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ABSTRACT 

This paper deals with drop and bubble break-up 
modelling in turbulent flows. We consider the case 
where the drop/bubble slip velocity is smaller than or of 
the order of the turbulent velocity scales, or when the 
drop/bubble deformation is mainly caused by the 
turbulent stress (atomisation is not addressed here). 
The deformation of a drop is caused by continuous 
interactions with turbulent vortices; the drop responds to 
these interactions by performing shape-oscillations and 
breaks up when its deformation reaches a critical value. 
Following these observations, we use a model of forced 
oscillator that describes the drop deformation dynamics 
in the flow to predict its break-up probability. Such a 
model requires a characterization of the shape-
oscillation dynamics of the drop. As this dynamics is 
theoretically known only under restrictive conditions 
(without gravity, surfactants), CFD two-phase flow 
simulations, based on the Level-Set and Ghost Fluid 
methods, are used to determine the interface dynamics 
in more complex situations: deformation of a drop in the 
presence of gravity, bubble-vortex interactions. Results 
are compared with experimental data. 
The perspectives to apply this model to breakup in 
emulsification processes are also discussed. 

Keywords: Bubble and droplet dynamics, DNS, breakup 
modelling, turbulent flows, emulsions. 

NOMENCLATURE 

Greek Symbols 
� Mass density, [kg/m3].
µ  Dynamic viscosity, [Pa.s]. 

�� Ratio of densities: �� = �� ��� , [-].

µ� Ratio of viscosities: µ� =
µ�

µ�
� , [-].

�  Frequency of oscillation, [rad/s] 
	  Damping rate of the oscillations, [s-1]. 
�� Fluctuation of velocity, [m/s]. 

σ Surface tension, [N/m]. 
φ     Level-Set function, [m]. 
θ     Colatitude angle of spherical coordinates, [rad]. 
κ Interface curvature, [m-1]. 

Latin Symbols 
d Diameter of the drop or bubble, [m]. 
D    Pipe diameter, [m]. 
R    Radius of the drop or bubble, [m]. 
t     Time, [s]. 
̃ Normalized time, [-]. 
r     Radial position in spherical coordinates, [m]. 
K Constant of the model, [-]. 
P Pressure, [Pa]. 
U Velocity, [m/s]. 
g Acceleration of gravity, [m/s²]. 
D Rate of deformation tensor, [s-1]. 
�� Amplitude of deformation of harmonic 2, [m]. 
��� Normalized amplitude ��� = ��/�, [-]. 
We Weber number, [-]. 
Re Reynolds number, [-]. 
Bo Bond number, [-]. 
F Non-dimensional function, [-]. 
G Non-dimensional function, [-]. 
P Legendre polynomial. 
�� Vortex velocity, [m/s]. 
a Length of large axis of an ellipsoid, [m]. 
b Length of mean axis of an ellipsoid, [m]. 
c Length of short axis of an ellipsoid, [m]. 
d0 Initial distance, [m]. 

Sub/superscripts 
�  Mean value notation.
c Continuous phase. 
d Dispersed phase. 
l Number of a mode of oscillation. 
crit Critical value that indicates breakup. 
th Values predicted by a theory. 
ASC Used to characterise rising motion.    
OSC Used to characterise oscillating motion. 
∞ Used to characterise a value in steady state. 
[ ] Jump notation at the interface. 



