
HAL Id: hal-03665047
https://hal.science/hal-03665047v1

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SKOS Sources Transformations for Ontology
Engineering

Fabien Amarger, Jean-Pierre Chanet, Ollivier Haemmerlé, Nathalie Jane
Hernandez, Catherine Roussey

To cite this version:
Fabien Amarger, Jean-Pierre Chanet, Ollivier Haemmerlé, Nathalie Jane Hernandez, Catherine
Roussey. SKOS Sources Transformations for Ontology Engineering. 8th Research Conference on
Metadata and Semantics Research (MTSR 2014), Nov 2014, Karlsruhe, Germany. pp.314-328,
�10.1007/978-3-319-13674-5_29�. �hal-03665047�

https://hal.science/hal-03665047v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16990

The contribution was presented at MTSR 2014 :
http://www.mtsr-conf.org/

To cite this version : Amarger, Fabien and Chanet, Jean-Pierre and Haemmerlé,
Ollivier and Hernandez, Nathalie and Roussey, Catherine SKOS Sources
Transformations for Ontology Engineering: Agronomical Taxonomy Use Case.
(2014) In: 8th Research Conference on Metadata and Semantics Research
(MTSR 2014), 27 November 2014 - 29 November 2014 (Karlsruhe, Germany).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

SKOS Sources Transformations for Ontology

Engineering: Agronomical Taxonomy Use Case

Fabien Amarger1,2, Jean-Pierre Chanet2, Ollivier Haemmerlé1, Nathalie
Hernandez1, and Catherine Roussey2

1 IRIT, UMR 5505, UT2J, Département de Mathématiques-Informatique, 5 allées
Antonio Machado, F-31058 Toulouse Cedex, France -

firstname.lastname@univ-tlse2.fr
2 TSCF, Irstea de Clermont Ferrand, 9 av. Blaise Pascal CS 20085, 63172 Aubière,

France - firstname.lastname@irstea.fr

Abstract. Sources like thesauri or taxonomies are already used as in-
put in ontology development process. Some of them are also published
on the LOD using the SKOS format. Reusing this type of sources to
build an ontology is not an easy task. The ontology developer has to face
different syntax and different modelling goals. We propose in this paper
a new methodology to transform several non-ontological sources into a
single ontology. We take into account: the redundancy of the knowledge
extracted from sources in order to discover the consensual knowledge
and Ontology Design Patterns (ODPs) to guide the transformation pro-
cess. We have evaluated our methodology by creating an ontology on
wheat taxonomy from three sources: Agrovoc thesaurus, TaxRef taxon-
omy, NCBI taxonomy.

Keywords: Ontology Development, Ontology Design Pattern, Non-Ontological
Sources, SKOS, Trust, Agriculture

1 Introduction

The French Ministry of Agriculture has launched the Ecophyto plan 3 in order to
reduce drastically pesticide use. Ecophyto includes several monitoring systems of
agricultural practices. One of those is based on alert bulletins that inform farmers
of pest attacks on crops. Thus, farmers adapt their crop treatements based on
these alerts. These bulletins are called “Bulletin de Santé du Végétal” (BSV)
4. In order to follow the evolution of pest attacks over several decades, these
bulletins need to be gathered, analysed and annotated. The first step to help
the annotating process is to build a reference source on any organism that could
appear in the fields (crop plant, crop auxiliary, crop aggressor). This reference
source is stored as Knowledge Base (KB) in OWL format 5.

3 http://agriculture.gouv.fr/ecophyto
4 http://agriculture.gouv.fr/ecophyto-BSV
5 http://www.w3.org/TR/owl2-overview/

In agriculture, many data are available in various electronic formats about
crops: thesauri, databases... The next challenge is to make these data available
to all stakeholders (farmers, agronomist researchers) so that they can use the
data in decision support and analysis tools. Linked Open Data (LOD) is an
opportunity to accelerate the sharing of data. Thus we want to publish on the
LOD the annotations of alert bulletins.

