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This paper addresses the topic of output feedback stabilization of general 1-D reaction-diffusion PDEs
in the presence of a saturation in the measurement. The boundary control and the second boundary
condition take the form of Dirichlet/Neumann/Robin boundary conditions. The measurement is selected
as a boundary Dirichlet trace. The boundary measurement, as available for feedback control, is assumed
to be subject to a saturation. In this context, we achieve the local exponential stabilization of the reaction-
diffusion PDE while estimating a subset of the domain of attraction of the origin.
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1. Introduction

Due to their physical limitations, actuators and sensors are inherently subject to saturation mechanisms.
These saturation mechanisms introduce stringent constraints on the design of control laws (Bernstein
and Michel 1995, Hippe 2006). Even in the most favorable case of finite-dimensional linear time in-
variant (LTI) systems, saturation mechanisms introduce harmful nonlinear phenomena characterized
by multiple equilibrium points and bounded domains of attraction (Campo and Morari 1990). Since
saturation mechanisms are ubiquitous in practical applications, the topic of feedback stabilization of
finite-dimensional LTI systems despite the presence of input saturations has been intensively stud-
ied (Benzaouia et al. 2004, El Haoussi and Tissir 2007, Tarbouriech et al. 2011, Wei et al. 2014, Za-
ccarian and Teel 2011). In this context, one of the most fruitful approaches takes advantage of Lya-
punov’s direct method augmented with the use of a generalized sector condition (Tarbouriech et al. 2011,
Lem. 1.6). This allows the derivation of 1) sufficient linear matrix inequality (LMI) conditions ensuring
the local stability of the closed-loop plant; 2) a subset of the domain of attraction of the studied equilib-
rium point. A distinguished featured of the generalized sector condition is that this condition does not
constrain the system trajectories so that the saturation mechanism is never active during the transient.
Instead, the generalized sector condition can be used to compute initial conditions within the domain of
attraction despite the actual activation of the saturation mechanism during the transient.

This paper is concerned with the feedback stabilization of infinite-dimensional systems, and par-
ticularly of partial differential equations (PDEs) (Liu et. al 2020, Zine and El Alami 2020), in the
presence of a saturation mechanism. So far, this field of research has been mostly concerned with
the case of input saturations. Such a problem was originally studied in (Slemrod 1989, Lasiecka and
Seidman 2003) in the case of saturation mechanisms defined for control input functions evaluated in
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the norm of an abstract functional space (typically the space of square integrable functions L2(0,1)).
Beside these seminal works, the topic of feedback stabilization of PDEs in the presence of input satu-
ration mechanisms has been mainly focused on pointwise saturation mechanisms which are, in general,
the most relevant for practical applications. The feedback stabilization of wave and Korteweg-de Vries
PDEs under cone-bounded feedback and using Lyapunov’s direct method have been extensively stud-
ied in (Prieur et al. 2016, Marx et al. 2017, Marx et al. 2017). The stabilization of reaction-diffusion
PDEs in the presence of control input constraints was reported in (Dubljevic et al. 2006) by taking
advantage of a model predictive control approach while singular perturbation techniques were stud-
ied in (Dubljevic et al. 2003). More recently, the feedback stabilization of reaction-diffusion PDEs
using spectral reduction methods (Russell 1978, Coron and Trélat 2004, Coron and Trélat 2006, Lha-
chemi et al. 2019, Lhachemi and Prieur 2021) in the presence of an input saturation has been reported
in (Mironchenko et al. 2021) in the case of a state-feedback with explicit estimation of the domain of
attraction using LMIs. The extension to the local output feedback stabilization of a reaction-diffusion
PDE using a either distributed or Dirichlet/Neumann boundary measurement, with also explicit estima-
tion of the domain of attraction, was studied in (Lhachemi and Prieur 2022). It is worth noting that
the state-feedback setting allows to achieve the local exponential stabilization of the the first modes of
the system while preserving the stability of the residual infinite-dimensional dynamics (Mironchenko
et al. 2021, Proposition 1). Hence, the region of attraction constrains only a finite number of modes
of the initial condition (Mironchenko et al. 2021). In sharp contrast, the output feedback setting does
not provide such a strong separation between the to-be-stabilized modes and the residual ones. This
is because the measurement that is fed back to the controller is obtained based on the contribution of
all the modes of the system. As a consequence, the region of attraction imposes constraints on all the
modes of the initial condition (Lhachemi and Prieur 2022).