INTRODUCTION 

 In industrial chemical processes, turbulent flows 
with dispersed deformable media (drops, bubbles) are 
commonly encountered and a better control of the size 
of the drops is desired for transport, separation issues, 
and maximization of interfacial area. Examples include 
oil industry with problems of separation of oil and 
water, health and food industry with the need to produce 
emulsions of very fine droplets in high-pressure 
homogenizers, nuclear energy industry with pulsed 
extraction columns for treatment of irradiated nuclear 
fuel or chemical industry for enhancement of mass 
transfers in gas-liquid reactors. 
In CFD Eulerian codes, population-balance approaches 
are often used to calculate the drop (or bubble) size 
distribution. These approaches require closure models 
for coalescence and breakup phenomena. 
The present study focuses on breakup phenomena 
occurring in turbulent flows. A recent review by Liao 
and Lucas (2009) has shown that several models have 
been derived to predict breakup probability, breakup 
frequency, daughter-drop size distribution after breakup. 
Most of these existing models use a breakup criterion 
based on a critical Weber number ������: it consists in 
a static force balance between the hydrodynamic forces 
responsible for deformation (turbulent stresses at the 
scale of the drop) and the force of surface tension that 
resists to shape deformations. Performing a comparison 
of these models, Liao and Lucas have shown that they 
can predict very different breakup frequencies and 
daughter drop size distributions when applied to a 
process that is not the one for which they have been 
calibrated. The conclusion of their paper is that physical 
improvements are needed for breakup modelling. 
We are currently developing a new approach by 
modelling the deformation process of a drop in a 
turbulent flow using a scalar parameter ��� that describes 
its deformation. In such an approach, the breakup 
criterion is based on a critical deformation �� ����� . This 
new model calculates the dynamic response of drops 
that are excited by turbulent fluctuations of the 
continuous phase. As shown in Galinat et al. (2007) or 
in Maniero et al. (2012), it gives better predictions of 
breakup probability than models based on a ������ 
when compared to experimental breakup statistics. 
Section 1 of this article presents our new approach and 
the physics on which it is based. Then, predictions of 
the breakup probability with our new model are 
compared with experimental statistics on heptane drops 
in a turbulent pipe flow downstream of a restriction. 
This section will show that our model requires a 
description of the drop interface dynamics, which lies 
on two key-parameters: the frequency of oscillation 
�� and their damping rate 	� . Nevertheless, these
parameters are known only in a limited number of 
situations: in case of deformations of low amplitudes, in 
the absence of gravity effects and without surfactants 
adsorbed at the interfaces. 
The objective of the present paper is to show how Direct 
Numerical Simulations can be used to calculate �� and

	� in situations of practical interest. To achieve this
goal, two-phase flow simulations using the Level-Set 
method are performed. Section 2 describes the 
numerical methods. 
Then, after validation of the code, three examples of 
interface dynamics are emphasized in section 3: (a) the 
study of influence of gravity on ��  and 	� for drops,
(b) first results on the effect of surface contamination on 
the shape-oscillations and (c) the study of the interaction 
between a rising bubble and a single strong vortex. 
Finally, the conclusion will introduce several 
perspectives of development of this model. 

A DYNAMIC MODEL OF DROP DEFORMATION 
As example of turbulent flow, let us consider a water 
pipe flow downstream of a restriction at a Reynolds 
number of 2100 (based on the orifice diameter), where 
turbulence is generated after the orifice, like in Galinat 
et al. (2007). Fig. 1 shows experimental pictures of a 
colored heptane drop travelling through this flow. The 
velocity field has been measured by PIV. From the 
results, we calculate a local and instantaneous turbulent 
Weber number We based on the square of the 
fluctuating velocity �����  between two points distant 
of the drop diameter � (taking the maximum of the 
difference between vertical, transversal and diagonal 
components): �� =  � ����� �/!. By averaging 
�����  in time, we obtain a map of the mean turbulent 
Weber number ��""""" = � ����� """""""""�/!, shown in fig. 1. It
has been found that ��""""" is always one order of
magnitude higher than other Weber numbers that 
characterize the inertial drop deformation due to its 
mean slip velocity or due to the mean flow deceleration 
in the flow direction after the orifice, indicating that the 
turbulent fluctuations are the dominant breakup cause in 
this flow. Nevertheless, breakup locations do not always 
correspond to locations of maximum values of ��""""".

Figure 1: Breakup of a heptane drop downstream of a pipe 
restriction: deformation of the drop and map of ��""""" (crosses
indicate breakup locations). Figure from Galinat et al. (2007). 

Fig. 1 illustrates also the deformation process of a drop 
leading to its breakup. As mentioned by Risso and Fabre 
(1998), the time evolution of the surface area of the 
drop shows the existence of a characteristic angular 
frequency �� which is the frequency of oscillation of its
shape. The time scale � = 2$/�� is thus characteristic 
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interface dynamics. As already mentioned, theoretical 
expressions ��

�% and 	�
�% for these parameters have been

derived by several authors; for example, Miller and 
Scriven (1968) gave 

��
�% = ��

∗ − =>
?>@²

ABC��  (2) 

	�
�% = =>

?>@²
D−2A² + E + ABC��F.  (3) 

F and G are functions of the density and viscosity ratios 
given in appendix A, GHI = JIKL 

∗ G²/MI, and KL
∗ =

�LRS/��TJI + LJU  GT  V.W. Expressions (2) and (3)
result from an asymptotic development of the solution at 
large Reynolds number of oscillation C��. They are 
valid in the linear regime of oscillation (i.e for low 
amplitudes of deformation), disregard the effect of 
gravity, and are restricted to the case of pure fluids. 
Thus, it is requested to model the interface dynamics in 
more complex configurations such as in concentrated 
emulsions with surfactants. One way to reach this goal 
is to perform Direct Numerical Simulations in order to 
include complexity progressively. 
Next section describes the numerical methods used in 
our CFD two-phase flow code.  

