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Pre-derivations and description of non-strongly
nilpotent filiform Leibniz algebras

K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov

Abstract. In this paper we give the description of some non-strongly nilpo-
tent Leibniz algebras. We pay our attention to the subclass of nilpotent
Leibniz algebras, which is called filiform. Note that the set of filiform
Leibniz algebras of fixed dimension can be decomposed into three disjoint
families. We describe the pre-derivations of filiform Leibniz algebras for
the first and second families and determine those algebras in the first two
classes of filiform Leibniz algebras that are non-strongly nilpotent.

1 Introduction
It is well-known that a Lie algebra over a field of characteristic zero admitting a non-
singular (invertible) derivation is nilpotent [13]. The first example of a nilpotent
Lie algebra, whose derivations are nilpotent (and hence, singular) was constructed
in [8]. Further, such Lie algebras got the name characteristically nilpotent and
various papers are devoted to the investigation of characteristically nilpotent Lie
algebras [2], [5], [7], [16], [17], [19].

The study of derivations of Lie algebras led to the appearance of a natural
generalization: pre-derivations of Lie algebras [23]. The set of pre-derivations of a
Lie algebra L is the Lie algebra of the Lie group of pre-automorphisms of L (see [4]).
A pre-derivation of L is just a derivation of the Lie triple system induced by L.
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Research on pre-derivations has been related to Lie algebra degenerations, Lie
triple systems and bi-invariant semi-Riemannian metrics on Lie groups [6]. In [4]
it was proved that the analogue of Jacobson’s result for pre-derivations is also
true. Similar to the example of Dixmier and Lister, several examples of nilpotent
Lie algebras whose pre-derivations are nilpotent were presented in [6]. Such Lie
algebras are called strongly nilpotent.

In [22], a generalized notion of derivations and pre-derivations of Lie algebras is
given. These derivations are called Leibniz-derivations of order k, and it is proved
that a finite-dimensional Lie algebra over a field of characteristic zero is nilpotent if
and only if it admits an invertible Leibniz-derivation. Furthermore, an analogue of
this result was shown for alternative, Jordan, Zinbiel, Malcev and Leibniz algebras
[9], [14], [15].

The notion of Leibniz algebra was introduced in [21] as a non-antisymmetric
generalization of Lie algebras. Since the study of derivations and automorphisms
of a Lie algebra plays an essential role in the structure theory of algebras, it is a
natural question whether the corresponding results for Lie algebras can be extended
to more general objects. An analogue of Jacobson’s result for Leibniz algebras was
proved in [20]. Moreover, it was shown that, similarly to the case of Lie algebras,
the converse of this statement does not hold and the notion of a characteristically
nilpotent Lie algebra can be extended to Leibniz algebras [18], [24].

Since a Leibniz-derivation of order 3 of a Leibniz algebra is a pre-derivation,
it is natural to define the notion of strongly nilpotent Leibniz algebras. Note that
the every strongly nilpotent Leibniz algebra is characteristically nilpotent. Thus,
one of the approaches to the classification of nilpotent Leibniz algebras considers a
subclass of Leibniz algebras, in which any Leibniz derivation of order k is nilpotent
and any algebra admits a non-nilpotent Leibniz-derivation of order k + 1. In the
case of k = 1 we have the class of non-characteristically nilpotent Leibniz algebras.
The filiform Leibniz algebras in this class were determined in [18]. Some classes
of finite-dimensional filiform Leibniz algebras up to dimension less than 10 were
classified in [1], [10], [25], [26].

This paper is devoted to the study of algebras for the case k = 2, i.e., the
class of characteristically nilpotent filiform Leibniz algebras which are non-strongly
nilpotent. It is known that the class of all filiform Leibniz algebras can be divided
into three disjoint families [3], [11], where one of the families contains filiform Lie
algebras and the other two families arise from naturally graded non-Lie filiform
Leibniz algebras. We determine those algebras in the first two classes of filiform
Leibniz algebras that are non-strongly nilpotent for any finite dimension. For the
third class this questions is reduced to the same question about Lie algebras. Note
that the classification of non-strongly nilpotent filiform Lie algebras is known only
up to dimension 11 in [6].

In order to achieve our goal, we have organized the paper as follows. In Sec-
tion 2, we present necessary definitions and results that will be used in the rest of
the paper. In Section 3, we describe pre-derivations of filiform Leibniz algebras of
the first and second families. Finally, in Section 4, we give a description of charac-
teristically nilpotent filiform Leibniz algebras which are non-strongly nilpotent.
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Throughout the paper, all the spaces and algebras are assumed to be finite-
-dimensional.