In this paper, we study for the first time the output feedback stabilization of reaction-diffusion PDEs
in the presence of a saturated Dirichlet boundary measurement. Similarly to the case of an input sat-
uration mechanism studied in (Lhachemi and Prieur 2022), the control strategy consists of a finite-
dimensional controller (Curtain 1982, Sakawa 1983, Balas 1988, Harkort and Deutscher 2011, Sano
2012, Grüne and Meurer 2021) while the stability assessment is performed by combining Lyapunov’s
direct method and the above-mentioned generalized sector condition (Tarbouriech et al. 2011, Lem. 1.6).
The controller architecture is composed of a finite-dimensional observer that leverages a control ar-
chitecture reported first in (Sakawa 1983) along with a LMI-based approach introduced in (Katz and
Fridman 2020). More precisely, we adopt the enhanced and general procedures described in (Lhachemi
and Prieur 2022, Lhachemi and Prieur 2021) which allow the design, in a generic and systematic man-
ner, of finite-dimensional observer-based control strategies for general 1-D reaction-diffusion PDEs,
with Dirichlet/Neumann/Robin boundary control and Dirichlet/Neumann boundary measurement in a
great variety of settings. These include regulation control (Lhachemi and Prieur 2021) and nonlinear
boundary control (Lhachemi and Prieur 2021). This approach was shown to be efficient in the case of an
input saturation in (Lhachemi and Prieur 2022). In this paper, we investigate the dual problem, namely
the saturation of the measurement. It is worth noting that in the input saturation setting, the saturation
applies to a signal that is only composed of a finite number of modes of the controller. In sharp con-
trast, the saturation of the measurement studied in this paper is more challenging because the saturation
applies to a signal accounting for all the (infinite number and unmeasured) modes of the PDE system.

The paper is organized as follows. The problem description is reported in Section 2. The adopted
control strategy is described in Section 3. The stability of the resulting closed-loop system is assessed
in Section 4. The theoretical results are illustrated with some numerical simulations in Section 5. Con-
cluding remarks are formulated in Section 6.
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2. Notation, problem description, and spectral reduction

2.1 Notation

Real finite-dimensional spaces Rn are endowed with the Euclidean norm denoted by ‖ · ‖. The cor-
responding induced norms of matrices are also denoted by ‖ · ‖. For any vectors x,y ∈ Rn, we note
x 6 y when each component of x is less than or equal to the corresponding component of y. For any
x ∈ Rn, we note |x| the vector of Rn obtained by substituting each component of x by its absolute value.
For any two vectors X and Y of arbitrary dimensions, we define col(X ,Y ) = [X>,Y>]>. The space
of square integrable functions on (0,1) is denoted by L2(0,1) and is equipped with the inner product
〈 f ,g〉 =

∫ 1
0 f (x)g(x)dx while the associated norm is denoted by ‖ · ‖L2 . For any given integer m > 1,

the Sobolev space of order m is denoted by Hm(0,1) and is endowed with its usual norm ‖ · ‖Hm . For a
symmetric matrix P ∈ Rn×n, P � 0 (resp. P � 0) means that P is positive semi-definite (resp. positive
definite) while λM(P) (resp. λm(P)) denotes its maximal (resp. minimal) eigenvalue.

Let (φn)n>1 be an arbitrarily given Hilbert basis of L2(0,1). For any two integers 1 6 N < M, we
define the operators of projection:

πN : L2(0,1) −→ RN

f 7−→
[
〈 f ,φ1〉 . . . 〈 f ,φN〉

]>
and

πN,M : L2(0,1) −→ RM−N

f 7−→
[
〈 f ,φN+1〉 . . . 〈 f ,φM〉

]>
.

We finally define

RN : L2(0,1) −→ L2(0,1)

f 7−→ f −
N

∑
n=1
〈 f ,φn〉φn = ∑

n>N+1
〈 f ,φn〉φn.

2.2 Problem description

We consider the reaction-diffusion equation described by

zt(t,x) = (p(x)zx(t,x))x− q̃(x)z(t,x) (2.1a)
cos(θ1)z(t,0)− sin(θ1)zx(t,0) = 0 (2.1b)
cos(θ2)z(t,1)+ sin(θ2)zx(t,1) = u(t) (2.1c)
z(0,x) = z0(x). (2.1d)

for t > 0 and x ∈ (0,1). Here we have θ1,θ2 ∈ [0,π/2], p ∈ C 1([0,1]) with p > 0, and q̃ ∈ C 0([0,1]).
The boundary control input is u(t) ∈ R, z(t, ·) ∈ L2(0,1) is the state of the reaction-diffusion PDE, and
z0 ∈H2(0,1) with cos(θ1)z0(0)− sin(θ1)z′0(0) = 0 and cos(θ2)z0(1)+ sin(θ2)z′0(1) = u(0) is the initial
condition. The system output available for feedback control is assumed to be a saturated left Dirichlet
trace. More precisely, with θ1 ∈ (0,π/2], the left Dirichlet trace is defined by:

yD(t) = z(t,0). (2.2)
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Then the output that is available for feedback control is defined as

yD,satl (t) = satl(yD(t)) = satl(z(t,0)) (2.3)

for an arbitrary given level of saturation l > 0, where the saturation function satl : R→ R is defined as

satl(y) =


y if |y|6 l;

l
y
|y|

if |y|> l.

The objective is to design a finite-dimensional output feedback controller that achieves the local stabi-
lization of (2.1) with a saturated measurement given by (2.3). Moreover, we aim at estimating a subset
of the domain of attraction. To do so, it is classical to introduce the deadzone nonlinearity φl : R→ R
defined for any y ∈ R by

φl(y) = satl(y)− y. (2.4)

This representation is mainly motivated by the fact that this deadzone nonlinearity satisfies the following
generalized sector condition borrowed from (Tarbouriech et al. 2011, Lem. 1.6) in the scalar case.