NUMERICAL METHODS FOR TWO-PHASE 
FLOW SIMULATIONS 

Configurations which are studied in the context of 
interface dynamics include axisymmetric and three-
dimensional simulations of shape-oscillations of rising 
drops and bubbles, interaction between a bubble and a 
vortex, and breakup of bubbles/drops in turbulent flows. 
Direct Numerical Simulations based on the Level-Set 
and Ghost-Fluid methods are performed, their outlines 
are briefly described in this section. 

In the Level-Set method, the interface is numerically 
represented by the zero-level curve of a continuous 
function φ which is defined as the algebraic distance to 
the interface. Its displacement in a velocity field U is 
computed by solving an advection equation: 

Xφ
X�

+ Y. Zφ = 0  (4) 

In the framework of a one-fluid approach, the fluid 
motion is calculated by solving the incompressible 
Navier-Stokes equations by means of a projection 
method: 

∇. Y = 0 
(5) 

�Y
�

+ �Y. Z Y + 
∇\

��φ 
=

∇. �2]�φ ^ 
��φ 

+ _ 

where P is the pressure, ] the dynamic viscosity, � the 
density, _ the acceleration of the gravity and D the rate 
of deformation tensor. I 
n these equations, �, ] and P are discontinuous across 
the interface. The normal stress balance at the interface 
assumes that 

`\a = !κ + 2 `] �bc/�da,  (6) 

where bc is the velocity normal to the interface, n is the 
coordinate in the direction normal to the interface, ! the 
surface tension and κ the interface curvature. 

To handle the discontinuity of the pressure at the 
interface and calculate accurately its derivatives, a 
Ghost Fluid method has been implemented: the jump 
condition is extrapolated in one ghost cell on each side 
of the interface. The numerical formulation for the 
viscous term and the pressure jump at the interface 
follows the method detailed in Sussman et al. (2007). 
An algorithm of redistanciation is used to ensure that φ 
remains a distance function at each time step, as 
described in Tanguy and Berlemont (2005). 

These partial differential equations are discretized using 
the finite volume technique on staggered grids. Spatial 
derivatives are estimated with a second order central 
scheme while a fifth order WENO scheme is used for 
the convective terms, which ensures that the solution is 
robust. Temporal derivatives are approximated with a 
second-order Runge-Kutta scheme. 

DNS OF INTERFACE DYNAMICS 

This section illustrates how CFD is used to calculate 
interface dynamics in several configurations. First, the 
shape-oscillations of drops and bubbles are calculated 
and the results used to validate our numerical code. 
Then, the linear shape-oscillations of rising drops are 
simulated in order to assess the influence of gravity on 
the oscillations and to extend the theoretical results in 
that case. Thirdly, another configuration of interaction 
between a rising bubble and a single vortex is studied in 
order to characterise the interface dynamics for non-
linear deformations as those occurring in a turbulent 
flow.  

Validation for interface dynamics problems 

The numerical methods previously presented are applied 
to the calculation of shape-oscillations of deformed 
drops and bubbles. The results obtained are validated 
against the linear theory of oscillation, or experiments. 

Comparison with theory and mesh convergence 

Axisymmetric simulations of the shape-oscillations of 
an initially deformed drop in the absence of gravity are 
performed. The imposed deformation corresponds to the 
mode l=2 of oscillation with a low initial amplitude 
���0 /C = 0.1. In order to characterise the oscillations, 
we define a Reynolds number of oscillation, that 
compares the inertial effects of deformation over the 
viscous damping: C�efg = �g  �!/��gCh  i/� C²/µg.
Three values of C�efg are investigated: 50, 100, 200. 
Calculations are performed on a regular mesh of 16, 32 
and 64 grid points per drop radius so as to study mesh 
convergence of the results. 



Thanks to the Level-Set function φ, the drop contour in 
spherical coordinates, 7�j,   is extracted from the 
simulation at each time step, and the interface is 
decomposed into spherical harmonics, reading: 

7�j,  =  C + ��� \��cos j ,                  (7)
\� being the Legendre polynomial of order l=2. 
From the time evolution of ��, the frequency ��  and
damping rate 	� of the oscillations can be obtained and
compared against the predictions of the linear theory 
��

�% and 	�
�%:

��� =  ���0 cos� ��   �n+( �.  (8) 

Table 1: Validation of the axisymmetric calculation of the 
shape-oscillations of non-rising drops. 

