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Output feedback stabilization of a
reaction-diffusion PDE in the presence of
saturations of the input and its time derivatives

Hugo Lhachemi and Christophe Prieur

AbstractThis chapter tackles the output feedback stabilization of a reaction-diffusion
PDE in the presence of saturations applying to the command input as well as a finite
number of its time derivatives. The control strategy consists of a finite dimensional
observer and a finite-dimensional state-feedback. We derive LMI-based sufficient
conditions that ensure the local exponential stability of the closed-loop system while
providing an estimation of the domain of attraction. These LMI conditions are
shown to be feasible provided the order of the observer is selected large enough. The
stability analysis is performed by using Lyapunov’s direct method while invoking
sector conditions commonly used for the analysis of saturated finite-dimensional
systems.

1 Introduction

Due to the inherent physical limitations of the actuators, saturation mechanisms
are commonly encountered in the practical implementation of control laws. Such
saturation mechanisms introduce stringent constraints on the control strategies [1].
It is worth noting that even for finite-dimensional linear time invariant (LTI) systems,
such saturation mechanisms are very well-known for introducing strong nonlinear
phenomena characterized by multiple equilibrium points and bounded domains of
attraction [2]. Due to its practical importance, the topic of feedback stabilization
of finite-dimensional LTI systems in the presence of input saturations has been
intensively studied [3, 4]. One of the most fruitful approaches in this field relies on
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Lyapunov’s directmethod combinedwith the use of a generalized sector condition [3,
Lem. 1.6] in order to derive sufficient linear matrix inequality (LMI) conditions
ensuring the local stability of the closed-loop plant. A distinguished feature of this
approach is that it is also employed to obtain an estimate of the domain of attraction
of the origin.
We embrace in this chapter the topic of stabilization of infinite-dimensional

systems, and particularly of partial differential equations (PDEs), in the presence of
input saturation mechanisms. Among the first contributions in this field of research,
such a problem was studied in [5, 6] with saturation mechanisms defined for control
input functions evaluated in the norm of an abstract functional space (typically the
space of square integrable functions 𝐿2 (0, 1)). Since then, the stabilization of PDEs in
the presence of saturation mechanisms has attracted much attention with a particular
focus on pointwise saturationmechanismswhich are, in general, themost relevant for
practical applications. In this context, stabilization of wave and Korteweg-de Vries
PDEs under cone-bounded feedback were reported in [7, 8, 9] using Lyapunov’s
direct method. The case of reaction-diffusion PDEs in the presence of control input
constraints was studied in [10] using a model predictive control approach while
singular perturbation techniques were reported in [11]. Also in the case of reaction-
diffusion PDEs but using spectral reduction methods [12, 13, 14, 15, 16, 17], it
was demonstrated in [18] how a state-feedback can be designed to achieve the
local stabilization of the plant while deriving an explicit estimation of the domain
of attraction using LMIs. In the same context, the possibility to achieve the local
output feedback stabilization of a reaction-diffusion PDE using a either distributed
or Dirichlet/Neumann boundary measurement, with estimation of the domain of
attraction, was demonstrated in [19]. It is worth noting that for the state feedback
setting studied in [18], the region of attraction constrains only a finite number of
modes of the initial condition. This is essentially because the state-feedback setting
allows to achieve the local exponential stabilization of the the first modes of the
system while preserving the stability of the residual infinite-dimensional dynamics.
See [18, Proposition 1] for a precise statement of this result. In contrast, the output
feedback setting does not allow such a strong separation between the to-be-stabilized
modes and the residual ones. This is because the measurement is built based on the
contribution of all the modes of the system. In this case, the region of attraction
imposes constraints on all the modes of the initial condition [19].
We extend in this chapter the results obtained in [19] for the local stabilization of

reaction-diffusion PDEs in the presence of an input saturation to the case of satura-
tions applying on the input as well as on a finite number of its time derivatives. Typi-
cally, a saturation on the time derivative of the control input can be used to model the
limitations in the rate of change of the actuator output. Similarly, a saturation on the
second time derivative of the input is employed to model a limit in the acceleration of
change of the actuator output, etc. In this context, the output feedback control design
strategy adopted in this chapter consists of a finite-dimensional observer-based con-
troller [20, 21, 22, 23, 24, 25] that leverages a control architecture reported first in [21]
along with a LMI-based approach introduced in [26] (see also [27]). We particularly
adopt the enhanced and general procedures from [28, 29] which allow to design, in a
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generic and systematic manner, finite-dimensional observer-based control strategies
for general 1-D reaction-diffusion PDEs, with Dirichlet/Neumann/Robin boundary
control and Dirichlet/Neumann boundary measurement, in a great variety of set-
tings. These include regulation control [30], nonlinear boundary control [29], and
stabilization in the presence of an arbitrarily long input [31], output [32] or state [33]
delay. We leverage here similar procedures but in the context of the saturation of the
control input 𝑢 and its 𝑛𝑠 first time derivatives ¤𝑢, . . . , 𝑢 (𝑛𝑠) . Compared to [19] where
only a saturation in position was considered, hence the control design was performed
directly on the input 𝑢, the stabilization problem in the presence of saturations on
the 𝑛𝑠 first time derivatives of 𝑢 requires to consider 𝑢 (𝑛𝑠) as an auxiliary input for
control design. Therefore we perform the control design on the system composed of
the original PDE augmented with 𝑛𝑠 integral components.
The reminder of this chapter is organized as follows. A general background

on the stabilization of finite-dimensional LTI systems in the presence of an input
saturation is placed in Section 2. The control design problem addressed in this work
is introduced in Section 3. The control design procedure and the resulting stability
theorems are reported in Section 4. Some numerical examples and simulations
illustrating the main theoretical results are presented in Section 5. Finally, some
concluding remarks are formulated in Section 6.

Notation. The real vector spaces R𝑛 are endowed with the usual Euclidean norm
‖𝑥‖ =

√
𝑥>𝑥. The associated induced norms of matrices are also denoted by ‖ · ‖.

For any 𝑥, 𝑦 ∈ R𝑛, 𝑥 ≤ 𝑦 means that each component of 𝑥 is less than or equal to the
corresponding component of 𝑦. For any 𝑥 ∈ R𝑛 we denote by |𝑥 | the vector of R𝑛
obtained by replacing each component of 𝑥 by its absolute value. Considering any
two vectors 𝑋 and 𝑌 of arbitrary dimensions, we denoted by col(𝑋,𝑌 ) the vector
[𝑋>, 𝑌>]>. Given a vector ℓ, diag(ℓ) denotes the diagonal matrix with the entries
of ℓ on the diagonal. 𝐿2 (0, 1) stands for the space of square integrable functions
on (0, 1) and is endowed with the usual inner product 〈 𝑓 , 𝑔〉 =

∫ 1
0 𝑓 (𝑥)𝑔(𝑥) d𝑥.

The corresponding norm is denoted by ‖ · ‖𝐿2 . For any given integer 𝑚 ≥ 1,
𝐻𝑚 (0, 1) stands for the 𝑚-order Sobolev space and is equipped with its usual norm
‖ 𝑓 ‖𝐻𝑚 =

(∑𝑚
𝑘=0 ‖ 𝑓 (𝑘) ‖2𝐿2

)1/2
. For any given symmetric matrix 𝑃 ∈ R𝑛×𝑛, 𝑃 � 0

(resp. 𝑃 � 0) means that 𝑃 is positive semi-definite (resp. positive definite).
Let (𝜙𝑛)𝑛≥1 be a Hilbert basis of 𝐿2 (0, 1). For any two integers 1 ≤ 𝑁 < 𝑀 , we

define the operators of projection:

𝜋𝑁 : 𝐿2 (0, 1) −→ R𝑁

𝑓 ↦−→
[
〈 𝑓 , 𝜙1〉 . . . 〈 𝑓 , 𝜙𝑁 〉

]>
and

𝜋𝑁 ,𝑀 : 𝐿2 (0, 1) −→ R𝑀−𝑁

𝑓 ↦−→
[
〈 𝑓 , 𝜙𝑁+1〉 . . . 〈 𝑓 , 𝜙𝑀 〉

]>
.

We finally define
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R𝑁 : 𝐿2 (0, 1) −→ 𝐿2 (0, 1)

𝑓 ↦−→ 𝑓 −
𝑁∑︁
𝑛=1

〈 𝑓 , 𝜙𝑛〉 𝜙𝑛 =
∑︁

𝑛≥𝑁+1
〈 𝑓 , 𝜙𝑛〉 𝜙𝑛.

