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A σ3 condition for arbitrarily partitionable graphs

Julien Bensmaila

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

A graph G of order n is arbitrarily partitionable (AP for short) if, for every partition (λ1, . . . , λp)
of n, there is a partition (V1, . . . , Vp) of V (G) such that G[Vi] is a connected graph of order λi
for every i ∈ {1, . . . , p}. Several aspects of AP graphs have been investigated to date, including
their connection to Hamiltonian graphs and traceable graphs. Every traceable graph (and, thus,
Hamiltonian graph) is indeed known to be AP, and a line of research on AP graphs is thus about
weakening, to APness, known sufficient conditions for graphs to be Hamiltonian or traceable.

In this work, we provide a sufficient condition for APness involving the parameter σ3, where,
for a given graph G, the parameter σ3(G) is defined as the minimum value of d(u)+ d(v)+ d(w)−
|N(u) ∩N(v) ∩N(w)| for a set {u, v, w} of three pairwise independent vertices u, v, and w of G.
Flandrin, Jung, and Li proved that any graph G of order n is Hamitonian provided G is 2-connected
and σ3(G) ≥ n, and traceable provided σ3(G) ≥ n−1. Unfortunately, we exhibit examples showing
that having σ3(G) ≥ n − 2 is not a guarantee for G to be AP. However, we prove that G is AP
provided G is 2-connected, σ3(G) ≥ n−2, and G has a perfect matching or quasi-perfect matching.

Keywords: arbitrarily partitionable graph; partition into connected subgraphs; σ3 condition;
Hamiltonian graph; traceable graph.

1. Introduction

This paper deals with so-called arbitrarily partitionable graphs, which are defined formally
as follows. Let G be an n-graph, i.e., a graph of order n. Let also π = (λ1, . . . , λp) be an n-partition,
i.e., a partition of n (that is, λ1 + · · · + λp = n). We say that π is realisable in G if V (G) can
be partitioned into p parts V1, . . . , Vp such that G[Vi] is a connected graph of order λi for every
i ∈ {1, . . . , p}, and we call (V1, . . . , Vp) a realisation (of π in G). Finally, G is called arbitrarily
partitionable (AP for short) if all n-partitions are realisable in G. In other words, G is AP if we
can partition G into arbitrarily many connected subgraphs, regardless of their requested orders.

AP graphs were introduced independently by Barth, Baudon, and Puech and Horňák and
Woźniak [1, 10] in early 2000s, but the problem of partitioning graphs into connected subgraphs
has been attracting attention since at least the 1970s, recall for instance the influential Győri-
Lovász Theorem [8, 12]. Since then, quite some aspects of AP graphs have been investigated in
the literature, including structural aspects, algorithmic questions, numerous variants, and others.
For a recent survey on the topic, we refer the interested reader to, e.g., [2].

AP graphs are objects of interest for numerous reasons. A notable one is the fact that they
sort of lie in-between two other important types of graph notions, being perfect matchings and
Hamitonian cycles. Note indeed that, if n is even, then any realisation of the n-partition (2, . . . , 2)
in an n-graph forms a perfect matching, while, if n is odd, then any realisation of the n-partition
(2, . . . , 2, 1) forms a quasi-perfect matching. Remark also that adding edges to an AP graph cannot
make it loose its APness, and, from this simple observation, we get that any graph spanned by an
AP graph is AP itself. Since paths are obviously AP, this implies that Hamiltonian graphs and
even traceable graphs (graphs having a Hamiltonian path) are AP. Thus, having a perfect matching
or a quasi-perfect matching is a necessary condition for a graph to be AP, while being traceable is
a sufficient condition for a graph to be AP.

These simple thoughts lead to one of the most interesting lines of research regarding AP graphs,
which is on the weakening, to APness, of sufficient conditions for Hamiltonicity and traceability.
The general idea is that one can consider any of the numerous sufficient conditions for a graph to



be Hamiltonian or traceable, and investigate whether it can be weakened to a sufficient condition
for APness. This line of research was initiated by Marczyk in [13], in which he focused on the
parameter σ2, being defined as

σ2(G) = min {d(u) + d(v) : u and v are independent vertices of G}

for any graph G. By a famous result of Ore [16], recall indeed that any connected n-graph G is
Hamiltonian whenever σ2(G) ≥ n, while G is traceable whenever σ2(G) ≥ n− 1. In [13], Marczyk
proved that G is AP provided σ2(G) ≥ n− 2 and α(G) ≤ dn/2e (that is, provided G has a perfect
matching or a quasi-perfect matching). Later on, in [9, 14], Marczyk, together with Horňák,
Schiermeyer, and Woźniak, improved this sufficient condition to G satisfying only σ2(G) ≥ n − 5
and additional conditions (such as the previous condition on α(G), and also conditions on n).

Sufficient conditions for Hamiltonicity and traceability being surely one of the most investigated
and rich areas of graph theory, the work of Marczyk opened the way to many promising investiga-
tions in that line. For instance, in [11], Kalinowski, Pilśniak, Schiermeyer, and Woźniak, motivated
by similar conditions for Hamiltonicity and traceability, exhibited sufficient conditions in terms of
size (number of edges) guaranteeing a graph is AP. In [3], Bensmail and Li considered several
sufficient conditions for Hamiltonicity and traceability (covering squares of graphs and forbidden
structures) and proved that some of these weaken to APness, while some do not.

The current work takes place in the line of the previous investigations, and, more particularly,
relates to the initiating work of Marczyk on the topic. Precisely, we deal with the parameter σ3
being defined as

σ3(G) = min {d(u) + d(v) + d(w) : u, v, and w are pairwise independent vertices of G}

for a given graph G. As reported in several surveys on the topic (such as, e.g., [7, 18]), this
parameter σ3 has indeed be employed, together with other graph properties (such as connectivity
and claw-freeness), to express sufficient conditions for graphs to be Hamiltonian, and sometimes
more or less than that. As far as we are aware, this was also considered in the context of AP graphs.
Indeed, at the occasion of the 18th workshop “Colourings, Independence and Domination” (CID
2013) led in 2013, Brandt was invited to give a lecture, entitled “Finding Vertex Decompositions
in Dense Graphs”, during which he announced the following result:

Theorem 1.1 (Brandt). If G is a connected n-graph with σ3(G) ≥ n, then G is AP if and only if
G admits a perfect matching or a quasi-perfect matching.

Unfortunately, it seems that Brandt has never published a proof of Theorem 1.1, and the only
remains of his investigations to date are the title of his talk (mentioned in the preface [4]), as well
as the corresponding abstract, which can be found online and which we report word for word in
concluding Section 4 for the sake of keeping track of it. On the positive side, this abstract provides
hints regarding the main lines of Brandt’s proof of Theorem 1.1.

Our investigations in the current work were inspired by Brandt’s result, and our original intent
was to provide a result that would be sort of reminiscent of Theorem 1.1. As a result, we deal
with a parameter that is very close to the parameter σ3, as it relies on a slightly different notion
of degree sum for triples of pairwise independent vertices. That is, for a graph G and any three
pairwise distinct independent vertices u, v, and w of G, set

d∗(u, v, w) = d(u) + d(v) + d(w)− |N(u) ∩N(v) ∩N(w)|.

Now, define

σ3(G) = min {d∗(u, v, w) : u, v, and w are pairwise independent vertices of G} .

Note that σ3(G) ≤ σ3(G) for every graph G. It turns out that this parameter σ3 has also been
used to express sufficient conditions for Hamiltonicity and traceability. In particular, Flandrin,
Jung, and Li proved in [6] that any 2-connected n-graph G with σ3(G) ≥ n is Hamiltonian, while
any connected n-graph G with σ3(G) ≥ n − 1 is traceable. [18] reports that the latter bound
for traceability was proved to also hold when σ3(G) ≥ n − 2 provided G fulfils additional strong
conditions (involving 2-connectivity and claw-freeness).

