equal to the corresponding component of y. For any x ∈ R n , we note |x| the vector of R n obtained by substituting each component of x by its absolute value. For any two vectors X and Y of arbitrary dimensions, we define col(X,Y ) = [X ,Y ] . The space of square integrable functions on (0, 1) is denoted by L 2 (0, 1) and is equipped with the inner product f , g = 1 0 f (x)g(x) dx while the associated norm is denoted by • L 2 . For any given integer m 1, the Sobolev space of order m is denoted by H m (0, 1) and is endowed with its usual norm • H m . For a symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive semi-definite (resp. positive definite) while λ M (P) (resp. λ m (P)) denotes its maximal (resp. minimal) eigenvalue.

Let (φ n ) n 1 be an arbitrarily given Hilbert basis of L 2 (0, 1). For any two integers 1 N < M, we define the operators of projection:

π N : L 2 (0, 1) -→ R N f -→ f , φ 1 . . . f , φ N and π N,M : L 2 (0, 1) -→ R M-N f -→ f , φ N+1 . . . f , φ M .
We finally define

R N : L 2 (0, 1) -→ L 2 (0, 1) f -→ f - N ∑ n=1 f , φ n φ n = ∑ n N+1 f , φ n φ n .

Problem description

We consider the reaction-diffusion equation described by

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) (2.1a) cos(θ 1 )z(t, 0) -sin(θ 1 )z x (t, 0) = 0 (2.1b) cos(θ 2 )z(t, 1) + sin(θ 2 )z x (t, 1) = u(t) (2.1c) z(0, x) = z 0 (x).
(2.1d) for t > 0 and x ∈ (0, 1). Here we have

θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]) with p > 0, and q ∈ C 0 ([0, 1]). The boundary control input is u(t) ∈ R, z(t, •) ∈ L 2 (0, 1)
is the state of the reaction-diffusion PDE, and z 0 ∈ H 2 (0, 1) with cos(θ 1 )z 0 (0)sin(θ 1 )z 0 (0) = 0 and cos(θ 2 )z 0 (1) + sin(θ 2 )z 0 (1) = u(0) is the initial condition. The system output available for feedback control is assumed to be a saturated left Dirichlet trace. More precisely, with θ 1 ∈ (0, π/2], the left Dirichlet trace is defined by:

y D (t) = z(t, 0). (2.2)
Then the output that is available for feedback control is defined as

y D,sat l (t) = sat l (y D (t)) = sat l (z(t, 0)) (2.3)
for an arbitrary given level of saturation l > 0, where the saturation function sat l : R → R is defined as

sat l (y) =    y if |y| l; l y |y| if |y| l.
The objective is to design a finite-dimensional output feedback controller that achieves the local stabilization of (2.1) with a saturated measurement given by (2.3). Moreover, we aim at estimating a subset of the domain of attraction. To do so, it is classical to introduce the deadzone nonlinearity φ l : R → R defined for any y ∈ R by φ l (y) = sat l (y)y.

(2.4)

This representation is mainly motivated by the fact that this deadzone nonlinearity satisfies the following generalized sector condition borrowed from (Tarbouriech et al. 2011, Lem. 1.6) in the scalar case.

LEMMA 2.1 Let l > 0 be given. For any y, ω ∈ R m such that |y -ω| l we have φ l (y)(φ l (y) + ω) 0.