2 Background on the stabilization of finite-dimensional LTI
systems in the presence of an input saturation

We start by reviewing in this section some classical results on the stabilization of
finite-dimensional LTI systems in the presence of an input saturation. We refer the
readers to [3, 4] for a deeper insight into this topic. Let us first introduce the scalar
saturation map

sat𝑙 : R −→ R

𝑢 ↦−→ sign(𝑢)min ( |𝑢 |, 𝑙)

where 𝑙 > 0. Then, for any ℓ = (𝑙1, . . . , 𝑙𝑚) ∈ (R>0)𝑚, we define the vector saturation
map

satℓ : R𝑚 −→ R𝑚

(𝑢1, . . . , 𝑢𝑚) ↦−→ (sat𝑙1 (𝑢1), . . . , sat𝑙𝑚 (𝑢𝑚)).

With these notations, consider the system described by

¤𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵satℓ (𝑢(𝑡)) (1)

with 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚. Here 𝑧(𝑡) ∈ R𝑛 represents the state at time 𝑡 ≥ 0
while 𝑢(𝑡) ∈ R𝑚 stands for the control input. We assume that the pair (𝐴, 𝐵) is
stabilizable, i.e., there exists a feedback gain 𝐾 ∈ R𝑚×𝑛 so that 𝐴 + 𝐵𝐾 is Hurwitz.
Hence, in the absence of saturation, the system described by ¤𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝑢(𝑡)
can be exponentially stabilized by setting

𝑢(𝑡) = 𝐾𝑧(𝑡) (2)

because the closed-loop dynamics now reads ¤𝑧(𝑡) = (𝐴 + 𝐵𝐾)𝑧(𝑡). In the case of an
input saturation, the situation is more complex since the application of the feedback
law (2) to (1) gives the closed-loop dynamics:

¤𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵satℓ (𝐾𝑧(𝑡)). (3)

In order to study the stability of (3), a relevant idea is to consider the saturated
term satℓ (𝐾𝑧(𝑡)) as a perturbation of the nominal term 𝐾𝑧(𝑡). The objective of this
approach is to make explicitly appear the Hurwitz matrix 𝐴 + 𝐵𝐾 in the dynamics
of the closed-loop system:
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¤𝑧(𝑡) = (𝐴 + 𝐵𝐾)𝑧(𝑡) + 𝐵 {satℓ (𝐾𝑧(𝑡)) − 𝐾𝑧(𝑡)}
= (𝐴 + 𝐵𝐾)𝑧(𝑡) + 𝐵𝜙ℓ (𝐾𝑧(𝑡)) (4)

where we introduce the deadzone nonlinearity defined by

𝜙ℓ : R𝑚 −→ R𝑚

𝑣 ↦−→ satℓ (𝑣) − 𝑣.

When 𝑧(𝑡), hence 𝐾𝑧(𝑡), is sufficiently small, the perturbation introduced by the
saturation map is such that 𝜙ℓ (𝐾𝑧(𝑡)) = 0. In that case, the dynamics of the closed-
loop system (4) reduced to ¤𝑧(𝑡) = (𝐴 + 𝐵𝐾)𝑧(𝑡), ensuring the local exponential
stability of the closed-loop system in a neighborhood of the origin. However, in
order to estimate the domain of attraction of the origin of (4), one needs to capture
more precisely the impact of the perturbation term 𝐵𝜙ℓ (𝐾𝑧(𝑡)) on the dynamics of
(4). A very efficient approach to achieve this objective is to embed the deadzone
nonlinearity 𝜙ℓ into a generalized sector condition. Such a sector condition must
be suitable for Lyapunov’s direct method in order to derive LMI-based sufficient
stability conditions. In this chapter, we leverage the following generalized sector
condition that is borrowed from [3, Lem. 1.6].

Lemma 1 Let ℓ ∈ (R>0)𝑚 be given. For any 𝑣, 𝜔 ∈ R𝑚 such that |𝑣𝑖 − 𝜔𝑖 | ≤ ℓ𝑖 for
all 𝑖 ∈ {1, . . . , 𝑚} and for any diagonal positive definite matrix 𝑇 ∈ R𝑚×𝑚 we have
𝜙ℓ (𝑣)>𝑇 (𝜙ℓ (𝑣) + 𝜔) ≤ 0.

Let us now explain how Lemma 1 can be used to derive an estimation of the
domain of attraction of (4). To do so, consider the classical quadratic Lyapunov
function candidate

𝑉 (𝑧) = 𝑧>𝑃𝑧, ∀𝑧 ∈ R𝑛 (5)

for somematrix 𝑃 � 0. The computation of the time-derivative of𝑉 along the system
trajectories (4) reads

¤𝑉 = 𝑧>
{
(𝐴 + 𝐵𝐾)>𝑃 + 𝑃(𝐴 + 𝐵𝐾)

}
𝑧 + 2𝑧>𝑃𝐵𝜙ℓ (𝐾𝑧)

=

[
𝑧

𝜙ℓ (𝐾𝑧)

]> [
(𝐴 + 𝐵𝐾)>𝑃 + 𝑃(𝐴 + 𝐵𝐾) 𝑃𝐵

∗ 0

] [
𝑧

𝜙ℓ (𝐾𝑧)

]
.

Here the symbol ∗ is used to denote a symmetric part. For any matrix 𝐶 ∈ R𝑚×𝑛 and
any diagonal positive definite matrix 𝑇 ∈ R𝑚×𝑚, we obtain from Lemma 1 that

∀𝑧 ∈ R𝑛, | (𝐾 − 𝐶)𝑧 | ≤ ℓ ⇒ 𝜙ℓ (𝐾𝑧)>𝑇 (𝜙ℓ (𝐾𝑧) + 𝐶𝑧) ≤ 0.

Combining the two latter results, we infer that, along the system trajectories (4),
| (𝐾 − 𝐶)𝑧 | ≤ ℓ gives

¤𝑉 ≤
[

𝑧

𝜙ℓ (𝐾𝑧)

]> [
(𝐴 + 𝐵𝐾)>𝑃 + 𝑃(𝐴 + 𝐵𝐾) 𝑃𝐵 − 𝐶>𝑇

∗ −2𝑇

] [
𝑧

𝜙ℓ (𝐾𝑧)

]
.
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Assuming that

Θ1 =

[
(𝐴 + 𝐵𝐾)>𝑃 + 𝑃(𝐴 + 𝐵𝐾) 𝑃𝐵 − 𝐶>𝑇

∗ −2𝑇

]
≺ 0,

we deduce the existence of 𝛼 > 0 so that Θ1 � −𝛼𝐼. Hence we have

∀𝑧 ∈ R𝑛, | (𝐾 − 𝐶)𝑧 | ≤ ℓ ⇒ ¤𝑉 ≤ −𝛼‖𝑧‖2 ≤ −2𝜅𝑉.

with 𝜅 = 𝛼
2𝜆max (𝑃) > 0. We now need to derive a set of initial conditions E containing

the origin so that E is 1) positively invariant; and 2) included into the set {𝑧 ∈ R𝑛 :
| (𝐾 − 𝐶)𝑧 | ≤ ℓ}. To do so we define

E = {𝑧 ∈ R𝑛 : 𝑉 (𝑧) = 𝑧>𝑃𝑧 ≤ 1}

and we assume that
Θ2 =

[
𝑃 (𝐾 − 𝐶)>
∗ diag(ℓ)2

]
� 0.

Since diag(ℓ) � 0, the Schur complement shows that 𝑃 � (𝐾−𝐶)>diag(ℓ)−2 (𝐾−𝐶).
Hence 𝑧 ∈ E implies that | (𝐾−𝐶)𝑧 | ≤ ℓ. Considering now a non zero initial condition
𝑧0 ∈ E \ {0}, we infer that ¤𝑉 (𝑧0) ≤ −𝛼‖𝑧0‖ < 0. From now, a simple contradiction
argument shows that 𝑧(𝑡) ∈ E for all 𝑡 ≥ 0 hence ¤𝑉 (𝑧(𝑡)) ≤ −2𝜅𝑉 (𝑧(𝑡)). Overall,
this reasoning shows that if there exist 𝑃 � 0, 𝐶 ∈ R𝑚×𝑛, and a diagonal positive
definite matrix𝑇 ∈ R𝑚×𝑚 such thatΘ1 ≺ 0 andΘ2 � 0, then for any initial condition
𝑧0 ∈ E, the trajectories of (3) exponentially converge to the origin.

