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ABSTRACT

This paper addresses the control design problem of output feedback stabilization of a reaction-
diffusion PDE with a non-collocated boundary condition. More precisely, we consider a reaction-
diffusion equation with a boundary condition describing a proportional relationship between the
left and right Dirichlet traces. Such a boundary condition naturally emerges, e.g., in the context
of reaction-diffusion partial differential equations presenting a transport term and with a periodic
Dirichlet boundary condition. The control input takes the form of the left Neumann trace. Finally, the
measurement is selected as a pointwise Dirichlet measurement located either in the domain or at the
boundary. The adopted control strategy takes the form of a finite-dimensional controller coupling a
state feedback and a finite-dimensional observer. The stability of the closed-loop system is obtained
provided the order of the observer is selected to be large enough. Finally, we extend this result to
the establishment of an input-to-state stability estimate with respect to an additive perturbation in the
application of the boundary control.

1. Introduction
Control design for 1-D reaction-diffusion partial differ-

ential equations (PDEs)with collocated boundary conditions
has been widely studied in the literature in a great variety
of configurations [3, 12]. By collocated, we mean here that
the main reaction-diffusion PDE is accompanied with a set
of two boundary conditions, each one describing the behav-
ior of the system at one of the two boundaries. In contrast,
a non-collocated boundary condition refers to a single con-
dition mixing the behavior of the system at both boundaries
simultaneously. In the case of reaction-diffusion PDEs, such
non-collocated boundary conditions can be used, e.g., to de-
scribe the dynamics of the heat distribution on a ring [29],
closed circuit cooling or heat transfer in heterogeneous ma-
terials [9]. Even if non-collocated boundary conditions have
been widely investigated in the context of the boundary con-
trol of hyperbolic systems, see [2, 25, 31] and references
therein, the case of parabolic PDEs remains essentially un-
explored. One of the main reasons is that the control design
of such parabolic PDEs is particularly challenging due to in-
herent technical difficulties in the application of backstep-
ping control design procedures [12] (which are particularly
successful in the collocated setting) in the presence of non-
collocated boundary conditions. To the best of our knowl-
edge, this type of control design problem for a reaction-diffusion
PDE (with a collocated boundary condition different from
the one studied in this paper) was solely addressed in [20, 21]
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in the case of a state-feedback using spectral reduction meth-
ods [3, 4, 27]. The problem of output feedback stabilization
of the linearized Kuramoto–Sivashinsky PDE by means of
bounded input and output operators was reported in [22]. It
is worth noting that a non-collocated boundary condition can
sometimes emerge due to the application of a static output
feedback control strategy when the input and the output are
non-collocated; see for example [32] for such a situation in
the case of a wave equation. In this case, the non-collocated
boundary condition helps to achieve the stabilization of the
plant. In sharp contrast, the non-collocated boundary con-
dition considered in this paper is one of the two sources of
instability for the plant. Hence, its harmful effect needs to
be mitigate by an adequate control strategy. In this general
context, we solve for the first time the problem of bound-
ary output feedback stabilization of a reaction-diffusion PDE
presenting a non-collocated boundary condition by means of
a pointwise measurement.

From a general perspective, it is well-known that the col-
located setting confers strong structural properties to 1-D
reaction-diffusion PDEs. Indeed, the Sturm-Liouville the-
ory [26] shows that the unbounded operators associated with
such PDEs are self-adjoint, present real eigenvalues, and the
corresponding unit eigenvectors form a Hilbert basis of the
state-space. In contrast, such structural properties may be
lost when considering non-collocated boundary conditions.
In particular, the underlying unbounded operators are (in
general) not self-adjoint anymore. This may give rise to
interesting phenomena such as time-domain oscillations in-
duced by complex conjugate eigenvalues.

We address in this paper the control design problem of
output feedback stabilization of reaction-diffusion PDEswith
a boundary condition describing a proportional relationship
between the left and right Dirichlet traces. As we shall see,
such a boundary condition can emerge, e.g., after a change
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of variable in the context of reaction-diffusion PDEs with a
transport term and a periodic Dirichlet boundary condition.
The control input takes the form of a Neumann boundary
trace. The measurement is selected as an arbitrarily located
pointwise Dirichlet measurement. The adopted control strat-
egy takes the form of a finite-dimensional observer [1, 5,
7, 8, 28] coupled with a finite-dimensional state-feedback.
The design of the finite-dimensional observer is performed
by leveraging ideas in terms of controller architecture ini-
tially reported in [28] coupled with the LMI-based approach
initiated in [10], and more precisely on the enhanced proce-
dures described in [17, 15] that allow to handle both Dirich-
let andNeumann boundarymeasurements while performing,
for very general 1-D reaction-diffusion PDEs, the control de-
sign directly with the actual boundary control input instead
of its time-derivative; see [6, Sec. 3.3] for generalities on
boundary control systems. These procedures have been de-
veloped for parabolic PDEs with collocated boundary condi-
tions (in addition of the above references for reaction-diffusion
PDEs, see also [11] for the case of theKuramoto-Sivashinsky
equation) for which the underlying unbounded operator is
self-adjoint and the associated unit eigenvectors form aHilbert
basis. Due to the non-collocated nature of the boundary
condition considered in this paper for the reaction-diffusion
PDE, we adapt these procedures to the case of an underly-
ing unbounded operator that is not self-adjoint, with all the
eigenvalues but one that are complex conjugate, while the
unit eigenvectors do not form a Hilbert basis but a Riesz
basis. We show that the proposed control strategy always
achieves the exponential stabilization of the plant provided
the order of the observer is selected large enough. Beyond
the sole output feedback stabilization of the plant, we show
that the procedure developed in this paper also allows the es-
tablishment of an input-to-state stability (ISS) estimate with
respect to an additive boundary perturbation in the applica-
tion of the boundary control. Note that ISS estimates with re-
spect to unmatched disturbances can also be obtained in our
framework for additive perturbations applied in the domain
of the PDE (see, e.g., [23] for the study of such a case in the
context of collocated reaction-diffusion PDE with bounded
input and output operators while using an infinite-dimensional
observer) or in the measurement. Note however that such
input perturbations apply to the closed-loop system dynam-
ics as inputs of bounded operators. In this context, it is
well-known that the establishment of ISS estimates with re-
spect to boundary perturbations is much more challenging
compared to perturbations applied through bounded opera-
tors [19]. This is why we focus the presentation of the results
on the case of a boundary disturbance.

The paper is organized as follows. The control design
problem addressed in this paper is introduced in Section 2.
The structural properties of the underlying unbounded op-
erator and the subsequent spectral reduction of the PDE are
reported in Section 3. The proposed control strategy is de-
scribed in Section 4. The stability analysis of the resulting
closed-loop system is then carried out in Section 5. A nu-
merical illustration is reported in Section 6. Finally, con-

cluding remarks regarding possible extensions of the control
strategy are formulated in Section 7.