Preliminary spectral reduction

2.3.1 Properties of Sturm-Liouville operators Reaction-diffusion PDEs are strongly related to Sturm-Liouville operators. We review here the definition of these operators along with their key properties that will be used in the sequel. Let θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]), and q ∈ C 0 ([0, 1]) with p > 0 and q 0. The Sturm-Liouville operator is given by

A : D(A ) -→ L 2 (0, 1) f -→ -(p f ) + q f (2.5)
with the domain of the operator defined by

D(A ) = { f ∈ H 2 (0, 1) : cos(θ 1 ) f (0) -sin(θ 1 ) f (0) = 0 cos(θ 2 ) f (1) + sin(θ 2 ) f (1) = 0}.
Then it holds that the eigenvalues λ n , n 1, of A are simple, non-negative, and form an increasing sequence with λ n → +∞ as n → +∞. The corresponding unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. The domain of the operator A is equivalently characterized by

D(A ) = f ∈ L 2 (0, 1) : ∑ n 1 |λ n | 2 | f , φ n | 2 < +∞ . Moreover we have A f = ∑ n 1 λ n f , φ n φ n for all f ∈ D(A ). For any f ∈ D(A ) we also define A 1/2 f = ∑ n 1 λ 1/2 n f , φ n φ n . Let p * , p * , q * ∈
R be such that 0 < p * p(x) p * and 0 q(x) q * for all x ∈ [0, 1], then it holds that: 0 π2 (n -1) 2 p * λ n π 2 n 2 p * + q * (2.6) for all n 1, see e.g. [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]. Assuming further that q > 0, performing an integration by parts and using the continuous embedding H1 (0, 1) ⊂ L ∞ (0, 1), we obtain the existence of constants C 1 ,C 2 > 0 such that 

C 1 f 2 H 1 ∑ n 1 λ n f , φ n 2 = A f , f C 2 f 2 H 1 (2.7) for all f ∈ D(A ). This implies that f (0) = ∑ n 1 f , φ n φ n (0) and f (0) = ∑ n 1 f , φ n φ n (0) hold for all f ∈ D(A ).
w(t, x) = z(t, x) - x 2 cos(θ 2 ) + 2 sin(θ 2 ) u(t).
(2.8)

Then introducing v = u, the PDE (2.1) can be equivalently written as

u(t) = v(t) (2.9a) w t (t, x) = (p(x)w x (t, x)) x -q(x)w(t, x) + a(x)u(t) + b(x)v(t) (2.9b) cos(θ 1 )w(t, 0) -sin(θ 1 )w x (t, 0) = 0 (2.9c) cos(θ 2 )w(t, 1) + sin(θ 2 )w x (t, 1) = 0 (2.9d) w(0, x) = w 0 (x) (2.9e) where a(x) = 1 cos(θ 2 )+2 sin(θ 2 ) {2p(x) + 2xp (x) -x 2 q(x)}, b(x) = - x 2
cos(θ 2 )+2 sin(θ 2 ) , and w 0 (x) = z 0 (x) -

x 2 cos(θ 2 )+2 sin(θ 2 ) u(0). Without loss of generality, we pick a function q ∈ C 0 ([0, 1]) and a constant q c ∈ R such that 1 q = qq c , q > 0.

(2.10)

Hence, the reaction-diffusion PDE (2.9) can be rewritten in abstract form as

u(t) = v(t) (2.11a) w t (t, •) = {-A + q c Id L 2 } w(t, •) + au(t) + bv(t) (2.11b) w(0, •) = w 0 (2.11c)
where A is defined by (2.5).

We define the coefficients of projection

z n (t) = z(t, •), φ n , w n (t) = w(t, •), φ n , a n = a, φ n , and b n = b, φ n . From (2.8) we deduce that w n (t) = z n (t) + b n u(t), n 1.
(2.12)

Moreover, the projection of (2.11) into the Hilbert basis

(φ n ) n 1 reads u(t) = v(t) (2.13a) ẇn (t) = (-λ n + q c )w n (t) + a n u(t) + b n v(t) (2.13b) with w(t, •) = ∑ n 1 w n (t)φ n
where the convergence of the series holds in L 2 norm for mild solutions and in H 2 norm for classical solutions. Using now (2.12) into the latter identity, the projection of (2.1) gives