The current work is dedicated to proving the next result, which provides a new sufficient
condition, involving the parameter σ3, for a graph to be AP:
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Theorem 1.2. If G is a 2-connected n-graph with σ3(G) ≥ n− 2, then G is AP if and only if G
admits a perfect matching or a quasi-perfect matching.

We searched the literature for a while, and, as far as we can tell, it seems that Theorem 1.2
does not follow immediately from existing results on the parameter σ3 (such as conditions implying
traceability). We have to add, however, that the literature on the topic is quite vast, rich, and
that several old works mentioned, e.g., in surveys seem to be impossible to access easily nowadays.
Thus, it is hard to be fully certain we have not missed something. However, even if a previous
result implying Theorem 1.2 was to exist, we believe the proof we give would remain of interest,
as it relies on understanding how APness and a parameter such as σ3 relate in general.

We start by introducing useful material in Section 2, before focusing on proving Theorem 1.2
in Section 3. We discuss our result in Section 4, in which we also discuss Brandt’s Theorem 1.1.

2. Preliminaries

In our proof of Theorem 1.2, we will often deal with particular situations in which the following
notations and terminology will be useful. Let G be a graph, and let P = v1 . . . vp be a path of G.
For a vertex vi ∈ V (P ), we sometimes denote by v−i and v+i the vertices vi−1 and vi+1 (assuming
they exist). For a set S ⊆ V (P ) of vertices of P , we denote by S− and S+ the sets {v−i : vi ∈ S}
and {v+i : vi ∈ S}, respectively. These notions will be particularly useful when dealing with vertices
of G having all their neighbours on P . Namely, for a u ∈ V (G) (we might have u ∈ V (P )) such
that N(u) ⊆ V (P ), we will have to deal with the sets N(u)− and N(u)+ in many occasions.

In the proof of Theorem 1.2, we will sometimes obtain a realisation in G of some partition by
first “splitting” (sometimes only part of) P into parts of certain size containing consecutive vertices.
Note that this is indeed a legitimate way to proceed, as any set of consecutive vertices of P induces
a connected graph. In such occasions, we will process the vertices of P one by one, from one end-
vertex to the other (either as going from v1 to vp, or conversely), and pick parts as going along.
Assuming we want to split P into connected parts of size λ1, . . . , λp, where λ1+ · · ·+λp ≤ |V (P )|,
the first λ1 vertices of P (following the considered ordering) will form one part, the next λ2 vertices
will form another part, and so on. When building one of these parts, we will sometimes have to
grab a vertex u of G from some vi on the way, meaning that, at the very moment where vi is
added to some part, assuming viu is an edge and the current part still misses vertices to reach the
desired size, then we add u to the current part before resuming the picking process with the vertex
succeeding vi in the considered ordering. As will be apparent later on, we will use this picking
process in a rather flexible way (sometimes different from what we described above), and, in every
such occasion, we will make sure to describe the exact process properly to avoid any ambiguity.

Still about P , note that the way we denote its consecutive vertices v1, . . . , vp above yields a
virtual orientation of P from the first vertex (v1) to the last (vp), where vi is considered to be a
predecessor of vj if i < j, while vj is considered to be a successor of vi in such situations. Note
that these notions also make sense for the parts we pick during the picking process above. One has
to be careful, however, that the notions of preceding and succeeding parts are not with respect to
the virtual orientation of P , but rather with the ordering in which the consecutive vertices of P
as considered through the process. In particular, when picking parts as going from vp to v1, note
that these notions are reversed compared to those we get as going from v1 to vp.

We finish off with a useful result on partitioning graphs with long paths into connected sub-
graphs. Assume G is an n-graph, and let π be an n-partition. We denote by sp(π) the spectrum
of π, being the set of distinct element values that appear in π. An important and crucial fact is
that if P is long enough, then all n-partitions with sufficiently many distinct element values are
realisable in G. This is captured in the following result of Ravaux:

Theorem 2.1 (Ravaux [17]). If G is a connected n-graph with a path of length n− α, then every
n-partition π with |sp(π)| ≥ α is realisable in G.

Before we proceed to the proof of Theorem 1.2 in the next section, we first recall some easy
properties of longest paths in connected graphs.

Lemma 2.2. Let P = v1 . . . vp be a longest path in a connected graph G, and set R = V (G)\V (P ).
Then the following items hold for every vertex u ∈ R.
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(1) {u, v1, vp} is a stable set.

(2) d(v1) = |N(v1)
−| and d(vp) = |N(vp)

+|.

(3) NP (u) ⊆ V (P ) \ (N(v1)
− ∪N(vp)

+).

(4) NP (u) ∩NP (u)− = NP (u) ∩NP (u)+ = ∅.

(5) If G[R] has at least one edge, then:

(5a) N(v1)
− ∩N(vp)

+ = ∅;
(5b) dP (u) + d(v1) + d(vp) ≤ p.

Proof. (1) follows from the fact that having an edge joining two vertices in {u, v1, vp} would lead,
because G is connected, to deducing a path of G longer than P , a contradiction. (2) follows directly
from the fact that v1 and vp, because P is a longest path of G, have all their neighbours on P . (3)
is because if u had a neighbour vi with vi ∈ N(v1)

− (or vi ∈ N(vp)
+), then uvi . . . v1vi+1 . . . vp (or

uvi . . . vpvi−1 . . . v1) would be a path of G longer than P , a contradiction. (4) is because if u had
two neighbours vi and vi+1 that are consecutive on P , then v1 . . . viuvi+1 . . . vp would be a path of
G longer than P , another contradiction.

Assume nowG[R] has at least one edge. First, note that if there was some vi ∈ N(v1)
−∩N(vp)

+,
then v1 . . . vi−1vp . . . vi+1v1 would be a cycle of length p−1, and, from the facts that G is connected
and that G[R] contains edges, we would come up with a path of G longer than P , a contradiction.
Thus, such a vi cannot exist, which proves (5a). Now, since (3) and (5a) hold, note that we have
dP (u) ≤ p− d(v1)− d(vp). Thus dP (u) + d(v1) + d(vp) ≤ p, and (5b) also holds.

3. Proof of Theorem 1.2

We start by establishing facts on the structure of 2-connected n-graphs G with σ3(G) ≥ n− 2.

Lemma 3.1. Let P = v1 . . . vp be a longest path in a 2-connected n-graph G with σ3(G) ≥ n− 2,
and set R = V (G) \ V (P ). If G is not traceable, i.e., p < n, then the following items hold.

(1) R is a stable set.

(2) |R| ≤ 2.

(3) If R = {u1, u2}, then:

(3a) |N(u1) ∩N(u2)| ≥ 2;

(3b) denoting by vz1 and vz2 the first and last vertices of N(u1) ∪N(u2) on P , respectively,
and setting Z = {vz1 , . . . , vz2}, we have

|NZ(v1) ∪N(u1) ∪N(u2)| > 1 +
z2 − z1

2
.

Proof. Set r = |R|. Regarding (1), assume, towards a contradiction, that G[R] has edges. Let
u ∈ R be a vertex incident to edges of G[R]. Then

d(u) + d(v1) + d(vp)− |N(u) ∩N(v1) ∩N(vp)| ≥ σ3(G) ≥ n− 2 = p+ r − 2.

However, by Lemma 2.2(5b), we have

dP (u) + d(v1) + d(vp) ≤ p.

