

Conservative algebras of 2-dimensional algebras, III

Farhodjon Arzikulov, Nodirbek Umrzagov

▶ To cite this version:

Farhodjon Arzikulov, Nodirbek Umrzaqov. Conservative algebras of 2-dimensional algebras, III. Communications in Mathematics, 2021, Volume 29 (2021), Issue 2 (Special Issue: 3rd International Workshop on Nonassociative Algebras in Málaga) (2), pp.255 - 267. 10.2478/cm-2021-0023. hal-03665025

HAL Id: hal-03665025 https://hal.science/hal-03665025v1

Submitted on 11 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Communications in Mathematics 29 (2021) 255–267 DOI: 10.2478/cm-2021-0023 ©2021 Farhodjon Arzikulov, Nodirbek Umrzaqov This is an open access article licensed under the CC BY-NC-ND 3.0

Conservative algebras of 2-dimensional algebras, III

Farhodjon Arzikulov, Nodirbek Umrzagov

Abstract. In the present paper we prove that every local and 2-local derivation on conservative algebras of 2-dimensional algebras are derivations. Also, we prove that every local and 2-local automorphism on conservative algebras of 2-dimensional algebras are automorphisms.

1 Introduction

The present paper is devoted to the study of conservative algebras. In 1972 Kantor [12] introduced conservative algebras as a generalization of Jordan algebras (also, see a good written survey about the study of conservative algebras [25]).

In 1990 Kantor [14] defined the multiplication \cdot on the set of all algebras (i.e. all multiplications) on the n-dimensional vector space V_n over a field \mathbb{F} of characteristic zero as follows: $A \cdot B = [L_e^A, B]$, where A and B are multiplications and $e \in V_n$ is some fixed vector. If n > 1, then the algebra W(n) does not belong to any well-known class of algebras (such as associative, Lie, Jordan, or Leibniz algebras). The algebra W(n) is a conservative algebra [12].

In [12] Kantor classified all conservative 2-dimensional algebras and defined the class of terminal algebras as algebras satisfying some certain identity. He proved that every terminal algebra is a conservative algebra and classified all simple finite-dimensional terminal algebras with left quasi-unit over an algebraically closed field of characteristic zero [13]. Terminal algebras were also studied in [18], [19].

In 2017 Kaygorodov and Volkov [16] described automorphisms, one-sided ideals, and idempotents of W(2). Also a similar problem is solved for the algebra W_2 of all commutative algebras on the 2-dimensional vector space and for the algebra

²⁰²⁰ MSC: 7A36, 17A30, 17A15

 $[\]label{eq:Keywords: Conservative algebra, derivation, local derivation, 2-local derivation, automorphism, local automorphism, 2-local automorphism$

Affiliation:

Farhodjon Arzikulov – V.I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences, Universitet street 9, Tashkent 100174, Uzbekistan. Andizhan State University, Universitet street 129, Andizhan, 170100, Uzbekistan.

E-mail: arzikulovfn@rambler.ru
Nodirbek Umrzaqov - Andizhan State University, Universitet street 129, Andizhan, 170100. Uzbekistan.

E-mail: umrzagov2010@mail.ru

 S_2 of all commutative algebras with zero multiplication trace on the 2-dimensional vector space. The papers [15], [17] are also devoted to the study of conservative algebras and superalgebras.

Let \mathcal{A} be an algebra. A linear operator ∇ on \mathcal{A} is called a local derivation if for every $x \in \mathcal{A}$ there exists a derivation ϕ_x of \mathcal{A} , depending on x, such that $\nabla(x) = \phi_x(x)$. The history of local derivations had begun from the paper of Kadison [11]. Kadison introduced the concept of local derivation and proved that each continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a derivation.

A similar notion, which characterizes nonlinear generalizations of derivations, was introduced by Šemrl as 2-local derivations. In his paper [26] was proved that a 2-local derivation of the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H is a derivation. After his works, appear numerous new results related to the description of local and 2-local derivations of associative algebras (see, for example, [1], [3], [4], [20], [21], [23]).

The study of local and 2-local derivations of non-associative algebras was initiated in some papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [5], [6]). In particular, they proved that there are no non-trivial local and 2-local derivations on semisimple finite-dimensional Lie algebras. In [8] examples of 2-local derivations on nilpotent Lie algebras which are not derivations, were also given. Later, the study of local and 2-local derivations was continued for Leibniz algebras [7], Malcev algebras and Jordan algebras [2]. Local automorphisms and 2-local automorphisms, also were studied in many cases, for example, they were studied on Lie algebras [5], [10].