Remark 1 It is worth noting that the constraints Θ1 ≺ 0 and Θ2 � 0 are always
feasible for a suitable choice of the decision variables 𝑃,𝐶,𝑇 . Indeed, setting 𝐶 = 0,
𝑃 = 𝛽𝑃0, and 𝑇 = 𝛾𝐼 where 𝛽, 𝛾 > 0 and 𝑃0 � 0 is the unique solution to the
Lyapunov equation (𝐴 + 𝐵𝐾)>𝑃0 + 𝑃0 (𝐴 + 𝐵𝐾) = −𝐼, one can see using Schur
complement that Θ2 � 0 is obtained provided 𝛽 > 0 is selected large enough. Using
the same argument, Θ1 ≺ 0 can now be obtained provided 𝛾 > 0 is selected large
enough.

Remark 2 In their original version, the constraints Θ1 ≺ 0 and Θ2 � 0 are nonlinear
w.r.t. the decision variables. However, they can be equivalently reformulated as LMI
constraints for which efficient solvers exist. See, e.g., [18, Sec. III.C].

3 Problem description and properties of Sturm-Liouville
operators

We introduce in this section the control design problem for 1-D reaction-diffusion
PDEs. These PDEs are strongly related to the class of Sturm-Liouville operators.
The main properties of these operators that will be useful to perform the control
design are presented in the second part of this section.
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3.1 Problem description

We investigate the problem of feedback stabilization of the reaction-diffusion equa-
tion described by

𝑧𝑡 (𝑡, 𝑥) = (𝑝(𝑥)𝑧𝑥 (𝑡, 𝑥))𝑥 − 𝑞(𝑥)𝑧(𝑡, 𝑥) + 𝑏(𝑥)sat𝑙0 (𝑢(𝑡)) (6a)
cos(𝜃1)𝑧(𝑡, 0) − sin(𝜃1)𝑧𝑥 (𝑡, 0) = 0 (6b)
cos(𝜃2)𝑧(𝑡, 1) + sin(𝜃2)𝑧𝑥 (𝑡, 1) = 0 (6c)
𝑧(0, 𝑥) = 𝑧0 (𝑥). (6d)

Here 𝜃1, 𝜃2 ∈ [0, 𝜋/2], 𝑝 ∈ C1 ( [0, 1]) with 𝑝 > 0, 𝑞 ∈ C0 ( [0, 1]), and 𝑙0 > 0. The
shape function 𝑏 ∈ 𝐿2 (0, 1) represents the way the saturated scalar control input
𝑢sat (𝑡) = sat𝑙0 (𝑢(𝑡)) ∈ R acts on the system, 𝑧0 ∈ 𝐿2 (0, 1) is the initial condition,
and 𝑧(𝑡, ·) ∈ 𝐿2 (0, 1) is the state of the reaction-diffusion PDE. The system output
takes the form of the measurement 𝑦(𝑡) ∈ R described by

𝑦(𝑡) =
∫ 1

0
𝑐(𝑥)𝑧(𝑡, 𝑥) d𝑥 (7)

where 𝑐 ∈ 𝐿2 (0, 1).

Remark 3 The approach presented in this chapter can be extended in a straightforward
manner to the case of multiple control inputs for which the PDE (6a) is replaced by

𝑧𝑡 (𝑡, 𝑥) = (𝑝(𝑥)𝑧𝑥 (𝑡, 𝑥))𝑥 − 𝑞(𝑥)𝑧(𝑡, 𝑥) +
𝑚∑︁
𝑘=1

𝑏𝑘 (𝑥)sat𝑙𝑘,0 (𝑢(𝑡))

where the shape function 𝑏𝑘 ∈ 𝐿2 (0, 1), for 𝑘 ∈ {1, . . . , 𝑚}, represents the way the
saturated scalar control input sat𝑙𝑘,0 (𝑢(𝑡)) ∈ R acts on the system. However, we focus
the presentation on the single input case (𝑚 = 1) in order to ease the notations.

Let 𝑛𝑠 ∈ N>0 and 𝑙1, . . . , 𝑙𝑛𝑠 > 0 be arbitrarily given. The control design objective
is to achieve the local exponential stabilization of (6), with explicit estimation of the
domain of attraction, while ensuring that

|𝑢 (𝑖) (𝑡) | ≤ 𝑙𝑖 , ∀𝑡 ≥ 0, ∀𝑖 ∈ {1, . . . , 𝑛𝑠}. (8)

3.2 Properties of Sturm-Liouville operators

Reaction-diffusion PDEs such as described by (6) are strongly related to the so-
called Sturm-Liouville operators. We gather in this subsection the key properties
of the Sturm-Liouville operators which will be intensively used in the sequel for
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both control design and stability analysis. Let 𝜃1, 𝜃2 ∈ [0, 𝜋/2], 𝑝 ∈ C1 ( [0, 1]), and
𝑞 ∈ C0 ( [0, 1]) with 𝑝 > 0 and 𝑞 ≥ 0. We define the Sturm-Liouville operator by

A : 𝐷 (A) −→ 𝐿2 (0, 1)
𝑓 ↦−→ −(𝑝 𝑓 ′) ′ + 𝑞 𝑓 (9)

with the domain of the operator defined by

𝐷 (A) = { 𝑓 ∈ 𝐻2 (0, 1) : cos(𝜃1) 𝑓 (0) − sin(𝜃1) 𝑓 ′(0) = 0
cos(𝜃2) 𝑓 (1) + sin(𝜃2) 𝑓 ′(1) = 0}.

Then it holds that the eigenvalues 𝜆𝑛, 𝑛 ≥ 1, of A are simple, non negative, and
form an increasing sequence with 𝜆𝑛 → +∞ as 𝑛 → +∞. The corresponding unit
eigenvectors 𝜙𝑛 ∈ 𝐿2 (0, 1) form a Hilbert basis. The domain of the operator A is
equivalently characterized by

𝐷 (A) =
{
𝑓 ∈ 𝐿2 (0, 1) :

∑︁
𝑛≥1

|𝜆𝑛 |2 | 〈 𝑓 , 𝜙𝑛〉 |2 < +∞
}
.

Moreover we have A 𝑓 =
∑

𝑛≥1 𝜆𝑛 〈 𝑓 , 𝜙𝑛〉 𝜙𝑛 for all 𝑓 ∈ 𝐷 (A).
Let 𝑝∗, 𝑝∗, 𝑞∗ ∈ R be such that 0 < 𝑝∗ ≤ 𝑝(𝑥) ≤ 𝑝∗ and 0 ≤ 𝑞(𝑥) ≤ 𝑞∗ for all

𝑥 ∈ [0, 1], then it holds

0 ≤ 𝜋2 (𝑛 − 1)2𝑝∗ ≤ 𝜆𝑛 ≤ 𝜋2𝑛2𝑝∗ + 𝑞∗

for all 𝑛 ≥ 1 (see, e.g., [34]). Moreover if 𝑝 ∈ C2 ( [0, 1]), we have (see, e.g., [34])
that 𝜙𝑛 (𝜉) = 𝑂 (1) and 𝜙′𝑛 (𝜉) = 𝑂 (

√
𝜆𝑛) as 𝑛→ +∞ for any given 𝜉 ∈ [0, 1].

If we further assume that 𝑞 > 0, an integration by parts and the continuous
embedding 𝐻1 (0, 1) ⊂ 𝐿∞ (0, 1) imply the existence of constants 𝐶1, 𝐶2 > 0 such
that

𝐶1‖ 𝑓 ‖2𝐻 1 ≤
∑︁
𝑛≥1

𝜆𝑛 〈 𝑓 , 𝜙𝑛〉2 = 〈A 𝑓 , 𝑓 〉 ≤ 𝐶2‖ 𝑓 ‖2𝐻 1 , ∀ 𝑓 ∈ 𝐷 (A). (10)

Inequalities (10) and the Riesz-spectral nature [35] of A imply that the series
expansion 𝑓 =

∑
𝑛≥1 〈 𝑓 , 𝜙𝑛〉 𝜙𝑛 holds in 𝐻2 (0, 1) norm for any 𝑓 ∈ 𝐷 (A). Invoking

the continuous embedding 𝐻1 (0, 1) ⊂ 𝐿∞ (0, 1), we deduce in particular that 𝑓 (0) =∑
𝑛≥1 〈 𝑓 , 𝜙𝑛〉 𝜙𝑛 (0) and 𝑓 ′(0) =

∑
𝑛≥1 〈 𝑓 , 𝜙𝑛〉 𝜙′𝑛 (0).
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4 Control design and main results

4.1 Auxiliary command input and spectral reduction

Recalling that the objective is to achieve the local exponential stabilization of (6)
while satisfying the constraints (8) on the 𝑛𝑠 first time derivatives of the com-
mand input 𝑢, we introduce the auxiliary control input 𝑣(𝑡) ∈ R along with
𝑢1 (𝑡), . . . , 𝑢𝑛𝑠−1 (𝑡) ∈ R as follows:

¤𝑢(𝑡) = sat𝑙1 (𝑢1 (𝑡)),
¤𝑢𝑖 (𝑡) = sat𝑙𝑖+1 (𝑢𝑖+1 (𝑡)), 1 ≤ 𝑖 ≤ 𝑛𝑠 − 2

¤𝑢𝑛𝑠−1 (𝑡) = sat𝑙𝑛𝑠 (𝑣(𝑡)).