Since d(u) = dP (u) + dR(u), it follows that

dR(u) ≥ r − 2 + |N(u) ∩N(v1) ∩N(vp)|.
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Now suppose dR(u) = r−2. Then N(u)∩N(v1)∩N(vp) = ∅ and dP (u)+d(v1)+d(vp) = p. Thus,
by Lemma 2.2(2) and (5a), we have

dP (u) = p−
(∣∣N(v1)

−∣∣+ ∣∣N(vp)
+
∣∣) = p−

∣∣N(v1)
− ∪N(vp)

+
∣∣ .

From Lemma 2.2(3), it thus follows that every vertex of P that is not a neighbour of u lies in
N(v1)

−∪N(vp)
+. Now, because G is connected, we can further assume that there is a vi such that

uvi is an edge. Recall that vi 6∈ {v1, v2, vp−1, vp}, as otherwise, because u is incident to edges of
G[R], we could find a path of G longer than P . Thus, vi−2 and vi+2 exist. Also, uvi−1 and uvi+1

cannot be edges by Lemma 2.2(4). So, by earlier arguments, we have that vi−1 and vi+1 belong
both to N(v1)

− ∪N(vp)
+.

• If vi−1 and vi+1 belong to distinct of N(v1)
− and N(vp)

+, then either vi−1 ∈ N(v1)
− and

vi+1 ∈ N(vp)
+, or vi−1 ∈ N(vp)

+ and vi+1 ∈ N(v1)
−. In the first case, note that vi ∈

N(v1) ∩N(vp) ∩N(u), which is not allowed. In the second case, we have vi−2 ∈ N(vp) and
vi+2 ∈ N(v1), in which case we can find a path of G longer than P , a contradiction. One
such path first follows v1 . . . vi−2vp . . . vi, then goes to u, and then traverses edges of G[R].

• If vi−1 and vi+1 belong both to N(v1)
− or N(vp)

+, then, assuming, without loss of generality,
they belong both to N(v1)

−, we have vi−1, vi+1 ∈ N(v1)
−, and thus vi, vi+2 ∈ N(v1). Again,

a path longer than P can be deduced: start, e.g., by following vp . . . vi+2v1 . . . vi, then go to
u, and lastly traverse edges of G[R].

In both cases we thus come up with a path of G longer than P , which is a contradiction. So R
must be a stable set, which proves (1).

We now prove (2). Set R = {u1, . . . , ur}. Since R is stable due to (1), every vertex u ∈ R
verifies N(u) ⊂ {v1, . . . , vp}. Remind also that, by Lemma 2.2(1), vertex u can be adjacent to
neither v1 nor vp. Thus the vertices in R have all their neighbours in {v2, . . . , vp−1}.

Note that if ui and uj are two distinct vertices of R, then |N(uj) ∩ N(ui)
+| ≤ 1. Indeed,

assume there are two distinct vertices vi1+1, vi2+1 ∈ N(uj)∩N(ui)
+, where i1 < i2. Then vi1 , vi2 ∈

N(ui), and v1 . . . vi1uivi2 . . . vi1+1ujvi2+1 . . . vp is a path of G of order p+2, a contradiction to the
maximality of P . Similarly, |N(uj) ∩N(ui)

−| ≤ 1.
Towards a contradiction to (2), assume r ≥ 3. So, u1, u2, and u3 exist. We define the following

metric ρ for the vertices in {v1, . . . , vp−1}. We set ρ(1) = −1. Then, for every i ∈ {2, . . . , p − 1}
such that ρ(i− 1) is defined, we define ρ(i) as follows:

• if vi is adjacent to no vertex in {u1, u2, u3}, then ρ(i) = ρ(i− 1)− 1;

• if vi is adjacent to exactly one vertex in {u1, u2, u3}, then ρ(i) = ρ(i− 1);

• otherwise, if vi is adjacent to two or three vertices in {u1, u2, u3}, then ρ(i) = ρ(i− 1) + 1.

In other words, ρ(i) refers to the difference X − Y , where X denotes the number of edges incident
to v1, . . . , vi going to vertices in {u1, u2, u3} (with the subtlety that for a common neighbour of u1,
u2, and u3 we count only two edges) while Y denotes the number of vertices in {v1, . . . , vi}, which
is precisely i. Note that, indeed, we have ρ(1) = −1 since v1 is incident to none of u1, u2, and u3.

Note that, for every i ≥ 3, we cannot have ρ(i) = ρ(i−1)+1 = ρ(i−2)+2 because two consec-
utive vi’s cannot both be adjacent to the same ui by the maximality of P (recall Lemma 2.2(4)).
Thus, for the ρ(i)’s to grow by 2, some vi must be adjacent to two or three vertices in {u1, u2, u3},
some next vi’s, say vi+1, . . . , vj−1, must then be adjacent to exactly one vertex in {u1, u2, u3} each,
before the next vertex, vj , is adjacent to two vertices in {u1, u2, u3}. Actually, the first vi in that
sequence cannot be adjacent to the three vertices in {u1, u2, u3}, as, by an earlier remark, this
would make it impossible for vi+1 to have neighbours in {u1, u2, u3}. Thus, this first vi must be
adjacent to exactly two vertices in {u1, u2, u3}. More generally, note that if some vi neighbours all
three vertices in {u1, u2, u3}, then both vi−1 and vi+1 cannot have neighbours in {u1, u2, u3}.

We claim that ρ(i) ≤ 1 for every i ∈ {1, . . . , p − 1}. Assume this is wrong, that is we have
ρ(i) = 2 for some i ∈ {2, . . . , p− 1}. Because ρ(1) = −1, by the remarks above there must be an x
such that ρ(x− 1) = −1 and ρ(x) = 0, a y > x+ 1 such that ρ(x) = ρ(x+ 1) = · · · = ρ(y − 1) = 0
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and ρ(y) = 1, and a z > y + 1 such that ρ(y) = ρ(y + 1) = · · · = ρ(z − 1) = 1 and ρ(z) = 2. Still
by the remarks above, we have that vx, vy, and vz must each be adjacent to exactly two vertices
in {u1, u2, u3}, while all of vx+1, . . . , vy−1, vy+1, . . . , vz−1 must be adjacent to exactly one vertex in
{u1, u2, u3} each. Without loss of generality, assume vx is adjacent to u1 and u2. Then vx+1 must
be adjacent to u3. Also, there cannot be another i such that vi ∈ N(u1)∪N(u2) and vi+1 ∈ N(u3),
by an earlier remark. This implies that vy cannot be adjacent to u3, and vy must thus be adjacent
to u1 and u2, while vy−1 must be adjacent to u3. This implies there cannot be another i such that
vi ∈ N(u3) and vi+1 ∈ N(u1) ∪ N(u2). Now we get to a contradiction whatever two vertices in
{u1, u2, u3} are adjacent to vz, regardless of what other vertex in {u1, u2, u3} is adjacent to vz−1.

Thus, we must have ρ(p− 1) ≤ 1, which means that the number of edges incident to v1, . . . , vp
going to vertices in {u1, u2, u3} (counting only two edges for the vi’s being common neighbours of
u1, u2, and u3) is at most p. In other words, d∗(u1, u2, u3) ≤ p. Since n = p+ r and r ≥ 3, we have
p ≤ n− 3, and thus σ3(G) ≤ d∗(u1, u2, u3) < n− 2, a contradiction to the fact that σ3(G) ≥ n− 2.
Thus, r ≤ 2, and (2) holds.

We now prove (3a), given that (1) and (2) hold. Set A = N(u1) \N(u2), B = N(u2) \N(u1),
and C = N(u1) ∩ N(u2). Then, N(u1) ∪ N(u2) = A ∪ B ∪ C. Set also |A| = a, |B| = b, and
|C| = c. Recall that v1 cannot have neighbours in {u1, u2}, A+, B+, or C+ (by Lemma 2.2(1) and
(3)). Therefore, we have

d(v1) ≤ p− 1− a− b− c.