Relative errors are reported in table 1 for the three 
C�efg. Results show that the numerical code gives very 
accurate results on both frequency and damping rates in 
this range of C�efg, for grids containing 32 or 64 points 
in a radius. Spatial convergence of the simulations is 
also proved by the tests. 
Thus, these results provide a good validation of our 
axisymmetric numerical code to deal with interface 
dynamics problems. In order to validate also the 
Cartesian version of the code, a 3D simulation of the 
shape-oscillations of a bubble is carried out at  C�efg =
50 on a grid containing 16 cells in a radius. Results 
obtained are superimposed on fig. 4 with the curves 
given by the axisymmetric version of the code with 8, 
16, 32 and 64 grid points in a radius. 

Figure 4: Validation of the 3D Cartesian calculation of the 
shape-oscillations of a non-rising bubble at C�efg = 50. 
Figure from Lalanne (2012). 

Fig. 4 proves again the mesh convergence of the 
numerical simulations for the axisymmetric 
calculations, and shows that the accuracy of the 
oscillations calculated by the 3D Cartesian version of 

the code is comparable to that of the axisymmetric 
calculation with the same number of grid points.  
We can then conclude that a calculation with 16 points 
per bubble radius at C�efg = 50, either in an 
axisymmetric cylindrical or in a 3D Cartesian domain, 
gives accurate results in accordance with the theory.    

Comparison with an experiment 
The code is then validated by comparison with 
experimental measurements of the shape-oscillations of 
a slow-rising bubble thanks to a high-speed camera. In 
the experiment, the bubble is initially attached to a 
capillary; its sudden translation causes the detachment 
of the bubble that rises in still water while performing 
shape-oscillations. The experiment was carried out in 
ultra-pure conditions in order to avoid contamination 
due to surfactants. The oscillations, characterized 
by C�efg = 164, are described using the first ten modes 
and the initial amplitudes, obtained from the 
experimental shape at the instant of detachment, are 
larger than in the previous case (���0 /C = 0.18 . The 
Bond number pq = ��� − �� r�²/! is very low
(pq = 0.08  to ensure that gravity has negligible effects 
on both the oscillations and the mean shape of the 
bubble (which remains spherical during the rising 
motion). 
The shape of the interface is decomposed in spherical 
harmonics (until order 10): 

7�j,  =  ∑ �-� \-�cos j it
-ut .  (9) 

Figure 5: Time evolution of ��, �h and �v: experiments
(black lines) and simulations (blue lines). 

Fig. 5 compares the time evolution of ��, �h and �v 
between the experiment and a simulation on a mesh 
with 32 nodes per bubble radius. 
Results show an excellent agreement between the 
numerical simulations and the experiment for the 
different modes of oscillation, with a very good 
accuracy even for strongly damped oscillations 
(amplitudes less than 0.005R), validating again the use 
of the present code to capture bubble or drop interface 
dynamics. 

Mesh : N grid 
points on R 

C�efg
= 50 

C�efg
= 100 

C�efg
= 200 

Error 
on 
��

�%

16 -0.07% -0.51% -0.43% 
32 0.06% 0.07% -0.27% 
64 0.19% 0.01% -0.09% 

Error 
on 
	�

�%

16 0.18% 0.91% 5.67% 
32 -0.68% -0.45% -0.07% 
64 -1.15% -1.07% -0.76% 

nodes 

nodes 



Shape-oscillations of rising drops 

We have achieved axisymmetric simulations of a drop 
rising in a quiescent liquid, its shape being initially 
elongated in the vertical direction. Thus, while rising, 
the drop performs shape-oscillations. 
The objective is here to understand the effect of the 
rising motion on the shape-oscillation dynamics, by 
comparing the frequency and damping rates values with 
those predicted by the linear theory of oscillation, ��

�%

and 	�
�%, in the absence of gravity.

The problem can be parameterized by four non-
dimensional numbers: ratios of density and viscosity �� 
and µ�, a Reynolds number of translation  C�∞ =
�g�∞�/µg based on the rising drop velocity �∞, and a
Reynolds number of oscillation C�efgbased on the 
oscillating velocity. For these simulations, ��=0.99 and 
µ� = 1 (liquid-liquid configuration), C�efg is varied 
between 50 and 200, and  C�∞ ranges from 60 to 600. 
The initial deformation of the drop is set to ��/C = 0.1: 
it is low enough to ensure a linear regime of oscillation. 
The regular grid used for the simulation is composed of 
32 nodes per drop radius. 