We define the short notation 𝑢𝑖,sat (𝑡) = sat𝑙𝑖 (𝑢𝑖 (𝑡)). Hence introducing

V =


𝑢

𝑢1
...

𝑢𝑛𝑠−1


∈ R𝑛𝑠 , 𝐽𝑛𝑠 =



0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...

0 0 0 . . . 1
0 0 0 . . . 0


∈ R𝑛𝑠×𝑛𝑠 , 𝐹𝑛𝑠 =


0
...

0
1


∈ R𝑛𝑠

we infer that

¤V(𝑡) = 𝐽𝑛𝑠 sat(𝑙0 ,...,𝑙𝑛𝑠−1) (V(𝑡)) + 𝐹𝑛𝑠 sat𝑙𝑛𝑠 (𝑣(𝑡))
= 𝐽𝑛𝑠Vsat (𝑡) + 𝐹𝑛𝑠𝑣sat (𝑡) (11)

whereVsat (𝑡) = sat(𝑙0 ,...,𝑙𝑛𝑠−1) (V(𝑡)) and 𝑣sat (𝑡) = sat𝑙𝑛𝑠 (𝑣(𝑡)).
We now introduce a function 𝑞 ∈ C0 ( [0, 1]) and a constant 𝑞𝑐 ∈ R so that

𝑞 = 𝑞 − 𝑞𝑐 , 𝑞 ≥ 0. (12)

Therefore, the reaction-diffusion PDE described by (6) along with (11) can be
equivalently represented under the abstract form:

𝑧𝑡 (𝑡, ·) = {−A + 𝑞𝑐Id𝐿2 } 𝑧(𝑡, ·) + 𝑏(𝑥)𝑢sat (𝑡) (13a)
¤V(𝑡) = 𝐽𝑛𝑠Vsat (𝑡) + 𝐹𝑛𝑠𝑣sat (𝑡) (13b)

𝑧(0, ·) = 𝑧0 (13c)

V(0) = V0 =
[
𝑢0 𝑢1,0 . . . 𝑢𝑛𝑠−1,0

]> (13d)

with the Sturm-Liouville operator A defined by (9) and where 𝑣 is the auxiliary
input to perform the control design. Introducing the coefficients of projection
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𝑧𝑛 (𝑡) = 〈𝑧(𝑡, ·), 𝜙𝑛〉 , 𝑏𝑛 (𝑡) = 〈𝑏, 𝜙𝑛〉 , 𝑐𝑛 (𝑡) = 〈𝑐, 𝜙𝑛〉 ,

the projection of (13), along with the measurement equation (7), into the Hilbert
basis (𝜙𝑛)𝑛 reads

¤𝑧𝑛 (𝑡) = (−𝜆𝑛 + 𝑞𝑐)𝑧𝑛 (𝑡) + 𝑏𝑛𝑢sat (𝑡), 𝑛 ≥ 1 (14a)
¤V(𝑡) = 𝐽𝑛𝑠Vsat (𝑡) + 𝐹𝑛𝑠𝑣sat (𝑡) (14b)

𝑦(𝑡) =
∑︁
𝑛≥1

𝑐𝑛𝑧𝑛 (𝑡) (14c)

4.2 Control architecture

As in [19] dealing with the case of a saturation applying only on the control input
but not on its time derivatives (i.e. 𝑛𝑠 = 0), the control strategy takes the form of a
finite-dimensional state-feedback coupled with a finite-dimensional observer. More
precisely, let 𝛿 > 0 be the desired exponential decay rate for the closed-loop system
trajectories and let 𝑁0 ≥ 1 be such that −𝜆𝑛 + 𝑞𝑐 < −𝛿 for all 𝑛 ≥ 𝑁0 + 1. For any
given integer 𝑁 ≥ 𝑁0 + 1, which stands for the dimension of the observer and that
will be specified later, the control strategy is described by:

¤̂𝑧𝑛 (𝑡) = (−𝜆𝑛 + 𝑞𝑐)𝑧𝑛 (𝑡) + 𝑏𝑛𝑢sat (𝑡)

− 𝐿𝑛

{
𝑁∑︁
𝑘=1

𝑐𝑘 𝑧𝑘 (𝑡) − 𝑦(𝑡)
}
, 1 ≤ 𝑛 ≤ 𝑁0 (15a)

¤̂𝑧𝑛 (𝑡) = (−𝜆𝑛 + 𝑞𝑐)𝑧𝑛 (𝑡) + 𝑏𝑛𝑢sat (𝑡), 𝑁0 + 1 ≤ 𝑛 ≤ 𝑁 (15b)
¤𝑢(𝑡) = 𝑢1,sat (𝑡), (15c)
¤𝑢𝑖 (𝑡) = 𝑢𝑖+1,sat (𝑡), 1 ≤ 𝑖 ≤ 𝑛𝑠 − 2 (15d)

¤𝑢𝑛𝑠−1 (𝑡) = 𝑣sat (𝑡) (15e)

𝑣(𝑡) =
𝑁0∑︁
𝑘=1

𝑘𝑧,𝑘 𝑧𝑘 (𝑡) + 𝑘𝑢𝑢(𝑡) +
𝑛𝑠−1∑︁
𝑙=1

𝑘𝑢,𝑙𝑢𝑙 (𝑡) (15f)

where 𝐿𝑛 ∈ R and 𝑘𝑧,𝑘 , 𝑘𝑢 , 𝑘𝑢,𝑙 ∈ R are the observer and feedback gains, respec-
tively.

Remark 4 The idea of splitting the observer architecture, composed of one part with
active correction of the error of estimation (15a) and one part without correction
(15b), is borrowed from [21].

Introducing the error of observation 𝑒𝑛 = 𝑧𝑛 − 𝑧𝑛, the residue of measurement
𝜁 =

∑
𝑛≥𝑁+1 𝑐𝑛𝑧𝑛, and the vectors
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𝑍̂𝑁0 =


𝑧1
...

𝑧𝑁0

 , 𝑍̂𝑁−𝑁0 =


𝑧𝑁0+1
...

𝑧𝑁

 , 𝐸𝑁0 =


𝑒1
...

𝑒𝑁0

 , 𝐸𝑁−𝑁0 =


𝑒𝑁0+1
...

𝑒𝑁

 ,
we infer that

¤̂𝑍𝑁0 = 𝐴0 𝑍̂
𝑁0 + 𝐵0𝐸1Vsat + 𝐿𝐶0𝐸𝑁0 + 𝐿𝐶1𝐸𝑁−𝑁0 + 𝐿𝜁 (16a)

¤V = 𝐽𝑛𝑠Vsat + 𝐹𝑛𝑠𝑣sat (16b)
¤𝐸𝑁0 = (𝐴0 − 𝐿𝐶0)𝐸𝑁0 − 𝐿𝐶1𝐸𝑁−𝑁0 − 𝐿𝜁 (16c)

¤̂𝑍𝑁−𝑁0 = 𝐴1 𝑍̂
𝑁−𝑁0 + 𝐵1𝐸1Vsat (16d)

¤𝐸𝑁−𝑁0 = 𝐴1𝐸
𝑁−𝑁0 (16e)

𝑣 = 𝐾𝑧 𝑍̂
𝑁0 + 𝐾𝑢V (16f)

where 𝐴0 = diag(−𝜆1 + 𝑞𝑐 , . . . ,−𝜆𝑁0 + 𝑞𝑐), 𝐴1 = diag(−𝜆𝑁0+1 + 𝑞𝑐 , . . . ,−𝜆𝑁 +
𝑞𝑐), 𝐵0 =

[
𝑏1 . . . 𝑏𝑁0

]>, 𝐵1 =
[
𝑏𝑁0+1 . . . 𝑏𝑁

]>, 𝐶0 =
[
𝑐1 . . . 𝑐𝑁0

]
, 𝐶1 =[

𝑐𝑁0+1 . . . 𝑐𝑁
]
, 𝐸1 =

[
1 0 . . . 0

]
, 𝐿 =

[
𝐿1 . . . 𝐿𝑁0

]>, 𝐾𝑧 =
[
𝑘𝑧,1 . . . 𝑘𝑧,𝑁0

]
, and

𝐾𝑢 =
[
𝑘𝑢 𝑘𝑢,1 . . . 𝑘𝑢,𝑛𝑠−1

]
. Introducing the augmented vector

𝑍̂
𝑁0
𝑎 = col

(
𝑍̂𝑁0 ,V

)
(17)

we obtain that

¤̂𝑍𝑁0
𝑎 = 𝐴̃0 𝑍̂

𝑁0
𝑎 + 𝐵̃0Vsat + 𝐵̃1𝑣sat + 𝐿̃𝐶0𝐸𝑁0 + 𝐿̃𝐶1𝐸𝑁−𝑁0 + 𝐿̃𝜁 (18a)

𝑣 = 𝐾𝑍̂
𝑁0
𝑎 (18b)

where

𝐴̃0 =

[
𝐴0 0
0 0

]
, 𝐵̃0 =

[
𝐵0𝐸1
𝐽𝑛𝑠

]
, 𝐵̃1 =

[
0
𝐹𝑛𝑠

]
, 𝐿̃ =

[
𝐿

0

]
, 𝐾 =

[
𝐾𝑧 𝐾𝑢

]
.