Since d(u1) + d(u2) = a+ b+ 2c, it follows that

d∗(v1, u1, u2) ≤ p− 1 + c− |N(v1) ∩ C|.

However, d∗(v1, u1, u2) ≥ n− 2 = p, and hence

|N(v1) ∩ C| ≤ c− 1.

Thus, c ≥ 1. Now suppose c = 1. Then |N(v1) ∩ C| = 0. Thus, assuming vx is the vertex in C,
we have vx 6∈ N(v1). However, vx−1 lies neither in N(u1) nor in N(u2) by Lemma 2.2(4). Thus,
vx 6∈ A+ ∪B+ ∪ C+, and thus

d(v1) ≤ p− 2− a− b− c = p− 3− a− b,

which implies that

d∗(v1, u1, u2) ≤ (p− 3− a− b) + (a+ b+ 2) = p− 1 = n− 3,

contradicting that σ3(G) ≥ n− 2. Thus, (3a) holds.

Let us now focus on proving (3b). Set X = {v1, . . . , vz1−1} and Y = {vz2+1, . . . , vp}. In the
calculation of d∗(v1, u1, u2), every vertex in N(v1) ∪N(u1) ∪N(u2) is counted at most twice, and
hence

d∗(v1, u1, u2) ≤ |NX(v1)|+ 2|NZ(v1) ∪N(u1) ∪N(u2)|+ |NY (v1)|.

Now, if |NZ(v1) ∪N(u1) ∪N(u2)| ≤ 1 + z2−z1
2 , then

d∗(v1, u1, u2) ≤ (z1 − 2) + (2 + z2 − z1) + (p− 1− z2) = p− 1 = n− 3,

which contradicts that σ3(G) ≥ n− 2. Thus, (3b) holds.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. As mentioned in Section 1, admitting a perfect matching or a quasi-perfect
matching is a necessary condition for a graph to be AP. We can thus focus on proving the other
direction of the equivalence. Let G be a 2-connected n-graph with σ3(G) ≥ n − 2 such that G
admits a perfect matching or a quasi-perfect matching. Our goal is to prove that G is AP, that is,
that every n-partition π is realisable in G.

Let P be a longest path of G, and set R = V (G)\V (P ). Then, by Lemma 3.1, R is a stable set
with cardinality r ≤ 2. Since P is a path of length n− (r+1) ≥ n− 3, it follows from Theorem 2.1
that π admits a realisation in G if |sp(π)| ≥ r + 1. Thus, we may assume that |sp(π)| ≤ r.
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We consider various scenarios depending on r, π, and neighbours of vertices in R. In each pos-
sible case, we describe a picking process yielding a realisation of π in G, or arrive at contradictions
to the fact that σ3(G) ≥ n− 2.

Case 1. r = 2 and |sp(π)| = 2.

Set R = {u1, u2}. By Lemma 3.1(3a), u1 and u2 have at least two common neighbours on P ,
which we denote by vx and vy, where vx can be assumed to be their common neighbour with the
lowest index, while vy can be assumed to be that with the largest index. Then, x < y.

Set π = (α, . . . , α, β, . . . , β), where α < β. We start by applying the picking process, described
in Section 2, along P , as going from v1 to vp, picking parts of size α first (as many such parts as
indicated by π), and, once no more parts of size α must be picked, then picking parts of size β
(because |V (P )| = n−2, the process, if led entirely, would actually end up with a part of size β−2).
Once vx is added to a (possibly partial) part, we pause the process, and analyse the situation we
have reached. Several scenarios can occur, where throughout what follows, an α-part (or β-part)
refers to a part that is intended to have cardinality α (or β) through the picking process.

Case 1.1. vx is the ith vertex of an α-part with i ≤ α− 2, or of a β-part with i ≤ β − 2.

In this case, we grab u1 and u2 from vx before resuming the process (taking into account
that the current part has two vertices more). Once the whole process finishes, we end up with
a realisation of π in G. Note in particular that there is a part containing vx, u1, and u2, which
induces a connected graph due to the edges vxu1 and vxu2.

Case 1.2. vx is the (α− 1)th vertex of an α-part.

Here, we grab u1 and u2 from vx, to turn the current part into a part of size α + 1 ≤ β. We
then resume the process along vx+1 . . . vp so that this part of size α+ 1 is complemented to a part
of size β, before picking the remaining parts arbitrarily. Eventually, a realisation of π in G results.

Case 1.3. vx is the αth vertex of an α-part.

Case 1.3.1. β ≥ α+ 2.

Here, we grab u1 and u2 from vx to turn the current part into a part of size α+2, and then resume
the picking process along vx+1 . . . vp, taking into account that this part must be complemented to
a part of size β, and might thus miss vertices (when β > α + 2). Eventually, the process ends up
with a realisation of π in G.

Case 1.3.2. β = α+ 1.

Start by grabbing u1 from vx to turn the current part into a part of size β. Note that, if
we resume the picking process, then it remains at least one part of size α to pick. If there also
remain parts of size β to be picked, then Theorem 2.1 implies we can pick the remaining parts
along vx+1 . . . vp in such a way that u2 can be grabbed from vy. From here, by then going on
arbitrarily along vy+1 . . . vp, we can obtain a realisation of π in G. Otherwise, it means that
π = (α, . . . , α, α + 1) for some α, that is β = α + 1 and only one part of size β is requested. If
α = 1, then obviously a realisation of π in G exists. If α = 2, then note that a realisation of
π = (2, . . . , 2, 3) exists if and only if (2, . . . , 2, 1) is realisable in G, that is, if and only if G admits
a quasi-perfect matching, an assumption that was made on G. So, we can further assume α ≥ 3.

Let z1, z2, and Z be as defined in Lemma 3.1(3b). Note that the number of integers in
{z1, . . . , z2} that are congruent to 0 modulo α is at most

1 +
z2 − z1
α

< 1 +
z2 − z1

2

since α ≥ 3. But, by Lemma 3.1(3b),

|NZ(v1) ∪N(u1) ∪N(u2)| ≥ 1 +
z2 − z1

2
,

and hence there is a vertex vi ∈ NZ(v1) ∪N(u1) ∪N(u2) such that i 6≡ 0 mod α.
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• If vi is a neighbour of u1 or u2, then consider running the picking process along P again,
as going from v1 to vp, first picking parts of size α as much as possible, before eventually
picking the part of size α + 1 (if led entirely without grabbing u1 or u2, then note that the
last part would actually be of size α − 1). When reaching vi, because i 6≡ 0 mod α, then u1
or u2 can be grabbed from vi. Then run the picking process till the end to have a partition
of G into connected subgraphs of order α missing only one of u1 and u2, and eventually add
the missing vertex to any of the parts it is joined to, to turn it into a part of size β = α+ 1.

• If vi is a neighbour of v1, then run the picking process as in the previous case but omitting
v1, that is, pick parts of size α as going from v2 to vp. Additionally, during the process,
grab a vertex in {u1, u2} from vz1 , and grab v1 from vi (this is possible, by all hypotheses;
in particular, note that vz1 and vi necessarily belong to different parts). Once the process
finishes, this partitions all vertices of G but one in {u1, u2} into connected subgraphs of order
α. Then add the missing vertex to any adjacent part.

In both situations, we thus end up with a realisation of π in G, which deals with Case 1.3.2
and thus with the whole of Case 1.3.

We now consider cases where vx, through the picking process picking parts of size α first and
then parts of size β, gets added to a β-part. Since Case 1.1 does not apply, we can assume vx is
the (β − 1)th or βth vertex of that part. Note that, at this point of the process, after completing
the part of size β containing vx (by adding vx+1 if that part misses one vertex), we can assume
there remain at least two parts of size β to be picked (as otherwise the rest of the vertices of G
would be β vertices only, inducing a connected graph due to vy, where vy 6= vx+1, and from this
a realisation of π would be obtained). Recall also that we have picked all required parts of size α
earlier in the process.