In this paper we describe a method to build a Knowledge Base (an ontology
populated with individuals) from various sources. Unfortunately, we cannot trust
all the extracted knowledge with the same confidence, because some errors ap-
pear in some sources [17]. Thus we propose a new method based on redundancy
and trust scores to filter trustable knowledge.

This paper is organised as follows: Section 2 presents a state of the art about
ontology engineering and trust. Then our proposition is explained in section 3.
Some experiments are presented and discussed in section 4. We conclude and
present our future works in section 5.

2 State of the Art

2.1 Reusing Non-Ontological Sources

Most part of ontology engineering methods use non-ontological sources during
knowledge extraction processes. We can cite for example the MethOntology [7],
the method [20] of the Neon methodology [18] or the SMOL methodology [9].
In our work we focus only on ontology engineering methods using Knowledge
Organisation System (KOS) like thesauri, taxonomies and classification schemes
because they are the most current to describe and classify organisms. Many
knowledge organisation systems share a similar structure, and are used in similar
applications. KOS can be defined as a hierarchical organisation of normalised
terms used to classify any real entities. Some of the KOS are available on the
LOD using the Simple Knowledge Organisation System (SKOS) 6 format. The
figure 1 presents a SKOS example which comes from the Agrovoc thesaurus. We
studied ten methods able to create a knowledge base in OWL format using KOS
[1]. These methods can be classified as manual, semi-automatic or automatic.

manual The more recent methods [14] [3] and [13] are manual methods. This
can be explained by the difficulties to translate a KOS conceptual struc-
ture into a knowledge base, due to the fact that the semantics of the KOS
structure do not imply any logical formalisation. Thus the KOS conceptual
structure is ambiguous for a logical point of view. For example, the figure 1
contains two hierarchies using the skos : broader links. The left one de-
fines different kinds of taxa (kingdom and phylum). The right one defines a
taxonomy about plant organisms.

automatic In methods proposing some automatic processes, some of them fol-
lows the same strategy. They generate an owl : class for each normalised

6 http://www.w3.org/TR/2009/REC-skos-reference-20090818/

term. Each hierarchical relation is transformed into an owl : subClassOf

relation. In this category we can cite [21, 11, 20, 10, 4]. The figure 2 illus-
trates the automatic transformation of the Agrovoc example of figure 1. Let
us point out that some of the owl : subClassOf relationships are false: A
Phylum taxon is not a Kingdom one. To overcome this drawback, [20, 11]
includes a disambiguation process to validate the owl : subClassOf rela-
tionship.

semi automatic Others proposed to associate a specific owl : object property
that can be the owl : subClassOf one with the hierarchical relation of the
KOS [17, 19].

Fig. 1: example of agrovoc in SKOS format
Fig. 2: Automatic transformation of

agrovoc example

All these methods show that the KOS transformation should be guided in
order to build a valuable knowledge base. Thus we decided to reuse Ontology
Design Patterns [8] to guide the transformation of a KOS. An Ontology Design
Pattern (ODP) is defined as a modelling solution to a recurrent ontology design
problem [8]. ODPs are normally generated by experienced ontology engineers,
who submit them to online repositories7. These patterns are evaluated by the
Ontology Engineering community and generally accepted as good practices.

2.2 Ontological Object Trust

Extracting ontological objects from various non-ontological sources with differ-
ent qualities requires a consideration of trust on these objects. Several trust
definitions in computer science and semantic web are presented in [2]. The one
which corresponds the most to our purpose is:

“Trust of a party A to a party B for a service X is the measurable belief of
A in that B behaves dependable for a specified period within a specified context
(in relation to service X).”

Consider A as the user who wants to create a knowledge base, B as a source
and X the extraction process. In this definition, trust is about a source B,
with the extraction process X, which generates ontological objects with a trust

7 For instance, the repository at http://ontologydesignpatterns.org

score associated. This definition is very suitable for our purpose because they
consider that a trust score is specific for a period, a context and a service. This
corresponds to the fact that the trust on a source is variable depending on the
objective of the project, the time and the source itself.

