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Output feedback stabilization of Reaction-Diffusion PDEs with distributed input delay

This paper studies the boundary output feedback stabilization of reaction-diffusion PDEs in the presence of an arbitrarily long distributed input delay. The boundary control applies at the right boundary through a Robin boundary condition while the system output is selected as the left boundary Dirichlet trace. The actual control input applies to the boundary via a distributed delay spanning over a finite time interval. The proposed control strategy leverages a predictor feedback relying on Artstein's reduction method and is coupled with a finite-dimensional observer. Provided a structural controllability assumption, sufficient stability condition are derived and are shown to be always feasible provided the order of the observer is selected to be large enough. 1 0 f (x)g(x) dx whose associated norm is denoted by • L 2 . For any given integer m ≥ 1, H m (0, 1) stands for the m-order Sobolev space which is endowed with its usual norm denoted by • H m . For a symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive semi-definite (resp. positive definite).

I. INTRODUCTION

The topic of stabilization of finite-dimensional systems in the presence of delays has been widely studied in the literature [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]. In the case of an arbitrarily long input delay, predictor feedback, which leverages the Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], has emerged as the predominant control design method in both linear and nonlinear cases [START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF]. This paper focuses on the case of a distributed input delay, i.e. a delayed term of the form h 0 ϕ(σ)u(t -σ) dσ where h > 0 is the delay horizon, ϕ ∈ L 2 (0, h) is a given function, and u(t) ∈ R is the actual control input. Predictor feedback to compensate distributed input delays roots back to [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF] and has been extended in a number of directions [START_REF] Bekiaris-Liberis | Lyapunov stability of linear predictor feedback for distributed input delays[END_REF]- [START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF].

This paper focuses on the boundary output feedback stabilization of reaction-diffusion PDEs in the presence of an arbitrarily long distributed input delay. So far, this type of control design problem has solely been addressed in the context of an arbitrarily long discrete input delay. The state-feedback case has been addressed first in [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] using backstepping design and in [START_REF] Prieur | Feedback stabilization of a 1D linear reactiondiffusion equation with delay boundary control[END_REF] by leveraging spectral reduction methods [START_REF] Coron | Global steady-state controllability of onedimensional semilinear heat equations[END_REF]- [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] combined with predictor feedback. This latter approach has then been extended in a number of directions that include diagonal infinite-dimensional systems [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], robustness with respect to delay mismatches for time [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], [START_REF]In-domain stabilization of block diagonal infinite-dimensional systems with time-varying input delays[END_REF] and spatially varying delays [START_REF]Robustness of constant-delay predictor feedback for in-domain stabilization of reaction-diffusion PDEs with time-and spatiallyvarying input delays[END_REF], and PI regulation control [START_REF] Lhachemi | PI regulation of a reactiondiffusion equation with delayed boundary control[END_REF]. While all the above mentioned approaches embraced the case of a state-feedback, the possibility to address the case of an output feedback by coupling a predictor feedback with
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christophe.prieur@gipsa-lab.fr a finite-dimensional observer [START_REF] Balas | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF]- [START_REF] Sano | Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement[END_REF] has recently been demonstrated. Using the observer architecture from [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF], the first step into that direction was reported in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] in the specific and structurally limited setting of a Neumann boundary control and a bounded observation operator. Then a complete solution to this control design problem for general 1-D reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control and Dirichlet/Neumann boundary measurement was reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF]. The dual problem, namely the case of an arbitrarily long output delay, was addressed in [START_REF]Boundary output feedback stabilization of reaction-diffusion PDEs with delayed boundary measurement[END_REF]. The problem of a state-delay was addressed in [START_REF] Lhachemi | Boundary output feedback stabilization of state delayed reaction-diffusion PDEs[END_REF].

In contrast with the works mentioned in the previous paragraph, this paper addresses for the first time the case of a distributed input delay. More precisely, we consider general 1-D reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control and Dirichlet/Neumann measurement in the presence of an arbitrarily long distributed input delay. By adapting the procedures reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] in the case of a discrete input delay, we demonstrate in this paper that an output feedback control strategy can always be designed in order to achieve the exponential stabilization of the plant provided a structural controllability assumption.