Notations. Real spaces ℝn are equipped with the usual
Euclidean norm denoted by ‖ ⋅ ‖. The associated induced
norms of matrices are also denoted by ‖ ⋅ ‖. For any two
vectorsX and Y , col(X, Y ) represents the vector [X⊤, Y ⊤]⊤.
The space of square integrable functions on (0, 1) is denoted
by L2(0, 1) and is endowed with the inner product ⟨f, g⟩ =
∫ 10 f (x)g(x) dx. The associated norm is denoted by ‖ ⋅ ‖L2 .
For an integerm ≥ 1,Hm(0, 1) stands for them-order Sobolev
space and is endowed with its usual norm ‖ ⋅ ‖Hm . For any
symmetric matrix P ∈ ℝn×n, P ⪰ 0 (resp. P ≻ 0) indicates
that P is positive semi-definite (resp. positive definite).

2. Problem description and abstract
representation

2.1. Problem description
We consider in this paper the boundary control of the

reaction-diffusion system described by

zt(t, x) = pzxx(t, x) + rz(t, x) (1a)
z(t, 1) = sz(t, 0) (1b)
zx(t, 0) = ud(t) ≜ u(t) + d(t) (1c)
yD(t) = z(t, �) (1d)
z(0, x) = z0(x) (1e)

for t > 0 and x ∈ (0, 1). Here p > 0 is the diffusion co-
efficient and r ∈ ℝ is the reaction coefficient. Boundary
condition (1b) is non-collocated with coefficient s > 1. The
control input u(t) ∈ ℝ applies to the left Neumann trace (1c)
with unknown boundary disturbance d(t) ∈ ℝ. Throughout
the paper, we assume that d ∈ 2(ℝ+). The system output
is selected as the pointwise Dirichlet measurement yD(t) de-
fined by (1d) for some given � ∈ [0, 1]. Finally, the initial
condition (1e) is characterized by z0. It is worth noting that
for r ≥ 0 and s > 1, the open-loop PDE (1) is unstable; see
Lemma 1 for further details.

The control objective is to design a finite-dimensional
control strategy that achieves the output feedback exponen-
tial stabilization of (1).

Remark 1. For p > r and d = 0, if we assume that z(t, 0)
and zx(t, 1) are available for feedback control, the exponen-
tial stabilization of (1a-1c) can be achieved by setting u(t) =
szx(t, 1) + kz(t, 0) for k > 0 sufficiently large positive. In-
deed, definingV (t) = 1

2 ∫
1
0 |z(t, x)|2 dx, we infer that V̇ (t) =

r ∫ 10 |z(t, x)|2 dx+p ∫ 10 z(t, x)zxx(t, x) dx. An integration by
parts gives ∫ 10 z(t, x)zxx(t, x) dx = z(t, 0)

{

szx(t, 1) − u(t)
}

−
∫ 10 |zx(t, x)|2 dx = −k|z(t, 0)|2 − ∫ 10 |zx(t, x)|2 dx. Let � >
0 be such that p > r(1 + �−1). Then using Cauchy-Schwarz
and Young inequalities, we infer that ∫ 10 |z(t, x)|2 dx ≤ (1 +
�)|z(t, 0)|2 + (1 + �−1) ∫ 10 |zx(t, x)|2 dx. Hence, we have

V̇ (t) ≤ −{kp − r(1 + �)} |z(t, 0)|2
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−
{

p − r(1 + �−1)
}

∫

1

0
|zx(t, x)|2 dx

So if we select k > r
p (1 + �), we obtain the existence of

� = min
(

kp − r(1 + �), p − r(1 + �−1)
)

> 0 and � > 0 so
that V̇ (t) ≤ −�

{

|z(t, 0)|2 + ∫ 10 |zx(t, x)|2 dx
}

≤ −2�V (t).
This ensures the exponential stabilization of the plant. Note
however the following structural limitations. First, this ap-
proach requires the structural constraint p > r. Second,
while the above approach requires the knowledge of both
zx(t, 1) and z(t, 0), such a strategy cannot be applied in the
case of the sole point measurement (1d). Finally, this ap-
proach is not easily extendable to settings presenting, for
instance, input nonlinearities or long input/output/state de-
lays. The method developed in this paper allows to remove
all these limitations.

Remark 2. The occurrence of the s-parameter in the non-
collocated boundary condition (1b) naturally arises in the
context of reaction-diffusion equations with a transport term
and a periodic Dirichlet boundary conditions. More specifi-
cally, let us consider the system described by

yt(t, x) = �yxx(t, x) + �yx(t, x) + 
y(t, x) (2a)
y(t, 1) = y(t, 0) (2b)
yx(t, 0) = v(t) (2c)
yD(t) = y(t, 1) (2d)

where � > 0 and �, 
 ∈ ℝ. In order to obtain an equivalent
formulation of (2) without transport term, we introduce the
classical change of variable formula z(t, x) = e

�
2� xy(t, x).

Then we have that

zt(t, x) = �zxx(t, x) +
{


 −
�2

4�

}

z(t, x) (3a)

z(t, 1) = e
�
2� z(t, 0) (3b)

−
�
2�
z(t, 0) + zx(t, 0) = v(t) (3c)

yD(t) = z(t, 0) (3d)

Hence, if we set v(t) = − �
2� yD(t)+u(t)we infer that zx(t, 0) =

u(t), giving (1) with p = �, r = 
 − �2

4� , s = e
�
2� , � = 0, and

d = 0.

2.2. Preliminary change of variable and abstract
form

Let us consider the change of variable

w(t, x) = z(t, x) −
(

x + 1
s − 1

)

ud(t). (4)

This allows us to derive the following equivalent homoge-
neous representation of (1) described by

u̇(t) = v(t) (5a)
wt(t, x) = pwxx(t, x) + rw(t, x) + a(x)u(t) + b(x)v(t) (5b)

+ a(x)d(t) + b(x)ḋ(t)
w(t, 1) = sw(t, 0), wx(t, 0) = 0 (5c)
ỹD(t) = w(t, �) (5d)

w(0, x) = w0(x) (5e)

where a(x) = r
(

x + 1
s−1

)

and b(x) = −
(

x + 1
s−1

)

while

ỹD(t) = yD(t) −
(

� + 1
s−1

)

ud(t) and the initial condition

w0(x) = z0(x) −
(

x + 1
s−1

)

ud(0).
Let us now define the unbounded operator  ∶ D() ⊂

L2(0, 1) → L2(0, 1) defined by f = f ′′ on the domain
D() = {f ∈ H2(0, 1) ∶ f (1) = sf (0), f ′(0) = 0}.
Hence (5a-5c) can be written under the following abstract
form:

u̇(t) = v(t) (6a)
wt(t, ⋅) = (p + rIL2 )w(t, ⋅) + au(t) + bv(t) (6b)

+ ad(t) + bḋ(t)

3. Structural properties and spectral
reduction

3.1. Riesz spectral properties of 
We start by the following lemma describing the point

spectrum of .

Lemma 1. Let s > 1 and define � = s +
√

s2 − 1 > 1. The
eigenvalues �n ∈ ℂ of  and the corresponding eigenvec-
tors �n ∈ L2(0, 1), with n ∈ ℤ, are described by

�n = (log �)2 − 4n2�2 + 4in� log �,
�n(x) = cosh ((log � + 2in�)x) .