Let us examine the shape-oscillations of this rising drop. 
At C�efg = 100, fig. 6 presents the time evolution of 
the Reynolds number of rising C�wfg� = �g�� �/µg
for four different values of C�∞, and fig. 7 displays the 
corresponding time evolution of the second harmonic 
amplitude. 

Figure 6: Time evolution of Reynolds number of rising for 
four drops at C�efg = 100, and C�∞ = 150, 200, 270, 290.
Figure from Lalanne (2012). 

Figure 7: Time evolution of amplitude of harmonic 2 for four 
rising drops at C�efg = 100, and C�∞ = 150, 200, 270, 290.
Dotted line: calculation for a non-rising drop. Figure from 
Lalanne (2012). 

For each drop, the rising velocity increases until the 
steady state is reached. The translational velocity is very 
slightly affected by the presence of the shape 
oscillations. The evolution of the drop shape with time 
shows that �� globally decreases during the acceleration 
stage since the drop becomes an oblate spheroid due to 
the rising motion. On this curve, the shape-oscillations 
due to the initial perturbation are also visible. In order to 
analyse them and conclude about the effect of the rising 
motion (i.e the effect of C�∞), we apply a high-pass 
filter at frequency ��

�% to the time evolution of �� in
order to separate the evolution of the drop mean shape 
(which flattens with time) from that of the shape- 
oscillations. Then, we measure frequency and damping 
rate of the oscillations on the filtered signal. We observe 
that the frequency of oscillation is maximum for the 
non-rising drop and decreases slightly (-10%) when the 
rising velocity increases. On the contrary, we note a 
strong increase of the damping rate (until +300%) of the 
oscillations for the cases at high C�∞. It is interesting to 
note that ��  and 	�  do not keep constant values for a
given set of parameters (C�efg, C�∞) but instead they 
evolve monotonically with time.  

This observation leads us to relate the decrease of the 
eigenfrequency and the increase of the damping rate 
with the drop instantaneous velocity, which increases 
with time. Fig. 8 and 9 display the results for drops at 
C�efg = 50, 100, 200 and several C�∞: ��  and 	�  are
presented as a function of an instantaneous Weber 
number ��� =  0.5 �C�wfg� /C�efg ² that
compares the magnitudes of rising and oscillatory 
motions. Doing so, time evolutions of both frequency 
and damping rate seem to collapse on single master 
curves. Despite a certain scattering of the results that 
indicates that other factors may play a role on the 
oscillations (drop acceleration for example), these plots 
tend to show that the deviation from the theory is 
mainly controlled by the instantaneous velocity. 

Figure 8: Frequency of oscillation of a rising drop normalized 
by the theoretical frequency for a non-rising drop, versus 
��� . Figure from Lalanne et al. (2013). 

Thus, the main effect of the rising motion on the shape-
oscillations of drops is to increase the rate of dissipation 
of oscillation energy, provided that the rising velocity is 
large enough compared to the oscillating velocity.  

̃ = ��
�%/2$  

̃ = ��
�%/2$  



For non-rising drops, the linear theory of oscillation 
(Miller and Scriven (1968)) shows that the dissipation 
takes place in boundary layers located on both sides of 
the interface, as illustrated in fig. 10, which represents 
the vorticity field of an oscillating drop. 

Figure 9: Damping rate of oscillation of a rising drop, 
normalized by the theoretical damping rate for a non-rising 
drop, versus ��� . Figure from Lalanne et al. (2013). 

From our numerical simulations, we extract the vorticity 
field. For slow-rising and oscillating drops, i.e when the 
damping rate of the oscillations is not found to be 
affected by the translating motion, we observe that the 
vorticity of the flow is the sum of the vorticity involved 
in the motion of the same slow-rising drop which does 
not oscillate (called “pure rising flow”), and of the 
vorticity involved in the motion of the same oscillating 
drop that does not rise (called “pure oscillation flow”). 
Hence, pure rising and pure oscillation flows do not 
interact in the case of a slow-rising and oscillating drop, 
explaining why 	� remains close to 	�

�%. However, for
rapidly rising and oscillating drops, this is not the case: 
we observe that vorticity contributions of rising and 
oscillatory motions interact, leading to an increase of 
the oscillation energy dissipation (cf Lalanne et al. 
(2013)). 