Now, a linear operator ∇ on \mathcal{A} is called a local automorphism if for every $x \in \mathcal{A}$ there exists an automorphism ϕ_x of \mathcal{A} , depending on x, such that $\nabla(x) = \phi_x(x)$. The concept of local automorphism was introduced by Larson and Sourour [22] in 1990. They proved that, invertible local automorphisms of the algebra of all bounded linear operators on an infinite-dimensional Banach space X are automorphisms.

A similar notion, which characterizes non-linear generalizations of automorphisms, was introduced by Šemrl in [26] as 2-local automorphisms. Namely, a map $\Delta \colon \mathcal{A} \to \mathcal{A}$ (not necessarily linear) is called a 2-local automorphism, if for every $x,y \in \mathcal{A}$ there exists an automorphism $\phi_{x,y} \colon \mathcal{A} \to \mathcal{A}$ such that $\Delta(x) = \phi_{x,y}(x)$ and $\Delta(y) = \phi_{x,y}(y)$. After the work of Šemrl, it appeared numerous new results related to the description of local and 2-local automorphisms of algebras (see, for example, [5], [7], [9], [10], [21]).

In the present paper, we continue the study of derivations, local and 2-local derivations of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local derivation of the conservative algebras of 2-dimensional algebras are derivations. In the present paper, we continue the study of automorphisms, local and 2-local automorphisms in the case of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local automorphism of the conservative algebras of 2-dimensional algebras are automorphisms.

2 Preliminaries

Throughout this paper \mathbb{F} is some fixed field of characteristic zero. A multiplication on 2-dimensional vector space is defined by a $2 \times 2 \times 2$ matrix. Their classification was given in many papers (see, for example, [24]). Let consider the space W(2) of all multiplications on the 2-dimensional space V_2 with a basis v_1, v_2 . The definition of the multiplication \cdot on the algebra W(2) is defined as follows: we fix the vector $v_1 \in V_2$ and define

$$(A \cdot B)(x,y) = A(v_1, B(x,y)) - B(A(v_1,x),y) - B(x, A(v_1,y))$$

for $x, y \in V_2$ and $A, B \in W(2)$. The algebra W(2) is conservative [14]. Let consider the multiplications $\alpha_{i,j}^k$ (i, j, k = 1, 2) on V_2 defined by the formula $\alpha_{i,j}^k(v_t,v_l) = \delta_{it}\delta_{jl}v_k$ for all $t, l \in \{1,2\}$. It is easy to see that $\{\alpha_{i,j}^k|i,j,k=1,2\}$ is a basis of the algebra W(2). The multiplication table of W(2) in this basis is given in [15]. In this work we use another basis for the algebra W(2) (from [16]). Let introduce the notation

$$e_1 = \alpha_{11}^1 - \alpha_{12}^2 - \alpha_{21}^2, \ e_2 = \alpha_{11}^2, \ e_3 = \alpha_{22}^2 - \alpha_{12}^1 - \alpha_{21}^1, \ e_4 = \alpha_{22}^1, \ e_5 = 2\alpha_{11}^1 + \alpha_{12}^2 + \alpha_{21}^2,$$

$$e_6 = 2\alpha_{22}^2 + \alpha_{12}^1 + \alpha_{21}^1, \ e_7 = \alpha_{12}^1 - \alpha_{21}^1, \ e_8 = \alpha_{12}^2 - \alpha_{21}^2.$$

It is easy to see that the multiplication table of W(2) in the basis e_1, \ldots, e_8 is the following.

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8
e_1	$-e_1$	$-3e_{2}$	e_3	$3e_4$	$-e_5$	e_6	e_7	$-e_8$
e_2	$3e_2$	0	$2e_1$	e_3	0	$-e_5$	e_8	0
e_3	$-2e_{3}$	$-e_1$	$-3e_{4}$	0	e_6	0	0	$-e_7$
e_4	0	0	0	0	0	0	0	0
e_5	$-2e_{1}$	$-3e_{2}$	$-e_3$	0	$-2e_{5}$	$-e_6$	$-e_7$	$-2e_{8}$
e_6	$2e_3$	e_1	$3e_4$	0	$-e_6$	0	0	e_7
e_7	$2e_3$	e_1	$3e_4$	0	$-e_6$	0	0	e_7
e_8	0	e_2	$-e_3$	$-2e_{4}$	0	$-e_6$	$-e_7$	0

The subalgebra generated by the elements e_1, \ldots, e_6 is the conservative (and, moreover, terminal) algebra W_2 of commutative 2-dimensional algebras. The subalgebra generated by the elements e_1, \ldots, e_4 is the conservative (and, moreover, terminal) algebra S_2 of all commutative 2-dimensional algebras with zero multiplication trace [15].