LEMMA 2.1 Let l > 0 be given. For any y,ω ∈ Rm such that |y−ω|6 l we have φl(y)(φl(y)+ω)6 0.

2.3 Preliminary spectral reduction

2.3.1 Properties of Sturm-Liouville operators Reaction-diffusion PDEs are strongly related to Sturm-
Liouville operators. We review here the definition of these operators along with their key properties that
will be used in the sequel.

Let θ1,θ2 ∈ [0,π/2], p ∈ C 1([0,1]), and q ∈ C 0([0,1]) with p > 0 and q> 0. The Sturm-Liouville
operator is given by

A : D(A ) −→ L2(0,1)
f 7−→ −(p f ′)′+q f

(2.5)

with the domain of the operator defined by

D(A ) = { f ∈ H2(0,1) : cos(θ1) f (0)− sin(θ1) f ′(0) = 0
cos(θ2) f (1)+ sin(θ2) f ′(1) = 0}.

Then it holds that the eigenvalues λn, n > 1, of A are simple, non-negative, and form an increasing
sequence with λn→+∞ as n→+∞. The corresponding unit eigenvectors φn ∈ L2(0,1) form a Hilbert
basis. The domain of the operator A is equivalently characterized by

D(A ) =

{
f ∈ L2(0,1) : ∑

n>1
|λn|2| 〈 f ,φn〉 |2 <+∞

}
.

Moreover we have A f = ∑n>1 λn 〈 f ,φn〉φn for all f ∈ D(A ). For any f ∈ D(A ) we also define
A 1/2 f = ∑n>1 λ

1/2
n 〈 f ,φn〉φn.

Let p∗, p∗,q∗ ∈ R be such that 0 < p∗ 6 p(x)6 p∗ and 06 q(x)6 q∗ for all x ∈ [0,1], then it holds
that:

06 π
2(n−1)2 p∗ 6 λn 6 π

2n2 p∗+q∗ (2.6)
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for all n> 1, see e.g. (Orlov 2017). Assuming further that q > 0, performing an integration by parts and
using the continuous embedding H1(0,1) ⊂ L∞(0,1), we obtain the existence of constants C1,C2 > 0
such that

C1‖ f‖2
H1 6 ∑

n>1
λn 〈 f ,φn〉2 = 〈A f , f 〉6C2‖ f‖2

H1 (2.7)

for all f ∈D(A ). This implies that f (0) = ∑n>1 〈 f ,φn〉φn(0) and f ′(0) = ∑n>1 〈 f ,φn〉φ ′n(0) hold for all
f ∈D(A ). Finally, if we further assume that p∈C 2([0,1]), we have for any x∈ [0,1] that φn(x) = O(1)
and φ ′n(x) = O(

√
λn) as n→+∞, see e.g. (Orlov 2017).

2.3.2 Homogeneous representation and spectral reduction In order to work with an homogeneous
representation of the system (2.1), we define first the change of variable:

w(t,x) = z(t,x)− x2

cos(θ2)+2sin(θ2)
u(t). (2.8)

Then introducing v = u̇, the PDE (2.1) can be equivalently written as

u̇(t) = v(t) (2.9a)
wt(t,x) = (p(x)wx(t,x))x− q̃(x)w(t,x)+a(x)u(t)+b(x)v(t) (2.9b)
cos(θ1)w(t,0)− sin(θ1)wx(t,0) = 0 (2.9c)
cos(θ2)w(t,1)+ sin(θ2)wx(t,1) = 0 (2.9d)
w(0,x) = w0(x) (2.9e)

where a(x) = 1
cos(θ2)+2sin(θ2)

{2p(x)+2xp′(x)− x2q̃(x)}, b(x) = − x2

cos(θ2)+2sin(θ2)
, and w0(x) = z0(x)−

x2

cos(θ2)+2sin(θ2)
u(0).

Without loss of generality, we pick a function q ∈ C 0([0,1]) and a constant qc ∈ R such that1

q̃ = q−qc, q > 0. (2.10)

Hence, the reaction-diffusion PDE (2.9) can be rewritten in abstract form as

u̇(t) = v(t) (2.11a)
wt(t, ·) = {−A +qcIdL2}w(t, ·)+au(t)+bv(t) (2.11b)
w(0, ·) = w0 (2.11c)

where A is defined by (2.5).
We define the coefficients of projection zn(t) = 〈z(t, ·),φn〉, wn(t) = 〈w(t, ·),φn〉, an = 〈a,φn〉, and

bn = 〈b,φn〉. From (2.8) we deduce that

wn(t) = zn(t)+bnu(t), n> 1. (2.12)

1If either θ1 = 0 or θ2 = 0, this condition can be relaxed to q> 0. This is because, in that case, (2.7) still holds true by invoking
Poincaré inequality to obtain the lower bound.
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Moreover, the projection of (2.11) into the Hilbert basis (φn)n>1 reads

u̇(t) = v(t) (2.13a)
ẇn(t) = (−λn +qc)wn(t)+anu(t)+bnv(t) (2.13b)

with w(t, ·) = ∑n>1 wn(t)φn where the convergence of the series holds in L2 norm for mild solutions and
in H2 norm for classical solutions. Using now (2.12) into the latter identity, the projection of (2.1) gives

żn(t) = (−λn +qc)zn(t)+βnu(t) (2.14)

where βn = an +(−λn + qc)bn = p(1){−cθ2φ ′n(1)+ sθ2φn(1)} = O(
√

λn). In original coordinates we
have z(t, ·) = ∑n>1 zn(t)φn with convergence of the series in L2 norm.