The paper is organized as follows. Notation and basic properties of Sturm-Liouville operators are presented in Section II. The problem setting studied in this paper is introduced in Section III. Then the control strategy is described in Section IV. The exponential stability assessment of the resulting closed-loop system is reported in Section V. A numerical illustration is carried out in Section VI. Finally, concluding remarks are formulated in Section VII.

II. PRELIMINARIES

A. Notation

Real spaces R n of dimension n are equipped with the Euclidean norm denoted by • . The associated induced norms of matrices are also denoted by • . For any two vectors X and Y of arbitrary dimensions, we define the vector col(X, Y ) = [X , Y ] . L 2 (0, 1) stands for the space of square integrable functions on (0, 1) and is equipped with the inner product f, g =

B. Properties of Sturm-Liouville operators

Reaction-diffusion PDEs are strongly related to the concept of Sturm-Liouville operators. We summarize in this subsection the key properties of these operators that will be intensively used in the sequel.

Let θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]) and q ∈ C 0 ([0, 1]) with p > 0 and q ≥ 0. The Sturm-Liouville operator A :

D(A) ⊂ L 2 (0, 1) → L 2 (0, 1) is defined by Af = -(pf ) + qf on the domain of definition D(A) = {f ∈ H 2 (0, 1) : c θ1 f (0) -s θ1 f (0) = 0 c θ2 f (1) + s θ2 f (1) = 0}.
Here we used the short notations c θi = cos θ i and s θi = sin θ i .

The eigenvalues λ n , n ≥ 1, of the Sturm-Liouville operator A are simple, non negative (because θ 1 , θ 2 ∈ [0, π/2] and q ≥ 0), and form an increasing sequence with λ n → +∞ as n → +∞. The associated unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. The domain of the operator A can be characterized in function of the eigenstructures as follows:

D(A) = {f ∈ L 2 (0, 1) : n≥1 |λ n | 2 | f, φ n | 2 < +∞}.
For any given p * , p * , q * ∈ R so that 0 < p * ≤ p(x) ≤ p * and 0 ≤ q(x) ≤ q * for all x ∈ [0, 1], we have

0 ≤ π 2 (n -1) 2 p * ≤ λ n ≤ π 2 n 2 p * + q *
for all n ≥ 1; see [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF] for details. Moreover with the further regularity p ∈ C 2 ([0, 1]), we have φ n (ξ) = O(1) and φ n (ξ) = O( √ λ n ) as n → +∞ for any given ξ ∈ [0, 1]; see also [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF] or [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] for details. Assuming that q > 0, an integration by parts and the continuous embedding

H 1 (0, 1) ⊂ L ∞ (0, 1) show the existence of constants C 1 , C 2 > 0 so that C 1 f 2 H 1 ≤ n≥1 λ n f, φ n 2 = Af, f ≤ C 2 f 2 H 1 (1) 
for all f ∈ D(A). Combining (1) with the Riesz-spectral property of A, we deduce that the series expansion

f = n≥1 f, φ n φ n is convergent in H 2 (0, 1) norm for any f ∈ D(A). Invoking the continuous embedding H 1 (0, 1) ⊂ L ∞ (0, 1), we obtain that f (0) = n≥1 f, φ n φ n (0) and f (0) = n≥1 f, φ n φ n (0).
We conclude this section by defining for any integer N ≥ 1 the quantity

R N f = n≥N +1 f, φ n φ n for all f ∈ L 2 (0, 1).

III. PROBLEM SETTING

Let the reaction-diffusion system with distributed input delay be described by

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) (2a) c θ1 z(t, 0) -s θ1 z x (t, 0) = 0 (2b) c θ2 z(t, 1) + s θ2 z x (t, 1) = u h (t) h 0 ϕ(σ)u(t -σ) dσ (2c) z(0, x) = z 0 (x) (2d) 
for t > 0 and x ∈ (0, 1) where

θ 1 , θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, and q ∈ C 0 ([0, 1]). Here z(t, •) is the state of the PDE at time t and z 0 is the initial condition.