żn (t) = (-λ n + q c )z n (t) + β n u(t) (2.14)
where

β n = a n + (-λ n + q c )b n = p(1){-c θ 2 φ n (1) + s θ 2 φ n (1)} = O( √ λ n ). In original coordinates we have z(t, •) = ∑ n 1 z n (t)φ n with convergence of the series in L 2 norm.
Finally, considering classical solutions for the system trajectories, the Dirichlet measurement y D (t) given by (2.2) is expressed as the series expansion:

y D (t) = z(t, 0) = w(t, 0) = ∑ n 1 w n (t)φ n (0).
(2.15)

Control strategy and reduced model

Control strategy

The control strategy goes as follows. First we fix δ > 0 the desired exponential decay rate for the closed-loop system trajectories. Then we define an integer N 0 1 such that -λ n + q c < -δ < 0 for all n N 0 + 1. We fix arbitrarily N N 0 + 1, which will be specified later. The studied control strategy takes the form:

ŵn (t) = ẑn (t) + b n u(t) (3.1a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t) -l n N ∑ k=1 ŵk (t)φ k (0) -sat l (y D (t)) , 1 n N 0 (3.1b) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t), N 0 + 1 n N (3.1c) u(t) = N 0 ∑ n=1 k n ẑn (t) (3.1d)
where l n , k n ∈ R are the observer and feedback gains, respectively. The idea to split the dynamics of the observer in two parts, a first part with correction of the error of observation (3.1b) and a second part corresponding to an open-loop estimation (3.1c), roots back to [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF]. The former dynamics (3.1b) aims at computing the estimation ẑn of the modes z n for 1 n N 0 which are used to implement the control input u as (3.1d). The objective of the latter dynamics (3.1c) is to improve the estimation ŷD (t) = ∑ N k=1 ŵk (t)φ k (0) of the system output y D (t) to enhance the term of correction of the measurement error in (3.1b). In particular, the accuracy of this term improves as the dimension N of the observer increases. Hence the objective is now to determine an integer N N 0 + 1 so that the closed-loop system composed of (2.1) with saturated left Dirichlet boundary measurement (2.3) and the control law (3.1) is locally exponentially stable with prescribed exponential decay rate δ > 0.

Reduced order model for stability analysis

We start by deriving a reduced order model for the closed-loop system composed of the PDE (2.1) and the controller (3.1). We define for 1 n N the error of observation e n = z nẑn and for N 0 + 1 n N the scaled error of observation ẽn = √ λ n e n . From the dynamics (3.1b) of observation of the N 0 first modes of the plant, we obtain using the deadzone nonlinearity (2.4), the series expansion (2.15), and the change of variable formula (3.1a) that

żn (t) = (-λ n + q c )ẑ n (t) + β n u(t) -l n N ∑ k=1 ŵk (t)φ k (0) -y D (t) -φ l (y D (t)) = (-λ n + q c )ẑ n (t) + β n u(t) + l n N 0 ∑ k=1 φ k (0)e k (t) + l n N ∑ k=N 0 +1 φ k (0) λ k ẽk (t) + l n ζ (t) + l n φ l (y D (t)) (3.2)
for all 1 n N 0 where ζ = ∑ n N+1 φ n (0)w n . We define zn = ẑn /λ n and the vectors ẐN 0 = ẑ1 . . . ẑN 0 , E N 0 = e 1 . . . e N 0 , ZN-N 0 = zN 0 +1 . . . zN , and ẼN-N 0 = ẽN 0 +1 . . . ẽN . We also define the matrices