PROOF. We are looking for � ∈ ℂ and a non zero f ∈
H2(0, 1) so that f ′′−�f = 0, f (1) = sf (0), and f ′(0) = 0.
Since s ≠ 1, the resolution of the above ODE in the case
� = 0 gives f = 0. Hence the case � = 0 is discarded. Let
√

� ≠ 0 denote one of the two square roots of �. Function f
must be of the form f (x) = �e

√

�x+�e−
√

�x. The condition
f ′(0) = 0 along with

√

� ≠ 0 implies � = � hence f (x) =
2� cosh(

√

�x). Now the condition f (1) = sf (0) along with
� ≠ 0 (because we are looking for a non zero function f )
gives cosh(

√

�) = s. Writing cosh in terms of exponentials,
this latter identity is equivalent to (e

√

�)2 − 2se
√

� + 1 = 0,
implying that e

√

� = � ≜ s +
√

s2 − 1 or e
√

� = �− ≜
s −

√

s2 − 1. So we have either
√

� = log � + 2in� or
√

� = log �− + 2in� for some n ∈ ℤ. Thus we have � =
(log � + 2in�)2 or � = (log �− + 2in�)2 for some n ∈ ℤ.
Noting that �− = 1∕� hence log �− = − log �, this implies
that � = (log � + 2in�)2 = (log �)2 − 4n2�2 + 4in� log � for
some n ∈ ℤ. This concludes the proof.

In order to further study the properties of {�n}n∈ℤ, we
shall need to establish the existence, and determine the ex-
pression, of a family { n}n∈ℤ that is biorthogonal to {�n}n∈ℤ,
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i.e., ⟨�n,  m⟩ = �n,m for all n, m ∈ ℤ where �n,m ∈ {0, 1}
with �n,m = 1 if and only if n = m. To do so, we first com-
pute∗, the adjoint operator of .

Lemma 2. The adjoint operator∗ is described by∗f =
f ′′ on the domain D(∗) = {f ∈ H2(0, 1) ∶ f (1) =
0, f ′(0) = sf ′(1)}.

PROOF. We first note that is invertible with inverse given
for all g ∈ L2(0, 1) by (−1g)(x) = ∫ x0 ∫ �10 g(�2) d�2 d�1 +
1
s−1 ∫

1
0 ∫ �10 g(�2) d�2 d�1, showing that 0 ∈ �(). Hence we

know that (∗)−1 = (−1)∗ (see [6, Lem. A.3.65]). Direct
computations give, for all w ∈ L2(0, 1), ((−1)∗w)(x) =
∫ 1x ∫ 1�1 w(�2) d�2 d�1 +

1−x
s−1 ∫

1
0 w(�) d�. The inversion of the

latter operator gives the claimed result.

We nowobtain the required biorthonal sequence { n}n∈ℤ
by studying the eigenstructures of ∗.

Lemma 3. Let s > 1 and define � = s +
√

s2 − 1 > 1. The
eigenvalues �adn ∈ ℂ of∗ and the corresponding eigenvec-
tors  n ∈ L2(0, 1), with n ∈ ℤ, are described by

�adn = �n = (log �)2 − 4n2�2 − 4in� log �,

 n(x) = −
2

√

s2 − 1
sinh ((log � − 2in�)(x − 1)) .

Moreover, { n}n∈ℤ is biorthogonal to {�n}n∈ℤ.

PROOF. We are looking for � ∈ ℂ and a non zero f ∈
H2(0, 1) so that f ′′−�f = 0, f (1) = 0, and f ′(0) = sf ′(1).
Since s ≠ 1, the resolution of the above ODE in the case
� = 0 gives f = 0. Hence the case � = 0 is discarded. Let
√

� ≠ 0 denote one of the two square roots of �. Function
f must be of the form f (x) = �e

√

�x + �e−
√

�x. The con-
ditions f (1) = 0 and f ′(0) = sf ′(1) along with

√

� ≠ 0
give
[

e
√

� e−
√

�

1 − se
√

� −1 + se−
√

�

]

[

�
�

]

= 0.

Hence, the function f is non zero if and only if the determi-
nant of the above 2 × 2 matrix is zero, i.e., cosh(

√

�) = s.
We now obtained the claimed closed-form for �adn by fol-
lowing the same steps that the ones of Lemma 1. More-
over, since f (1) = 0 implies that � = −�e2

√

�, we infer that
f (x) = �

(

e
√

�x − e2
√

�e−
√

�x
)

= 2�e
√

� sinh(
√

�(x−1)).
We obtained the claimed closed form for  n by setting � =

− e−
√

�
√

s2−1
.

To complete the proof, it remains to show that { n}n∈ℤ
is biorthogonal to {�n}n∈ℤ. Note first that �n ⟨�n,  m⟩ =
⟨�n,  m⟩ = ⟨�n,∗ m⟩ =

⟨

�n, �adm  m
⟩

= �m ⟨�n,  m⟩.
For n ≠ m we have �n ≠ �m hence ⟨�n,  m⟩ = 0. Finally,
explicit computations show that ⟨�n,  n⟩ = 1 for all n ∈ ℤ.

We are now in position to show that {�n}n∈ℤ forms a
Riesz basis of L2(0, 1). This means that the vector space
spanned by {�n}n∈ℤ is dense in L2(0, 1) and that there ex-
ist mR,MR > 0 so that, for any N ≥ 0 and any �i ∈ ℂ,
mR

∑

|n|≤N |�n|2 ≤ ‖

∑

|n|≤N �n�n‖
2 ≤ MR

∑

|n|≤N |�n|2.
In this case, we have for any f ∈ L2(0, 1) the series expan-
sion f =

∑

n∈ℤ ⟨f,  n⟩�n and

mR
∑

n∈ℤ
| ⟨f,  n⟩ |

2 ≤ ‖f‖2L2 ≤MR
∑

n∈ℤ
| ⟨f,  n⟩ |

2. (7)

Lemma 4. The family {�n}n∈ℤ is a Riesz basis of L2(0, 1).

PROOF. Using the characterization of Riesz bases reported
in [30, Chap. 1, Thm. 9], we need to show that 1) the two
vector spaces spanned by {�n}n∈ℤ and its biorthogonal fam-
ily { n}n∈ℤ are both dense in L2(0, 1); and 2) both families
{�n}n∈ℤ and { n}n∈ℤ form each a Bessel sequence. We re-
call that a family ('n)n∈ℕ of L2(0, 1) is said to be a Bessel
sequence if for any f ∈ L2(0, 1) we have (⟨f, 'n⟩)n∈ℕ ∈
l2(ℕ).