Figure 10: Vorticity field (normalized by ��
�%) of an

oscillating and non-rising drop at C�efg = 100. The boundary
layers of oscillation visible in this figure are the main location 
of the dissipation of the energy of oscillation. Figure from 
Lalanne et al. (2013). 

Consequently, the effect of the rising motion on the 
damping rate of oscillation can be explained by looking 

at the vorticity field during the oscillating motion of the 
droplets. 
For micrometer or millimeter-sized droplets like those 
commonly involved in many industrial flows, the Weber 
number based on the rising velocity – as defined here - 
can hardly be larger than unity. Therefore, the present 
results (fig. 8 and 9) show that the predictions of the 
linear theory of oscillation, which do not include the 
effect of gravity, provide good estimations of ��  and
	�  (less than 5% of discrepancy for ��  and less than
30% of discrepancy for 	� ). This is a practical
conclusion, useful to know the limits where the linear 
theory of oscillation remains valid in order to predict the 
time scales of the interface dynamics. 

Oscillations of contaminated rising drops 

Let us consider now the experimental investigation of a 
shape-oscillating heptane drop which is rising in non 
ultra-pure water, carried out by Abi Chebel et al. 
(2012). For different drop diameters (millimeter-sized 
droplets), the authors have measured the damping rates 
of the oscillations. Results are displayed in table 2 for 
two contrasted drop diameters. The experimental 
measurements show that 	� overestimates by 200% or
300% the theoretical prediction of 	�

�%, which does not
consider either the rising motion or any surface 
contamination. Using numerical results of fig. 9, we can 
predict what should be the damping rate of the 
oscillations in the case of pure fluids and clean 
interfaces for these rising drops. It is found that the 
measured damping rates in the experiment are twice 
these values. Thus, another mechanism is involved: the 
strong increase of 	� can be related to the presence of
contaminants adsorbed at the liquid-liquid interface. 
Indeed, it is extremely difficult to carry out experiments 
with pure fluids in liquid-liquid dispersions. In that 
experiment, the contamination of the interfaces has been 
proved by calculating the experimental drag coefficient 
of the drops, which is found to match that of a solid 
sphere and not that of a drop with clean interface. We 
conclude from table 2 that the presence of surface-active 
contaminants alters significantly the shape-oscillation 
dynamics. This is probably related to additional 
tangential stresses that appear close to the interface 
because of contamination, which may increase strongly 
the dissipation within the boundary layers of oscillation. 

Table 2: Experimental results for oscillating and rising 
heptane drops in non ultra-pure water. From Abi Chebel et al. 
(2012). 

Further studies are required to characterise completely 
the interface dynamics of drops in the presence of 
surfactants, which depends on the transport properties of 
these adsorbed contaminants at the interfaces. 

d 
(mm) 

C�efg C�∞ �� at 
steady 
state 

Measured 
	� /	�

�%
Prediction of 
	� /	�

�% for 
pure fluids 

0.59 120 17 0.01 2.0 1.0 
3.52 293 480 1.34 2.7 1.4 



Bubble-vortex interaction 

In turbulent flows, bubble (or drop) breakup can result 
from either an interaction with a single intense vortex or 
with a series of moderate vortices that make the bubble 
accumulate energy of deformation until breakup (Risso 
and Fabre (1998)). Therefore, the elementary key 
mechanism responsible of the deformation of a bubble 
(or a drop) is its interaction with a vortex. An 
experimental study of breakup of a rising bubble in a 
turbulent flow, carried out by Ravelet et al. (2011), has 
shown that large bubble deformations caused by the 
turbulent fluctuations of the flow are quickly damped, 
and the authors have not observed shape-oscillations of 
the bubbles after interaction with strong vortices, 
contrary to what has been previously reported in 
microgravity conditions (Risso and Fabre 1998). 
In order to investigate this open question of interface 
dynamics in a turbulent flow in the presence of gravity, 
three-dimensional simulations of the interaction 
between a rising bubble and a single vortex have been 
carried out. The objective of the simulations was to 
study the response of the bubble after large 
deformations of its shape. 