Let \mathcal{A} be an algebra. A linear map $D \colon \mathcal{A} \to \mathcal{A}$ is called a derivation, if D(xy) = D(x)y + xD(y) for any two elements $x, y \in \mathcal{A}$.

Our main tool for study of local and 2-local derivations of the algebras S_2 , W_2 and W(2) is the following lemma [15, Theorem 6], where the matrix of a derivation is calculated in the new basis e_1, \ldots, e_8 .

Lemma 1. A linear map $D: W(2) \to W(2)$ is a derivation if and only if the matrix of D has the following matrix form:

$$\begin{pmatrix}
0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta & 0 & 0 & 0 & 0 & 0 & 0 \\
2\alpha & 0 & \beta & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3\alpha & 2\beta & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta & \alpha \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},$$
(1)

where α , β are elements in \mathbb{F} .

Now, we give a characterization of automorphisms on conservative algebras of 2-dimensional algebras.

Let \mathcal{A} be an algebra. A bijective linear map $\phi \colon \mathcal{A} \to \mathcal{A}$ is called an automorphism, if $\phi(xy) = \phi(x)\phi(y)$ for any elements $x, y \in \mathcal{A}$.

Our principal tool for study of local and 2-local automorphisms of the algebras S_2 , W_2 and W(2) is the following lemma, which was proved in [16, Theorem 11].

Lemma 2. A linear map $\phi: W(2) \to W(2)$ is an automorphism if and only if the matrix of ϕ has the following matrix form:

$$\begin{pmatrix}
1 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b} & 0 & 0 & 0 & 0 & 0 & 0 \\
2ab & a^{2}b & b & 0 & 0 & 0 & 0 & 0 \\
3a^{2}b^{2} & a^{3}b^{2} & 3ab^{2} & b^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -ab & b & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b & ab \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix},$$
(2)

where a, b are elements in \mathbb{F} and $b \neq 0$.

3 Local derivations of conservative algebras of 2-dimensional algebras

In this section we give a characterization of derivations on conservative algebras of 2-dimensional algebras.

Let \mathcal{A} be an algebra. A linear map $\nabla \colon \mathcal{A} \to \mathcal{A}$ is called a local derivation, if for any element $x \in \mathcal{A}$ there exists a derivation $D_x \colon \mathcal{A} \to \mathcal{A}$ such that $\nabla(x) = D_x(x)$.

Theorem 1. Every local derivation of the algebra W(2) is a derivation.

Proof. Let ∇ be an arbitrary local derivation of W(2) and write

$$\nabla(x) = B\bar{x}, x \in W(2),$$

where $B = (b_{i,j})_{i,j=1}^8$, $\bar{x} = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$ is the vector corresponding to x. Then for every $x \in W(2)$ there exist elements a_x , b_x in \mathbb{F} such that