We start by studying the properties of {�n}n∈ℤ. Let f ∈
L2(0, 1) be such that ⟨f, �n⟩ = 0 for all n ∈ ℤ. We recall
that �n is given in closed form by Lemma 1. The case n = 0
gives ⟨f cosh((log �)⋅), 1⟩ = 0. In the case n ≥ 1 we have

0 = ⟨f, �n⟩ = ⟨f cosh((log �)⋅), cos(2n�⋅)⟩
− i ⟨f sinh((log �)⋅), sin(2n�⋅)⟩

0 = ⟨f, �−n⟩ = ⟨f cosh((log �)⋅), cos(2n�⋅)⟩
+ i ⟨f sinh((log �)⋅), sin(2n�⋅)⟩

hence we deduce that ⟨f cosh((log �)⋅), cos(2n�⋅)⟩ = 0 and
⟨f sinh((log �)⋅), sin(2n�⋅)⟩ = 0. Using these results, the
Fourier series of f cosh((log �)⋅) ∈ L2(0, 1) reads

f cosh((log �)⋅) =
∑

n≥1
�n sin(2n�⋅)

where �n ∈ ℂ. This implies that

⟨f cosh((log �)⋅), f sinh((log �)⋅)⟩

=
∑

n≥1
�n⟨f sinh((log �)⋅), sin(2n�⋅)⟩ = 0.

We deduce that

0 = ∫

1

0
|f (x)|2 sinh((log �)x) cosh((log �)x) dx

= 1
2 ∫

1

0
|f (x)|2 sinh(2(log �)x) dx.

Owing to � > 1, we have sinh(2(log �)x) > 0 for all x > 0
hence f = 0 in L2(0, 1). This shows that the vector space
spanned by {�n}n∈ℤ is dense in L2(0, 1).

Let us now show that {�n}n∈ℤ is a Bessel sequence. To
do so, let f ∈ L2(0, 1) be arbitrarily fixed. Noting that
�n(x) = cosh((log �)x) cos(2n�x)+i sinh((log �)x) sin(2n�x),
we deduce using the triangular and Young’s inequalities that
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∑

n∈ℤ | ⟨f, �n⟩ |2 ≤ 4
∑

n≥0 | ⟨f cosh((log �)⋅), cos(2n�⋅)⟩ |2+
4
∑

n≥1 | ⟨f sinh((log �)⋅), sin(2n�⋅)⟩ | < ∞ where the right
hand side of the inequality is finite because f cosh((log �)⋅) ∈
L2(0, 1) and f sinh((log �)⋅) ∈ L2(0, 1) and owing to the
fact that the Fourier coefficients of elements of L2(0, 1) are
square summable. This shows that {�n}n∈ℤ is a Bessel se-
quence.

Using similar arguments, one can show that { n}n∈ℤ is
a Bessel sequence and that the vector space spanned by this
family is dense in L2(0, 1). This completes the proof.

Finally, using the terminology of [6, Def. 2.3.4],  is
a Riesz spectral operator. Moreover, since supn∈ℤ Re�n =
(log �)2 < ∞, we obtain from [6, Thm. 2.3.5] the following
result.

Lemma 5.  is a Riesz spectral operator that generates a
C0-semigroup on L2(0, 1). Its domain is characterized by
D() = {f ∈ L2(0, 1) ∶

∑

n∈ℤ |�n|2| ⟨f,  n⟩ |2 < ∞}
with f =

∑

n∈ℤ �n ⟨f,  n⟩�n for all f ∈ D().

Let f ∈ D() be arbitrarily given. From the Riesz basis
property we have f =

∑

n∈ℤ ⟨f,  n⟩�n with convergence of
the series in L2(0, 1) norm. From the previous lemma, we
also infer that f ′′ =

∑

n∈ℤ ⟨f,  n⟩�′′n with also convergence
of the series in L2(0, 1) norm. Finally, from the definition
of the domain of the operator , we have f ∈ H2(0, 1)
and f ′(0) = 0. Invoking Poincaré’s inequality, we infer that
f ′ =

∑

n∈ℤ ⟨f,  n⟩�′n in L2(0, 1) norm. Hence we have
that f =

∑

n∈ℤ ⟨f,  n⟩�n with convergence of the series
in H2(0, 1) norm. The continuous embedding H1(0, 1) ⊂
L∞(0, 1) implies that the latter series converges in L∞(0, 1)
norm.

3.2. Spectral reduction
We introduce the coefficients of projection defined by

zn(t) = ⟨z(t, ⋅),  n⟩, wn(t) = ⟨w(t, ⋅),  n⟩, an = ⟨a,  n⟩,
and bn = ⟨b,  n⟩. Then we have from (4) that

wn(t) = zn(t) + bnud(t). (8)

Moreover, the projection of (6) onto the Riesz basis {�n}n∈ℤ
gives

u̇(t) = v(t) (9a)
ẇn(t) = �nwn(t) + anu(t) + bnv(t) (9b)

+ and(t) + bnḋ(t), n ∈ ℤ

with �n = p�n + r. Finally, using (8) into (9) to return to the
original coordinate z, the projection of (1) reads

żn(t) = �nzn(t) + �nud(t), n ∈ ℤ (10)

with �n = an + �nbn. From Lemma 3 we have �nbn =
⟨b,∗ n⟩. Using an integration by parts, direct computa-
tions show that �nbn = −2 for all n ∈ ℤ, hence bn = −2∕�n
and an = −rbn = 2r∕�n. This implies that �n = −2p ∈ ℝ
for all n ∈ ℤ, hence is a constant independent of n.

Remark 3. We observe that |�n||bn|2 =
4

|�n|
∼ 1

n2�2 hence
∑

n∈ℤ |�n||bn|2 < ∞. Consequently, if for t ≥ 0 we have
w(t, ⋅) ∈ D(), we infer from (8) that

∑

n∈ℤ |�n||zn(t)|2 <
∞.

We observer that the ODEs (10) are complex-valued.
However, the trajectories of the original problem described
by (2) are real-valued. So, to perform the control design and
obtain a real-valued control strategy, i.e. u(t) ∈ ℝ, we need
to derive a real-valued version of (10). Since �n = �−n,
�n = �−n,  n =  −n, z(t, x) ∈ ℝ, and d(t) ∈ ℝ, we have
z0(t) ∈ ℝ and, for all n ≥ 1, zn(t) = z−n(t) with

⋅
⏞⏞⏞
[

Re zn
Im zn

]

(t) =
[

Re �n − Im �n
Im �n Re �n

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=An

[

Re zn
Im zn

]

(t)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=zn(t)

+
[

−2p
0

]

⏟⏟⏟
=ℌn

ud(t)

(11)

where all the quantities appearing in the latter identity are
real-valued. Moreover, introducingwn =

[

Rewn Imwn
]⊤

and owing to (8), we have for all n ≥ 1

wn(t) = zn(t) +Gnud(t). (12)

with Gn =
[

Re bn Im bn
]⊤.

When considering classical solutions, the discussion af-
ter Lemma 5 shows that the system output ỹD(t) given by
(5d) can be expressed as the following series expansions:

ỹD(t) = w(t, �) =
∑

n∈ℤ
wn(t)�n(�)

= w0(t)�0(�) + 2
N
∑

n=1
Re

{

wn(t)�n(�)
}

+
∑

|n|≥N+1
wn(t)�n(�)

= w0(t)�0(�) +
N
∑

n=1
ℭnwn(t) + � (t) (13)

for any givenN ≥ 1, whereℭn = 2
[

Re�n(�) − Im�n(�)
]

and � (t) =
∑

|n|≥N+1wn(t)�n(�).