Case 1.4. vx is the βth vertex of a β-part.

Case 1.4.1. β ≥ α+ 2.

By “replacing” one of the previous parts of size α constructed earlier through the picking process
with a part of size β (or, in other words, by running the picking process so that we pick a first
part of size β, then all parts of size α, and eventually all remaining parts of size β), we essentially
“shift” the succeeding parts towards vp by exactly β − α vertices, including the part that contains
vx, which makes it now possible, after removing the last β −α vertices of the part, to grab u1 and
u2 from vx (note indeed that shifting parts this way cannot make vx “change” part, as this would
require β − α ≥ β, which is not possible since 1 ≤ α < β). Then by resuming the picking process,
we eventually get a realisation of π in G, once the process achieves.

Case 1.4.2. β = α+ 1.

Note that if α = 1, then β = 2, and a realization of π = (1, . . . , 1, 2, . . . , 2) in G exists since G
admits a perfect matching or a quasi-perfect matching. Thus, we can assume α ≥ 2. Recall that,
in the present case, the part containing vx misses no vertex. Then, just as in Case 1.4.1, replace
a previous part of size α with a part of size α+ 1 to shift parts towards vp by one vertex, so that,
after removing the last vertex of the part containing vx, we can now grab u1 from vx. It remains
the vertices of {vx+1, . . . , vp} ∪ {u2} to partition, which induce a connected graph due to vy. Also,
the remaining part sizes form a partition of the form (α, α+ 1, . . . , α+ 1). Theorem 2.1 tells it is
possible to pick parts so that, eventually, a realisation of π in G results.

Case 1.5. vx is the (β − 1)th vertex of a β-part.

Case 1.5.1. β ≥ α+ 2.

If α 6= 1, then we are done by proceeding as in previous Case 1.4. That is, by replacing a
preceding part of size α with a part of size β (to shift parts towards vp), having vx changing part
requires β − α ≥ β − 1, which holds only if α = 1. Thus, this cannot occur here. By removing
the last β − α+ 1 vertices of vx’s part, we can then grab u1 and u2 from vx, and then resume the
picking process to eventually obtain a realisation of π in G.

Now, if α = 1, then we can assume that π = (1, β, . . . , β), that is, π contains only one 1. Indeed,
if π had at least two 1’s, then a realisation of π in G could be obtained by considering {u1} and
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{u2} as parts of size 1, and then applying the picking process along P as going from v1 to vp,
picking parts of size β. So assume π = (1, β, . . . , β). We can further assume that β ≥ 3, since
G was assumed to admit a quasi-perfect matching. The same arguments as in Case 1.3.2 can
now be employed to prove that, for Z = {vz1 , . . . , vz2} as defined in Lemma 3.1(3b), there is some
vi ∈ NZ(v1) ∪N(u1) ∪N(u2) with i 6≡ 0 mod β and x < i < y.

• If vi neighbours u1 or u2, then a realisation of π in G can be obtained by picking parts of size
β along v1, . . . , vp so that u1 or u2 is grabbed from vi during the process (which is possible
since i 6≡ 0 mod β), and eventually having the remaining of u1 and u2 forming the desired
part of size α = 1.

• If vi neighbours v1, then a realisation of π in G can be obtained by picking parts of size β
along v2, . . . , vp so that, during the process, u1 is grabbed from vx and v1 is grabbed from
vi (which is possible since i 6≡ 0 mod β), and eventually defining {u2} as the desired part of
size α = 1.

Case 1.5.2. β = α+ 1.

For similar reasons as in Case 1.5.1, we can assume α ≥ 2. Now, since the part containing vx
misses only one vertex, then, as in previous Case 1.4.2, we are done through replacing one of the
previous parts of size α with a part of size β = α + 1, as it shifts parts toward vp by one vertex
and makes it possible now, because β ≥ 3, after removing the last vertex of the part containing
vx, to grab both u1 and u2 from vx.

Case 2. r = 2 and |sp(π)| = 1.

We again set R = {u1, u2}, and denote by vx and vy two common neighbours (on P ) of u1 and
u2, where x and y verify the same conditions as in Case 1. Set π = (λ, . . . , λ). We can suppose
that λ ≥ 3 since G admits a perfect matching. Now apply the picking process along P as going
from v1 to vp, picking parts of size λ as long as possible (in particular, if the process was achieved
completely, then the part containing vp would be of size λ− 2). We consider a few cases.

Case 2.1. vx is the ith vertex of a λ-part with i ≤ λ− 2.

We can here grab u1 and u2 from vx and resume the process to obtain a realisation of π in G.

Case 2.2. vx is the λth vertex of a λ-part.

Repeat the picking process, but as going from vp to v1 instead. It can be checked that because
n ≡ 0 mod λ and p = n− 2, this time when treating vx the part misses at least one vertex. If the
part misses at least two vertices, then we fall back into previous Case 2.1. The remaining case is
when the part misses exactly one vertex, which is precisely next Case 2.3.

Case 2.3. vx is the (λ− 1)th vertex of a λ-part.

At this point of the picking process, note that if we grab u1 from vx and resume the process,
then, later on, vy can be assumed to be the λth vertex added to its part, as otherwise we could
just grab u2 from vy, and, upon leading the picking process to its end, get a realisation of π in G.

To make things clear, let us run the picking process from v1 to vp again, picking parts of size
λ, with the exception that we make sure vx is the last vertex of its part X (thus of size λ− 1), and
the very last part (containing vp) is of size λ− 1. Regarding the resulting parts preceding X, note
that u1 and u2 can be assumed to only neighbour the λth vertex as otherwise, if they neighboured
another of these vertices, say, vz, then a realisation of π would be obtained through running the
picking process and grabbing u1 and u2 from vz and vy (as, indeed, grabbing one of u1 and u2 from
vz, because λ ≥ 3, would have the effect to shift succeeding parts one vertex towards v1, and thus
make it possible to grab the second vertex from vy). Now, obviously, in all parts succeeding X,
vertices u1 and u2 can be assumed to only neighbour the λth vertex (because vx neighbours both
u1 and u2, and its part X has size λ − 1). Regarding v1, we recall it cannot neighbour a vertex
in N(u1)

+ ∪N(u2)
+ by Lemma 2.2(3). So if u1 and/or u2 neighbour the λth vertex of some part,

then v1 cannot neighbour the first vertex of the next part.
Similar assumptions can be made regarding the neighbourhood of v1, u1, and u2 in X. By

definition, the (λ−1)th vertex of X, which is vx, is actually the last vertex of X, and it neighbours
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both u1 and u2. By an earlier remark, this means v1 cannot neighbour the first vertex of the part
succeeding X. Now let vz ∈ Y \ {vx} be any vertex of X different from vx. By our choice of vx, it
cannot be that vz neighbours both u1 and u2. If vz neighbours v1 and, say, u1, then vz+1 cannot
neighbour any of v1 and u1 (By Lemma 2.2(3) and (4)), and it can be assumed that vz+1 does not
neighbour u2. Indeed, because vz+1 does not neighbour u1, we have vz+1 6= vx since vx neighbours
both u1 and u2. This means vz+1 would be, at worst, the (λ−2)th vertex of X, and thus vz would
be, at worst, the (λ− 3)th vertex of X. Here, a realisation of π in G could be obtained by running
the picking process as earlier, grabbing u1 from vz and u2 from vz+1 during the process, thereby
forming a part of size λ, and resuming the picking process. Thus, we can assume each vz of the
first λ− 2 vertices of X either neighbours at most one vertex in {v1, u1, u2}, or it neighbours two
vertices in {v1, u1, u2} in which case the next vertex has no neighbour in that set (in particular,
this implies z 6= x− 1).