Finally, considering classical solutions for the system trajectories, the Dirichlet measurement yD(t)
given by (2.2) is expressed as the series expansion:

yD(t) = z(t,0) = w(t,0) = ∑
n>1

wn(t)φn(0). (2.15)

3. Control strategy and reduced model

3.1 Control strategy

The control strategy goes as follows. First we fix δ > 0 the desired exponential decay rate for the
closed-loop system trajectories. Then we define an integer N0 > 1 such that −λn +qc <−δ < 0 for all
n > N0 + 1. We fix arbitrarily N > N0 + 1, which will be specified later. The studied control strategy
takes the form:

ŵn(t) = ẑn(t)+bnu(t) (3.1a)

˙̂zn(t) = (−λn +qc)ẑn(t)+βnu(t)− ln

{
N

∑
k=1

ŵk(t)φk(0)− satl(yD(t))

}
, 16 n6 N0 (3.1b)

˙̂zn(t) = (−λn +qc)ẑn(t)+βnu(t), N0 +16 n6 N (3.1c)

u(t) =
N0

∑
n=1

knẑn(t) (3.1d)

where ln,kn ∈R are the observer and feedback gains, respectively. The idea to split the dynamics of the
observer in two parts, a first part with correction of the error of observation (3.1b) and a second part
corresponding to an open-loop estimation (3.1c), roots back to (Sakawa 1983). The former dynamics
(3.1b) aims at computing the estimation ẑn of the modes zn for 16 n6 N0 which are used to implement
the control input u as (3.1d). The objective of the latter dynamics (3.1c) is to improve the estimation
ŷD(t) = ∑

N
k=1 ŵk(t)φk(0) of the system output yD(t) to enhance the term of correction of the measure-

ment error in (3.1b). In particular, the accuracy of this term improves as the dimension N of the observer
increases. Hence the objective is now to determine an integer N > N0 +1 so that the closed-loop system
composed of (2.1) with saturated left Dirichlet boundary measurement (2.3) and the control law (3.1) is
locally exponentially stable with prescribed exponential decay rate δ > 0.
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3.2 Reduced order model for stability analysis

We start by deriving a reduced order model for the closed-loop system composed of the PDE (2.1) and
the controller (3.1). We define for 16 n6N the error of observation en = zn− ẑn and for N0+16 n6N
the scaled error of observation ẽn =

√
λnen. From the dynamics (3.1b) of observation of the N0 first

modes of the plant, we obtain using the deadzone nonlinearity (2.4), the series expansion (2.15), and the
change of variable formula (3.1a) that

˙̂zn(t) = (−λn +qc)ẑn(t)+βnu(t)− ln

{
N

∑
k=1

ŵk(t)φk(0)− yD(t)−φl(yD(t))

}

= (−λn +qc)ẑn(t)+βnu(t)+ ln
N0

∑
k=1

φk(0)ek(t)+ ln
N

∑
k=N0+1

φk(0)√
λk

ẽk(t)+ lnζ (t)+ lnφl(yD(t))

(3.2)

for all 16 n6N0 where ζ =∑n>N+1 φn(0)wn. We define z̃n = ẑn/λn and the vectors ẐN0 =
[
ẑ1 . . . ẑN0

]>,

EN0 =
[
e1 . . . eN0

]>, Z̃N−N0 =
[
z̃N0+1 . . . z̃N

]>, and ẼN−N0 =
[
ẽN0+1 . . . ẽN

]>. We also de-
fine the matrices A0 = diag(−λ1 + qc, . . . ,−λN0 + qc), A1 = diag(−λN0+1 + qc, . . . ,−λN + qc), B0 =[
β1 . . . βN0

]>, B̃1 =
[

βN0+1
λN0+1

. . . βN
λN

]>
, C0 =

[
φ1(0) . . . φN0(0)

]
, C̃1 =

[
φN0+1(0)√

λN0+1
. . . φN(0)√

λN

]
,

K =
[
k1 . . . kN0

]
, and L =

[
l1 . . . lN0

]>. Therefore, we obtain from (2.14), (3.1), and (3.2) that

u = KẐN0 (3.3a)
˙̂ZN0 = (A0 +B0K)ẐN0 +LC0EN0 +LC̃1ẼN−N0 +Lζ +Lφl(yD) (3.3b)