Using multiple sources to extract ontological objects leads to an aggregation
of trust scores: Finding the same ontological object in several sources will increase
the trust score of this object. As shown on [5] the aggregation of trust scores is
more effective than classic approaches.

2.3 Synthesis

The method we propose can be seen as the combination of two Neon ontology
engineering methods [18]: the one based on ODP [15] and the one based on non-
ontological source transformations with NOR2O [20]. Note that in the SMOL
methodology, the authors include a “knowledge structure construction” method
in order to reorganise and harmonise the conceptual structures inherited from
different sources. Moreover the Hepp method [11] includes an ODP to transform
the KOS, because for 2 terms linked by a hierarchical relation, 4 owl : classes
and 3 owl : subClasOf properties are build. Our method can be seen as a
generalisation of [11] where different ODPs can be used depending of the domain
of the ontology.

Moreover we take in consideration the consensus about each ontological ob-
ject, to determine if we want to keep it or not. To do so, we use a trust score
computed between all the sources used to extract ontological objects. As fas as
we know, there is no ontology engineering method ables to transform KOS using
consensus and ODPs. About consensus, we have to define a function to compute
trust score and a way to aggregate them.

3 Our General Approach

Due to its completeness we selected the Neon methodology to build a KB. Neon
proposes a set of nine methods for collaboratively building ontologies. Our on-
tology engineering method consists of adapting and merging two Neon methods.

Our method is composed of three processes detailled in next sections:

1 - Source analysing: During this process, the domain expert and the ontolo-
gist work together to select the most appropriate sources to build their KB.
They inspect each source to evaluate its coverage and to have a broad idea
if the source can be transformed to an KB or not.

2 - Source Transformation This process transforms each source into an KB
in OWL format. It is based on Neon methods.

3 - KBs Merging This process builds the final KB based on all KBs extracted
from sources. As far as we known, this process is not proposed in any ontol-
ogy engineering method. Usually ontology engineering method uses several
sources separately in order to enrich the KB in a incremental way. The merg-
ing process uses several KBs at the same time in order to extract consensual
knowledge.

3.1 Source Transformation

The figure 3 present our “source transformation” process, which contains several
other processes. The “module construction” is the Neon scenario 7 [8]. The
scenario 7 proposes to build a module re-using Ontology Design Patterns (ODPs)
and competency questions. We fully apply this method to build modules. The
module is built once and is used for all the “source automatic transformation”
processes. The “syntactic transformation” is an adaptation of the Neon scenario
2 [20]. The scenario 2 proposes to build a KB reusing non ontological source. We
adapt this method to enrich modules previously build by scenario 7.

Fig. 3: Source transformation process

Module Construction The current best practice to create an ontology is to
reuse ODPs. We follow the method [8] in order to generate modules. An example
of one of our modules is Agronomic Taxon [16] (c.f. appendix 6.1) which has been
manually built for a specific task (representing organism scientific name using
taxonomy). The module is composed of owl : Classes and defines the set of
owl : Properties that may exist between them. It re-uses some ODPs coming
from Neon project and two vocabularies already published on the LOD [16].

The Agronomic Taxon module models living organism taxonomy. All the
taxon types wanted in our knowledge base are defined in the module as owl :
class, child of the neon : Taxon class. For example we only focus on the
seven most known taxon types: kingdom, phylum, class, order, family, genus
and species. The next process will use the sources to enrich automatically this
module. The final KB should contains several taxa, individuals of the class
neon : Taxon that are used to describe organisms appearing in fields.

Source Automatic Transformation As generally each non-ontological source
follows some modelling principles and is implemented in a specific format. For
example Agrovoc follows the modelling principles of multilingual thesaurus and
is available in the SKOS format. The [20] [17] methods proposes transformation
using patterns. The [20] method takes in account the modelling and implemen-
tation choices and applies the same transformation pattern on the source. The
[17] method takes in account that the modelling choices may change over the
same source and that the same pattern can not be applied on the whole source.

We will take advantage on these two methods and apply transformation based
on pattern.