The non-dimensional parameters that describe the rising 
bubble are: the ratio of density ��=0.001, the ratio of 
viscosity µ� = 0.016, the Reynolds number of oscillation 
C�efg= 50, the Reynolds number of rising C�x= 89 or 
142. A Hill’s vortex of same dimension than the 
diameter of the bubble has been chosen in order to 
provoke bubble large scale deformations. Indeed, it is 
admitted since the pioneering works of Hinze and 
Kolmogorov that vortices of same size as the bubble 
diameter are the most efficient for breakup. 
The initial condition of the calculation is illustrated in 
fig. 11. It is the superimposition of the velocity field 
induced by a Hill’s vortex - known analytically, 
involving a potential flow of characteristic velocity ��t, 
which is the initial velocity of the Hill’s vortex (cf 
Morton (2004)) - and of the flow corresponding to a 
rising bubble at terminal velocity and characterized by 
C�x(calculated through a preliminary simulation). To 
avoid singular conditions, the vortex and the bubble are 
off-centered from a distance �t = √2/2 C.  
The mesh is Cartesian but non uniform far from the 
bubble. The bubble dynamics is captured thanks to the 
use of 16 grid points per bubble radius. 
The intensity of the interaction between the vortex and 
the bubble is scaled by a Weber number based on the 
velocity �� of the vortex at the instant it encounters the 
bubble: ��� = �g��

� �/!.

Fig. 12 displays pictures of the simulation in the case of 
a very intense interaction:  ��� = 16.5 and C�x= 142. 
Before the interaction, the bubble is flattened with an 
aspect ratio of 1.84 because of its rising motion. During 
the interaction, we do not observe bubble breakup but 
large and non-axisymmetric deformations. To obtain an 
accurate description of the global shape of the bubble 
(large scales), we calculate its equivalent ellipsoid.  

Figure 11: Initial condition (vorticity field) for a 3D-
calculation of the interaction of a rising bubble and a Hill’s 
vortex. Figure from Lalanne (2012). 

It is defined as the ellipsoid of same inertia matrix as the 
bubble. In the following, we note a the length of the 
major semi-axis of the ellipsoid, b the length of the 
intermediate semi-axis, and c the length of the shorter 
semi-axis. Fig. 13 displays the evolution of a, b and c in 
the simulation that corresponds to fig. 12. 

The bubble shape is initially symmetric around a 
vertical axis (see picture 1 of fig. 12) and its rising 
motion is steady. When the vortex arrives at the bubble 
location, it causes a large elongation of the bubble and 
consequently a strong increase of the length of its major 
axis. In the same time, its medium axis is slightly 
reduced, leading to a shape close to a cylinder with a 
large major axis and two small other axes. The 
maximum deformation can be seen in picture 3 of fig. 
12. It is remarkable that the symmetry of the bubble has
changed from an axisymmetric oblate shape before the 
interaction to an axisymmetric prolate shape at the 
maximum of deformation. Finally, the vortex leaves the 
bubble, which relaxes towards its equilibrium shape 
(pictures 4-7 of fig. 12). Its rising motion becomes 
unsteady and follows a zig-zag path. 

Figure 12: Bubble-vortex interaction at ��� = 16.5 and
C�∞= 142. Colors correspond to vorticity levels. Time 
increases with the picture numbers. Note that picture 1 is the 
initial condition where the bubble has an oblate shape, and 
picture 3 is that of maximum deformation where the bubble 
has a prolate shape (close to a cylinder). 
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It can be observed in fig. 13 that the major part of the 
large perturbation induced by the vortex is quickly 
attenuated. The residual departure from the initial shape 
leads to slowly damped shape oscillations of low 
amplitudes. 

Consequently, the bubble-vortex interaction can be 
described in two phases: the first one corresponds to a 
large deformation of the bubble, which is quickly 
damped; the second one corresponds to the relaxation of 
the bubble through linear oscillations.  

Figure 13: Time evolution of bubble semi-axes during its 
deformation by a vortex at ��� = 16.5 and C�∞= 142. 

Various simulations have been carried out from 
different sets of parameters (different rising bubble 
velocities and vortex intensities). The decomposition of 
the interaction into two phases is relevant for every 
case.  
During the first phase of large deformation, it is 
observed that the length of the major axis of the bubble 
is proportional to ���. Fig. 14 shows the time evolution 
of the length of the major axis for different cases, the 
time being normalized by the frequency of oscillation of 
the rising bubble given by the theory of Meiron (1989). 
The duration of the large deformation phase is found to 
be very close to one period of oscillation. 
These conclusions are in agreement with the 
experimental observations of Ravelet et al. (2011), who 
have also noticed that: (1) large deformations 
correspond to prolate bubble shapes, (2) the duration of 
the large deformation is equal to one period of 
oscillation, and (3) statistics of large bubble 
deformations are proportional to statistics of large 
turbulent fluctuations. 