ĖN0 = (A0−LC0)EN0 −LC̃1ẼN−N0 −Lζ −Lφl(yD) (3.3c)
˙̃ZN−N0 = A1Z̃N−N0 + B̃1KẐN0 (3.3d)
˙̃EN−N0 = A1ẼN−N0 . (3.3e)

Introducing the state vector
X = col

(
ẐN0 ,EN0 , Z̃N−N0 , ẼN−N0

)
, (3.4)

we infer that the following truncated dynamics hold

Ẋ = FX +L ζ +L φl(yD) (3.5)

where

F =


A0 +B0K LC0 0 LC̃1

0 A0−LC0 0 −LC̃1
B̃1K 0 A1 0

0 0 0 A1

 , L =


L
−L
0
0

 . (3.6)

REMARK 3.1 It was shown in (Lhachemi and Prieur 2021) that the pairs (A0,B0) and (A0,C0) both
satisfy the Kalman condition. Hence we can find gains K and L so that A0 +B0K and A0− LC0 are
Hurwitz with arbitrary pole placement.
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Introducing now the augmented vector X̃ = col(X ,ζ ,φl(yD)) and the matrices K̃ =
[
K 0 0 0

]
and E =K

[
A0 +B0K LC0 0 LC̃1 L L

]
, we obtain that the command and its first time derivative

are expressed by

u = KẐN0 = K̃X , v = u̇ = K ˙̂ZN0 = EX̃ . (3.7)

Finally, in preparation of the application of Lemma 2.1 to φ(yD), we need to express the system output
yD in function of X and ζ . From the series expansion (2.15), the relation (2.12), the control (3.7), and
recalling that en = zn− ẑn, ẽn =

√
λnen, and z̃n = ẑn/λn, we deduce that

yD = ∑
n>1

φn(0)wn =
N

∑
n=1

φn(0)wn +ζ

=
N

∑
n=1

φn(0)zn +
N

∑
n=1

φn(0)bnu+ζ

=
N

∑
n=1

φn(0)ẑn +
N

∑
n=1

φn(0)en +
N

∑
n=1

φn(0)bnu+ζ

=
N0

∑
n=1

φn(0)ẑn +
N0

∑
n=1

φn(0)en +
N

∑
n=N0+1

λnφn(0)z̃n +
N

∑
n=N0+1

φn(0)√
λn

ẽn +
N

∑
n=1

φn(0)bnu+ζ

= C1X +C2u+ζ

= C X +ζ (3.8)

where C1 =
[
C0 C0 λN0+1φN0+1(0) . . . λNφN(0) C̃1

]
, C2 = ∑

N
n=1 φn(0)bn, and C = C1 +C2K̃.

4. Stability assessment

4.1 Main stability result

We are now in position to state the main result of this paper.

THEOREM 4.1 Let θ1 ∈ (0,π/2], θ2 ∈ [0,π/2], p ∈ C 2([0,1]) with p > 0, q̃ ∈ C 0([0,1]), and l > 0. Let
q ∈ C 0([0,1]) and qc ∈ R be such that (2.10) holds. Let δ > 0 and N0 > 1 be such that −λn +qc <−δ

for all n > N0 +1. Let K ∈ R1×N0 and L ∈ RN0 be such that A0 +B0K and A0−LC0 are Hurwitz with
eigenvalues that have a real part strictly less than −δ < 0. For a given N > N0 + 1, assume that there
exist a symmetric positive definite P ∈ R2N×2N , positive real numbers α > 1 and β ,γ,µ,T,κ > 0, a
matrix C ∈ R1×2N , and a real number d ∈ R such that

Θ1(κ)� 0, Θ2 � 0, Θ3(κ)6 0 (4.1)
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where

Θ1(κ) =

F>P+PF +2κP+αγ‖RNa‖2
L2K̃>K̃ PL −TC>+PL

L >P −β −dT
−TC+L >P −dT −2T

+αγ‖RNb‖2
L2E>E

Θ2 =

 P 0 (C −C)>

0 γ

Mφ
1−d

C −C 1−d µl2


Θ3(κ) = 2γ

{
−
(

1− 1
α

)
λN+1 +qc +κ

}
+βMφ .

with Mφ = ∑n>N+1
φn(0)2

λn
< +∞. Consider the block representation P = (Pi, j)16i, j64 with dimensions

that are compatible with (3.4) and define

E =

{
w ∈ D(A ) :

[
πN0w

πN0,NA 1/2w

]> [P2,2 P2,4
P4,2 P4,4

][
πN0w

πN0,NA 1/2w

]
+ γ‖RNA 1/2w‖2

L2 <
1
µ

}
. (4.2)

Then, considering the closed-loop system composed of the plant (2.1) with saturated left Dirichlet
boundary measurement (2.3) and the control law (3.1), there exists M > 0 such that for any initial
condition z0 ∈ E and with a zero initial condition of the observer (i.e., ẑn(0) = 0 for all 16 n6 N), the
system trajectory satisfies

‖z(t, ·)‖2
H1 +

N

∑
n=1

ẑn(t)2 6Me−2κt‖z0‖2
H1 (4.3)

for all t > 0. Moreover, for any fixed κ ∈ (0,δ ], the constraints (4.1) are always feasible for N selected
to be large enough.