In other words

$$\begin{cases} b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 + b_{1,4}x_4 + b_{1,5}x_5 + b_{1,6}x_6 + b_{1,7}x_7 + b_{1,8}x_8 = a_xx_2; \\ b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 + b_{2,4}x_4 + b_{2,5}x_5 + b_{2,6}x_6 + b_{2,7}x_7 + b_{2,8}x_8 = -b_xx_2; \\ b_{3,1}x_1 + b_{3,2}x_2 + b_{3,3}x_3 + b_{3,4}x_4 + b_{3,5}x_5 + b_{3,6}x_6 + b_{3,7}x_7 + b_{3,8}x_8 = 2a_xx_1 + b_xx_3; \\ b_{4,1}x_1 + b_{4,2}x_2 + b_{4,3}x_3 + b_{4,4}x_4 + b_{4,5}x_5 + b_{4,6}x_6 + b_{4,7}x_7 + b_{4,8}x_8 = 3a_xx_3 + 2b_xx_4; \\ b_{5,1}x_1 + b_{5,2}x_2 + b_{5,3}x_3 + b_{5,4}x_4 + b_{5,5}x_5 + b_{5,6}x_6 + b_{5,7}x_7 + b_{5,8}x_8 = 0; \\ b_{6,1}x_1 + b_{6,2}x_2 + b_{6,3}x_3 + b_{6,4}x_4 + b_{6,5}x_5 + b_{6,6}x_6 + b_{6,7}x_7 + b_{6,8}x_8 = -a_xx_5 + b_xx_6; \\ b_{7,1}x_1 + b_{7,2}x_2 + b_{7,3}x_3 + b_{7,4}x_4 + b_{7,5}x_5 + b_{7,6}x_6 + b_{7,7}x_7 + b_{7,8}x_8 = b_xx_7 + a_xx_8; \\ b_{8,1}x_1 + b_{8,2}x_2 + b_{8,3}x_3 + b_{8,4}x_4 + b_{8,5}x_5 + b_{8,6}x_6 + b_{8,7}x_7 + b_{8,8}x_8 = 0. \end{cases}$$

Taking x = (1, 0, 0, 0, 0, 0, 0, 0), x = (0, 0, 1, 0, 0, 0, 0, 0), x = (0, 0, 0, 1, 0, 0, 0, 0), etc, from this it follows that

$$b_{1,1} = b_{1,3} = b_{1,4} = b_{1,5} = b_{1,6} = b_{1,7} = b_{1,8} =$$

$$= b_{2,1} = b_{2,3} = b_{2,4} = b_{2,5} = b_{2,6} = b_{2,7} = b_{2,8}$$

$$= b_{3,2} = b_{3,4} = b_{3,5} = b_{3,6} = b_{3,7} = b_{3,8}$$

$$= b_{4,1} = b_{4,2} = b_{4,5} = b_{4,6} = b_{4,7} = b_{4,8}$$

$$= b_{5,1} = b_{5,2} = b_{5,3} = b_{5,4} = b_{5,5} = b_{5,6} = b_{5,7} = b_{5,8}$$

$$= b_{6,1} = b_{6,2} = b_{6,3} = b_{6,4} = b_{6,7} = b_{6,8}$$

$$= b_{7,1} = b_{7,2} = b_{7,3} = b_{7,4} = b_{7,5} = b_{7,6}$$

$$= b_{8,1} = b_{8,2} = b_{8,3} = b_{8,4} = b_{8,5} = b_{8,6} = b_{8,7} = b_{8,8} = 0.$$

Then for every $x \in W(2)$ there exist elements a_x , b_x in \mathbb{F} such that

$$\begin{cases} b_{1,2}x_2 = a_x x_2; \\ b_{2,2}x_2 = -b_x x_2; \\ b_{3,1}x_1 + b_{3,3}x_3 = 2a_x x_1 + b_x x_3; \\ b_{4,3}x_3 + b_{4,4}x_4 = 3a_x x_3 + 2b_x x_4; \\ b_{6,5}x_5 + b_{6,6}x_6 = -a_x x_5 + b_x x_6; \\ b_{7,7}x_7 + b_{7,8}x_8 = b_x x_7 + a_x x_8. \end{cases}$$

$$(3)$$

Using 1-th and 3-th equalities of system (3) we get

$$\begin{cases} 2b_{1,2}x_1x_2 = 2a_xx_1x_2; \\ b_{3,1}x_1x_2 + b_{3,3}x_2x_3 = 2a_xx_1x_2 + b_xx_2x_3. \end{cases}$$

and

$$(b_{3,1} - 2b_{1,2})x_1x_2 + b_{3,3}x_2x_3 = b_x x_2 x_3.$$

Hence, $b_{3,1} = 2b_{1,2}$. Similarly, using equalities of (3) we get

$$b_{4,3} = 3b_{1,2}, b_{2,2} = -b_{3,3}, b_{4,4} = -2b_{2,2}.$$

Using 1-th and 5-th equalities of system (3) we get

$$\begin{cases} b_{1,2}x_2x_5 = a_xx_2x_5; \\ b_{6,5}x_5x_2 + b_{6,6}x_6x_2 = -a_xx_5x_2 + b_xx_6x_2. \end{cases}$$

and

$$(b_{6,5} + b_{1,2})x_2x_5 + b_{6,6}x_6x_2 = b_x x_6 x_2.$$

Hence, $b_{6,5} = -b_{1,2}$.