A 0 = diag(-λ 1 + q c , . . . , -λ N 0 + q c ), A 1 = diag(-λ N 0 +1 + q c , . . . , -λ N + q c ), B 0 = β 1 . . . β N 0 , B1 = β N 0 +1 λ N 0 +1 . . . β N λ N , C 0 = φ 1 (0) . . . φ N 0 (0) , C1 = φ N 0 +1 (0) √ λ N 0 +1 . . . φ N (0) √ λ N , K = k 1 .
. . k N 0 , and L = l 1 . . . l N 0 . Therefore, we obtain from (2.14), (3.1), and (3.2) that

u = K ẐN 0 (3.3a) ŻN 0 = (A 0 + B 0 K) ẐN 0 + LC 0 E N 0 + L C1 ẼN-N 0 + Lζ + Lφ l (y D ) (3.3b) ĖN 0 = (A 0 -LC 0 )E N 0 -L C1 ẼN-N 0 -Lζ -Lφ l (y D ) (3.3c) ŻN-N 0 = A 1 ZN-N 0 + B1 K ẐN 0 (3.3d) ĖN-N 0 = A 1 ẼN-N 0 .
(3.3e)

Introducing the state vector

X = col ẐN 0 , E N 0 , ZN-N 0 , ẼN-N 0 , (3.4)
we infer that the following truncated dynamics hold

Ẋ = FX + L ζ + L φ l (y D ) (3.5)
where

F =     A 0 + B 0 K LC 0 0 L C1 0 A 0 -LC 0 0 -L C1 B1 K 0 A 1 0 0 0 0 A 1     , L =     L -L 0 0     .
(3.6) REMARK 3.1 It was shown in (Lhachemi and Prieur 2021) that the pairs (A 0 , B 0 ) and (A 0 ,C 0 ) both satisfy the Kalman condition. Hence we can find gains K and L so that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with arbitrary pole placement.

Introducing now the augmented vector X = col(X, ζ , φ l (y D )) and the matrices K = K 0 0 0 and E = K A 0 + B 0 K LC 0 0 L C1 L L , we obtain that the command and its first time derivative are expressed by

u = K ẐN 0 = KX, v = u = K ŻN 0 = E X. (3.7)
Finally, in preparation of the application of Lemma 2.1 to φ (y D ), we need to express the system output y D in function of X and ζ . From the series expansion (2.15), the relation (2.12), the control (3.7), and recalling that e n = z nẑn , ẽn = √ λ n e n , and zn = ẑn /λ n , we deduce that

y D = ∑ n 1 φ n (0)w n = N ∑ n=1 φ n (0)w n + ζ = N ∑ n=1 φ n (0)z n + N ∑ n=1 φ n (0)b n u + ζ = N ∑ n=1 φ n (0)ẑ n + N ∑ n=1 φ n (0)e n + N ∑ n=1 φ n (0)b n u + ζ = N 0 ∑ n=1 φ n (0)ẑ n + N 0 ∑ n=1 φ n (0)e n + N ∑ n=N 0 +1 λ n φ n (0)z n + N ∑ n=N 0 +1 φ n (0) √ λ n ẽn + N ∑ n=1 φ n (0)b n u + ζ = C 1 X + C 2 u + ζ = C X + ζ (3.8)
where

C 1 = C 0 C 0 λ N 0 +1 φ N 0 +1 (0) . . . λ N φ N (0) C1 , C 2 = ∑ N n=1 φ n (0)b n , and C = C 1 + C 2 K.

Stability assessment

Main stability result

We are now in position to state the main result of this paper.

THEOREM 4.1 Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, q ∈ C 0 ([0, 1 
]), and l > 0. Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (2.10) holds. Let δ > 0 and N 0 1 be such that -λ n + q c < -δ for all n N 0 + 1. Let K ∈ R 1×N 0 and L ∈ R N 0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N N 0 + 1, assume that there exist a symmetric positive definite P ∈ R 2N×2N , positive real numbers α > 1 and β , γ, µ, T, κ > 0, a matrix C ∈ R 1×2N , and a real number d ∈ R such that