Now, sinceVsat = V + 𝜙 (𝑙0 ,...,𝑙𝑛𝑠−1) (V) and 𝑣sat = 𝑣 + 𝜙𝑙𝑛𝑠 (𝑣), we have

¤̂𝑍𝑁0
𝑎 = 𝐴̃1 𝑍̂

𝑁0
𝑎 + 𝐵̃1𝑣 + 𝐿̃𝐶0𝐸𝑁0 + 𝐿̃𝐶1𝐸𝑁−𝑁0 + 𝐿̃𝜁

+ 𝐵̃0𝜙 (𝑙0 ,...,𝑙𝑛𝑠−1) (V) + 𝐵̃1𝜙𝑙𝑛𝑠 (𝑣)
= ( 𝐴̃1 + 𝐵̃1𝐾) 𝑍̂𝑁0

𝑎 + 𝐿̃𝐶0𝐸𝑁0 + 𝐿̃𝐶1𝐸𝑁−𝑁0 + 𝐿̃𝜁 + 𝐵̃𝜙ℓ (V𝑎)

where

V𝑎 =

[
V
𝑣

]
, 𝐴̃1 =

[
𝐴0 𝐵0𝐸1
0 𝐽𝑛𝑠

]
, 𝐵̃ =

[
𝐵̃0 𝐵̃1

]
, ℓ = (𝑙0, . . . , 𝑙𝑛𝑠 ).
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Noting finally that V =
[
0 𝐼

]
𝑍̂
𝑁0
𝑎 and from (16f) we infer that V𝑎 = 𝐾̃ 𝑍̂

𝑁0
𝑎 where

𝐾̃ =

[
0 𝐼

𝐾𝑧 𝐾𝑢

]
. Therefore, we obtain that

¤̂𝑍𝑁0
𝑎 = ( 𝐴̃1 + 𝐵̃1𝐾) 𝑍̂𝑁0

𝑎 + 𝐿̃𝐶0𝐸𝑁0 + 𝐿̃𝐶1𝐸𝑁−𝑁0 + 𝐿̃𝜁 + 𝐵̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 ) (19a)

¤𝐸𝑁0 = (𝐴0 − 𝐿𝐶0)𝐸𝑁0 − 𝐿𝐶1𝐸𝑁−𝑁0 − 𝐿𝜁 (19b)
¤̂𝑍𝑁−𝑁0 = 𝐴1 𝑍̂

𝑁−𝑁0 + 𝐵1𝐸1
[
0 𝐼

]
𝑍̂
𝑁0
𝑎 + 𝐵1𝐸1

[
𝐼 0

]
𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 ) (19c)
¤𝐸𝑁−𝑁0 = 𝐴1𝐸

𝑁−𝑁0 . (19d)

Introducing
𝑋 = col

(
𝑍̂
𝑁0
𝑎 , 𝐸𝑁0 , 𝑍̂𝑁−𝑁0 , 𝐸𝑁−𝑁0

)
(20)

we have
¤𝑋 = 𝐹𝑋 + L𝜁 + L𝜙𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 ) (21)

where

𝐹 =


𝐴̃1 + 𝐵̃1𝐾 𝐿̃𝐶0 0 𝐿̃𝐶1
0 𝐴0 − 𝐿𝐶0 0 −𝐿𝐶1

𝐵1𝐸1
[
0 𝐼

]
0 𝐴1 0

0 0 0 𝐴1

 , L =


𝐿̃

−𝐿
0
0

 , L𝜙 =


𝐵̃

0
𝐵1𝐸1

[
𝐼 0

]
0

 .
Remark 5 Due to the structure of the matrix 𝐹, it is easy to see that spC (𝐹) =

spC ( 𝐴̃1 + 𝐵̃1𝐾) ∪ spC (𝐴0− 𝐿𝐶0) ∪ spC (𝐴1). Owing to its definition, the matrix 𝐴1 is
Hurwitz, consequently the matrix 𝐹 is Hurwitz if and only if the matrices 𝐴̃1 + 𝐵̃1𝐾
and 𝐴0 − 𝐿𝐶0 are Hurwitz. Since 𝐴0 is diagonal with simple eigenvalues, the pair
(𝐴0, 𝐶0) satisfies the Kalman condition if and only if 𝑐𝑛 ≠ 0 for all 1 ≤ 𝑛 ≤ 𝑁0. Let
us now focus on the pair ( 𝐴̃1, 𝐵̃1) for which we apply the Hautus test. Let1 𝜆 ∈ R
and 𝑥 = col(𝛼, 𝛽) with 𝛼 ∈ R𝑁0 and 𝛽 ∈ R𝑛𝑠 so that 𝑥> 𝐴̃1 = 𝜆𝑥> and 𝑥>𝐵̃1 = 0.
This is equivalent to

𝛼>𝐴0 = 𝜆𝛼
>, 𝛼>𝐵0𝐸1 + 𝛽>𝐽𝑛𝑠 = 𝜆𝛽>, 𝛽>𝐹𝑛𝑠 = 0. (22)

The latter identity is equivalent to 𝛽𝑛𝑠 = 0. Therefore, recalling that 𝐸1 =
[
1 0 . . . 0

]
,

the second identity now reads
[
𝛼>𝐵0 𝛽1 . . . 𝛽𝑛𝑠−1

]
= 𝜆

[
𝛽1 . . . 𝛽𝑛𝑠−1 0

]
. Hence

𝛽 = 0 while 𝛼>𝐴0 = 𝜆𝛼> and 𝛼>𝐵0 = 0. We deduce that ( 𝐴̃1, 𝐵̃1) satisfies the
Kalman condition if and only if (𝐴0, 𝐵0) satisfies the Kalman condition. This latter
condition holds if and only if 𝑏𝑛 ≠ 0 for all 1 ≤ 𝑛 ≤ 𝑁0.

Remark 6 Since the 𝐸𝑁−𝑁0 dynamics described by (19c) is stable (recall that the
matrix 𝐴1 is Hurwitz) and decoupled from the rest of the modes, see (19), one can
perform the stability analysis in two parts. Indeed, one can first complete the stability
analysis as performed in the next subsections based on a truncated model similar

1 We restrict the study to real eigenvalues and eigenvectors owing to the fact that the eigenvalues
of the matrix 𝐴̃1 are all real.
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to (21) but excluding the 𝐸𝑁−𝑁0 dynamics. Then one can deduce the exponential
stability of the full closed-loop system by invoking an exponential ISS argument for
(19c). Such an approach leads to the derivation of reduced order LMIs compared to
the ones presented in the next theorems. For sake of simplicity and conciseness, we
focus the presentation on stability conditions derived from the full dynamics (21).

Finally, in preparation for the statement of the main results of this Chapter, we
introduce a number of matrices that are useful to relate the different quantities
previously introduced. Defining 𝐸 =

[
𝐼 0 0 0

]
, we have

𝑍̂
𝑁0
𝑎 = 𝐸𝑋. (23)

Introducing 𝐸̃ =
[
01×𝑁0 1 01×(𝑛𝑠−1) 01×(2𝑁−𝑁0)

]
and 𝐺̃ =

[
1 01×𝑛𝑠

]
, we also have

𝑢 = 𝐸̃ 𝑋, 𝜙𝑙0 (𝑢) = 𝐺̃𝜙ℓ (𝐾̃ 𝑍̂
𝑁0
𝑎 ),

hence
𝑢sat = 𝑢 + 𝜙𝑙0 (𝑢) = 𝐸̃ 𝑋 + 𝐺̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 ). (24)

4.3 Main stability results

We now study the local exponential stability, while estimating the domain of attrac-
tion, of the closed-loop system composed of the plant (6) with measured output (7)
and the control law (15). In that case, note that the control design constraints (8)
will be structurally achieved due to the introduction of the saturation mechanisms
(15c-15e) that are embedded into the control architecture and which constrain the
magnitude of the 𝑛𝑠 first time derivatives of the control input 𝑢.