4. Control design
4.1. Control strategy

Let � > 0 and N0 ≥ 0 be such that Re �n < −� for all
|n| ≥ N0 + 1. Let N ≥ N0 + 1 be arbitrarily fixed and
that will be specified later. We consider the control strategy
described by

ŵ0(t) = ẑ0(t) + b0u(t) (14a)
ŵn(t) = ẑn(t) +Gnu(t), 1 ≤ n ≤ N (14b)

ŷD(t) = ŵ0(t)�0(�) +
N
∑

k=1
ℭkŵk(t) (14c)

̇̂z0(t) = �0ẑ0(t) + �0u(t) (14d)
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− l0
{

ŷD(t) − (yD(t) + b(�)u(t))
}

(14e)
̇̂zn(t) = Anẑn(t) +ℌnu(t)

− Ln
{

ŷD(t) − (yD(t) + b(�)u(t))
}

, 1 ≤ n ≤ N0
(14f)

̇̂zn(t) = Anẑn(t) +ℌnu(t), N0 + 1 ≤ n ≤ N (14g)

u(t) = k0ẑ0(t) +
N0
∑

k=1
Kkẑk(t) (14h)

where l0 ∈ ℝ andLn ∈ ℝ2 are the observer gains while k0 ∈
ℝ and Kk ∈ ℝ1×2 stand for the feedback gains. Note that
the controller dynamics (14) does not involve the unknown
boundary perturbation d(t).

Remark 4. In the disturbance-free case d = 0, the output
ỹD(t) of (5) is directly accessible because ỹD(t) = yD(t) +
b(�)u(t) where yD(t) is the actual measurement and u(t) the
applied command input. Hence the correction term due to
the error of estimation appearing in (14e-14f) reduces to ŷD(t)−
(yD(t)+b(�)u(t)) = ŷD(t)− ỹD(t). In the disturbed case (i.e.,
d ≠ 0), ỹD(t) = yD(t) + b(�)ud(t) with ud(t) = u(t) + d(t)
where d(t) is assumed to be unknown. Hence ỹD(t) cannot
be used to implement the control strategy. This is why ỹD(t)
is approximated by yD(t) + b(�)u(t) in (14e-14f).

Remark 5. The well-posedness in terms of classical solu-
tions (defined for all t ≥ 0) of the closed-loop system, formed
by the plant in homogeneous coordinates (5) and the con-
troller (14), for initial conditions w0 ∈ D(), ẑ0(0) ∈ ℝ,
and ẑn(0) ∈ ℝ2, and a boundary disturbance d ∈ 2(ℝ+),
is a direct consequence of [24, Thm. 6.3.1 and Thm. 6.3.3].
Invoking the change of variable formula (4), this implies the
well-posedness in terms of classical solutions of the closed-
loop system composed of the plant in original coordinates
(1) and the controller (14) for any initial conditions z0 ∈
H2(0, 1), ẑ0(0) ∈ ℝ, and ẑn(0) ∈ ℝ2, and any boundary
disturbance d ∈ 2(ℝ+), all such that z0(1) = sz0(0) and
z′0(0) = k0ẑ0(0) +

∑N0
k=1Kkẑk(0) + d(0).

4.2. Truncated finite-dimensional model
Defining first ẐN0 =

[

ẑ0 ẑ⊤1 … ẑ⊤N0
]⊤

, we obtain
from (14h) that

u = KẐN0 (15)

whereK =
[

k0 K1 … KN0
]

. Let the observation error
be defined by e0 = z0−ẑ0 and en = zn−ẑn for all 1 ≤ n ≤ N .
Using (8), (12), and (13), the error of observation ŷD(t) −
(yD(t) + b(�)u(t)) of the controller (14) can be rewritten as

ŷD − (yD + b(�)u) = ŷD − ỹD + b(�)d

= −�0(�)e0 −
N
∑

k=1
ℭkek − � − �d (16)

where � = �0(�)b0+
∑N
k=1 ℭkGk−b(�). Defining the scaled

quantities z̃n = ẑn∕n and ẽn =
√

|�n|en and the vectors

EN0 =
[

e0 e⊤1 … e⊤N0
]⊤

, Z̃N−N0 =
[

z̃⊤N0+1 … z̃⊤N
]⊤

,

and ẼN0 =
[

ẽ⊤N0+1 … ẽ⊤N
]⊤

, we infer from (14) that

̇̂ZN0 = (A0 +B0K)ẐN0 + LC0EN0 (17a)
+ LC̃1ẼN−N0 + L� + �Ld

ĖN0 = (A0 − LC0)EN0 − LC̃1ẼN−N0 (17b)
− L� + (B0 − �L)d (17c)

̇̃ZN−N0 = A1Z̃N−N0 + B̃1KẐ
N0 (17d)

̇̃EN−N0 = A1ẼN−N0 + B̃2d (17e)

where the different matrices are defined by

A0 = diag(�0,A1,… ,AN0 ),

A1 = diag(AN0+1,… ,AN ),

B0 =
[

�0 ℌ⊤
1 … ℌ⊤

N0

]⊤
,

B̃1 =
[

1
N0+1

ℌ⊤
N0+1

… 1
Nℌ⊤

N

]⊤
,

B̃2 =
[√

|�N0+1|ℌ
⊤
N0+1

…
√

|�N |ℌ⊤
N

]⊤
,

C0 =
[

�0(�) ℭ1 … ℭN0
]

,

C̃1 =
[

1
√

|�N0+1|
ℭN0+1 … 1

√

|�N |

ℭN
]

,

L =
[

l0 L⊤1 … L⊤N0
]⊤
.

In particular, noting that |�n(�)| ≤ cosh((log �)�), we have
‖B̃1‖ = O(1) and ‖C̃1‖ = O(1) asN → +∞.

Introducing the vector

X = col
(

ẐN0 , EN0 , Z̃N−N0 , ẼN−N0
)

, (18)

the reduced model (17) can be rewritten as

Ẋ = FX + � + dd (19)

where

F =

⎡

⎢

⎢

⎢

⎣

A0 +B0K LC0 0 LC̃1
0 A0 − LC0 0 −LC̃1

B̃1K 0 A1 0
0 0 0 A1

⎤

⎥

⎥

⎥

⎦

,

 = col(L,−L, 0, 0),
d = col(�L,B0 − �L, 0, B̃2).

Moreover we have

u = K̃X (20)

with the matrix K̃ =
[

K 0 0 0
]

.

Remark 6. Both pairs (A0,B0) and (A0, C0) satisfy theKalman
condition. This can be easily observed from the Hautus test
using the fact that the eigenvalues �n, |n| ≤ N0, of A0 are
simple. The case of the pair (A0,B0) now follows from
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the fact that �0 ≠ 0 and that the pairs (An,ℌn) satisfy the
Kalman condition because p ≠ 0 and Im �n ≠ 0 for n ≥ 1.
Regarding the pair (A0, C0), the conclusion follows from the
facts that Im �n ≠ 0 for n ≥ 1 and �n(�) ≠ 0 for all n ∈ ℤ.
The latter is because |�n(�)|2 = | cosh((log �)�)|2 cos2(2n��)+
| sinh((log �)�)|2 sin2(2n��) ≥ | sinh((log �)�)|2 > 0 for � ≠
0 while �n(0) = 1 for all n ∈ ℤ.