The command input u(t) ∈ R applies to the right boundary of the system through the introduction of a distributed input delay u h (t) h 0 ϕ(σ)u(t -σ) dσ for some delay h > 0 and with ϕ ∈ L 2 (0, h). For well-posedness assessment only, we further assume that there exists h m ∈ (0, h) so that ϕ| [0,hm] = 0. We also assume throughout the paper that u(τ ) = 0 for τ < 0. Finally, restraining θ 1 ∈ (0, π/2], the system output is set as the left Dirichlet trace:

y(t) = z(t, 0). (3) 
The objective is to achieve the output feedback stabilization of the plant described by (2-3). Remark 3.1: In this study, the parameters θ i of the Robin boundary conditions of the plant (2) are restricted to θ 1 ∈ [0, π/2] and θ 2 ∈ (0, π/2]. Note however that the results presented in this paper can easily be extended to the general case θ 1 ∈ (0, π) ∪ (π, 2π) and θ 2 ∈ [0, 2π); see [START_REF]Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF], [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] for details.

IV. CONTROL DESIGN

A. Spectral reduction

In preparation of control design and stability analysis, we pick q ∈ C 0 ([0, 1]) and q c ∈ R so that q(x) = q(x) -q c , q(x) > 0.

(4)

Since the PDE ( 2) is non-homogeneous due do the boundary distributed delayed input u h (t), we introduce the change of variable

w(t, x) = z(t, x) - x 2 c θ2 + 2s θ2 u h (t). (5) 
Hence, introducing v h = uh , we obtain the following equivalent homogeneous representation:

uh (t) = v h (t) = h 0 ϕ(σ) u(t -σ) dσ (6a) w t (t, x) = (p(x)w x (t, x)) x -q(x)w(t, x) (6b) + a(x)u h (t) + b(x)v h (t) (6c) c θ1 w(t, 0) -s θ1 w x (t, 0) = 0 (6d) c θ2 w(t, 1) + s θ2 w x (t, 1) = 0 (6e) w(0, x) = w 0 (x) (6f) with a(x) = 1 c θ 2 +2s θ 2 {2p(x) + 2xp (x) -x 2 q(x)}, b(x) = -x 2 c θ 2 +2s θ 2
, and w 0 (x) = z 0 (x) -

x 2 c θ 2 +2s θ 2 u h (0) = z 0 (x).
We introduce the coefficients of projection

z n (t) = z(t, •), φ n , w n (t) = w(t, •), φ n , a n = a, φ n , b n = b, φ n .
The projection of the change of variable formula [START_REF] Mazenc | Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems[END_REF] gives

w n (t) = z n (t) + b n u h (t), n ≥ 1. (7) 
Then the projection of ( 6) into the Hilbert basis (φ n ) n≥1 gives (see e.g. [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and statedelay[END_REF], [START_REF] Mironchenko | Local stabilization of an unstable parabolic equation via saturated controls[END_REF] for details)

uh (t) = v h (t) (8a) ẇn (t) = (-λ n + q c )w n (t) + a n u h (t) + b n v h (t). (8b)
In view of (8) and invoking [START_REF] Bekiaris-Liberis | Adaptive stabilization of LTI systems with distributed input delay[END_REF], the projection of (2) reads

żn (t) = (-λ n + q c )z n (t) + β n u h (t) (9) 
with

β n = a n + (-λ n + q c )b n = p(1){-c θ2 φ n (1) + s θ2 φ n (1)} = O( λ n )
Finally, for classical solutions the Dirichlet measurement y(t) expressed by ( 3) can be written as the series expansion:

y(t) = z(t, 0) = w(t, 0) = n≥1 w n (t)φ n (0). (10) 

