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A note on the solvability of homogeneous Riemann
boundary problem with infinity index

Juan Bory-Reyes

Abstract. In this note we establish a necessary and sufficient condition for
solvability of the homogeneous Riemann boundary problem with infinity
index on a rectifiable open curve. The index of the problem we deal with
considers the influence of the requirement of the solutions of the problem,
the degree of non-smoothness of the curve at the endpoints as well as the
behavior of the coefficient at these points.

1 Introduction
The theory of Riemann boundary problem for analytic functions of one complex
variable was extensively studied by F.D. Gakhov in [1] and partially by Lu Jian-Ke
in [2]. After these well-known monographs, there have appeared in the literature
deeper discussions aimed at the constructing of an analogous theory for this prob-
lem with different backgrounds and classes of analytic functions and curves. Strik-
ing applications of the results in mathematical physics and engineering include,
for instance, elasticity theory, hydro and aerodynamics, shell theory, quantum me-
chanics, theory of orthogonal polynomials, and so on.

The classical Riemann boundary problem for on open rectifiable Jordan curve
may be formulated as follows: Let γ = ã1a2 be an oriented open rectifiable Jordan
curve in C with endpoints a1, a2, γ̂ = γ \ {a1, a2}. Let G be a given continuous
function on γ such that G(t) 6= 0 for t ∈ γ.

We consider the following problem: Find function Φ(z) analytic in C \ γ con-
tinuous up to γ̂ from the left and the right with finite order at infinity (i.e., exists
r > 0, and n ∈ Z such that for |z| > r we have Φ(z) =

∑n
m=−∞ cmz

m) and
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satisfying the inequality

|Φ(z)| ≤ c|z − ak|−νk , c = const, 0 < νk < 1, (1)

in a neighborhood of each endpoints ak, k = 1, 2. Moreover, the boundary values
of the solution Φ(z) on the curve γ, denoted by Φ± respectively, are required to
satisfy the following conjugation condition

Φ+(t) = G(t)Φ−(t), t ∈ γ̂. (2)

For abbreviation, we will denote by Bn(γ) the set of analytic functions in C \ γ
continuous up to γ̂ from the left and the right with order n := max{m ∈ Z : cm 6= 0}
at infinity.

In [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] the authors constructs
examples of open curves in the complex plane for which the number of linearly
independent solutions of the problem (2) depends on the character of the behavior
of the curve in the neighborhood of its ends.

Particularly, solvability conditions and the general form of the solution of prob-
lem (2) is considered in [10], [11], [12] and the dimension of the solution space of
the problem is expressed in term of a concept of index of the problem, which takes
into account the influence of the requirement of the solutions of the problem, the
degree of non-smothness of the curve at the endpoints as well as the behavior of
the coefficient at these points.

The motivation for writting this paper comes from the much excellent appli-
cability of the classical Phragmèn Lindelöf principle [16], [17] (see also [18], [19])
to the solution of the Riemann boundary problem with infinity index for analytic
functions on the complex plane. N.V. Govorov is recognized as the first to have
applied such idea, see [20], but some others authors further draw their attention
to this subject, see [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]
and the references given there.

We have attempted to present the material in as self-contained a way as feasible.
The end of a proof will be indicated by the symbol �.

2 Fundamental terminology and results
In this introductory section, we repeat the relevant material from [10], [11], [12],
which form the basis of our study.

Definition 1. We call a pair ≺γ,G� compatible if the function

Γ(z) :=
1

2πi

∫
γ

lnG(x)

x− z
dx, z ∈ C \ γ, (3)

is an analytic functions in C \ γ continuous up to γ̂ from the left and the right,
lnG(x) represents an arbitrary continuous branch of the logarithm function and
exists qk ∈ Z, k = 1, 2 such that for z in a neighborhood of ak it follows that

(z − ak)qk exp<{Γ(z)} = O(|z − ak|−νk). (4)
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Definition 2. Let ≺ γ,G� compatible. The characteristic λk, k = 1, 2 of the pair
≺γ,G� in the point ak is defined to be the infimum of q ∈ Z such that (4) holds.

Definition 3. We define the index of the problem (2) to be

κ :=


−∞, if ≺γ,G� is not compatible,

−λ1 − λ2, if ≺γ,G� is compatible and |λk| <∞, k = 1, 2,

∞, if ≺γ,G� is compatible and at least one λk = −∞.
(5)

The compatibility condition of the pair ≺γ,G� describe the very close connection
between γ and G to ensure the solvability of problem (2). The works [10], [11], [12]
give examples of compatible pairs.

Theorem 1. [11, Theorem 1] Let ≺γ,G� compatible. Then the following are true

• If at list one λk = −∞. Then, for all n integer, the problem (2) has infinity
number of linearly independent solutions in Bn(γ),

• If the index κ of the problem (2) is finite. Then the number of linearly
independent solutions in Bn(γ) is given by max{κ+ n+ 1, 0}.

Definition 4. A pair ≺ γ,G � is said to be skew-compatible if the Cauchy type
integral (3) is merely an analytic functions in C \ γ continuous up to γ̂ from the
left and the right.

Skew-compatibility condition of a pair ≺γ,G� will be assumed through the paper
in an strict sense, i.e., an skew-compatible pair is not compatible and so the index
of the corresponded problem (2) will be always κ = −∞.

The boundary behavior of (3) over rectifiable curves, which is directly con-
nected to the skew-compatibility of the pair ≺ γ,G�, was one of the subjects of
investigations in [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].

The following result give precisely what is meant by a skew-compatible pair.

Proposition 1. Every solution Φ ∈ Bn(γ) of problem (2) admits the representation

Φ(z) = Ψ(z) exp Γ(z), z ∈ C \ γ, (6)

where Ψ is analytic in C \ {a1, a2} with order n at infinity.