5. Exponential stability assessment
5.1. Stability of the disturbance-free system

We assume throughout this subsection that the boundary
disturbance is zero, i.e. d = 0. Introducing X̃ = col (X, �)
we obtain from (15) and (17a) that

v = u̇ = K ̇̂ZN0 = EX̃ (21)

with the matrix E = K
[

A0 +B0K LC0 0 LC̃1 L
]

.
The main result of this subsection is stated by the follow-

ing theorem.

Theorem 1. Let p > 0, r ∈ ℝ, and s > 1 be given. Let
� > 0 and N0 ≥ 0 be such that Re �n < −� for all |n| ≥
N0 + 1. Let K ∈ ℝ1×(2N0+1) and L ∈ ℝ2N0+1 be such
that A0 +B0K and A0 −LC0 are Hurwitz with eigenvalues
that have a real part strictly less than −� < 0. For a given
N ≥ max

(

N0 + 1,
⌊

log �
2�

⌋)

, assume that there exist P ≻ 0,
� > 1∕p, and �, 
 > 0 such that

Θ1 ⪯ 0, Θ2 < 0 (22)

where

Θ1 =
[

F⊤P + PF + 2�P + �
c�aK̃⊤K̃ P
⊤P −�

]

+ �
c�bE⊤E (23)

Θ2 = 2

{

−
(

p − 1
�

)

|Re�N+1| + r + �
}

+ �M�

with a =
∑

|n|≥N+1 |an|
2, b =

∑

|n|≥N+1 |bn|
2, M� =

∑

|n|≥N+1
|�n(�)|2

|�n|
, and c� =

|�N+1|
|Re�N+1|

= 4(N+1)2�2+(log �)2

4(N+1)2�2−(log �)2 .
Then there exists a constantM > 0 such that for any initial
conditions z0 ∈ H2(0, 1), ẑ0(0) ∈ ℝ, and ẑn(0) ∈ ℝ2 such
that z0(1) = sz0(0) and z′0(0) = KẐN0 (0), the trajectories
of the disturbance-free (i.e., d = 0) closed-loop system com-
posed of the plant (1) and the controller (14) satisfy

∑

n∈ℤ
|�n||zn(t)|2 + |ẑ0(t)|2 +

N
∑

n=1
‖ẑn(t)‖2

≤Me−2�t
(

∑

n∈ℤ
|�n||zn(0)|2 + |ẑ0(0)|2 +

N
∑

n=1
‖ẑn(0)‖2

)

(24)

for all t ≥ 0. Moreover, the constraints (22) are always
feasible forN selected large enough.

PROOF. Since Θ2 < 0, we fix � > 0 so that

Θ2,� = 2

{

−
(

p − 1
�

)

|Re�N+1| + r + �
}

+(1+�)�M� ≤ 0.

Following [15], it seems natural to consider the Lyapunov
function candidate defined forX ∈ ℝ2(2N+1) andw ∈ D()
by

V∞(X,w) = X⊤PX + 

∑

|n|≥N+1
|�n|| ⟨w, n⟩ |

2. (25)

However, contrary to the case of reaction-diffusion PDEs
with collocated boundary conditions such as the ones stud-
ied in [15], the underlying unbounded operator is not self-
adjoint. In this case, and contrary to the self-adjoint case, it
is not straightforward to assess the continuous differentiabil-
ity of the series appearing in (25) along the system trajecto-
ries. To avoid this technical difficulty, we introduce for any
givenM ≥ N + 1 the functional

VM (X,w) = X⊤PX + 

∑

N+1≤|n|≤M
|�n|| ⟨w, n⟩ |

2. (26)

The computation of the time derivative of VM along the sys-
tem trajectories (9) and (19) with d = 0 gives

V̇M = X⊤{F⊤P + PF }X + 2X⊤P�

+ 2

∑

N+1≤|n|≤M
|�n|Re

({

�nwn + anu + bnv
}

wn
)

≤ X̃⊤
[

F⊤P + PF P
⊤P 0

]

X̃

+ 2

∑

N+1≤|n|≤M
|�n|Re �n|wn|2

+ 2

∑

N+1≤|n|≤M
|�n|

{

|an||u| + |bn||v|
}

|wn|.

Using Young’s inequality, we infer that

2
∑

N+1≤|n|≤M
|�n||an||u||wn|

≤ 1
�c�

∑

N+1≤|n|≤M
|�n|

2
|wn|

2 + �c�a|u|2

2
∑

N+1≤|n|≤M
|�n||bn||v||wn|

≤ 1
�c�

∑

N+1≤|n|≤M
|�n|

2
|wn|

2 + �c�b|v|2.

FromLemma 1we have |�n| = (log �)2+4n2�2 andRe�n =
(log �)2 − 4n2�2. Since N ≥ ⌊

log �
2� ⌋ > log �

2� − 1, we have
Re�n ≤ Re�N+1 = (log �)2 − 4(N + 1)2�2 < 0 for all
|n| ≥ N+1. Therefore we infer for |n| ≥ N+1 that |�n|

|Re�n|
≤

|�N+1|
|Re�N+1|

= c� hence |�n| ≤ c�|Re�n|. The combination of
these estimates and the use of (20-21) imply

V̇M + 2�VM ≤ X̃⊤Θ1,�=0X̃
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+ 2

∑

N+1≤|n|≤M
|�n|

{

−
(

p − 1
�

)

|Re�n| + r + �
}

|wn|
2

whereΘ1,�=0 is obtained from (23) by setting � = 0. Recall-
ing that � =

∑

|n|≥N+1wn�n(�), we infer that

�2 ≤ (1 + �)

(

∑

N+1≤|n|≤M
wn�n(�)

)2

+
(

1 + 1
�

)

(

∑

|n|≥M+1
wn�n(�)

)2

≤ (1 + �)M�
∑

N+1≤|n|≤M
|�n||wn|

2

+
(

1 + 1
�

)

R�,M
∑

|n|≥M+1
|�n||wn|

2

where R�,M =
∑

|n|≥M+1
|�n(�)|2

|�n|
→ 0 whenM → +∞ and

where � > 0 has been fixed at the beginning of the proof.
Combining the latter estimates, we obtain that

V̇M + 2�VM ≤ X̃⊤Θ1X̃ +
∑

N+1≤|n|≤M
|�n|Γn|wn|2

+
(

1 + 1
�

)

�R�,M
∑

n∈ℤ
|�n||wn|

2

where Γn = 2

{

−
(

p − 1
�

)

|Re�n| + r + �
}

+(1+�)�M�.
Since � > 1∕p, we note that Γn ≤ ΓN+1 = Θ2,� ≤ 0 for all
|n| ≥ N + 1. Using in addition Θ1 ⪯ 0, we deduce that

V̇M + 2�VM ≤
(

1 + 1
�

)

�R�,M
∑

n∈ℤ
|�n||wn|

2.