Using 2-th and 5-th equalities of system (3) we get

$$\begin{cases} b_{2,2}x_2x_6 = -b_xx_2x_6; \\ b_{6,5}x_5x_2 + b_{6,6}x_6x_2 = -a_xx_5x_2 + b_xx_6x_2. \end{cases}$$

and

$$b_{6,5}x_5x_2 + (b_{6,6} + b_{2,2})x_6x_2 = -a_xx_5x_2.$$

Hence, $b_{6.6} = -b_{2.2}$.

Using 1-th and 6-th equalities of system (3) we get

$$\begin{cases} b_{1,2}x_2x_8 = a_xx_2x_8; \\ b_{7,7}x_7x_2 + b_{7,8}x_8x_2 = b_xx_7x_2 + a_xx_8x_2. \end{cases}$$

and

$$b_{7,7}x_7x_2 + (b_{7,8} - b_{1,2})x_8x_2 = b_x x_7 x_2.$$

Hence, $b_{7.8} = b_{1.2}$.

Using 2-th and 6-th equalities of system (3) we get

$$\begin{cases} b_{2,2}x_2x_7 = -b_xx_2x_7; \\ b_{7,7}x_7x_2 + b_{7,8}x_8x_2 = b_xx_7x_2 + a_xx_8x_2. \end{cases}$$

and

$$(b_{7,7} + b_{2,2})x_7x_2 + b_{7,8}x_8x_2 = a_x x_8 x_2.$$

Hence, $b_{7,7} = -b_{2,2}$.

These equalities show that the matrix of the linear map ∇ is of the form (1). Therefore, by lemma 1 ∇ is a derivation. This completes the proof.

Since a derivation on W(2) is invariant on the subalgebras S_2 and W_2 , we have the following corollary.

Corollary 1. Every local derivation of the algebras S_2 and W_2 is a derivation.

4 2-Local derivations of conservative algebras of 2-dimensional algebras

In this section we give another characterization of derivations on conservative algebras of 2-dimensional algebras.

A (not necessary linear) map $\Delta \colon \mathcal{A} \to \mathcal{A}$ is called a 2-local derivation, if for any elements $x, y \in \mathcal{A}$ there exists a derivation $D_{x,y} \colon \mathcal{A} \to \mathcal{A}$ such that $\Delta(x) = D_{x,y}(x)$, $\Delta(y) = D_{x,y}(y)$.

Theorem 2. Every 2-local derivation of the algebras S_2 , W_2 and W(2) is a derivation.

Proof. We will prove that every 2-local derivation of W(2) is a derivation.

Let Δ be an arbitrary 2-local derivation of W(2). Then, by the definition, for every element $a \in W(2)$, there exists a derivation D_{a,e_2} of W(2) such that

$$\Delta(a) = D_{a,e_2}(a), \ \Delta(e_2) = D_{a,e_2}(e_2).$$

By lemma 1, the matrix A^{a,e_2} of the derivation D_{a,e_2} has the following matrix form:

Let v be an arbitrary element in W(2). Then there exists a derivation D_{v,e_2} of W(2) such that

$$\Delta(v) = D_{v,e_2}(v), \ \Delta(e_2) = D_{v,e_2}(e_2).$$

By lemma 1, the matrix A^{v,e_2} of the derivation D_{v,e_2} has the following matrix form:

Since $\Delta(e_2) = D_{a,e_2}(e_2) = D_{v,e_2}(e_2)$, we have

$$\alpha_{a,e_2} = \alpha_{v,e_2}, \beta_{a,e_2} = \beta_{v,e_2},$$

that it

$$D_{v,e_2} = D_{a,e_2}.$$

Therefore, for any element a of the algebra W(2)

$$\Delta(a) = D_{v,e_2}(a),$$

that it D_{v,e_2} does not depend on a. Hence, Δ is a derivation by lemma 1.

The cases of the algebras S_2 and W_2 are also similarly proved. This ends the proof.

5 2-Local automorphisms of conservative algebras of 2-dimensional algebras

A (not necessary linear) map $\Delta \colon \mathcal{A} \to \mathcal{A}$ is called a 2-local automorphism, if for any elements $x, y \in \mathcal{A}$ there exists an automorphism $\phi_{x,y} \colon \mathcal{A} \to \mathcal{A}$ such that $\Delta(x) = \phi_{x,y}(x), \, \Delta(y) = \phi_{x,y}(y).$

Theorem 3. Every 2-local automorphism of the algebras S_2 , W_2 and W(2) is an automorphism.