B. Control strategy

We first fix δ > 0, the desired exponential decay rate for the closed-loop system trajectories. It allows us to fix N 0 ≥ 1 so that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. For an arbitrarily given N ≥ N 0 + 1, that will be constrained later, we define the following observer dynamics which is introduced in order to estimate the N first modes of the plant in (original) z coordinates:

ŵn (t) = ẑn (t) + b n u h (t) (11a) żn (t) = (-λ n + q c )ẑ n (t) + β n u h (t) (11b) -l n N k=1 ŵk (t)φ k (0) -y(t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u h (t), N 0 + 1 ≤ n ≤ N (11c)
where l n ∈ R are the observer gains. This observer dynamics is inspired by the pioneer work [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF] and the recent development [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] embracing the case of a discrete input delay. Recall that the control input u(t) acts on the system through the distributed input delay u h (t) = h 0 ϕ(σ)u(t -σ) dσ. In order to compensate this distributed input delay, we need to introduce a predictor component. To achieve this, we define ẐN0 = ẑ1 . . . ẑN0 , A 0 = diag(-λ 1 + q c , . . . , -λ N0 + q c ), and B 0 = β 1 . . . β N0 . This allows the introduction of the following Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]:

ẐN0 A (t) = ẐN0 (t)+ t t-h h t-s e A0(t-s-σ) B 0 ϕ(σ) dσ u(s) ds. (12) 
Therefore, the control is set as:

u(t) = K ẐN0 A (t), t ≥ 0 (13) 
where K ∈ R 1×N0 is the feedback gain. Remark 4.1: For well-posedness assessment, we make the assumption that there exists h m ∈ (0, h) so that ϕ| [0,hm] = 0. In that case, if we denote by

ψ(t) = t t-h h t-s
e A0(t-s-σ) B 0 ϕ(σ) dσ u(s) ds the double integral appearing in [START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF], it can be observed that ψ is the unique solution to the ODE

ψ(t) = A 0 ψ(t) + B 0 u(t) -B 0 u h (t)
with initial condition ϕ(0) = 0, where u is given by [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] with

ẐN0 A = ẐN0 + ψ, u h (t) = h 0 ϕ(σ)u(t -σ) dσ = h hm ϕ(σ)u(t -σ) dσ with 0 < h m < h, and B 0 = h 0 e -A0σ B 0 ϕ(σ) dσ.
Hence, a similar induction argument to the one employed in [START_REF]Boundary output feedback stabilization of reaction-diffusion PDEs with delayed boundary measurement[END_REF] in the case of a discrete input delay can be used to obtain the well-posedness of the closedloop system trajectories using standard well-posedness results in the context of C 0 -semigroups [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF].

C. Truncated model

In order to introduce the main stability result, we first need to write a finite dimensional model that captures the dynamics [START_REF]Semi-global stabilization of linear systems with distributed infinite input delays and actuator saturations[END_REF][START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF][START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] of the output feedback controller as well as the N first modes of the PDE as described in z coordinates by [START_REF] Bekiaris-Liberis | Stability of predictor-based feedback for nonlinear systems with distributed input delay[END_REF]. To do so, let the error of estimation be defined by e n = z n -ẑn for 1 ≤ n ≤ N . Owing to (11a-11b) and invoking [START_REF] Bekiaris-Liberis | Adaptive stabilization of LTI systems with distributed input delay[END_REF] and [START_REF] Xu | Stabilization of linear systems with distributed infinite input delays: A low gain approach[END_REF], we obtain that

żn = (-λ n + q c )ẑ n + β n u h + l n N k=1 φ k (0)e k + l n ζ (14)
for all 1 ≤ n ≤ N 0 . Here we have defined the residue of measurement ζ = n≥N +1 w n φ n (0). Hence, defining E N0 = e 1 . . . e N0 , the scaled error ẽn = √ λ n e n as in [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF], and ẼN-N0 = ẽN0+1 . . . ẽN , we infer that