Integrating on the time interval [0, t], we have

VM (t) ≤ e−2�tVM (0)

+
(

1 + 1
�

)

�R�,M ∫

t

0
e−2�(t−�)

∑

n∈ℤ
|�n||wn(�)|2 d�

which implies, by lettingM → +∞, thatV∞(t) ≤ e−2�tV∞(0).
The claimed stability estimate (24) now easily follows from
the definition of V∞, the use of (8) and Remark 3.

We now assess the feasibility of the constraints (22) for
N selected large enough. First, the application of the lemma
reported in [17, Appendix] to the matrix F + �I , shows the
existence of P ≻ 0 so that F⊤P + PF + 2�P = −I with
‖P‖ = O(1) when N → +∞. We now fix arbitrarily � >
1∕p and we set 
 = 1∕N and � =

√

N . Hence we have
Θ2 → −∞ when N → +∞. Moreover, noting that ‖K̃‖ =
‖K‖ is a constant independent of N and ‖E‖ = O(1) as
N → +∞, the use of Schur complement shows that Θ1 ⪯ 0
forN selected large enough. This completes the proof.

Remark 7. Noting that minn∈ℤ |�n| = (log �)2 > 0, be-
cause � > 1, we infer from the stability estimate (24) and
the Riesz basis inequalities (7) that ‖z(t, ⋅)‖L2 exponentially
decreases to zero.

Remark 8. It is worth mentioning that the result of The-
orem 2 can be easily extended to the derivation of an ISS
estimate with respect to a distributed perturbation �(t, ⋅) ∈
L2(0, 1) and a perturbation dm(t) of the measurement. More
precisely, (1a) is replaced by zt(t, x) = pzxx(t, x)+rz(t, x)+
�(t, x) and the measurement (1d) is replaced by yD(t) =
z(t, �)+dm(t). This result is easily obtained because the sub-
sequent perturbations � and dm act on the closed-loop sys-
tem dynamics through bounded operators. The situation is
muchmore involved in the case of the boundary perturbation
d(t) applying at the control input via (1c). This is because the
establishment of ISS estimates with respect to boundary per-
turbations is much more challenging compared to perturba-
tions applied through bounded operators [19]. Therefore, we
focus our next subsection on the derivation of an ISS prop-
erty with respect to the boundary perturbation d.

5.2. Input-to-state stability
We now consider the case of the closed-loop system in

the presence of a boundary perturbation d ≠ 0.

Theorem 2. Let p > 0, r ∈ ℝ, and s > 1 be given. Let
� > 0 and N0 ≥ 0 be such that Re �n < −� for all |n| ≥
N0 + 1. Let K ∈ ℝ1×(2N0+1) and L ∈ ℝ2N0+1 be such
that A0 +B0K and A0 −LC0 are Hurwitz with eigenvalues
that have a real part strictly less than −� < 0. For a given
N ≥ max

(

N0 + 1, ⌊
log �
2� ⌋

)

, assume that there exist P ≻ 0,
� > 1∕(2p), and �, 
 > 0 such that

Θ1 ≺ 0, Θ2 < 0, Θ3 > 0 (27)

where

Θ1 =
[

Θ1,1 P
⊤P −�

]

Θ1,1 = F⊤P + PF + 2�P + (�
1 + 2�M�2)K̃⊤K̃

Θ2 = 2

{

−
(

p − 1
2�

)

|Re�N+1| + r + �
}

+ 2�M�c
3∕4
� |Re�N+1|3∕4

Θ3 = 2

(

p − 1
2�

)

−
2�M�c

3∕4
�

|Re�N+1|1∕4

withM� =
∑

|n|≥N+1
|�n(�)|2

|�n|3∕4
, 1 =

∑

|n|≥N+1
|�n|2

|Re�n|
, 2 =

∑

|n|≥N+1 |�n|
3∕4

|bn|2, and c� =
|�N+1|

|Re�N+1|
= 4(N+1)2�2+(log �)2

4(N+1)2�2−(log �)2 .
Then there exist constantsM1,M2 > 0 such that for any ini-
tial conditions z0 ∈ H2(0, 1), ẑ0(0) ∈ ℝ, and ẑn(0) ∈ ℝ2,
and any boundary disturbance d ∈ 2(ℝ+), all such that
z0(1) = sz0(0) and z′0(0) = KẐN0 (0) + d(0), the trajecto-
ries of the closed-loop system composed of the plant (1) and
the controller (14) satisfy

‖z(t, ⋅)‖2L2 + |ẑ0(t)|2 +
N
∑

n=1
‖ẑn(t)‖2

≤M1e
−2�t

(

‖z0‖
2
L2 + |ẑ0(0)|2 +

N
∑

n=1
‖ẑn(0)‖2

)

(28)
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+M2 sup
�∈[0,t]

e−2�(t−�)|d(�)|2

for all t ≥ 0. Moreover, the constraints (27) are always
feasible forN selected large enough.

PROOF. In view of (27), let �′ > � and � > 0 be fixed such
that Θ1,� ≺ 0, Θ2,� < 0, and Θ3,� > 0 where

Θ1,� =
[

Θ1,1,� P
⊤P −�

]

Θ1,1,� = F⊤P + PF + 2�′P

+ (�
(1 + �)1 + (2 + �)�M�2)K̃⊤K̃

Θ2,� = 2

{

−
(

p − 1
2�

)

|Re�N+1| + r + �′
}

+ (2 + �)�M�c
3∕4
� |Re�N+1|3∕4

Θ3,� = 2

(

p − 1
2�

)

−
(2 + �)�M�c

3∕4
�

|Re�N+1|1∕4
.

We consider the Lyapunov functional defined by V (X, z) =
X⊤PX + 


∑

|n|≥N+1 | ⟨z,  n⟩ |
2. The computation of the

time derivative of V along the system trajectories (10) and
(19) gives

V̇ = X⊤{F⊤P + PF }X + 2X⊤P� + 2X⊤Pdd

+ 2

∑

|n|≥N+1
Re

({

�nzn + �nud
}

zn
)

≤ X̃⊤
[

F⊤P + PF P
⊤P 0

]

X̃ + 2

∑

|n|≥N+1
Re �n|zn|2

+ 2X⊤Pdd + 2

∑

|n|≥N+1
|�n||ud||zn|.

The use of Young’s inequality implies that

2
∑

|n|≥N+1
|�n||ud||zn| ≤ �1|ud|2 +

1
�

∑

|n|≥N+1
|Re�n||zn|2.

Moreover, from ud = u+d with (20), we deduce that |ud|2 ≤
(1 + �)X⊤K̃⊤K̃X + (1 + 1∕�)|d|2. Recalling the definition
� =

∑

|n|≥N+1wn�n(�) and in view of (8) and (20), we infer
that

�2 ≤M�
∑

|n|≥N+1
|�n|

3∕4
|wn|

2

≤ (2 + �)M�
∑

|n|≥N+1
|�n|

3∕4
|zn|

2 + (2 + �)M�2X⊤K̃⊤K̃X

+ (1 + 2∕�)M�2|d|2.