Proof. Consider the Lyapunov functional defined by

V (X ,w) = X>PX + γ ∑
n>N+1

λn 〈w,φn〉2 , ∀X ∈ R2N , ∀w ∈ D(A ). (4.4)

The computation of the time derivative of V along the system trajectories (2.13) and (3.5) gives

V̇ +2κV = X>(F>P+PF +2κP)X +2X>PL ζ +2X>PL φl(yD)

+2γ ∑
n>N+1

λn ((−λn +qc +κ)wn +anu+bnv)wn.

The use of Young’s inequality gives 2∑n>N+1 λnwnanu6 1
α ∑n>N+1 λ 2

n w2
n+α‖RNa‖2

L2u2 and, similarly,
2∑n>N+1 λnwnbnv 6 1

α ∑n>N+1 λ 2
n w2

n +α‖RNb‖2
L2v2. Moreover, recalling that ζ = ∑n>N+1 φn(0)wn,

the use of Cauchy-Schwartz inequality gives ζ 2 6 Mφ ∑n>N+1 λnw2
n with Mφ = ∑n>N+1

φn(0)2

λn
< +∞.

Hence, recalling that X̃ = col(X ,ζ ,φl(yD)), we obtain that

V̇ +2κV 6 X̃>

F>P+PF +2κP+αγ‖RNa‖2
L2K̃>K̃ PL PL

L >P −β 0
L >P 0 0

+αγ‖RNb‖2
L2E>E

 X̃

+ ∑
n>N+1

λnΓnw2
n
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where Γn = 2γ
{
−
(
1− 1

α

)
λn +qc +κ

}
+βMφ for all n>N+1. Assuming that X ∈R2N and w∈D(A )

are so that |yD− (CX + dζ )| 6 l, the application of Lemma 2.1 gives φl(yD)(φl(yD)+CX + dζ ) 6 0.
This implies that

V̇ +2κV 6 X̃>Θ1(κ)X̃ + ∑
n>N+1

λnΓnw2
n

as soon as |yD− (CX + dζ )| 6 l, i.e., using (3.8), |(C −C)X +(1− d)ζ | 6 l. Since α > 1 we obtain
that Γn 6 Θ3(κ) 6 0 for all n > N + 1. Moreover we recall that Θ1(κ) 6 0. Hence, we deduce that
V̇ +2κV 6 0 for all X ∈ R2N and w ∈ D(A ) so that |(C −C)X +(1−d)ζ |6 l.

Let X ∈R2N and w ∈D(A ) be such that V (X ,w)6 1/µ . Using Schur complement, we obtain from
Θ2 � 0 that

1
µl2

[
C −C 1−d

]> [
C −C 1−d

]
�

[
P 0
0 γ

Mφ

]
.

Recalling that ζ 2 6Mφ ∑n>N+1 λnw2
n, we have

1
µl2 |(C −C)X +(1−d)ζ |2 6

[
X
ζ

]>[P 0
0 γ

Mφ

][
X
ζ

]
= X>PX +

γ

Mφ

ζ
2 6V (X ,w)6

1
µ
, (4.5)

which implies that |(C −C)X +(1−d)ζ |6 l, hence V̇ +2κV 6 0.
Let w0 ∈ E be the initial condition of the PDE in homogeneous coordinates and consider zero

initial conditions for the observer (ẑn(0) = 0 for all 1 6 n 6 N), giving the initial condition z0 = w0
in original coordinates. In particular one has X(0) = col(0,πN0 z0,0,πN0,NA 1/2z0) and V (X(0),w0) <
1/µ . Using a classical contradiction argument, we infer that V (X(t),w(t)) 6 1/µ for all t > 0, hence
V̇ (X(t),w(t))+2κV (X(t),w(t)) 6 0 for all t > 0. This implies that V (X(t),w(t)) 6 e−2κtV (X(0),w0)
for all t > 0. The claimed stability estimate now easily follows from the definition of V and the estimates
(2.7).

To complete the proof it remains to show that, for any fixed κ ∈ (0,δ ], the constraints (4.1) are
always feasible for N selected to be large enough. We start by fixing α > 1 arbitrarily and by setting
C = 0 and d = 0. Owing to the definition (3.6) of the matrix F , we observe that (i) A0 +B0K + κI
and A0− LC0 + κI are Hurwitz; (ii) ‖e(A1+κI)t‖ 6 e−κ0t for all t > 0 with the positive constant κ0 =
λN0+1−qc−κ > 0 independent of N; (iii) ‖LC̃1‖6 ‖L‖‖C̃1‖ and ‖B̃1K‖6 ‖B̃1‖‖K‖ where ‖L‖ and
‖K‖ are independent of N while ‖C̃1‖ = O(1) and ‖B̃1‖ = O(1) as N → +∞. Hence, the application
of the Lemma in appendix of (Lhachemi and Prieur 2022) to the matrix F +κI shows that the unique
solution P� 0 to the Lyapunov F>P+PF +2κP =−I is such that ‖P‖= O(1) as N→+∞. We note
that ‖L ‖=