Hence, in case where the turbulent intensity is weak like 
in the experiment of Ravelet et al. (velocity fluctuations 
of about 20% of the mean velocity components), the 
bubble can be considered as a strongly damped 
oscillator, breakup is rare and occurs only during the 
interaction with a strong vortex characterized by a large 
���. 

Note that, in the simulations, breakup is observed when 
the bubble elongation (compare to its initial length) is 
about one diameter, scaling the maximum amplitude a 
bubble can reach before breaking up. 

Figure 14: Time evolution the bubble elongation defined as 
(a – a(t=0))/R and normalized by ���, for several bubble-
vortex interactions at C�∞= 89 or 142, and 1.5 ≤  ��� ≤ 16.5.

CONCLUSION 

 A new dynamic 1D approach to predict breakup 
probability of drops or bubbles in turbulent flows has 
been presented. This approach uses a scalar to describe 
the dynamics of deformation of a bubble/drop in a 
turbulent flow and predicts breakup occurrences on the 
basis of a critical value of deformation, contrary to most 
of the other existing approaches that consider a critical 
Weber number. The deformation dynamics is modelled 
as a linear oscillator forced by the turbulent fluctuations 
experienced by the particle along its trajectory in the 
flow. Two time scales are used to characterize the drop-
oscillator: its frequency of oscillation �� and the 
damping rate 	�.  
These parameters are theoretically known in limited 
cases: in the absence of gravity, for low-amplitude 
oscillations and in the absence of surfactants. The 
purpose of this paper was to show how CFD simulations 
(but also complementary experiments) can be used to 
determine these parameters which are characteristics of 
the interface dynamics.  
In this way, we have studied the influence of gravity on 
��  and 	� . For liquid-liquid flows, this influence is
generally low due to low density differences. In return, 
for gas-liquid flows, buoyancy effects have to be 
accounted for. Hence, simulations of the interaction 
between a rising bubble and a Hill’s vortex reveals 
overdamped oscillations after a large deformation 
caused by the vortex. This example of simple 
configuration is a first step towards a better description 
of the complexity of breakup phenomenology in 
turbulent flows, where interactions between a bubble (or 
a drop) and vortices occur continuously and randomly. 

With the aim of handling practical situations like those 
involved in chemical processes, other effects have to be 
considered, like those related to the presence of 
surfactants adsorbed at the interfaces, which provide 
them additional properties of elasticity and viscosity. 

t̃ = t ��/2$

89 

142 

a 

c 
b 



Thanks to comparisons between experimental and 
numerical measurements of the damping rate of 
oscillating drops, it has been shown in this paper that 
the presence of contaminants can modify drastically the 
interface dynamics. Further studies, combining 
experimental and numerical tools, are required to tackle 
more accurately the effect of surfactants on the shape-
oscillations dynamics. Moreover, to deal with breakup 
in concentrated emulsions (e.g. of breakup in high-
pressure homogenizers or in static mixers), we should 
also be able to determine how drop interactions alter the 
droplet dynamics with respect to the case of an isolated 
drop, following the work of Galinat et al (2007) where 
break-up statistics in concentrated emulsions up to 40% 
have been analysed. 

Currently, the proposed model can predict breakup 
probability of a single drop (with clean interface) 
travelling in a turbulent inhomogeneous flow.  
One objective is to extend this model to turbulent 
bubbly flows or emulsions with surfactants, after 
numerical and experimental elementary studies of the 
interface dynamics.  
Another objective is to use the calculated deformation 
of a drop at the instant of breakup in order to quantify 
its excess surface energy, and to predict the number and 
size of daughter drops that will be formed after breakup. 
We are currently focusing on the validation of such an 
approach to predict daughter-drop size distribution 
against experimental data, including cases of binary 
breakup and breakage into several droplets.  
A longer term goal is to develop new breakup kernels 
that could be implemented in balance population 
models. 
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APPENDIX A 

We give here the F and G functions, associated with eq. 
(2) and (3), corresponding to the theoretical calculation 
of Miller and Scriven (1968) for frequency and damping 
rate of the axisymmetric shape-oscillations of mode 
l = 2, valid for low viscous oscillations of a drop or a 
bubble (i.e at large Reynolds number of oscillation 
C��), in the case of low deformations, in zero-gravity 
conditions and without surfactants: 

A =  
25 ���µ� i/�

2√2�2�� + 3 �1 + ���µ� i/� 

E =  
5 � 6 + 4µ� − ��µ� +  16 ��µ��  

2 �2�� + 3 �1 + ���µ� i/� 
. 