ŻN0 = A 0 ẐN0 + B 0 u h + LC 0 E N0 + L C1 ẼN-N0 + Lζ
where the matrices are given by

C 0 = φ 1 (0) . . . φ N0 (0) , C1 = φ N 0 +1 (0) √ λ N 0 +1 . . . φ N (0) √ λ N ,
and L = l 1 . . . l N0 . Computing now the time derivative of the Artstein transformation defined by [START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF] and using the control input (13), we infer that 

ŻN0 A = (A 0 + B 0 K) ẐN0 A + LC 0 E N0 + L C1 ẼN-N0 + Lζ ( 
ŻN-N0 = A 1 ẐN-N0 + B 1 u h ( 16 
)
where A 1 = diag(-λ N0+1 + q c , . . . , -λ N + q c ) and B 1 = β N0+1 . . . β N . Finally, owing to ( 9) and (11b-11c), we infer that the error dynamics are given by

ĖN0 = (A 0 -LC 0 )E N0 -L C1 ẼN-N0 -Lζ, (17a) ĖN-N0 = A 1 ẼN-N0 . (17b)
Hence, the introduction of the state vector

X = col ẐN0 A , E N0 , ẼN-N0 (18) 
implies, in view of ( 15) and ( 17), that

Ẋ = F X + Lζ ( 19 
)
where

F =   A 0 + B 0 K LC 0 L C1 0 A 0 -LC 0 -L C1 0 0 A 1   , L =   L -L 0  
which is completed with the dynamics ( 16). Defining the augmented vector X = col (X, ζ), we obtain from ( 13) and ( 15) that

u = KX, v = u = K ŻN0 A = E X (20) 
with

E = K A 0 + B 0 K LC 0 L C1 L and K = K 0 0 .
It is checked in [START_REF]Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF] that the pairs (A 0 , B 0 ) and (A 0 , C 0 ) both satisfy the Kalman condition. Then, as shown by the below lemma, The controllability property of the pair (A 0 , B 0 ) holds if and only if h 0 e (λn-qc)σ ϕ(σ) dσ = 0 for all 1 ≤ n ≤ N 0 .

Lemma 4.2: Let A ∈ R n×n , B ∈ R n×m , h > 0, and ϕ ∈ L 2 (0, h). Define B I = h 0 e -Aσ Bϕ(σ) dσ. Then the pair (A, B I ) satisfies the Kalman condition if and only if the pair (A, B) satisfies the Kalman condition and h 0 e -µσ ϕ(σ) dσ = 0 for all µ ∈ spA.

Proof: We use the Hautus test. Let (A, B) satisfies the Kalman condition and h 0 e -µσ ϕ(σ) dσ = 0 for all µ ∈ spA. Assume that there exist µ ∈ C and x ∈ C n so that x = 0, x * A = µx * and x * B I = 0. Then x * e -Aσ = e -µσ x * , thus we have 0 = x * B I = x * B h 0 e -µσ ϕ(σ) dσ. This implies that x * A = µx * and x * B = 0, hence x = 0 because (A, B) satisfies the Kalman condition. This is in contradiction with our initial assumption that x = 0. Hence (A, B I ) does satisfies the Kalman condition.

Conversely, assume that (A, B I ) satisfies the Kalman condition. Let µ ∈ C and x ∈ C n with x = 0 so that x * A = µx * . Hence me must have x * B I = 0, i.e., x * B I = x * B h 0 e -µσ ϕ(σ) dσ = 0. This implies that h 0 e -µσ ϕ(σ) dσ = 0 for all µ ∈ spA. Finally, let µ ∈ C and x ∈ C n so that x * A = µx * and x * B = 0. We infer that x * B I = x * B h 0 e -µσ ϕ(σ) dσ = 0, hence x = 0. This shows that (A, B) satisfies the Kalman condition.