√
2‖L‖ and ‖K̃‖= ‖K‖ are constants independent of N while ‖P‖= O(1) and ‖E‖= O(1)

as N→+∞. Defining β = T = N and γ = 1/
√

N and recalling that we set C = 0 and d = 0, the use of
Schur complement shows that we can fix N > N0 + 1 large enough so that Θ1(κ) � 0 and Θ3(κ) 6 0.
This definitely fix the order N of the observer and the decision variables P,β ,γ,T > 0. Owing to the
definition of Θ2, and because P� 0 and γ/Mφ > 0, the Schur complement implies that Θ2 � 0 for µ > 0
selected to be sufficiently large. This completes the proof. �

REMARK 4.1 In the context of Theorem 4.1, one can also consider non zero initial conditions ẑn(0) for
the observer (3.1). More precisely and under the assumptions of Theorem 4.1, there exists a constant
M > 0 such that the estimate:

‖z(t, ·)‖2
H1 +

N

∑
n=1

ẑn(t)2 6Me−2κt

{
‖z0‖2

H1 +
N

∑
n=1

ẑn(0)2

}
, t > 0 (4.6)
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holds for all initial conditions z0 ∈ L2(0,1) and ẑn(0) ∈ R selected such that, defining w0(x) = z0(x)−
x2

cos(θ2)+2sin(θ2)
KẐN0(0), w0 ∈D(A ) and V (X(0),w0)=X(0)>PX(0)+γ ∑n>N+1 λnwn(0)2 < 1/µ . Note

that the term X(0)>PX(0) captures in particular the distances zn(0)− ẑn(0) for all 1 6 n 6 N. This
indicates that the above stability estimate holds when the initial conditions ẑn(0) of the observer are not
set “too far” from the actual values zn(0) associated with the initial condition z0 of the PDE.

4.2 Numerical considerations

Let the decay rate κ ∈ (0,δ ] and the dimension N >N0+1 of the observer be given. Constraints (4.1) of
Theorem 4.1 are nonlinear w.r.t. the decision variables P,α,β ,γ,µ,T,κ,C,d due to the terms αγ , γ/α ,
TC, and dT . We discuss how LMI conditions, that remain feasible for N selected large enough, can be
derived from (4.1). First, we arbitrarily fix the value of α > 1. As shown in the proof of Theorem 4.1,
the obtained constraints remain feasible for a sufficiently large N. Now the constraints take the form of
BMIs of the decision variables P,β ,γ,µ,T,κ,C,d. Second, we introduce the change of variable C̃ = TC
and d̃ = T d. Hence we obtain that

Θ1(κ) =

F>P+PF +2κP+αγ‖RNa‖2
L2K̃>K̃ PL −C̃>+PL

L >P −β −d̃
−C̃+L >P −d̃ −2T

 .
Moreover, defining µ̃ = T 2µ and

Θ̃2 =

I 0 0
0 1 0
0 0 T

>Θ2

I 0 0
0 1 0
0 0 T

=

 P 0 (TC −C̃)>

0 γ

Mφ
T − d̃

TC −C̃ T − d̃ µ̃l2


we have Θ2 � 0 if and only if Θ̃2 � 0, because T > 0. Hence, once α > 1 is fixed, the constraints reduce
to the LMIs Θ1(κ)� 0, Θ̃2 � 0, Θ3(κ)6 0 with decision variables P,β ,γ, µ̃,T,C̃, d̃.

We now discuss how to optimize the decision variables in order to enlarge the estimated domain of
attraction. In the framework of Theorem 4.1, let an integer N > N0 +1 and a κ ∈ (0,δ ] such that the as-
sociated constraints (4.1) are feasible. Let a given symmetric positive definite matrix R ∈ R(N+1)×(N+1)

and let r > 0 be selected such that

P ,

P2,2 P2,4 0
P4,2 P4,4 0
0 0 γ

� r
µ

R (4.7)

under the constraints (4.1). Hence we deduce that πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

> rR

 πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

6 1 ⇒

 πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

>P

 πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

6 1
µ

which shows thatw ∈ D(A ) :

 πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

>R

 πN0w
πN0,NA 1/2w
‖RNA 1/2w‖L2

6 1
r

⊂ E (4.8)
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where E is defined by (4.2). Hence, for given N > N0 + 1 and κ ∈ (0,δ ] so that the constraints (4.1)
hold true, we aim at minimizing r > 0 under the constraints (4.1) and (4.7) with decision variables
P,α,β ,γ,µ,T,C,d,r. This minimization problem is nonlinear. In order to ease the numerical computa-
tion, it is convenient to iteratively solve the following sub-optimal problem. We start by fixing α,µ > 0
to values associated with a feasible solution of the constraints (4.1). Now, the only remaining nonlin-
earities are the products TC and dT in the definition of Θ1(κ)� 0. Now one can successively fix either
the value of T or the values of C,d to their previously computed value in order to iteratively minimize
the value of r > 0 under LMI constraints. This approach is obviously sub-optimal but has the advantage
of being numerically efficient.