Θ 1 (κ) 0, Θ 2 0, Θ 3 (κ) 0 (4.1)
where

Θ 1 (κ) =   F P + PF + 2κP + αγ R N a 2 L 2 K K PL -TC + PL L P -β -dT -TC + L P -dT -2T   + αγ R N b 2 L 2 E E Θ 2 =   P 0 (C -C) 0 γ M φ 1 -d C -C 1 -d µl 2   Θ 3 (κ) = 2γ -1 - 1 α λ N+1 + q c + κ + β M φ . with M φ = ∑ n N+1 φ n (0) 2
λ n < +∞. Consider the block representation P = (P i, j ) 1 i, j 4 with dimensions that are compatible with (3.4) and define

E = w ∈ D(A ) : π N 0 w π N 0 ,N A 1/2 w P 2,2 P 2,4 P 4,2 P 4,4 π N 0 w π N 0 ,N A 1/2 w + γ R N A 1/2 w 2 L 2 < 1 µ . (4.2)
Then, considering the closed-loop system composed of the plant (2.1) with saturated left Dirichlet boundary measurement (2.3) and the control law (3.1), there exists M > 0 such that for any initial condition z 0 ∈ E and with a zero initial condition of the observer (i.e., ẑn (0) = 0 for all 1 n N), the system trajectory satisfies

z(t, •) 2 H 1 + N ∑ n=1 ẑn (t) 2 Me -2κt z 0 2 H 1 (4.3)
for all t 0. Moreover, for any fixed κ ∈ (0, δ ], the constraints (4.1) are always feasible for N selected to be large enough.

Proof. Consider the Lyapunov functional defined by

V (X, w) = X PX + γ ∑ n N+1 λ n w, φ n 2 , ∀X ∈ R 2N , ∀w ∈ D(A ). (4.4)
The computation of the time derivative of V along the system trajectories (2.13) and (3.5) gives

V + 2κV = X (F P + PF + 2κP)X + 2X PL ζ + 2X PL φ l (y D ) + 2γ ∑ n N+1 λ n ((-λ n + q c + κ)w n + a n u + b n v) w n .
The use of Young's inequality gives 2

∑ n N+1 λ n w n a n u 1 α ∑ n N+1 λ 2 n w 2 n +α R N a 2 L 2 u 2 and, similarly, 2 ∑ n N+1 λ n w n b n v 1 α ∑ n N+1 λ 2 n w 2 n + α R N b 2 L 2 v 2 . Moreover, recalling that ζ = ∑ n N+1 φ n (0)w n , the use of Cauchy-Schwartz inequality gives ζ 2 M φ ∑ n N+1 λ n w 2 n with M φ = ∑ n N+1 φ n (0) 2 λ n < +∞. Hence, recalling that X = col(X, ζ , φ l (y D )), we obtain that V + 2κV X     F P + PF + 2κP + αγ R N a 2 L 2 K K PL PL L P -β 0 L P 0 0   + αγ R N b 2 L 2 E E   X + ∑ n N+1 λ n Γ n w 2 n
where Γ n = 2γ -1 -1 α λ n + q c + κ +β M φ for all n N +1. Assuming that X ∈ R 2N and w ∈ D(A ) are so that |y D -(CX + dζ )| l, the application of Lemma 2.1 gives φ l (y D )(φ l (y D ) + CX + dζ ) 0. This implies that

V + 2κV X Θ 1 (κ) X + ∑ n N+1 λ n Γ n w 2 n as soon as |y D -(CX + dζ )| l, i.e., using (3.8), |(C -C)X + (1 -d)ζ | l. Since α > 1 we obtain that Γ n Θ 3 (κ) 0 for all n N + 1. Moreover we recall that Θ 1 (κ) 0. Hence, we deduce that V + 2κV 0 for all X ∈ R 2N and w ∈ D(A ) so that |(C -C)X + (1 -d)ζ | l.
Let X ∈ R 2N and w ∈ D(A ) be such that V (X, w) 1/µ. Using Schur complement, we obtain from Θ 2 0 that 1