Proof. We prove that every 2-local automorphism of W(2) is an automorphism.

Let Δ be an arbitrary 2-local automorphism of W(2). Then, by the definition, for every element $x \in W(2)$,

$$x = x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 + x_6e_6 + x_7e_7 + x_8e_8$$

there exist elements a_{x,e_2} , b_{x,e_2} such that

 $\Delta(x) = A_{x,e_2}\bar{x}$, where $\bar{x} = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$ is the vector corresponding to x, and

$$\Delta(e_2) = A_{x,e_2}e_2 = (a_{x,e_2}, \frac{1}{b_{x,e_2}}, a_{x,e_2}^2 b_{x,e_2}, a_{x,e_2}^3 b_{x,e_2}^2, 0, 0, 0, 0).$$

Since the element x was chosen arbitrarily, we have

$$\Delta(e_2) = (a_{x,e_2}, \frac{1}{b_{x,e_2}}, a_{x,e_2}^2 b_{x,e_2}, a_{x,e_2}^3 b_{x,e_2}^2, 0, 0, 0, 0)$$

$$=(a_{y,e_2},\frac{1}{b_{y,e_2}},a_{y,e_2}^2b_{y,e_2},a_{y,e_2}^3b_{y,e_2}^2,0,0,0,0),$$

for each pair x, y of elements in W(2). Hence, $a_{x,e_2} = a_{y,e_2}, b_{x,e_2} = b_{y,e_2}$. Therefore

$$\Delta(x) = A_{y,e_2}x$$

for any $x \in W(2)$ and the matrix A_{y,e_2} does not depend on x. Thus, by lemma 2 Δ is an automorphism.

The cases of the algebras S_2 and W_2 are also similarly proved. The proof is complete. \Box

6 Local automorphisms of conservative algebras of 2-dimensional algebras

Let \mathcal{A} be an algebra. A linear map $\nabla \colon \mathcal{A} \to \mathcal{A}$ is called a local automorphism, if for any element $x \in \mathcal{A}$ there exists an automorphism $\phi_x \colon \mathcal{A} \to \mathcal{A}$ such that $\nabla(x) = \phi_x(x)$.

Theorem 4. Every local automorphism of the algebras S_2 , W_2 and W(2) is an automorphism.

Proof. We prove that every local automorphism of W(2) is an automorphism. Let ∇ be an arbitrary local automorphism of W(2) and B be its matrix, i.e.,

$$\nabla(x) = B\bar{x}, x \in W(2),$$

where \bar{x} is the vector corresponding to x. Then, by the definition, for every element $x \in W(2)$,

$$x = x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 + x_6e_6 + x_7e_7 + x_8e_8$$

there exist elements a_x , b_x such that

$$A_x = \begin{pmatrix} 1 & a_x & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{b_x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2a_xb_x & a_x^2b_x & b_x & 0 & 0 & 0 & 0 & 0 & 0 \\ 3a_x^2b_x^2 & a_x^3b_x^2 & 3a_xb_x^2 & b_x^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_xb_x & b_x & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_x & a_xb_x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

and

$$\nabla(x) = B\bar{x} = A_r\bar{x}.$$

Using these equalities and by choosing subsequently $x = e_1, x = e_2, \dots, x = e_8$ we get

$$B = \begin{pmatrix} 1 & a_{e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{b_{e_2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2a_{e_1}b_{e_1} & a_{e_2}^2b_{e_2} & b_{e_3} & 0 & 0 & 0 & 0 & 0 \\ 3a_{e_1}^2b_{e_1}^2 & a_{e_2}^3b_{e_2}^2 & 3a_{e_3}b_{e_3}^2 & b_{e_4}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{e_5}b_{e_5} & b_{e_6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{e_7} & a_{e_8}b_{e_8} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Since $\nabla(e_6 + e_7) = \nabla(e_6) + \nabla(e_7)$, we have

$$b_{e_6+e_7} = b_{e_6}, b_{e_6+e_7} = b_{e_7}.$$

Hence,

$$b_{ee} = b_{e7}$$

Similarly to this equality we get $b_{e_3}=b_{e_6}$ and $b_{e_6}=b_{e_2}\neq 0$. Hence,

$$b_{e_2} = b_{e_3} = b_{e_6} = b_{e_7}. (4)$$

Since $\nabla(e_5 + e_8) = \nabla(e_5) + \nabla(e_8)$, we have

$$a_{e_{\pm}+e_{\pm}}b_{e_{\pm}+e_{\pm}} = a_{e_{\pm}}b_{e_{\pm}}, \ a_{e_{\pm}+e_{\pm}}b_{e_{\pm}+e_{\pm}} = a_{e_{\pm}}b_{e_{\pm}}.$$