4.3.1 Stability in 𝑳2 norm

We start by stating a stability result for PDE trajectories evaluated in 𝐿2 norm.

Theorem 1 Let 𝜃1, 𝜃2 ∈ [0, 𝜋/2], 𝑝 ∈ C1 ( [0, 1]) with 𝑝 > 0, 𝑞 ∈ C0 ( [0, 1]),
𝑏, 𝑐 ∈ 𝐿2 (0, 1), and ℓ = (𝑙0, . . . , 𝑙𝑛𝑠 ) ∈ (R>0)𝑛𝑠+1. Let 𝑞 ∈ C0 ( [0, 1]) and 𝑞𝑐 ∈ R
be such that (12) holds. Consider the reaction-diffusion system described by (6) with
measured output (7). Let 𝑁0 ≥ 1 and 𝛿 > 0 be given such that −𝜆𝑛 +𝑞𝑐 < −𝛿 < 0 for
all 𝑛 ≥ 𝑁0+1. Assume that 𝑏𝑛 ≠ 0 and 𝑐𝑛 ≠ 0 for all 1 ≤ 𝑛 ≤ 𝑁0. Let𝐾 ∈ R1×(𝑁0+𝑛𝑠)
and 𝐿 ∈ R𝑁0 be such that 𝐴̃1 + 𝐵̃1𝐾 and 𝐴0 − 𝐿𝐶0 are Hurwitz with eigenvalues
that have a real part strictly less than −𝛿 < 0. For a given 𝑁 ≥ 𝑁0 + 1, assume that
there exist a symmetric positive definite 𝑃 ∈ R(2𝑁+𝑛𝑠)×(2𝑁+𝑛𝑠) , 𝛼, 𝛽, 𝛾, 𝜇, 𝜅 > 0, a
diagonal positive definite 𝑇 ∈ R(𝑛𝑠+1)×(𝑛𝑠+1) , and 𝐶 ∈ R(𝑛𝑠+1)×(𝑁0+𝑛𝑠) such that

Θ1 (𝜅) � 0, Θ2 � 0, Θ3 (𝜅) ≤ 0 (25)
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where

Θ1 (𝜅) =

Θ1,1,1 (𝜅) 𝑃L −𝐸>𝐶>𝑇 + 𝑃L𝜙

∗ −𝛽 0
∗ ∗ 𝛼𝛾‖R𝑁 𝑏‖2𝐿2𝐺̃

>𝐺̃ − 2𝑇


Θ2 =

[
𝑃 𝐸> (𝐾̃ − 𝐶)>
∗ 𝜇 diag(ℓ)2

]
,

Θ3 (𝜅) = 2𝛾
{
−𝜆𝑁+1 + 𝑞𝑐 + 𝜅 +

1
𝛼

}
+ 𝛽‖R𝑁 𝑐‖2𝐿2

with Θ1,1,1 (𝜅) = 𝐹>𝑃 + 𝑃𝐹 + 2𝜅𝑃 + 𝛼𝛾‖R𝑁 𝑏‖2𝐿2 𝐸̃
>𝐸̃ . Consider the block repre-

sentation 𝑃 = (𝑃𝑖, 𝑗 )1≤𝑖, 𝑗≤5 with dimensions that are compatible with (17) and (20)
and define

E1 =
{
(𝑧,V) ∈ 𝐿2 (0, 1) × R𝑛𝑠 :


V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧


> 
𝑃2,2 𝑃2,3 𝑃2,5
𝑃3,2 𝑃3,3 𝑃3,5
𝑃5,2 𝑃5,3 𝑃5,5




V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧

 + 𝛾‖R𝑁 𝑧‖2𝐿2 ≤
1
𝜇

}
. (26)

Then, considering the closed-loop system composed of the plant (6) with measured
output (7) and the control law (15), there exists 𝑀 > 0 such that for any initial
condition (𝑧0,V0) ∈ E1 and with a zero initial condition of the observer (i.e.,
𝑧𝑛 (0) = 0 for all 1 ≤ 𝑛 ≤ 𝑁), the system trajectory satisfies

‖𝑧(𝑡, ·)‖2
𝐿2

+
𝑁∑︁
𝑛=1

𝑧𝑛 (𝑡)2 + ‖V(𝑡)‖2 ≤ 𝑀𝑒−2𝜅𝑡
(
‖𝑧0‖2𝐿2 + ‖V0‖2

)
(27)

for all 𝑡 ≥ 0. Moreover, for any fixed 𝜅 ∈ (0, 𝛿], the constraints (25) are always
feasible for 𝑁 selected large enough.

Proof Let the Lyapunov function candidate be defined by

𝑉 (𝑋, 𝑧) = 𝑋>𝑃𝑋 + 𝛾
∑︁

𝑛≥𝑁+1
〈𝑧, 𝜙𝑛〉2 , ∀𝑋 ∈ R2𝑁+𝑛𝑠 , ∀𝑧 ∈ 𝐿2 (0, 1).

The computation of the time derivative of 𝑉 along the system trajectories (14) and
(21) for classical solutions gives

¤𝑉 + 2𝜅𝑉 = 𝑋> (𝐹>𝑃 + 𝑃𝐹 + 2𝜅𝑃)𝑋 + 2𝑋>𝑃L𝜁 + 2𝑋>𝑃L𝜙𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

+ 2𝛾
∑︁

𝑛≥𝑁+1
(−𝜆𝑛 + 𝑞𝑐 + 𝜅)𝑧2𝑛 + 2𝛾

∑︁
𝑛≥𝑁+1

𝑧𝑛𝑏𝑛𝑢sat.

From (24) and using Young’s inequality, we infer that
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2
∑︁

𝑛≥𝑁+1
𝑧𝑛𝑏𝑛𝑢sat

= 2
∑︁

𝑛≥𝑁+1
𝑧𝑛𝑏𝑛𝐸̃ 𝑋 + 2

∑︁
𝑛≥𝑁+1

𝑧𝑛𝑏𝑛𝐺̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

≤ 2
𝛼

∑︁
𝑛≥𝑁+1

𝑧2𝑛 + 𝛼‖R𝑁 𝑏‖2𝐿2
{
𝑋>𝐸̃>𝐸̃ 𝑋 + 𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 )>𝐺̃>𝐺̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

}
.

Moreover, recalling that 𝜁 =
∑

𝑛≥𝑁+1 𝑐𝑛𝑧𝑛, we infer fromCauchy-Schwarz inequality
that

𝜁2 ≤ ‖R𝑁 𝑐‖2𝐿2
∑︁

𝑛≥𝑁+1
𝑧2𝑛. (28)

The two latter estimates imply that

¤𝑉 + 2𝜅𝑉

≤


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )


> 

Θ1,1,1 (𝜅) 𝑃L 𝑃L𝜙

∗ −𝛽 0
∗ ∗ 𝛼𝛾‖R𝑁 𝑏‖2𝐿2𝐺̃

>𝐺̃




𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

 +
∑︁

𝑛≥𝑁+1
Γ𝑛𝑧

2
𝑛

where Γ𝑛 = 2𝛾
(
−𝜆𝑛 + 𝑞𝑐 + 𝜅 + 1

𝛼

)
+ 𝛽‖R𝑁 𝑐‖2𝐿2 . Invoking now Lemma 1, we know

that

∀𝑍̂𝑁0
𝑎 ∈ R𝑁0+𝑛𝑠 , | (𝐾̃ − 𝐶) 𝑍̂𝑁0

𝑎 | ≤ ℓ ⇒ 𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )>𝑇 (𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 ) + 𝐶𝑍̂𝑁0
𝑎 ) ≤ 0.

Owing to (23), we obtain for any 𝑋 ∈ R2𝑁+𝑛𝑠 with | (𝐾̃ − 𝐶)𝐸𝑋 | ≤ ℓ that

¤𝑉 + 2𝜅𝑉 ≤


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )


>

Θ1 (𝜅)


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

 +
∑︁

𝑛≥𝑁+1
Γ𝑛𝑧

2
𝑛.

Since Γ𝑛 ≤ Θ3 (𝜅) for all 𝑛 ≥ 𝑁 + 1, we infer from (25) that

∀𝑋 ∈ R2𝑁+𝑛𝑠 , | (𝐾̃ − 𝐶)𝐸𝑋 | ≤ ℓ ⇒ ¤𝑉 + 2𝜅𝑉 ≤ 0.