µl 2 C -C 1 -d C -C 1 -d P 0 0 γ M φ . Recalling that ζ 2 M φ ∑ n N+1 λ n w 2 n , we have 1 µl 2 |(C -C)X + (1 -d)ζ | 2 X ζ P 0 0 γ M φ X ζ = X PX + γ M φ ζ 2 V (X, w) 1 µ , (4.5) which implies that |(C -C)X + (1 -d)ζ | l, hence V + 2κV 0.
Let w 0 ∈ E be the initial condition of the PDE in homogeneous coordinates and consider zero initial conditions for the observer (ẑ n (0) = 0 for all 1 n N), giving the initial condition z 0 = w 0 in original coordinates. In particular one has X(0) = col(0, π N 0 z 0 , 0, π N 0 ,N A 1/2 z 0 ) and V (X(0), w 0 ) < 1/µ. Using a classical contradiction argument, we infer that V (X(t), w(t)) 1/µ for all t 0, hence V (X(t), w(t)) + 2κV (X(t), w(t)) 0 for all t 0. This implies that V (X(t), w(t)) e -2κt V (X(0), w 0 ) for all t 0. The claimed stability estimate now easily follows from the definition of V and the estimates (2.7).

To complete the proof it remains to show that, for any fixed κ ∈ (0, δ ], the constraints (4.1) are always feasible for N selected to be large enough. We start by fixing α > 1 arbitrarily and by setting C = 0 and d = 0. Owing to the definition (3.6) of the matrix F, we observe that (i) A 0 + B 0 K + κI and A 0 -LC 0 + κI are Hurwitz; (ii) e (A 1 +κI)t e -κ 0 t for all t 0 with the positive constant κ 0 = λ N 0 +1q cκ > 0 independent of N; (iii) L C1 L C1 and B1 K B1 K where L and K are independent of N while C1 = O(1) and B1 = O(1) as N → +∞. Hence, the application of the Lemma in appendix of (Lhachemi and Prieur 2022) to the matrix F + κI shows that the unique solution P 0 to the Lyapunov F P + PF + 2κP = -I is such that P = O(1) as N → +∞. We note that L = √ 2 L and K = K are constants independent of N while P = O( 1) and E = O(1) as N → +∞. Defining β = T = N and γ = 1/ √ N and recalling that we set C = 0 and d = 0, the use of Schur complement shows that we can fix N N 0 + 1 large enough so that Θ 1 (κ) 0 and Θ 3 (κ) 0. This definitely fix the order N of the observer and the decision variables P, β , γ, T > 0. Owing to the definition of Θ 2 , and because P 0 and γ/M φ > 0, the Schur complement implies that Θ 2 0 for µ > 0 selected to be sufficiently large. This completes the proof. REMARK 4.1 In the context of Theorem 4.1, one can also consider non zero initial conditions ẑn (0) for the observer (3.1). More precisely and under the assumptions of Theorem 4.1, there exists a constant M > 0 such that the estimate:

z(t, •) 2 H 1 + N ∑ n=1 ẑn (t) 2 Me -2κt z 0 2 H 1 + N ∑ n=1 ẑn (0) 2 , t 0 (4.6)
LOCAL OUTPUT FEEDBACK STABILIZATION OF REACTION-DIFFUSION PDES WITH SATURATED MEASUREMENT 11 of 16 holds for all initial conditions z 0 ∈ L 2 (0, 1) and ẑn (0) ∈ R selected such that, defining w 0 (x) = z 0 (x) -

x 2 cos(θ 2 )+2 sin(θ 2 ) K ẐN 0 (0), w 0 ∈ D(A ) and V (X(0), w 0 ) = X(0) PX(0)+γ ∑ n N+1 λ n w n (0) 2 < 1/µ. Note that the term X(0) PX(0) captures in particular the distances z n (0)ẑn (0) for all 1 n N. This indicates that the above stability estimate holds when the initial conditions ẑn (0) of the observer are not set "too far" from the actual values z n (0) associated with the initial condition z 0 of the PDE.