From this it follows that

$$a_{e_5}b_{e_5} = a_{e_8}b_{e_8}$$
.

Similarly to this equality we get $a_{e_1}b_{e_1}=a_{e_8}b_{e_8}$. Hence,

$$a_{e_1}b_{e_1} = a_{e_5}b_{e_5} = a_{e_8}b_{e_8}. (5)$$

Since $\nabla(e_4 + e_6) = \nabla(e_4) + \nabla(e_6)$, we have

$$b_{e_4+e_6}^2 = b_{e_4}^2, \ b_{e_4+e_6}^2 = b_{e_6}^2.$$

From this it follows that

$$b_{e_4}^2 = b_{e_6}^2.$$

Hence, by (4), we get

$$b_{e_4}^2 = b_{e_2}^2. (6)$$

Since $\nabla(e_2 + e_8) = \nabla(e_2) + \nabla(e_8)$, we have

$$a_{e_2} = a_{e_2+e_8}, \ a_{e_2+e_8}^2 b_{e_2+e_8} = a_{e_2}^2 b_{e_2}, \ a_{e_2+e_8} b_{e_2+e_8} = a_{e_8} b_{e_8}.$$

Hence,

$$b_{e_2+e_8}=b_{e_2},\ a_{e_2+e_8}b_{e_2+e_8}=a_{e_2}b_{e_2}$$

and, therefore,

$$a_{e_2}b_{e_2} = a_{e_8}b_{e_8}. (7)$$

Similarly, since $\nabla(e_2 + e_3) = \nabla(e_2) + \nabla(e_3)$, we have

$$a_{e_2} = a_{e_2 + e_3}, \ b_{e_2}^{-1} = b_{e_2 + e_3}^{-1}, \ a_{e_2 + e_3}^3 b_{e_2 + e_3}^2 + 3 a_{e_2 + e_3} b_{e_2 + e_3}^2 = a_{e_2}^3 b_{e_2}^2 + 3 a_{e_3} b_{e_3}^2.$$

Hence,

$$b_{e_2} = b_{e_2 + e_3}$$

and by (4) and $a_{e_2} = a_{e_2+e_3}$ we get

$$a_{e_2}^3 + 3a_{e_2} = a_{e_2}^3 + 3a_{e_3}.$$

Therefore, $a_{e_2} = a_{e_3}$ and

$$a_{e_2}b_{e_2}^2 = a_{e_3}b_{e_3}^2. (8)$$

Finally, since $\nabla(e_1 + e_8) = \nabla(e_1) + \nabla(e_8)$, we have

$$a_{e_1+e_8}b_{e_1+e_8} = a_{e_1}b_{e_1}, \ a_{e_1+e_8}b_{e_1+e_8} = a_{e_8}b_{e_8}.$$

Hence,

$$a_{e_1}b_{e_1} = a_{e_8}b_{e_8}.$$

By (7), from the last equalities it follows that

$$a_{e_1}b_{e_1} = a_{e_2}b_{e_2}, \ a_{e_1}^2b_{e_1}^2 = (a_{e_1}b_{e_1})^2 = (a_{e_2}b_{e_2})^2 = a_{e_2}^2b_{e_2}^2.$$
 (9)

By (4), (5), (6), (7), (8), (9) the matrix B has the following matrix form

$$B = \begin{pmatrix} 1 & a_{e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{b_{e_2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2a_{e_2}b_{e_2} & a_{e_2}^2b_{e_2} & b_{e_2} & 0 & 0 & 0 & 0 & 0 \\ 3a_{e_2}^2b_{e_2}^2 & a_{e_2}^3b_{e_2}^2 & 3a_{e_2}b_{e_2}^2 & b_{e_2}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{e_2}b_{e_2} & b_{e_2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{e_2} & a_{e_2}b_{e_2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Hence, by lemma 2, the local automorphism ∇ is an automorphism.