Invoking now the Schur complement, the conditionΘ2 � 0 from (25) implies that
𝑃 � 1

𝜇
𝐸> (𝐾̃−𝐶)>diag(ℓ)−2 (𝐾̃−𝐶)𝐸 . Hence, for any 𝑋 ∈ R2𝑁+𝑛𝑠 and 𝑧 ∈ 𝐿2 (0, 1)

so that𝑉 (𝑋, 𝑧) ≤ 1/𝜇, we have ‖diag(ℓ)−1 (𝐾̃−𝐶)𝐸𝑋 ‖ ≤ 1 hence | (𝐾̃−𝐶)𝐸𝑋 | ≤ ℓ.
Combining this result with the one of the previous paragraph, we deduce that

∀𝑋 ∈ R2𝑁+𝑛𝑠 , ∀𝑧 ∈ 𝐿2 (0, 1), 𝑉 (𝑋, 𝑧) ≤ 1
𝜇

⇒ ¤𝑉 + 2𝜅𝑉 ≤ 0.

Consider now an initial condition (𝑧0,V0) ∈ E1 with 𝑧0 ∈ 𝐷 (A). Recalling that
the initial condition of the observer is set equal to zero we note that 𝑉 (𝑋 (0), 𝑧0) ≤
1/𝜇. If (𝑧0,V0) = 0, the trajectory is identically zero. Otherwise, for (𝑧0,V0) ≠

0 we have that ¤𝑉 (𝑋 (0), 𝑧0) ≤ −2𝜅𝑉 (𝑋 (0), 𝑧0) < 0. We infer from a classical
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contradiction argument that 𝑉 (𝑋 (𝑡), 𝑧(𝑡, ·)) ≤ 1/𝜇 for all 𝑡 ≥ 0. This implies from
the above developments that ¤𝑉 (𝑋 (𝑡), 𝑧(𝑡, ·)) + 2𝜅𝑉 (𝑋 (𝑡), 𝑧(𝑡, ·)) ≤ 0 for all 𝑡 ≥ 0
hence 𝑉 (𝑋 (𝑡), 𝑧(𝑡, ·)) ≤ 𝑒−2𝜅𝑡𝑉 (𝑋 (0), 𝑧0). The exponential stability estimate (27)
immediately follows for classical solutions. The result for any (𝑧0,V0) ∈ E1 is
obtained by invoking the concept of mild solutions and by using a classical density
argument [36, Thm. 6.1.2].
For any fixed 𝜅 ∈ (0, 𝛿], the feasibility of the constraints (25) for 𝑁 selected large

enough can be obtained using the same arguments as the ones in [19]. �

4.3.2 Stability in 𝑯1 norm

We also state a stability result for PDE trajectories evaluated in 𝐻1 norm.

Theorem 2 Let 𝜃1, 𝜃2 ∈ [0, 𝜋/2], 𝑝 ∈ C1 ( [0, 1]) with 𝑝 > 0, 𝑞 ∈ C0 ( [0, 1]),
𝑏, 𝑐 ∈ 𝐿2 (0, 1), and ℓ = (𝑙0, . . . , 𝑙𝑛𝑠 ) ∈ (R>0)𝑛𝑠+1. Let 𝑞 ∈ C0 ( [0, 1]) and 𝑞𝑐 ∈ R
be such that (12) holds with the further constraint 𝑞 > 0. Consider the reaction-
diffusion system described by (6) with measured output (7). Let 𝑁0 ≥ 1 and 𝛿 > 0
be given such that −𝜆𝑛 + 𝑞𝑐 < −𝛿 < 0 for all 𝑛 ≥ 𝑁0 + 1. Assume that 𝑏𝑛 ≠ 0
and 𝑐𝑛 ≠ 0 for all 1 ≤ 𝑛 ≤ 𝑁0. Let 𝐾 ∈ R1×(𝑁0+𝑛𝑠) and 𝐿 ∈ R𝑁0 be such that
𝐴̃1 + 𝐵̃1𝐾 and 𝐴0 − 𝐿𝐶0 are Hurwitz with eigenvalues that have a real part strictly
less than −𝛿 < 0. For a given 𝑁 ≥ 𝑁0 + 1, assume that there exist a symmetric
positive definite 𝑃 ∈ R(2𝑁+𝑛𝑠)×(2𝑁+𝑛𝑠) , 𝛼 > 1, 𝛽, 𝛾, 𝜇, 𝜅 > 0, a diagonal positive
definite 𝑇 ∈ R(𝑛𝑠+1)×(𝑛𝑠+1) , and 𝐶 ∈ R(𝑛𝑠+1)×(𝑁0+𝑛𝑠) such that

Θ1 (𝜅) � 0, Θ2 � 0, Θ3 (𝜅) ≤ 0 (29)

where Θ1 (𝜅) and Θ2 are defined as in Theorem 1 while

Θ3 (𝜅) = 2𝛾
{
−
(
1 − 1

𝛼

)
𝜆𝑁+1 + 𝑞𝑐 + 𝜅

}
+
𝛽‖R𝑁 𝑐‖2𝐿2
𝜆𝑁+1

.

Consider the block representation 𝑃 = (𝑃𝑖, 𝑗 )1≤𝑖, 𝑗≤5 with dimensions that are com-
patible with (17) and (20) and define

E2 =
{
(𝑧,V) ∈ 𝐷 (A) × R𝑛𝑠 :


V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧


> 
𝑃2,2 𝑃2,3 𝑃2,5
𝑃3,2 𝑃3,3 𝑃3,5
𝑃5,2 𝑃5,3 𝑃5,5




V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧

 + 𝛾‖R𝑁A1/2𝑧‖2
𝐿2

≤ 1
𝜇

}
. (30)

Then, considering the closed-loop system composed of the plant (6) with measured
output (7) and the control law (15), there exists 𝑀 > 0 such that for any initial
condition (𝑧0,V0) ∈ E2 and with a zero initial condition of the observer (i.e.,
𝑧𝑛 (0) = 0 for all 1 ≤ 𝑛 ≤ 𝑁), the system trajectory satisfies
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‖𝑧(𝑡, ·)‖2
𝐻 1

+
𝑁∑︁
𝑛=1

𝑧𝑛 (𝑡)2 + ‖V(𝑡)‖2 ≤ 𝑀𝑒−2𝜅𝑡
(
‖𝑧0‖2𝐻 1 + ‖V0‖2

)
(31)

for all 𝑡 ≥ 0. Moreover, for any fixed 𝜅 ∈ (0, 𝛿], the constraints (29) are always
feasible for 𝑁 selected large enough.

Proof Let the Lyapunov function candidate be defined by

𝑉 (𝑋, 𝑧) = 𝑋>𝑃𝑋 + 𝛾
∑︁

𝑛≥𝑁+1
𝜆𝑛 〈𝑧, 𝜙𝑛〉2 , ∀𝑋 ∈ R2𝑁+𝑛𝑠 , ∀𝑧 ∈ 𝐷 (A).

The series is connected to the 𝐻1 norm of 𝑧 via (10) because we assumed that 𝑞 > 0.
The computation of the time derivative of 𝑉 along the system trajectories (14) and
(21) for classical solutions gives

¤𝑉 + 2𝜅𝑉 = 𝑋> (𝐹>𝑃 + 𝑃𝐹 + 2𝜅𝑃)𝑋 + 2𝑋>𝑃L𝜁 + 2𝑋>𝑃L𝜙𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

+ 2𝛾
∑︁

𝑛≥𝑁+1
𝜆𝑛 (−𝜆𝑛 + 𝑞𝑐 + 𝜅)𝑧2𝑛 + 2𝛾

∑︁
𝑛≥𝑁+1

𝜆𝑛𝑧𝑛𝑏𝑛𝑢sat.

From (24) and using Young’s inequality, we infer that

2
∑︁

𝑛≥𝑁+1
𝜆𝑛𝑧𝑛𝑏𝑛𝑢sat

= 2
∑︁

𝑛≥𝑁+1
𝜆𝑛𝑧𝑛𝑏𝑛𝐸̃ 𝑋 + 2

∑︁
𝑛≥𝑁+1

𝜆𝑛𝑧𝑛𝑏𝑛𝐺̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

≤ 2
𝛼

∑︁
𝑛≥𝑁+1

𝜆2𝑛𝑧
2
𝑛 + 𝛼‖R𝑁 𝑏‖2𝐿2

{
𝑋>𝐸̃>𝐸̃ 𝑋 + 𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 )>𝐺̃>𝐺̃𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

}
.