Numerical considerations

Let the decay rate κ ∈ (0, δ ] and the dimension N N 0 + 1 of the observer be given. Constraints (4.1) of Theorem 4.1 are nonlinear w.r.t. the decision variables P, α, β , γ, µ, T, κ,C, d due to the terms αγ, γ/α, TC, and dT . We discuss how LMI conditions, that remain feasible for N selected large enough, can be derived from (4.1). First, we arbitrarily fix the value of α > 1. As shown in the proof of Theorem 4.1, the obtained constraints remain feasible for a sufficiently large N. Now the constraints take the form of BMIs of the decision variables P, β , γ, µ, T, κ,C, d. Second, we introduce the change of variable C = TC and d = T d. Hence we obtain that

Θ 1 (κ) =   F P + PF + 2κP + αγ R N a 2 L 2 K K PL -C + PL L P -β - d -C + L P -d -2T   .
Moreover, defining μ = T 2 µ and

Θ2 =   I 0 0 0 1 0 0 0 T   Θ 2   I 0 0 0 1 0 0 0 T   =   P 0 (T C -C) 0 γ M φ T - d T C -C T -d μl 2  
we have Θ 2 0 if and only if Θ2 0, because T > 0. Hence, once α > 1 is fixed, the constraints reduce to the LMIs Θ 1 (κ) 0, Θ2 0, Θ 3 (κ) 0 with decision variables P, β , γ, μ, T, C, d. We now discuss how to optimize the decision variables in order to enlarge the estimated domain of attraction. In the framework of Theorem 4.1, let an integer N N 0 + 1 and a κ ∈ (0, δ ] such that the associated constraints (4.1) are feasible. Let a given symmetric positive definite matrix R ∈ R (N+1)×(N+1) and let r > 0 be selected such that

P   P 2,2 P 2,4 0 P 4,2 P 4,4 0 0 0 γ   r µ R (4.7)
under the constraints (4.1). Hence we deduce that

  π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   rR   π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   1 ⇒   π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   P   π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   1 µ which shows that      w ∈ D(A ) :   π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   R   π N 0 w π N 0 ,N A 1/2 w R N A 1/2 w L 2   1 r      ⊂ E (4.8)
where E is defined by (4.2). Hence, for given N N 0 + 1 and κ ∈ (0, δ ] so that the constraints (4.1) hold true, we aim at minimizing r > 0 under the constraints (4.1) and (4.7) with decision variables P, α, β , γ, µ, T,C, d, r. This minimization problem is nonlinear. In order to ease the numerical computation, it is convenient to iteratively solve the following sub-optimal problem. We start by fixing α, µ > 0 to values associated with a feasible solution of the constraints (4.1). Now, the only remaining nonlinearities are the products TC and dT in the definition of Θ 1 (κ) 0. Now one can successively fix either the value of T or the values of C, d to their previously computed value in order to iteratively minimize the value of r > 0 under LMI constraints. This approach is obviously sub-optimal but has the advantage of being numerically efficient.

Numerical illustration

We illustrate the main result of this paper, namely Theorem 4.1, with some numerical applications. We set p = 1, q = -5, θ 1 = π/5, and θ 2 = 0 which corresponds to a right Dirichlet boundary control. In this case, the open-loop reaction-diffusion PDE (2.1) is unstable. In this setting, the eigenstructures of the Sturm-Liouville operator, used for spectral reduction and that have been introduced in Subsection 2.3.1, are described as follows. Denoting for any integer n 1 by µ n the unique solution to µ n cot(µ n ) = cot(θ 1 ) with µ n ∈ ((n -1)π, nπ), we have λ n = µ 2 n while the associated eigenfunctions are given by

φ n (x) = 2 µ n 2µ n -sin(2µ n ) sin(µ n (1 -x)).
We set N 0 = 1, as well as the feedback and observer gains K = -4.1481 and L = 10.5613, respectively. Considering the saturation level l = 1 and for the exponential decay rate κ = 0.2, the constraints (4.1) are found feasible for an observer of dimension N = 3.