The cases of the algebras S_2 and W_2 are also similarly proved. This ends the proof.

The authors thank professor Ivan Kaygorodov for detailed reading of this work and for suggestions which improved the paper.

References

- Sh. Ayupov, F. Arzikulov: 2-local derivations on semi-finite von Neumann algebras. Glasgow Mathematical Journal 56 (1) (2014) 9-12.
- [2] Sh. Ayupov, F. Arzikulov: 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra and its Applications 522 (2017) 28–50.
- [3] Sh. Ayupov, K. Kudaybergenov: 2-local derivations and automorphisms on B(H). Journal of Mathematical Analysis and Applications 395 (1) (2012) 15–18.
- [4] Sh. Ayupov, K. Kudaybergenov: 2-local derivations on von Neumann algebras. Positivity 19 (3) (2015) 445–455.
- [5] Sh. Ayupov, K. Kudaybergenov: 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra and its Applications 507 (2016) 121–131.
- [6] Sh. Ayupov, K. Kudaybergenov: Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications 493 (2016) 381–398.
- [7] Sh. Ayupov, K. Kudaybergenov, B. Omirov: Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society 43 (3) (2020) 2199–2234.
- [8] Sh. Ayupov, K. Kudaybergenov, I. Rakhimov: 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications 474 (2015) 1–11.
- [9] Z. Chen, D. Wang: 2-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra and its Applications 486 (2015) 335–344.
- [10] M. Costantini: Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra and its Applications 562 (2019) 123–134.
- [11] R.V. Kadison: Local derivations. Journal of Algebra 130 (2) (1990) 494-509.
- [12] I.L. Kantor: Certain generalizations of Jordan algebras (Russian). Trudy Sem. Vektor. Tenzor. Anal. 16 (1972) 407–499.
- [13] I.L. Kantor: Extension of the class of Jordan algebras. Algebra and Logic 28 (2) (1989) 117–121.
- [14] I.L. Kantor: The universal conservative algebra. Siberian Mathematical Journal 31 (3) (1990) 388–395.
- [15] I. Kaygorodov, A. Lopatin, Yu. Popov: Conservative algebras of 2-dimensional algebras. Linear Algebra and its Applications 486 (2015) 255–274.
- [16] I. Kaygorodov, Yu. Volkov: Conservative algebras of 2-dimensional algebras, II. Communications in Algebra 45 (8) (2017) 3413–3421.
- [17] I. Kaygorodov, Yu. Popov, A. Pozhidaev: The universal conservative superalgebra. Communications in Algebra 47 (10) (2019) 4066–4076.
- [18] I. Kaygorodov, A. Khudoyberdiyev, A. Sattarov: One-generated nilpotent terminal algebras. Communications in Algebra 48 (10) (2020) 4355–4390.
- [19] I. Kaygorodov, M. Khrypchenko, Yu. Popov: The algebraic and geometric classification of nilpotent terminal algebras. *Journal of Pure and Applied Algebra* 225 (6) (2021) 106625.
- [20] M. Khrypchenko: Local derivations of finitary incidence algebras. Acta Mathematica Hungarica 154 (1) (2018) 48–55.
- [21] S. Kim, J. Kim: Local automorphisms and derivations on M_n. Proceedings of the American Mathematical Society 132 (5) (2004) 1389−1392.

- [22] D.R. Larson, A.R. Sourour: Local derivations and local automorphisms of $\mathcal{B}(X)$. Proceedings of Symposia in Pure Mathematics 51 (2) (1990) 187–194.
- [23] Y. Lin, T. Wong: A note on 2-local maps. Proceedings of the Edinburgh Mathematical Society 49 (3) (2006) 701–708.
- [24] H.P. Petersson: The classification of two-dimensional nonassociative algebras. Resultate der Mathematik 37 (1–2) (2000) 120–154.
- [25] Yu. Popov: Conservative algebras and superalgebras: a survey. Communications in Mathematics 28 (2) (2020) 231–251.
- [26] P. Šemrl: Local automorphisms and derivations on $\mathcal{B}(H)$. Proceedings of the American Mathematical Society 125 (9) (1997) 2677–2680.

Received: 2 August 2020

Accepted for publication: 27 September 2020

 $Communicated\ by:\ Ivan\ Kaygorodov$