As shown in Figure 3, we extract first from the source, the parts that seem
to follow the same modelling principles and that meet our requirements. The
previous “source analysing” process has defined that these parts exist in the
source. Secondly we apply a syntactic transformation using [20] method and tools
in order to have a file following the OWL syntax. The “knowledge engineering”
activity produces a new owl file which is an enrichment of the module that is to
say a KB. To do so, the module is mapped to the first owl file. The output is a
set of mappings. Then the module is expanded using the owl file and following
new pattern that re-engineered the owl file. Thus the new OWL axioms are
compatibles with the module.

For example, if Agrovoc was selected during the “source analyzing” process.
The experts decide that it is a good source to build a KB about plant taxon-
omy. They decide to work on the SKOS file of the Agrovoc thesaurus. Based on
the module Agronomic Taxon, we will illustrate the “source automatic trans-
formation” process. First we extract from Agrovoc all the data related to plant
taxonomy (see figure 1), that is to say all the skos : concepts under Taxa and
under Plantae. Then we apply a transformation pattern based on thesaurus and
SKOS format as presented in the section 2. We obtain an owl file like the fig-
ure 2. We first mapped manually the owl file to Agronomic Taxon module. The
owl : classes neon : Taxon, neon : Kingdom, neon : Phylum, and so one are
mapped to owl : class of Agrovoc file. Now we apply a re-engineering pattern
(c.f. the appendix 6.3). This algorithm creates a new individual for each class rep-
resenting a plant taxon. Using the hasTaxonomicLevel link of Agrovoc the indi-
vidual is typed by the corresponding rank type (Kingdom, Phylum and so one).
Then the hierarchy between taxa is depicted using the neon : hasHigherRank

property of the Agronomic Taxon module. At the end of the re-engineered pat-
tern the source KB contain the module plus new individuals as proposed in figure
4.

Fig. 4: Enrichment of Agronomic Taxon
module using Agrovoc Fig. 5: KB Engineering process

3.2 KBs Merging

The figure 5 shows that the merging of KBs previously built, named Source

KB, is composed of three activities:

Mapping: this activity computes Alignments between all the Source KBs.
Mapping activity identifies similar ontological objects contained in distinct
Source KBs.

Trust computation: This activity identifies candidates and computes their
trust score. A candidate contains a set of ontological objects that are found
similar by the mapping activity.

Filtering: This activity filters candidates according to their trust score and
add them in the final KB.

(1) Mapping Aligning KB1 and KB2 consists in computing all the mappings
between objects of KB1 and objects of KB2. This is a large research area [6]
and a lot of methods have been proposed and implemented in tools. We choose
to use LogMap [12] because it can map any ontological objects, it obtains good
results in OAEI Challenge8 and its source code is available online9. Let us define
a mapping m as a triplet < ei, ej , sij > such as:

ei ∈ KBi: is an ontological object belonging to KBi ,
ej ∈ KBj: is another ontological object belonging to KBj (KBj 6= KBi),
sij: is the similarity degree between ei and ej .

We define a function called degree(ei, ej) from KBi × KBj to [0, 1]. Where
sij = degree(ei, ej) is the similarity score between ei and ej given by the mapping
tool and 0 if there is no mapping.

(2) Trust Computation Due to space limitation of the article, we present
two kinds of candidate, but more candidate types are taken in account in our
method.

Individual Candidate (ic): Individuals are instances of classes. We define
an individual candidate ic as a set of mappings that share common individ-
uals. Each individual, belonging to a candidate, should belong to a distinct
knowledge base.

Relation Candidate (rc): the instances of property that links two individual
candidates. We define a relation candidate rc as a pair of individual candi-
dates, such as there exist some instance of the same properties that link
components of individual candidates.

We define dim(c) as the number of KBs involved in a candidate c.
Let consider the example in Figure 6 with three knowledge bases KB1, KB2

and KB3. KB1 and KB3 contains two individuals ai, bi linked by the same
property p. The dash line represent mapping between individuals. There are two
individual candidates ic1 and ic2 and one relation candidate rc1.