The application of the approach described in Subsection 4.2 with P = diag(I N , 0.005) to enlarge the estimation of the domain of attraction of the origin gives r = 0.0328.

For numerical simulation, we select the initial condition of the PDE as z 0 (x) = 55.5x 2 (x -1), for which it is checked that z 0 ∈ E , along with zero initial condition of the observer. The temporal behavior of the closed-loop system is depicted in Fig. 1. It can be observed that the system trajectory converges exponentially to zero despite the saturation of the measurement shown in Fig. 1(d). This is compliant with the theoretical predictions of Theorem 4.1.

Conclusion

This paper has addressed the topic of output feedback stabilization of reaction-diffusion PDEs in the presence of a saturated measurement and with estimation of a subset of the domain of attraction. In contrast with the saturation of the input studied in (Mironchenko et al. 2021, Lhachemi andPrieur 2022) and for which the saturation only applies to a finite number of modes of the controller, the saturation of the measurement applies to a signal accounting for all the (infinite number and unmeasured) modes of the reaction-diffusion PDE. The controller is finite-dimensional and we showed that it always achieves the local exponential stabilization of the reaction-diffusion PDE provided the order of the observer is selected to be large enough. A distinguished feature of this approach is that the obtained stability conditions can be used to compute initial condition belonging to the domain of attraction and for which the saturation mechanism is actually active during the transient. This point has been illustrated in the numerical illustration section. Among possible extensions of this work, we can mention other optimization objectives such as the maximization of the exponential decay rate for a given domain of attraction. The possibility to include perturbations in the dynamics of the reaction-diffusion PDE in order to analyze We conclude by pointing out the main technical issue that prevents the extension of the control strategy reported in this paper to the case of a saturated Neumann measurement. More precisely, for θ 1 ∈ [0, π/2), we want to consider the left Neumann trace defined by y N (t) = z x (t, 0) for the reactiondiffusion PDE (2.1). We assume that the measurement consists in a saturated version of y N (t), i.e., sat l (y N (t)) = sat l (z x (t, 0)). In that case, based on the non-saturated setting studied in (Lhachemi and Prieur 2022) with Neumann boundary measurement and the developments of this paper, a reasonable approach would be to consider the controller dynamics described by ŵn (t) = ẑn (t) + b n u(t) (6.1a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t)l n N ∑ k=1 ŵk (t)φ k (0)sat l (y N (t)) , 1 n N 0 (6.1b) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t), N 0 + 1 n N (6.1c)

u(t) = N 0 ∑ n=1 k n ẑn (t) (6.1d)
where l n , k n ∈ R are the observer and feedback gains, respectively. However, the main technical issue here is that the residue of measurement ∑ n N+1 λ α n w 2 n with α ∈ (3/2, 2) compared to ∑ n N+1 λ n w 2 n in the Dirichlet measurement case. This is an issue because while the latter series can be bounded above by the Lyapunov functional V defined by (4.4), which is used to obtain (4.5) and deduce the positive invariance of the ellipsoid E , this is not the case for the former series. For this reason, the case of a saturated Neumann measurement cannot be directly handled by the method reported in this paper.

  FIG. 1. Time evolution of the closed-loop system

<

  ζ is now expressed by ζ = ∑ n N+1 φ n (0)w n with φ n (0) = O( √ λ n ).Hence the use of Cauchy-Schwartz inequality implies for any given ε ∈ (0, 1/2] that ζ 2 M φ (ε) ∑ n N+1 λ +∞. Thus we obtain a series of the type

If either θ 1 = 0 or θ

= 0, this condition can be relaxed to q 0. This is because, in that case, (2.7) still holds true by invoking Poincaré inequality to obtain the lower bound.
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