5. Numerical illustration

We illustrate the main result of this paper, namely Theorem 4.1, with some numerical applications. We
set p = 1, q̃ =−5, θ1 = π/5, and θ2 = 0 which corresponds to a right Dirichlet boundary control. In this
case, the open-loop reaction-diffusion PDE (2.1) is unstable. In this setting, the eigenstructures of the
Sturm-Liouville operator, used for spectral reduction and that have been introduced in Subsection 2.3.1,
are described as follows. Denoting for any integer n > 1 by µn the unique solution to µn cot(µn) =
−cot(θ1) with µn ∈ ((n−1)π,nπ), we have λn = µ2

n while the associated eigenfunctions are given by
φn(x) = 2

√
µn

2µn−sin(2µn)
sin(µn(1− x)).

We set N0 = 1, as well as the feedback and observer gains K = −4.1481 and L = 10.5613, respec-
tively. Considering the saturation level l = 1 and for the exponential decay rate κ = 0.2, the constraints
(4.1) are found feasible for an observer of dimension N = 3.

The application of the approach described in Subsection 4.2 with P = diag(IN ,0.005) to enlarge the
estimation of the domain of attraction of the origin gives r = 0.0328.

For numerical simulation, we select the initial condition of the PDE as z0(x) = 55.5x2(x− 1), for
which it is checked that z0 ∈ E , along with zero initial condition of the observer. The temporal behavior
of the closed-loop system is depicted in Fig. 1. It can be observed that the system trajectory converges
exponentially to zero despite the saturation of the measurement shown in Fig. 1(d). This is compliant
with the theoretical predictions of Theorem 4.1.

6. Conclusion

This paper has addressed the topic of output feedback stabilization of reaction-diffusion PDEs in the
presence of a saturated measurement and with estimation of a subset of the domain of attraction. In con-
trast with the saturation of the input studied in (Mironchenko et al. 2021, Lhachemi and Prieur 2022)
and for which the saturation only applies to a finite number of modes of the controller, the saturation of
the measurement applies to a signal accounting for all the (infinite number and unmeasured) modes of
the reaction-diffusion PDE. The controller is finite-dimensional and we showed that it always achieves
the local exponential stabilization of the reaction-diffusion PDE provided the order of the observer is
selected to be large enough. A distinguished feature of this approach is that the obtained stability con-
ditions can be used to compute initial condition belonging to the domain of attraction and for which the
saturation mechanism is actually active during the transient. This point has been illustrated in the nu-
merical illustration section. Among possible extensions of this work, we can mention other optimization
objectives such as the maximization of the exponential decay rate for a given domain of attraction. The
possibility to include perturbations in the dynamics of the reaction-diffusion PDE in order to analyze
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their impact on the domain of attraction could also be the topic of future works.
We conclude by pointing out the main technical issue that prevents the extension of the control

strategy reported in this paper to the case of a saturated Neumann measurement. More precisely, for
θ1 ∈ [0,π/2), we want to consider the left Neumann trace defined by yN(t) = zx(t,0) for the reaction-
diffusion PDE (2.1). We assume that the measurement consists in a saturated version of yN(t), i.e.,
satl(yN(t)) = satl(zx(t,0)). In that case, based on the non-saturated setting studied in (Lhachemi and
Prieur 2022) with Neumann boundary measurement and the developments of this paper, a reasonable
approach would be to consider the controller dynamics described by

ŵn(t) = ẑn(t)+bnu(t) (6.1a)

˙̂zn(t) = (−λn +qc)ẑn(t)+βnu(t)− ln

{
N

∑
k=1

ŵk(t)φ ′k(0)− satl(yN(t))

}
, 16 n6 N0 (6.1b)

˙̂zn(t) = (−λn +qc)ẑn(t)+βnu(t), N0 +16 n6 N (6.1c)

u(t) =
N0

∑
n=1

knẑn(t) (6.1d)

where ln,kn ∈ R are the observer and feedback gains, respectively. However, the main technical is-
sue here is that the residue of measurement ζ is now expressed by ζ = ∑n>N+1 φ ′n(0)wn with φ ′n(0) =
O(
√

λn). Hence the use of Cauchy-Schwartz inequality implies for any given ε ∈ (0,1/2] that ζ 2 6

Mφ (ε)∑n>N+1 λ
3/2+ε
n w2

n with Mφ (ε) = ∑n>N+1
φ ′n(0)

2

λ
3/2+ε
n

< +∞. Thus we obtain a series of the type

∑n>N+1 λ α
n w2

n with α ∈ (3/2,2) compared to ∑n>N+1 λnw2
n in the Dirichlet measurement case. This

is an issue because while the latter series can be bounded above by the Lyapunov functional V defined
by (4.4), which is used to obtain (4.5) and deduce the positive invariance of the ellipsoid E , this is not
the case for the former series. For this reason, the case of a saturated Neumann measurement cannot be
directly handled by the method reported in this paper.
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