V. MAIN STABILITY RESULT Theorem 5.1: Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, q ∈ C 0 ([0, 1]), and ϕ ∈ L 2 (0, h) for some h > 0 so that there exists h m ∈ (0, h) with ϕ| [0,hm] = 0. Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (4) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Assume that h 0 e (λn-qc)σ ϕ(σ) dσ = 0 for all 1 ≤ n ≤ N 0 . Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 +1, assume that there exist P 0, α > 1, β, γ > 0, and q 1 , q 2 ≥ 0 such that

Θ 1 0, Θ 2 ≤ 0, R 1 ≤ 0, R 2 ≤ 0 (21) 
where

Θ 1 = F P + P F + 2δP + q 1 h K K P L L P -β + q 2 hE E (22a) 
Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM φ (22b) R 1 = -q 1 e -2δh + αγ R N a 2 L 2 ϕ 2 L 2 (22c) 
R 2 = -q 2 e -2δh + αγ R N b 2 L 2 ϕ 2 L 2 (22d) 
with

M φ = n≥N +1 |φn(0)| 2 λn
< +∞. Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, the trajectories of the closed-loop system composed of the PDE (2), the boundary Dirichlet measurement [START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF], and the controller [START_REF]Semi-global stabilization of linear systems with distributed infinite input delays and actuator saturations[END_REF][START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF][START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0) = 0) satisfy

z(t, •) 2 H 1 + sup τ ∈[t-h,t] |u(τ )| 2 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2 H 1
for all t ≥ 0. Furthermore, the constraints ( 21) are always feasible for N selected large enough.

Proof: We define the functional defined by

V (t) = V 0 (t) + V 1 (t) + V 2 (t) with V 0 (t) = X(t) P X(t) + γ n≥N +1 λ n w n (t) 2 (23a) V 1 (t) = q 1 0 -h t t+σ e -2δ(t-s) |u(s)| 2 ds dσ (23b) V 2 (t) = q 2 0 -h t t+σ e -2δ(t-s) | u(s)| 2 ds dσ. ( 23c 
)
The computation of the time derivative of V gives

V + 2δV = X F P + P F + 2δP P L L P 0 X + 2γ n≥N +1 λ n {(-λ n + q c + δ)w n + a n u h + b n v h } w n + q 1 h|u(t)| 2 -q 1 0 -h e 2δσ |u(t + σ)| 2 dσ + q 2 h| u(t)| 2 -q 2 0 -h e 2δσ | u(t + σ)| 2 dσ.
We note that

0 -h e 2δσ |u(t+σ)| 2 dσ ≥ e -2δh t t-h |u(σ)| 2 dσ and 0 -h e 2δσ | u(t+σ)| 2 dσ ≥ e -2δh t t-h | u(σ)| 2 dσ.
The use of Young's inequality gives for any α > 0 that

2 n≥N +1 λ n a n u h w n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N a 2 L 2 u 2 h , 2 n≥N +1 λ n b n v h w n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N b 2 L 2 v 2 h .

Moreover, we have |u

h (t)| 2 = h 0 ϕ(σ)u(t -σ) dσ 2 ≤ ϕ 2 L 2 t t-h |u(σ)| 2 dσ and, similarly, |v h (t)| 2 ≤ ϕ 2 L 2 t t-h | u(σ)| 2 dσ.
Hence, the combination of the latter estimates and the use of [START_REF]In-domain stabilization of block diagonal infinite-dimensional systems with time-varying input delays[END_REF] give

V + 2δV ≤ X Θ 1,1 P L L P 0 + q 2 hE E X + 2γ n≥N +1 λ n -1 - 1 α λ n + q c + δ w 2 n + R 1 t t-h |u(σ)| 2 dσ + R 2 t t-h | u(σ)| 2 dσ.
where Θ 1,1 = F P + P F + 2δP + q 1 h K K. Since the residue of measurement is expressed by ζ = n≥N +1 w n φ n (0), Cauchy-Schwartz inequality implies that