Proof. Skew-compatibility condition of the pair ≺ γ,G � yields that Y (z) :=
exp Γ(z) is analytic in C \ γ, with boundary value limits from the left and the
right limz→t± exp Γ(z) =: Y ±(t) 6= 0 for t ∈ γ̂.

It follows by Privalov’theorem, see [34], that for almost all t ∈ γ̂ the following
equality holds

Γ+(t)− Γ−(t) = lnG(t). (7)

Then, by continuity (7) holds everywhere in γ̂. If we combine this with the fact
Y ±(t) 6= 0, it is clear that

Γ(t) =
Y +(t)

Y −(t)
, t ∈ γ̂ (8)
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and hence
Φ+(t)

Y +(t)
=

Φ−(t)

Y −(t)
, t ∈ γ̂. (9)

Therefore, classical Painleve’theorem, see [35], shows that there exists and analytic

extension of
Φ(z)

Y (z)
through γ̂, that is the desired function Ψ(z), which has clearly

the same order at infinity as Φ(z). �

Proposition 2. Let ≺γ,G� compatible. Then the general solution of the problem
(2) in Bn(γ) is given by (6) if and only if Ψ(z) be meromorphic in C \ {a1, a2}
possessing singularities in ak, k = 1, 2 of finite order greater than the order of λk
respectively.

Proof. The proof is based on the following observation. Given a function Ψ(z)
analytic in C \ {a1, a2} so its singularities are only of polar type with order greater
than λk, k = 1, 2 respectively, then the function

Φ(z) = Ψ(z) exp Γ(z), z ∈ C \ γ, (10)

is solution of the problem (2) in Bn(γ), where λk, k = 1, 2 are the characteristics
of the pair ≺γ,G� at the endpoints ak, k = 1, 2 respectively. �

3 Main result
Without loss of generality we can assume that γ = ã1a2 be an oriented open rectifi-
able Jordan curve in C with endpoints a1, a2 such that G(a2) = 1 and lnG(a2) = 0,
so the analysis in this section is reduced to the case a1.

Definition 5. Let ≺ γ,G � be skew-compatible. The order of ≺ γ,G � is, by
definition, the number

ργ(G) := inf{ν > 0 : lim
C\γ3z→a1

|z − a1|−ν |< Γ(z)|}.

Theorem 2. Let ≺γ,G� be skew-compatible (so κ = −∞). For Φ ∈ Bn(γ) being
solution of the problem (2) is necessary and for ργ(G) < 1

2 sufficient that

Φ(z) = Ψ
( 1

z − a1

)
Y (z), z ∈ C \ γ, (11)

where Ψ(w) is an entire function of order ρΦ such that ρΦ ≤ ργ(G), for which the
asymptotic inequality

ln
∣∣∣Ψ( 1

z − a1

)∣∣∣ ≤ −max{< Γ+(z),< Γ−(t)} − ν1 ln |z − a1|, γ̂ 3 t→ a1,

holds. Here ρΦ = limr→∞
ln lnMΦ(r)

ln r
, MΦ(r) = max|w|=r |Φ(w)|, ν1 ∈ [0, 1).
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Proof. Necessity
Let Φ ∈ Bn(γ) be a solution of the problem (2). On account of Proposition 1 we
have

ln
∣∣∣Ψ( 1

t− a1

)∣∣∣ = ln |Φ±(t)| − ln |Y ±(t)|, (12)

hence

ln
∣∣∣Ψ( 1

t− a1

)∣∣∣ ≤ − ln |Y ±(t)| − ν1 ln |t− a1|. (13)

By the skew-compatibility of the pair ≺ γ,G� the Sojostski-Plemelj formula for
(3) holds, then

ln |Y ±(t)| ≤ max{< Γ+(z),< Γ−(t)}. (14)

Combining (12) with (14) yields (11).
On the other hand, we have

|Y (z)|−1 ≤ exp b|z − a1|−ρΦ , b > 0, (15)

which give ρΦ ≤ ργ(G), and the necessity follows.
Sufficiency

Assume ρΦ ≤ ργ(G) and suppose (11) to hold. From this last and (14) we can
assert that

|t− ak|νk |Φ±(t)| ≤ c, t ∈ γ̂. (16)

Applying ρΦ ≤ ργ(G) and the hypothesis ργ(G) <
1

2
, hence for every ρ1 such that

ργ(G) < ρ1 <
1

2
and r sufficiently great we conclude that Assume ρΦ ≤ ργ(G) and

suppose (11) to hold. From this last and (14) we can assert that

max
|z−a1|=r

|Φ(z)| = max
|z−a1|=r

∣∣∣Ψ( 1

z − a1

)
Y (z)

∣∣∣ ≤ exp rρ1 . (17)

Since ρ1 <
1

2
, (16) and (17) show that (z − a1)νkΦ(z) is bounded, by Phragmèn-

Lindelöf principle [36, pag. 357]. Therefore, it is clear that Φ(z) is solution of
problem (2) and the proof is complete. �

We direct the reader’s attention to the fact that expression (11) in the general
solution of the problem, the function Ψ(w) is an arbitrary entire function of order
ρΦ under the following conditions:

ρΦ ≤ ργ(G), (18)

and

ln
∣∣∣Ψ( 1

z − a1

)∣∣∣ ≤ −max{< Γ+(z),< Γ−(t)} − ν1 ln |z − a1|, γ̂ 3 t→ a1. (19)

Taking into account that due to the inequality ρΦ < 1 the function Φ(w) admits
a representation in terms of canonical product, which is clear from Hadamard’s
theorem (see [37, pag. 24]).
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