8 Ontology Alignment Evaluation Initiative - http://oaei.ontologymatching.org/2013/
9 https://code.google.com/p/logmap-matcher/

Fig. 6: Example of candidates

ic1 =

[< a1, a2, s12 >,< a2, a3, s23 >,

< a1, a3, s13 >]

a1 ∈ KB1, a2 ∈ KB2, a3 ∈ KB3

s12 = degree(a1, a2)

s23 = degree(a2, a3)

s13 = degree(a1, a3)

ic2 =

[< b1, b2, s12 >,< b1, b3, s23 >]

b1 ∈ KB1, b2 ∈ KB2, b3 ∈ KB3

s12 = degree(b1, b2), s13 = degree(b1, b3)

rc1 =

[ic1, ic2]

[p(a1, b1), p(a3, b3)]

p(a1, b1) ∈ KB1, p(a3, b3) ∈ KB3

(1)

In the example figure 6 dim(ic1) = 3, dim(ic2) = 3 and dim(rc1) = 2.
Each candidate has a trust score to define how much we can trust this can-

didate. There are several way to compute this score. In the experiments we will
test several trust functions.

4 Experiments

The goal of our experiments is to test different functions to compute the trust
score. We want to determine which function obtain the best results. To do so,
we build a use case about wheat crops. We want to build a KB describing wheat
taxonomy.

4.1 Source Analysing Process

For the project of wheat taxonomy, our experts select the following sources:

Agrovoc10: a multilingual thesaurus with more than 40,000 terms,
TaxRef11: a french taxonomic referential with 80,000 taxa created by the

”Muséeum national d’histoire naturelle”,
NCBI Taxonomy12: a taxonomy created by the National Center for Biotech-

nology Information (NCBI) of the United States with 1,000,000 taxa.

We chose these three sources because of their complementarity. First NCBI
is the source with the most taxa. It is considered by experts to be the most
up-to-date source but this include potential errors and there are only few labels.
Alongside, Agrovoc contains labels in several languages with distinctions between
scientific labels and vernacular ones but less taxa than NCBI and with a quality
often criticized [17]. TaxRef overcomes this drawback and is considered as a
national reference in agronomic classification. But its number of taxa is limited

by the data verification process. Combining these three sources is very suitable
because we combine the taxa quantity (NCBI), with labels quantity (Agrovoc)
and the assurance of quality (TaxRef).

4.2 Source Transformation Process

We start the “source transformation” process by building a module about plant
classification (Agronomic Taxon [16], see appendix 6.1 for more details. From
each sources, we extract automatically subparts of the wheat taxonomic classi-
fication. We focus the extraction on the Triticum taxa. We create an OWL file
corresponding at the “syntactic transformation” of each source using NOR20
patterns. Then we define re-engineering patterns to extract instances of neon :
Taxon from the three different OWL files. For each individual we type them and
link them using the neon : hasHigherRank object property.

KBs Merging Process For this process we reused LogMap tool for the map-
ping activity. Then we define several trust functions to compute trust score of
individual candidates and relation candidates. Then we apply a threshold em-
pirically fixed at 0.6 to filter candidates. Thus a candidate becomes a component
of the final KB if its trust score is above 0.6 otherwise it is rejected.

Simple Trust Function The simple way to extract consensual ontological
objects is to determine in how many KBs the candidate appears. We consider
that a candidate is consensual if it appears in at least two KBs. Otherwise
the candidate should not belong to the final KB. We defined a function called
trustsimple to implement the simple consensus. trustsimple is defined by the
following formula :

trustsimple(c) =

{

1 if dim(c) >= 2

0 if dim(c) < 2
(2)

Degree Trust Function We can also use the mapping degree (provided by
LogMap) to compute the trust score. We consider that a candidate with higher
mapping degrees implies more trust. For the degree consensus implementation
there is a different formula for each kind of candidate.