Under all those assumptions, let us now determine the maximum value of d∗(v1, u1, u2). To
that aim, we consider the parts we have constructed above one by one, as going from v2 to vp. As
considering every vi one by one this way, we determine a value ρ(i) deduced from ρ(i − 1), the
exact same way we did to prove Lemma 3.1(2). Essentially, for every i ∈ {2, . . . , p}, the value ρ(i)
is the number of edges incident to the vertices in {v2, . . . , vi} going to {v1, u1, u2} (counting only
two incident edges when the three edges exist) minus |{v2, . . . , vi}|. We consider two main cases.

• Assume the first part is X. That is, v1 and vx belong to the same part, X, which, recall, is
of size λ− 1. As a base case, note that ρ(2) = 0 if v2 neighbours v1 only, and that ρ(2) = 1
if v2 also neighbours one of u1 and u2. In the latter case, by a remark above, we know that
v3 neighbours no vertex in {v1, u1, u2}, and thus ρ(3) = 0. In the former case, v3 is either
adjacent to no vertex in {v1, u1, u2}, in which case ρ(3) = ρ(2)− 1 = −1, to only one vertex
in {v1, u1, u2}, in which case ρ(3) = ρ(2) = 0, or to v1 and exactly one vertex in {u1, u2}, in
which case ρ(3) = ρ(2) + 1 = 1 and we additionally know that ρ(4) = 0. By repeating these
arguments to all vertices of X one by one, for every i ∈ {2, . . . , x− 1} it can be determined
by ρ(i) is at most 1, and for ρ(i) to be exactly 1 it must be that vi neighbours v1 and exactly
one vertex in {u1, u2}, in which case ρ(i+ 1) is sure to be 0. Since vx is adjacent to both u1
and u2, we get that ρ(x− 1) must be at most 0, and thus ρ(x) is at most 1.
We now get to the part succeeding X. For the first vertex, vx+1, we actually have ρ(x+1) =
ρ(x) − 1 ≤ 0 since vx is a common neighbour of u1 and u2. From here, recall that, for the
next λ − 1 vertices, only the last one of the part, i.e., vx+λ, can neighbour u1 and/or u2.
Thus, for every i ∈ {2, . . . , λ}, we have ρ(x+ i) ≤ ρ(x+ 1) ≤ 0. Now, regarding vx+λ, either
it neighbours no vertex in {v1, u1, u2} and we have ρ(x + λ) = ρ(x + λ − 1) − 1 ≤ −1, it
neighbours only one vertex in {v1, u1, u2} and we have ρ(x + λ) = ρ(x + λ − 1) ≤ 0, or it
neighbours two vertices in {v1, u1, u2} and we have ρ(x+ λ) = ρ(x+ λ− 1) + 1 ≤ 1. In the
latter case, we also know that vx+λ+1 neighbours no vertex in {v1, u1, u2} and ρ(x+λ+1) ≤ 0.
These arguments then repeat from the vertices of a part to the vertices of the succeeding part.
In particular, recall that the last part, that containing vp, is of size λ − 1 ≥ 2. This means
that vp−1 cannot be the λth vertex of a part, and, in particular, ρ(p− 1) ≤ 0. Now, since vp
can neighbour no vertex in {v1, u1, u2}, we have ρ(p) ≤ −1. Since |{v2, . . . , vp}| = p− 1, by
the definition of ρ we deduce that d∗(v1, u1, u2) ≤ p − 2 = n − 4. This is a contradiction to
the fact that σ3(G) ≥ n− 2.

• Similar arguments can be employed when the first part is not X. Recall that this first part
is of size λ and that only its λth vertex can neighbour u1 and/or u2. So we have ρ(2) = 0,
while ρ(3), . . . , ρ(λ − 1) ≤ 0. Now, if vλ neighbours at most one vertex in {v1, u1, u2} then
we have ρ(λ) ≤ ρ(λ− 1) ≤ 0, while if vλ neighbours at least two vertices in {v1, u1, u2} then
we have ρ(λ) = ρ(λ − 1) + 1 ≤ 1. In the latter case, note that, by definition of vx, the at
least two neighbours of vλ cannot include u1 and u2, so they must be v1 and exactly one of
u1 and u2, implying that vλ+1 cannot be adjacent to v1. So, if the next part is not X, then
ρ(λ+ 1) = ρ(λ)− 1 ≤ 0, since vλ+1 cannot neighbour u1 and/or u2 in this case. From these
arguments, we deduce that the same calculations hold for all parts preceding X.
Assume now the first vertex of X is vqλ+1 and that ρ(qλ) was computed. By the arguments
above, we have ρ(qλ) ≤ 1. Also, if ρ(qλ) = 1, then vqλ is adjacent to v1 and one of u1 and
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u2, implying that vqλ cannot be adjacent to two vertices in {v1, u1, u2}. Thus, we deduce
that ρ(qλ+1) ≤ 1. If we now employ the exact same arguments as when we dealt with X in
the previous case, we here deduce that for vx, the last vertex of X, we have ρ(x) ≤ 2. Also,
since vx is adjacent to both u1 and u2, we have that vx+1 has no neighbour in {v1, u1, u2},
and thus ρ(x+ 1) ≤ 1.

By now repeating the same arguments as earlier to the consecutive parts succeeding X,
we here deduce that ρ(p − 1) ≤ 1, and thus ρ(p) ≤ 0. Since |{v2, . . . , vp}| = p − 1, then
d∗(v1, u1, u2) ≤ p− 1 = n− 3, which is another contradiction to σ3(G) ≥ n− 2.

Case 3. r = 1.

Set R = {u} and π = (λ, . . . , λ). Since G is assumed to admit a perfect matching or a quasi-
perfect matching, we may assume λ ≥ 3.

Set I = {vi : i ≡ 0 mod λ}. Note that if u is adjacent to a vertex vi 6∈ I, then a realisation of
π in G can be obtained by running the picking process from v1 to vp picking parts of size λ, and
grabbing u from vi. So we can assume that all neighbours of u lie in I.

Let us denote by i1, . . . , id the indexes, where i1 < · · · < id, such that vi1 , . . . , vid are the
d = d(u) neighbours of u. Note that d ≥ 2 since G is 2-connected. Also, vi1 , . . . , vid ∈ I.
Regarding the upcoming arguments, we partition the vertices of P into three sets V1, V2, and V3
as follows: V1 is {vi : i < i1}, V2 is {vi : i ∈ {i1, . . . , id}}, and V3 is {vi : i > id}. Note that v1 ∈ V1,
vp ∈ V3, and vi1 , vid ∈ V2. So, none of the three sets is empty. Since d ≥ 2 and λ ≥ 3, also |V2| ≥ 4.

We now analyse the possible neighbours of v1 (and, similarly, of vp) through the next claim.

Claim 1. A realisation of π in G can be constructed in the following contexts:

(1) if v1 has a neighbour vi that does not lie in V1 ∪ I;

(2) if vi ∈ V1 ∩ I is a vertex such that vpvi is an edge, and there is some vj ∈ V1 \ I with j > i
such that v1vj is an edge.

Proof of the claim. Regarding (1), assume v1 has a neighbour vi that does not lie in V1 ∪ I. Thus,
i > i1. A realisation of π in G can then be obtained as follows. Start running the picking process
along P as going from vp to v2, picking parts of size λ. When reaching vi, then, because vi 6∈ I,
at least one more vertex must be added to the part. Then grab v1 from vi, before resuming the
process. Later on, when reaching vi1 , note that the part must be missing vertices. So, here, just
grab u from vi1 before resuming the process. Once it achieves, this results in a realisation of π.