Finally, since N ≥ ⌊

log �
2� ⌋ > log �

2� − 1, we have Re�n ≤
Re�N+1 = (log �)2 − 4(N + 1)2�2 < 0 for all |n| ≥ N + 1.
Hence, for any |n| ≥ N + 1, we have Re �n = pRe�n + r =
−p|Re�n|+r and we infer that

|�n|
|Re�n|

≤ |�N+1|
|Re�N+1|

= c� thus
|�n| ≤ c�|Re�n|. Putting together all the above estimates,
we deduce that

V̇ + 2�′V ≤ X̃⊤Θ1,�X̃ +
∑

|n|≥N+1
Γn|zn|2

+ 2X⊤Pdd + cd|d|2

where cd = �
(1 + 1∕�)1 + (1 + 2∕�)�M�2 and

Γn = 2

{

−
(

p − 1
2�

)

|Re�n| + r + �′
}

+ (2 + �)�M�c
3∕4
� |Re�n|3∕4.

We now note that |Re�n| ≥ |Re�N+1| for all |n| ≥ N + 1
hence |Re�n|3∕4 =

|Re�n|
|Re�n|1∕4

≤ |Re�n|
|Re�N+1|1∕4

. This implies
that Γn ≤ −Θ3,�|Re�n| + 2
{r + �′} ≤ −Θ3,�|Re�N+1| +
2
{r + �′} = Θ2,� ≤ 0 for all |n| ≥ N + 1, where we
have used that Θ3,� ≥ 0. This implies that V̇ + 2�′V ≤
X̃⊤Θ1,�X̃ +2X⊤Pdd + cd|d|2. Since Θ1,� ≺ 0, the use of
Schur complement shows the existence of a sufficiently large
constant c′d > 0 so that V̇ + 2�′V ≤ c′d|d|

2. The claimed
ISS estimate (28) now easily follows from the integration of
the latter inequality, the definition of V , the use of (7), and
the fact that �′ > �.

It remains to assess the fact that the constraints (27) are
feasible provided N is selected large enough. To do so,
we first apply the lemma reported in [17, Appendix] to the
matrix F + �I , showing the existence of P ≻ 0 so that
F⊤P +PF +2�P = −I with ‖P‖ = O(1) whenN → +∞.
We then arbitrarily fix � > 1∕(2p) and we set 
 = 1. We
note that M� ≠ 0 for all N ≥ N0 + 1 (because �n(�) ≠
0; see the end of Remark 6). Hence we can define � =
1∕
√

M�. We note that1,2,M� → 0, hence � → +∞ and
�M� → 0, as N → +∞. Finally we have from Lemma 1
that Re�n = (log �)2 − 4n2�2. This shows that Θ2 → −∞
andΘ3 → 2


(

p − 1
2�

)

> 0whenN → +∞. Moreover, the
use of Schur complement gives Θ1 ≺ 0 forN selected large
enough. This completes the proof.

Remark 9. It is worth noting that the procedure employed
for the proof of Theorem 2 can also be used to establish an
ISS estimate with respect to an additive boundary perturba-
tion of the control input for the classical reaction-diffusion
PDE (with collocated boundary conditions) studied in [15]
in the specific case of a Dirichlet boundarymeasurement and
a Neumann actuation. This is because the Neumann actua-
tion setting gives �n = O(1). Note however that this ap-
proach fails for Dirichlet and Robin boundary actuations be-
cause, in that case, one has in general no better than �n =
O(

√

�n).

6. Numerical illustration
We illustrate the theoretical results of this paper by con-

sidering the reaction-diffusion PDE described by (1) with
p = 0.1, r = 1, s = 5, and � = 3∕4. The open-loop system
is unstable. Morover, note that r > p hence the basic control
strategy described in Remark 1 cannot be applied.

For a desired exponential decay rate � = 1, we set the
feedback and observer gains asK = 17.6276 andL = 1.9186,
respectively. The constraints (22) of Theorem 1 are found
feasible forN = 2, ensuring the exponential stability of the
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(a) State of the reaction-diffusion system z(t, x)

(b) Error of observation e(t, x) = z(t, x) − ẑ(t, x)

Figure 1: Time evolution of the closed-loop system without

perturbation

disturbance-free (i.e., d = 0) closed-loop system in the sense
of (24). In the presence of a boundary perturbation d ≠ 0,
the constraints (27) of Theorem 2 appear to be more strin-
gent from a numerical perspective as they are found feasible
forN = 22. This ensures the exponential input-to-state sta-
bility of the closed-loop system in the sense of (28).

For numerical simulation of the above results, we con-
sider the initial condition z0(x) = 2 + 2(s − 1) sin

(

5�
2 x

)

while the initial condition of the observer is set so that z′0(0) =
KẐN0 (0) + d(0). The time domain evolution of the closed-
loop system composed of the PDE (1) and the controller (14)
without perturbation (d = 0) is depicted in Fig. 1. Consid-
ering the boundary disturbance d(t) = 5 sin(t2), the time
domain evolution of the disturbed closed-loop system is de-
picted in Fig. 2. These results are compliant with the theoret-
ical predictions of Theorem 1 and Theorem 2, respectively.

7. Conclusion
This paper addressed the topic of output feedback sta-

bilization of reaction-diffusion PDEs with a non-collocated
boundary condition. To the best of our knowledge, this is the
first time that a solution is reported for such a control design
problem. The control strategy couples a finite-dimensional
observer and a state-feedback for which it was shown that
the exponential stability of the resulting closed-loop system
is always achieved when the order of the observer is selected
to be large enough.

1

-20

10

0

0.5

Time (s)

5

20

0 0

(a) State of the reaction-diffusion system z(t, x)

-20
1

0

10

20

0.5

Time (s)

5

40

0 0

(b) Error of observation e(t, x) = z(t, x) − ẑ(t, x)

Figure 2: Time evolution of the closed-loop system in the

presence of a boundary perturbation

It is worth noting that, using control architectures sim-
ilar to the one employed in this paper, the output feedback
boundary control of general 1-D reaction-diffusion PDEswith
collocated boundary conditions usingDirichlet/Neumann bound-
ary measurements was achieved in the case of regulation
control [13], input nonlinearities [15], and arbitrarily long
input [16], output [14], and state [18] delays. Taking ad-
vantage of the procedure described in this paper, all these
approaches can be adapted to the PDE described by (1) with
non-collocated boundary condition.

Finally, the method employed in this paper to address
the disturbance-free setting can also be used to address the
dual problem to (1a-1c). More precisely, and in view of the
adjoint operator∗ characterized by Lemma 2, we consider
the PDE described by

zt(t, x) = pzxx(t, x) + rz(t, x)
zx(t, 0) = szx(t, 1)
z(t, 1) = u(t)

Selecting the system output as yD(t) = z(t, �) for some � ∈
[0, 1), the exponential stabilization of the plant can be ob-
tained using a similar procedure that the one described in
this paper.
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