The instance candidate trust function is defined by the formula:

trustdegree(ic) =

dim(ic)
∑

i=1

dim(ic)
∑

j=i+1

degree(ai, aj)

nbSources(nbSources−1)
2

such as(ai, aj) ∈ ic

(3)

This function sum all mapping degree involved in the candidate. We normalised
the result with the maximum number of individuals mappings possible in an

individual candidate (We have 3 KBs thus we can have at most 3 mappings in
an individual candidate). Here, nbsources is the total number of KBs involved on
the merging process.

The relation candidate trust function is defined by the formula:

trust(rc) =
dim(rc) + trust(ic1)+trust(ic2)

2

nbSources + 1

such as ic1 ∈ rc, ic2 ∈ rc

(4)

This formula takes in account the dim(rc) and the average of trust scores of
individual candidates, components of the relation candidate. We do so to simu-
late a mapping degree between object properties instances. Note that LogMap
do not match object property instances. We normalised this result with the
nbSources, which is the maximum value that dim(rc) could be, plus 1, which is
the maximum value that the average of the two ic trust score could be.

4.3 Experiment Set up

To build our Gold Standard KB in order to compare the output of the different
KBs merging process, we ask to three agronomists to validate manually the three
KBs, outputs of the “source transformation” process. We consider that an onto-
logical object is validated by the experts if at least two experts validated it and
the third one vote for the ”don’t know” option (more precision on the appendix
6.2). The baseline is composed of the union of all ontological objects validated
by the experts. Two final KBs are generating using the different trust functions
(trustsimple and trustdegree). Precision, recall and f-measure are computing to
evaluate the quality of the final KBs. The precision is the ratio between the
number of ontological objects of the final KB validated by experts and the total
number of ontological objects of the final KB. The recall is the ratio between
the number of ontological objects validated by experts which appear on the final
KB and the number of ontological objects validated by experts.

4.4 Results and Analyse

Table 1 presents our results. The column, called simple consensus, shows the
results of the “KBs merging” process using the trustsimple function. The column,
called degree consensus, shows the results of the “KBs merging” process using
the trustdegree function.The fist line presents the results on individual candidates
and the second line presents the results on relation candidates.

Simple Consensus Degree Consensus

Candidate Precision Recall F-Measure Precision Recall F-Measure

Individual 0.91 0.66 0.77 1 0.59 0.74

Relation 0.41 0.48 0.45 0.44 0.4 0.4

Table 1: Results

We can observe on the table 1 that the results are encouraging. All the
individuals that our method is able to extract are valuable one (our individual

candidate results obtain a high precision); But our method is not yet able to
extract all the valuable ontological objects. The degree consensus approach worka
little bit better than the simple consensus one. More over our approach is able
to extract more individual, than links between individuals.

5 Conclusion and Future Works

In this article, we propose a method to transform several KOS into a knowledge
base using Ontology Design Patterns and consensus. Our method estimate con-
sensus by computing a trust score for each ontological object extracted. We de-
termined which trust formula is the more suitable for our use case. This method
helps the validation at the end of the process because some candidates could be
validated (or rejected) automatically, by using different filtering thresholds.

We will focus our next works on the results filtering to answer to several
problems we observed. First we want to implement the same approach to extract
different type of ontological objects (labels, classes, ...). We should also improve
the extraction of links between individuals. Then we have to face the problem
of contradictions between candidates. Currently all candidates are considered
and can be accepted, even if there is a conflict. To solve such conflicts, it could
be possible to use the argumentation theory associated with the trust score to
manage the candidate selection. We want also to work on another sub-domain
than the plants taxonomy classification. We planned to work on the attacks
from bio-aggressors using the module CultivatedPlant13 with a database from
the Arvalis14.

Acknowledgements

We want to special thanks the three experts who helped us to validate our results
by generating the gold standard:

Franck Jabot from Irstea Clermont-Ferrand, France
Jacques Le Gouis from INRA Clermont-Ferrand, France
Vincent Soulignac from Irstea Clermont-Ferrand, France

References

1. F. Amarger, C. Roussey, J.P. Chanet, O. Haemmerlé, and N. Hernandez. Etat de
l´art: Extraction d´information à partir de thésaurus pour générer une ontologie.
INFORSID, pages 29–44, 2013.