Now consider (2). Let vi ∈ V1 ∩ I be a vertex such that vpvi is an edge, and assume there is
a vj ∈ V1 \ I with j > i such that v1vj is an edge. A realisation of π in G can here be obtained
as follows. Let α be the smallest index with α > j such that vα ∈ I. We run the picking process
along the path vα−1 . . . v2 as going from vα−1 to v2, picking parts so that the first part (containing
vα−1 and vj) has size λ− 1, the part containing vi has size λ− 1, and the other parts have size λ.
Note that the hypothesis on α and j implies this is possible (in particular, the choice of α implies
that α−1− i > λ−1, so vj and vi cannot belong to the same part). Then, grab v1 from vj to form
a part of size λ, and grab vp from vi to form another part of size λ. Now resume the process, but
along vp−1 . . . vα as going from vp−1 to vα, picking parts of size α. In particular, when considering
vid , more vertices must be added to that part, and we can freely grab u from vid before resuming
the process. Once the process achieves, this results in a realisation of π in G.

Back to the proof of Case 3, assume now that Claim 1 cannot be applied to deduce a realisation
of π in G. That is, we can assume all neighbours of v1 lie in V1 ∪ I, and that if vi ∈ V1 ∩ I is a
vertex such that vpvi is an edge, then there does not exist any vj ∈ V1 \ I with j > i such that v1vj
is an edge. Likewise, we can assume similar things for vp, that is, all its neighbours lie in V3 ∪ I,
and if vi ∈ V3 ∩ I is a vertex such that v1vi is an edge, then there cannot be any vj ∈ V3 \ I with
j < i such that vpvj is an edge.

Let us now analyse the possible neighbours in {v1, vp, u} for the other vertices, in {v2, . . . , vp−1},
with respect to all observations we made so far.

• Any vi ∈ I can be a neighbour of any number of vertices in {v1, vp, u}.
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• Any vi ∈ V2 \ I cannot have any neighbour in {v1, vp, u}.

• Any vi ∈ V1 \ (I ∪{v1}) has v1 as its only potential neighbour in {v1, vp, u}, but this can only
occur if there is no j < i such that vj ∈ I ∩N(vp).

• Any vi ∈ V3 \ (I ∪{vp}) has vp as its only potential neighbour in {v1, vp, u}, but this can only
occur if there is no j > i such that vj ∈ I ∩N(v1).

We now count edges incident to v1, vp, and u, omitting one edge for each of their common
neighbours. This is exactly the quantity d∗(v1, vp, u). In order to make the calculations easier, we
split the analysis into three main cases.

Case 3.1. v1 has no neighbour in I ∩ V3, and vp has no neighbour in I ∩ V1.

In that case, all neighbours of v1 lie in V1∪(I∩V2), while all neighbours of vp lie in V3∪(I∩V2).
Recall also that all neighbours of u lie in I ∩ V2. Then d∗(v1, vp, u) is at most

(|V1| − 1) + (|V3| − 1) + (2|I ∩ V2|).

Now, since d ≥ 2 and λ ≥ 3, from this we deduce that

d∗(v1, vp, u) ≤ (i1 − 2) + (p− 1− id) + 2

(
1 +

id − i1
λ

)
< p− 1 = n− 2,

which is a contradiction to the fact that σ3(G) ≥ n− 2.

Case 3.2. vp has a neighbour in I ∩ V1, and v1 has no neighbour in I ∩ V3.

In this case, let vx be the neighbour of vp in I∩V1 with the lowest index. Set V ′1 = {v1, . . . , vx−1}
and V ′′1 = {vx, . . . , vi1−1}. Note that V1 = V ′1 ∪ V ′′1 . Also, |V ′′1 | is a multiple of λ.

Note that all neighbours of v1 lie in V ′1 ∪ (I ∩ V ′′1 ) ∪ (I ∩ V2), while all neighbours of vp lie in
(I ∩V ′′1 )∪ (I ∩V2)∪V3. Also, we still have that all neighbours of u lie in I ∩V2. Thus, d∗(v1, vp, u)
is at most

(|V ′1 | − 1) + (2|I ∩ V ′′1 |) + (|V3| − 1) + (2|I ∩ V2|).

Since d ≥ 2 and λ ≥ 3, we thus have

d∗(v1, vp, u) ≤ (x− 2) + 2

(
i1 − x
λ

)
+ (p− 1− id) + 2

(
1 +

id − i1
λ

)
< p− 1 = n− 2,

another contradiction to σ3(G) being at least n− 2.

Case 3.3. vp has a neighbour in I ∩ V1, and v1 has a neighbour in I ∩ V3.

Here, let vx be the neighbour of vp in I ∩ V1 with the lowest index, and vy be the neighbour
of v1 in I ∩ V3 with the largest index. Set V ′1 = {v1, . . . , vx−1} and V ′′1 = {vx, . . . , vi1−1}, and
V ′3 = {vid+1, . . . , vy} and V ′′3 = {vy+1, . . . , vp}. Note that V1 = V ′1 ∪ V ′′1 and that V3 = V ′3 ∪ V ′′3 .
Also, |V ′′1 | and |V ′3 | are multiples of λ.

In the current case, all neighbours of v1 lie in V ′1 ∪ (I ∩ V ′′1 ) ∪ (I ∩ V2) ∪ (I ∩ V ′3), while all
neighbours of vp lie in (I ∩ V ′′1 ) ∪ (I ∩ V2) ∪ (I ∩ V ′3) ∪ V ′′3 . Again, all neighbours of u lie in I ∩ V2.
Thus, d∗(v1, vp, u) is at most

(|V ′1 | − 1) + (2|I ∩ V ′′1 |) + (2|I ∩ V ′3 |) + (|V ′′3 | − 1) + (2|I ∩ V2|).

We thus have

d∗(v1, vp, u) ≤ (x− 2) + 2

(
i1 − x
λ

)
+ 2

(
y − id
λ

)
+ (p− y − 1) + 2

(
1 +

id − i1
λ

)
,

which, because d ≥ 2 and λ ≥ 3, is strictly less than p − 1 = n − 2. This, again, contradicts that
σ3(G) ≥ n− 2.

In all cases we thus get a contradiction to σ3(G) ≥ n− 2; this concludes the proof.
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4. Conclusion

Regarding Theorem 1.2, it is worth reporting that there are examples of graphs showing that
some of the requirements in the statement are mandatory. In particular, both the condition on
α(G) and on the connectivity of G cannot be dropped out:

• First, consider, as G, the complete bipartite graph Kk,k+2 for any k ≥ 2. Note that G has
order 2k + 2, which is even, and that G is 2-connected because k ≥ 2. Furthermore, every
three pairwise independent vertices u, v, and w of G must belong to the same partition class,
from which we deduce that d∗(u, v, w) ≥ 2k = n − 2, and thus σ3(G) ≥ n − 2. Also, the
longest paths of G go through n − 1 vertices, and thus, by Theorem 2.1, all n-partitions
π with |sp(π)| ≥ 2 are realisable in G. Thus, if G is not AP, then it must be because of
n-partitions π = (λ, . . . , λ) that are not realisable in G. Since every path P on n− 1 vertices
of G has the property that the last vertex of G neighbours every second vertex of P , it is easy
to see (through, e.g., the picking process) that realisations of π in G exist whenever λ 6= 2.
Meanwhile, it can be noticed that G does not admit perfect matchings, thus no realisations
of (2, . . . , 2). Thus, the condition on α(G) in Theorem 1.2 is an important one.

• Second, consider, as G, any graph obtained in the following way. Let n1, n2, n3 ≥ 1 be
integers, and let G be obtained from the disjoint union of three complete graphs C1, C2, and
C3 of order n1, n2, and n3, respectively, by adding a new universal vertex x (thus joined to
all vertices of C1, C2, and C3). Note that G is not 2-connected, as x is a cut vertex. Also,
we have n = n1 + n2 + n3 + 1, and every three pairwise independent vertices u, v, and w
of G must verify, say, u ∈ V (C1), v ∈ V (C2), and w ∈ V (C3), from which we deduce that
σ3(G) = d∗(u, v, w) = n1 + n2 + n3 − 1 = n− 2.