ζ 2 ≤ M φ n≥N +1 λ n w 2 n . Therefore, we deduce that V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n + R 1 t t-h |u(σ)| 2 dσ + R 2 t t-h | u(σ)| 2 dσ for any β > 0 where Γ n = 2γ -1 -1 α λ n + q c + δ + βM φ . Since α > 1, we note that Γ n ≤ Γ N +1 = Θ 2 for all n ≥ N + 1.
Therefore, owing to the constraints (21), we infer that that V + 2δV ≤ 0, implying that V (t) ≤ e -2δt V (0) for all t ≥ 0. The claimed stability estimate now easily follows from the definition of the functional V , the inequalities (1), the definition of the distributed delayed input (2c), the Artstein transformation [START_REF] Zhu | Predictor feedback for uncertain linear systems with distributed input delays[END_REF], the command input [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], and the dynamics [START_REF]Global steady-state stabilization and controllability of 1D semilinear wave equations[END_REF].

We conclude the proof by assessing that the constraints (21) are always feasible provided the dimension N ≥ N 0 +1 of the observer is selected large enough. We first note that the matrix F +δI is such that (i) the matrices A 0 +B 0 K +δI and A 0 -LC 0 + δI are Hurwitz; (ii) e (A1+δI)t ≤ e -κ0t for all t ≥ 0 with κ 0 = λ N0+1 -q c -δ > 0 a constant that is independent of N ; and (iii) L C1 ≤ L C1 where L is independent of the dimension N of the observer while C1 = O(1) as N → +∞. Hence, an approach similar to [28, Lemma in appendix] applied to the matrix F + δI shows that the solution P 0 to F P + P F + 2δP = -I is such that P = O(1) as N → +∞. Moreover, L and K are independent of the dimension N of the observer while M φ = O(1) and E = O(1) as N → +∞. We fix arbitrarily the value of α > 1 and we set

β = √ N , γ = 1/N , q 1 = e 2δh αγ R N a 2 L 2 ϕ 2 L 2 , and q 2 = e 2δh αγ R N b 2 L 2 ϕ 2 L 2 .
With this choice of parameters and invoking Schur complement, we deduce that the constraints (21) are satisfied for N ≥ N 0 + 1 selected large enough.

VI. NUMERICAL ILLUSTRATION

For numerical illustration we consider the PDE plant (2) with p = 1, q = -5, θ 1 = π/5, and θ 2 = 0 (corresponds to Dirichlet boundary control). The distributed delay is characterized by the function ϕ(σ) = (σ + 1) 2 1 [0.1,+∞] (σ). In this configuration, the open-loop plant is unstable with one unstable eigenvalue.

We set N 0 = 1 and we place the feedback and observer gains so that we obtain the pole placement -4 in both cases. This gives the observer gain L = 4.0832 while the value of the feedback gain K depends on the value of the delay h > 0. The dimensions N of the observer so that Theorem 5.1 is applicable with exponential decay rate δ = 0.5 are detailed in Tab. I for different values of the distributed input delay h > 0.

VII. CONCLUSION

This paper has addressed the topic of output feedback stabilization of general 1-D reaction-diffusion PDEs in the presence of an arbitrarily long distributed input delay. Provided a structural controllability assumption, the reported control design procedure is systematic in the sense that it always achieves the exponential stabilization of the closed-loop system, with prescribed exponential decay rate, provided the order of the observer is selected to be large enough.

To conclude, we mention here a number of direct extensions of the result presented in this paper. While the stability estimate derived in this paper holds for PDE trajectories evaluated in H 1 norm, similar conditions can be derived to obtained stability estimates in L 2 norm by adapting the arguments of [START_REF]Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF]. Finally, while this paper was focused on the case of Dirichlet boundary measurement, the developed approach can be extended to Neumann boundary measurement by using the methods of [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF], [START_REF]Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF].

  [START_REF] Coron | Global steady-state controllability of onedimensional semilinear heat equations[END_REF] where B 0 = h 0 e -A0σ B 0 ϕ(σ) dσ. Introducing now ẐN-N0 = ẑN0+1 . . . ẑN , we obtain from (11c) that

Value of the delay