2. D. Artz and Y. Gil. A survey of trust in computer science and the semantic web.
Web Semantics: Science, Services and Agents on the World Wide Web, pages 58–
71, 2007.

13 https://sites.google.com/site/agriontology/home/irstea/cultivatedplant
14 http://www.arvalis-infos.fr

3. J. Charlet, G. Declerck, F. Dhombres, P. Gayet, P. Miroux, and P.Y. Vanden-
bussche. Construire une ontologie médicale pour la recherche d’information:
problématiques terminologiques et de modélisation. Ingénierie des connaissances,
pages 33–48, 2012.

4. C. Chrisment, O. Haemmerlé, N. Hernandez, and J. Mothe. Méthodologie de
transformation d’un thesaurus en une ontologie de domaine. Revue d’Intelligence

Artificielle, pages 7–37, 2008.

5. D. Downey, O. Etzioni, and S. Soderland. A probabilistic model of redundancy in
information extraction. In IJCAI, pages 1034–1041, 2005.

6. J. Euzenat and P. Shvaiko. Ontology matching. 2007.

7. M. Fernández-López, A. Gómez-Pérez, and N. Juristo. Methontology: from on-
tological art towards ontological engineering. American Asociation for Artificial

Intelligence, 1997.

8. A. Gangemi and V. Presutti. Ontology Design Patterns. In Handbook on Ontolo-

gies, pages 221–243. 2009.

9. R. Gil and M. Mart́ın-Bautista. Smol: a systemic methodology for ontology learning
from heterogeneous sources. Journal of Intelligent Information Systems, pages
415–455, 2014.

10. U. Hahn. Turning informal thesauri into formal ontologies: a feasibility study on
biomedical knowledge re-use. Comparative and functional genomics, pages 94–97,
2003.

11. M. Hepp and J. De Bruijn. GenTax: a generic methodology for deriving OWL
and RDF-S ontologies from hierarchical classifications, thesauri, and inconsistent
taxonomies. In ESWC, pages 129–144, 2007.

12. Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks.
Large-scale interactive ontology matching: Algorithms and implementation. In
European Conference on Artificial Intelligence, pages 444–449, 2012.

13. D. Kless, L. Jansen, J. Lindenthal, and J. Wiebensohn. A method for re-engineering
a thesaurus into an ontology. In FOIS, page 133, 2012.

14. P. Li and Y. Li. On transformation from the thesaurus into domain ontology.
Advanced Materials Research, pages 2698–2704, 2013.

15. V. Presutti, E. Blomqvist, E. Daga, and A. Gangemi. Pattern-Based Ontology
Design. In Ontology Engineering in a Networked World, pages 35–64. Springer,
2012.

16. C Roussey, J.P. Chanet, V. Cellier, and F. Amarger. Agronomic taxon. In WOD,
page 5, 2013.

17. D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengineer-
ing thesauri for new applications: The AGROVOC example. Journal of Digital

Information, pages 1–23, 2004.

18. M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi. Ontology

engineering in a networked world. 2012.

19. M. Van Assem, M.R. Menken, G. Schreiber, J. Wielemaker, and B. Wielinga. A
method for converting thesauri to RDF/OWL. ISWC, pages 17–31, 2004.

20. B. Villazón-Terrazas, M. C. Suárez-Figueroa, and A. Gómez-Pérez. A pattern-
based method for re-engineering non-ontological resources into ontologies. Int. J.

Semantic Web Inf. Syst., pages 27–63, 2010.

21. B. J. Wielinga, A. Th. Schreiber, J. Wielemaker, and J. A. C. Sandberg. From
thesaurus to ontology. In K-CAP.

6 Appendix

6.1 AgronomicTaxon

Fig. 7: AgronomicTaxon

6.2 Gold Standard

Experts validation To validate our approach, we asked to three domain ex-
perts to analyse the three knowledge bases extracted automatically from the
three sources: Agrovoc, Taxref, NCBI. The experts have to determine which
ontological objects are well represented and in the scope of the knowledge base.