Now consider any case of G where n1 ≡ 4 mod 6, n2 ≡ 5 mod 6, and n3 ≡ 2 mod 6. Under
those conditions, note that n is a multiple of 6, thus a multiple of 2 and 3. On the one hand,
note that G admits perfect matchings (the vertices of C1 can be matched together, similarly
for those of C3, while the remaining vertices, of C2 and x, can be matched together). On the
other hand, note that G admits no realisation of (3, . . . , 3) (as, in a realisation, due to the
conditions on n1, n2, and n3, the vertices of C2 and x would have to be covered by parts of
size 3, making it impossible for the remaining vertices, of C1 and C3, to be covered by parts
of size 3 inducing connected graphs, since x is a cut vertex). This example shows that the
2-connectivity condition in the statement of Theorem 1.2 cannot be dropped out.

• Third, consider, as G, the graph obtained by starting from four disjoint edges u1v1, u2v2,
u3v3, and u4v4, and then adding two new independent vertices x and y joined to all ui’s and
vi’s. Note that G has order 10, is 2-connected, and admits perfect matchings (one such is
{xu1, yv1, u2v2, u3v3, u4v4}). Also, any three pairwise independent vertices u, v, and w of
G do not include x and y, and are thus pairwise independent ui’s and vi’s. From this, we
deduce that d∗(u, v, w) = 9− 2 = 7 = n− 3, and thus σ3(G) = n− 3. However, G is not AP,
as it admits no realisation of (4, 3, 3) (to see this is true, note first that, if such a realisation
existed, then x and y would belong to different parts, while the last part would induce a
connected subgraph of order 3 or 4; this is impossible since G − {x, y} has four connected
components of order 2). While this example does no generalise well to larger graphs (because
of the σ3 condition), it shows that the requirement on σ3(G) in the statement of Theorem 1.2
cannot be just lowered to n− 3 right away, even under the other conditions on G.

Let us add also that our proof of Theorem 1.2 yields a polynomial-time algorithm to decide
whether a 2-connected n-graph G with σ3(G) ≥ n − 2 is AP: just determine, in polynomial time,
the size of a largest matching of G (which can be done through Edmonds’ Blossom Algorithm [5]).

We end up with a few words on Theorem 1.1, claimed by Brandt. As mentioned in the in-
troductory section, the only remains on this result are the title (“Finding Vertex Decompositions
in Dense Graphs”) of an invited talk given in 2013, and the corresponding abstract, which can be
found online, and which we report now for the sake of keeping track of it.
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Abstract (Brandt, CID 2013). A graph G = (V,E) is called arbitrarily vertex decomposable, if for
any partition π = (n1, n2, . . . , nk) of |V | = n = n1 + n2 + · · ·+ nk into positive integers there is a
decomposition V = V1 ∪ V2 ∪ · · · ∪ Vk with |Vi| = ni such that the graph induced by Vi is connected
for all i. The decision problem whether G admits a π-decomposition is known as a notoriosly
hard problem, while the complexity status of the decision problem whether G is arbitrarily vertex
decomposable is not known in general. The problem is not even known to be in NP.

Let G be the class of graphs G where the degree sum of any set of three independent vertices of
G is at least n. We show that if G ∈ G satisfies the two necessary conditions of being connected and
having a matching on bn2 c edges, then G is arbitrarily vertex decomposable. This gives a polynomial
time algorithm deciding whether G ∈ G is arbitrarily vertex decomposable (just determine the size
of a largest matching of G and determine whether it is connected). The proof is algorithmic and
gives an algorithm that finds a decomposition for any partition π in time O(n3). As a starting
point of this algorithm we present another algorithm that finds in a connected graph in G either a
hamiltonian path or a very long cycle with certain additional properties.

It would be a bit daring to try to retrieve Brandt’s proof from this abstract only, but we can at
least make some guess. In the very last part of the abstract, Brandt mentions finding long paths
or cycles in connected n-graphs G with σ3(G) ≥ n, which is indeed the usual way to proceed to
establish such results, as illustrated by the results from [9, 13, 14] and our proof of Theorem 1.2.
This high-level description actually reminds us of a result of Momège, who proved the following:

Theorem 4.1 (Momège [15]). If G is a connected n-graph with σ3(G) ≥ n, then either G is
traceable, or any longest cycle of G is dominating.

Recall that a cycle C of a graph G is dominating if every edge of G is incident to a vertex of
C. Note that we used a sort of similar result in our proof of Theorem 1.2, when we proved that R
must be a stable set. The next step in our proof was then proving that |R| is small, which seems
less immediate to achieve under the condition that σ3(G) ≥ n. So, it might be that Theorem 1.1
can be proved by first making use of Theorem 4.1, but, if it can, we are not sure, however, what
the next step would be.

References

[1] D. Barth, O. Baudon, J. Puech. Decomposable trees: a polynomial algorithm for tripodes.
Discrete Applied Mathematics, 119(3):205-216, 2002.

[2] J. Bensmail. Partitions and decompositions of graphs. Ph.D. thesis, Université de Bordeaux,
France, 2014.

[3] J. Bensmail, B. Li. More Aspects of Arbitrarily Partitionable Graphs. Discussiones Mathe-
maticae Graph Theory, in press.

[4] E. Drgas-Burchardt, E. Sidorowicz. Preface. Discussiones Mathematicae Graph Theory,
35(2):313-314, 2015.

[5] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.

[6] E. Flandrin, H. Jung, H. Li. Hamiltonism, degree sum and neighborhood intersections. Discrete
mathematics, 90(1):41–52, 1991.

[7] R. J. Gould. Recent Advances on the Hamiltonian Problem: Survey III. Graphs and Combi-
natorics, 30:1-46, 2014.

[8] E. Győri. On division of graphs to connected subgraphs. In Proceedings 5th Hungarian Com-
binational Colloquium, 485-494, 1978.

[9] M. Horňák, A. Marczyk, I. Schiermeyer, M. Woźniak. Dense arbitrarily vertex decomposable
graphs. Graphs and Combinatorics, 28:807-821, 2012.

14



[10] M. Horňák, M. Woźniak. Arbitrarily vertex decomposable trees are of degree at most 6.
Opuscula Mathematica, 23:49-62, 2003.

[11] R. Kalinowski, M. Pilśniak, I. Schiermeyer, M. Woźniak. Dense arbitrarily partitionable
graphs. Discussiones Mathematicae Graph Theory, 36:5-22, 2016.

[12] L. Lovász. A homology theory for spanning trees of a graph. Acta Mathematica Academiae
Scientiarum Hungaricae, 30(3-4):241-251, 1977.

[13] A. Marczyk. A note on arbitrarily vertex decomposable graphs. Opuscula Mathematica,
26(1):109-118, 2006.

[14] A. Marczyk. An Ore-type condition for arbitrarily vertex decomposable graphs. Discrete Math-
ematics, 309:3588-3594, 2009.

[15] B. Momège. Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path. In
Proceedings of the 2017 International Conference on Current Trends in Theory and Practice
of Informatics (SOFSEM 2017), 205–216, 2017.

[16] O. Ore. Note on hamilton circuits. American Mathematical Monthly, 67:55, 1960.

[17] R. Ravaux. Decomposing trees with large diameter. Theoretical Computer Science, 411:3068-
3072, 2010.

[18] Z. Tian. Pancyclicity in hamiltonian graph theory. Ph.D. thesis, Université Paris-Saclay,
France, 2021.

15