Combining the above estimate and (28), we obtain that

¤𝑉 + 2𝜅𝑉

≤


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )


> 

Θ1,1,1 (𝜅) 𝑃L 𝑃L𝜙

∗ −𝛽 0
∗ ∗ 𝛼𝛾‖R𝑁 𝑏‖2𝐿2𝐺̃

>𝐺̃




𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

 +
∑︁

𝑛≥𝑁+1
𝜆𝑛Γ𝑛𝑧

2
𝑛.

where Γ𝑛 = 2𝛾
{
−
(
1 − 1

𝛼

)
𝜆𝑛 + 𝑞𝑐 + 𝜅

}
+

𝛽 ‖R𝑁 𝑐 ‖2
𝐿2

𝜆𝑛
. Using again Lemma 1, we have

that

∀𝑍̂𝑁0
𝑎 ∈ R𝑁0+𝑛𝑠 , | (𝐾̃ − 𝐶) 𝑍̂𝑁0

𝑎 | ≤ ℓ ⇒ 𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )>𝑇 (𝜙ℓ (𝐾̃ 𝑍̂𝑁0

𝑎 ) + 𝐶𝑍̂𝑁0
𝑎 ) ≤ 0.

In view of (23), we deduce that, for any 𝑋 ∈ R2𝑁+𝑛𝑠 so that | (𝐾̃ − 𝐶)𝐸𝑋 | ≤ ℓ,

¤𝑉 + 2𝜅𝑉 ≤


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )


>

Θ1 (𝜅)


𝑋

𝜁

𝜙ℓ (𝐾̃ 𝑍̂𝑁0
𝑎 )

 +
∑︁

𝑛≥𝑁+1
𝜆𝑛Γ𝑛𝑧

2
𝑛.
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Since 𝛼 > 1, we note that Γ𝑛 ≤ Θ3 (𝜅) ≤ 0 for all 𝑛 ≥ 𝑁 + 1. Using in addition the
condition Θ1 (𝜅) � 0, we deduce that ¤𝑉 + 2𝜅𝑉 ≤ 0 for any 𝑋 ∈ R2𝑁+𝑛𝑠 such that
| (𝐾 − 𝐶)𝐸𝑋 | ≤ ℓ. The reminder of the proof follows the same arguments that the
ones reported in the proof of Theorem 1 while using (10) for the evaluation of the
PDE trajectories in 𝐻1 norm. �

4.4 Comments on the main results

4.4.1 Numerical considerations

The design constraints from Theorems 1 and 2 are nonlinear w.r.t. the decision
variables. However, following the same approach that the one reported in [19],
these constraints can be specialized into tractable LMI conditions. These latter LMI
conditions remain feasible provided the order of the observer is selected to be large
enough. We refer the reader to [19] for details.
In the context of Theorem 1 (a similar remark applies in the context of Theorem 2),

the ellipsoid E1 defined by (26) is a subset of the region of attraction of the origin.
A possible approach for enlarging E1 is discussed in [19] (see also [18]) and goes as
follows. For a given symmetric positive definite matrix 𝑅 ∈ R(𝑁+𝑛𝑠+1)×(𝑁+𝑛𝑠+1) , let
𝑟 > 0 be such that

P ,


𝑃2,2 𝑃2,3 𝑃2,5 0
𝑃3,2 𝑃3,3 𝑃3,5 0
𝑃5,2 𝑃5,3 𝑃5,5 0
0 0 0 𝛾

 � 𝑟

𝜇
𝑅 (32)

along with the constraints (25) of Theorem 1. Note that since 𝑅 � 0, (32) can always
be obtained by selecting 𝑟 > 0 sufficiently large. Under (32) we directly infer that(𝑧,V) ∈ 𝐿2 (0, 1) × R𝑛𝑠 :


V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧
‖R𝑁 𝑧‖𝐿2


>

𝑅


V
𝜋𝑁0 𝑧

𝜋𝑁0+1,𝑁 𝑧
‖R𝑁 𝑧‖𝐿2

 ≤ 1
𝑟

 ⊂ E1 (33)

Hence one can try to maximize the size of the ellipsoid E1 by minimizing the
parameter 𝑟 > 0 under the constraints (25).
It is also worth noting that the degrees of freedom available in the choice of the

feedback gain 𝐾 and the observer gain 𝐿 can be used to enlarge the (estimation of
the) domain of attraction. Indeed, fixing 𝐾 and 𝐿 as in Theorems 1-2, one can first
determine a dimension 𝑁 of the observer such that the constraints (25) of Theorem 1
or the constraints (29) of Theorem 2 are feasible. Then one can try to maximize the
domain of attraction by considering successively: 1) 𝐾, 𝐿 as decision variables and
𝑃 as fixed; 2) 𝐾, 𝐿 as fixed and 𝑃 as a decision variable.
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4.4.2 Extension to boundary measurements

We have discussed in this chapter the local stabilization of the reaction-diffusion
PDE (6) under the saturation constraints (8) for a measurement taking the form of
a bounded operator described by (7). The extension to unbounded measurement
operators such as Dirichlet boundary measurement 𝑦𝐷 (𝑡) = 𝑧(𝑡, 0) and Neumann
boundary measurement 𝑦𝑁 (𝑡) = 𝑧𝑥 (𝑡, 0) in the case 𝑝 ∈ C2 ( [0, 1]) can be achieved
by adopting the procedures reported in [28, 29]. This was achieved in [19] in the case
of the reaction-diffusion PDE (6) without constraints on the time derivatives of the
control input. The extension to the setting of this chapter can be easily obtained by
merging the approach reported in [19] with the arguments of the previous sections.
Using arguments from [28, 29], the approach can also be extended to boundary
control provided the saturation function is sufficiently smooth for well-posedness
issues.

5 Numerical illustration

We propose in this section a numerical illustration of Theorems 1 and 2.We consider
the reaction-diffusion PDE (6) with Dirichlet boundary conditions (𝜃1 = 𝜃2 = 0),
𝑝 = 1, 𝑞 = −10, 𝑏(𝑥) = 1[1/10,3/10] (𝑥), and 𝑐(𝑥) = 1[7/10,9/10] (𝑥). These parameters
yield an open-loop unstable plant.
We consider the case of the saturation of the command input 𝑢 and its first time

derivative (𝑛𝑠 = 1) with saturation levels set as 𝑙0 = 𝑙1 = 1. The feedback and
observer gains are set as 𝐾 =

[
−4.3489 −1.8304

]
and 𝐿 = 31.3729, respectively.

The constraints (25) of Theorem 1 and (29) of Theorem 2 are found feasible for
𝑁 = 3, ensuring the exponential stability of the system trajectories in 𝐿2 and 𝐻1
norms.
In order to estimate the domain of attraction of the origin, we consider the

additional constraint (32) with 𝑅 = diag(10, 𝐼, 0.005). The results obtained when
trying to minimize the value of the parameter 𝑟 > 0 for different dimensions 𝑁 of
the observer are summarized in Tab 1.

Dimension of the observer 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6 𝑁 = 7
𝐿2 norm 𝑟 = 4.8310 𝑟 = 3.7142 𝑟 = 3.5604 𝑟 = 3.4689 𝑟 = 3.4238
𝐻 1 norm 𝑟 = 4.7536 𝑟 = 3.5864 𝑟 = 3.5352 𝑟 = 3.4695 𝑟 = 3.4237

Table 1 Results of the estimation of the domain of attraction in 𝐿2 and 𝐻 1 norms for different
dimensions 𝑁 of the observer.

For numerical simulations, we consider the dimension of the observer 𝑁 = 6 and
we set the initial condition of the reaction-diffusion PDE as 𝑧0 (𝑥) = 2.9𝑥(𝑥 − 1)
whileV0 = 0. From the above numerical results, (𝑧0,V0) is checked to be an element
of E1 ∩ E2, hence is in the domain of attraction of the origin for system trajectories
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evaluated in both 𝐿2 and 𝐻1 norms. As shown in Figs. 1-2, the system trajectory
converges exponentially to zero in both 𝐿2 and 𝐻1 norms, confirming the theoretical
predictions of Theorems 1 and 2. Finally, Fig. 3 shows that this exponential decrease
of the system trajectory is obtained despite significant saturations in both position
and rate of change of the command input 𝑢.

6 Conclusion

This chapter discussed the output feedback stabilization of reaction-diffusion PDEs
in the presence of saturations of the command input and its time derivatives. We
provide in the process an estimation of the domain of attraction. The presented
results extend the approach reported in [19] dealing with the case of a sole input
saturation. While the presentation focused on the case of measurements taking the
form of a bounded observation operator, the results presented in this chapter can
be combined with the approach described in [19] in order to tackle unbounded
observation operators. This includes the cases of Dirchlet and Neumann boundary
measurements.
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