An interface was implemented to let the experts validate the ontological
objects. Here there was only instances of the neon : Taxon class. For each
individual four questions were asked to the expert :

1. Does the taxon belong to the domain? first we ask if the element
presented is really a taxon (an element of a taxonomy). Also we want to
know if the taxon is in the scope of the KB that is to say (Triticum or
Aegilops).

2. Do the labels designate the same entity?

There are several labels available in KB (especially in Agrovoc) but some-
times some labels are inexact, because there are not synonym or they are
not the exact translation (if the source contains multilingual labels).

3. Is the taxon more specific than “anotherTaxon” ?

When we can extract a ”hasHigherRank” relation between two taxa from
the source, we want to validate this link. So we want to know if the first
taxon is a specialisation of the second.

4. Is the rank of the taxon “aTaxonType” ?

Sometimes there is information about the rank type of the taxon in the
source. We want here to validate this extraction and define the type of the
taxon. Is it a specie, a family, a gender, ... ?

At the end of the form, there is an input field to let the expert add a comment if
the response was not obvious. We can see the validation interface on the figure 8.

Fig. 8: Validation interface

This figure shows that for each question there are three available answer: Valid,
Not Valid or Don’t know.

The three experts have validated the owl : KBs (NCBI/Triticum, NBCI/Aegilops,
Agrovoc/Triticum, Agrovoc/Aegilops, TaxRef/Triticum, TaxRef/Aegilops). At
the end of the validation we have a list of ontological objects validated by the
experts. We can then compare them with the candidates generated by the pro-
totype.

Evaluation of the consensus intuition To build our Gold Standard baseline,
we first have to know if an agreement is possible between experts. To do so we
computed a ratio between the number of experts and their number of validations.
We consider that there is an agreement between experts when at least two experts
validate the same ontological object and the third one select the Don’t know

option. We get a consensual ratio of 0.82. We also computed the Fleiss Kappa
score on the expert validations. Then we get the Fleiss Kappa of 0.69. These
two values show that the experts agree, most of the time, on the validation of the
ontological objects. So we can use this consensus and use the experts validation
as a gold standard to validate candidates.

6.3 Agrovoc algorithm

Algorithm 1 Transformation Pattern : AGROVOC for AgronomicTaxon
aModule: the AgronomicTaxon module
anOwlFile: agrovoc transformed in owl using transformation pattern
aModuleClassesList: the classes of AgronomicTaxon module that are mapped to anOwlFile

(neon:Taxon, neon:Kingdom, neon:Phylum etc...)
aKB: the AgronomicTaxon module enriched by the data from agrovoc owl file
aKB ← copy (aModule);
aClassLis() ← All subClasses of Plantae in anOwlFile

while aClassList() is not empty do

aTaxonClass ← extract from(aClassList());
anIndividualTaxon ← create an Owl Individual From(aTaxonClass)
Add anIndividualTaxon in aKB

if Exist a property called hasTaxonomicLevel linking aTaxonClass in anOwlFile then

aCurrentModuleClass← Find a class linked to aTaxonClass by the hasTaxonomicLevel

property in aModuleClassList()
Add an rdf : type property between anIndividualTaxon and aCurrentModuleClass in
aKB

else

aCurrentModuleClass ← neon : Taxon

Add an rdf : type property between anIndividualTaxon and aCurrentModuleClass in
aKB

end if

end while

anIndividualList() ← All owl : individual type of neon : Taxa in aKB

while anIndividualList() is not empty do

aTaxonIndividual ← extractFrom(anIndividualList());
aTaxonClass ← Find a class equivalent to aTaxonIndividual in anOwlFile

if Exist a class subClass of aTaxonClass in anOwlFile then

aChildClass ← Find a class subClass of aTaxonClass in anOwlFile

anotherTaxonIndividual ← Find an individual that is equivalent to aChildClass in aKB

Add a neon : hasLowerRank object property between aTaxonIndividual and
anotherTaxonIndividual in aKB

end if

end while

View publication statsView publication stats