2 Preliminaries
In this section we give necessary definitions and preliminary results.

Definition 1. An algebra (L, [−,−]) over a field F is called a (right) Leibniz algebra
if for any x, y, z ∈ L, the so-called Leibniz identity[

[x, y], z
]
=
[
[x, z], y

]
+
[
x, [y, z]

]
holds.

Note that a derivation of a Leibniz algebra L is a linear transformation, such
that

d([x, y]) = [d(x), y] + [x, d(y)],

for any x, y ∈ L.
Pre-derivations of Leibniz algebras are generalization of derivations which are

defined as follows.

Definition 2. A linear transformation P of the Leibniz algebra L is called a pre-
-derivation if for any x, y, z ∈ L,

P ([[x, y], z]) = [[P (x), y], z] + [[x, P (y)], z] + [[x, y], P (z)].

For a given Leibniz algebra L we consider the following central lower series:

L1 = L, Lk+1 = [Lk, L1], k ≥ 1.

Definition 3. A Leibniz algebra L is called nilpotent if there exists s ∈ N such that
Ls = 0.

A nilpotent Leibniz algebra is called characteristically nilpotent if all its deriva-
tions are nilpotent. We say that a Leibniz algebra is strongly nilpotent if any
pre-derivation is nilpotent.

Since any derivation of a Leibniz algebra is a pre-derivation, every strongly
nilpotent Leibniz algebra is characteristically nilpotent. An example of a charac-
teristically nilpotent, but non-strongly nilpotent Leibniz algebra could be found in
[9], [18], [24].

Definition 4. A Leibniz algebra L is said to be filiform if dimLi = n − i, where
n = dimL and 2 ≤ i ≤ n.

The following theorem divides all n-dimensional filiform Leibniz algebras into
three families.



190 K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov

Theorem 1 ([3], [11]). Any n-dimensional complex filiform Leibniz algebra ad-
mits a basis {e1, e2, . . . , en} such that the table of multiplication of the algebra has
one of the following forms:

F1(α4, . . . , αn, θ) =



[e1, e1] = e3,

[ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, e2] =

n−1∑
t=4

αtet + θen,

[ej , e2] =

n∑
t=j+2

αt−j+2et, 2 ≤ j ≤ n− 2,

F2(β4, . . . , βn, γ) =



[e1, e1] = e3,

[ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[e1, e2] =

n∑
t=4

βtet,

[e2, e2] = γen,

[ej , e2] =

n∑
t=j+2

βt−j+2et, 3 ≤ j ≤ n− 2,

F3(θ1, θ2, θ3) =



[ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n− 1,

[e1, e1] = θ1en,

[e1, e2] = −e3 + θ2en,

[e2, e2] = θ3en,

[ei, ej ] = −[ej , ei] ∈
∈ 〈ei+j+1, ei+j+2, . . . , en〉,

2 ≤ i < j ≤ n− 1,

[ei, en+1−i] = −[en+1−i, ei] =

= α(−1)i+1en,
2 ≤ i ≤ n− 1,

where all omitted products are equal to zero and α ∈ {0, 1} for even n and α = 0
for odd n.

It is easy to see that algebras of the first and the second families are non-Lie
algebras. Note that if (θ1, θ2, θ3) = (0, 0, 0), then an algebra of the third class is a
Lie algebra.

Further we shall need the notion of Catalan numbers. The p-th Catalan numbers
were defined in [12] by the formula

Cpn =
1

(p− 1)n+ 1

(
pn

n

)
.
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It should be noted that for the p-th Catalan numbers the following identity
holds:

n∑
k=1

CpkC
p
n−k =

2n

(p− 1)n+ p+ 1
Cpn+1 . (1)

3 Pre-derivations of filiform Leibniz algebras
In this section we give the a description of pre-derivations of filiform Leibniz alge-
bras. First, we consider the filiform Leibniz algebras from the first family.

Proposition 1. The pre-derivations of the filiform Leibniz algebras from the family
F1(α4, α5, . . . , αn, θ) have the following form:

P (e1) =

n∑
t=1

atet,

P (e2) = (a1 + a2)e2 +

n−2∑
t=3

atet + bn−1en−1 + bnen,

P (e3) =

n∑
t=2

ctet,

P (e2i) = ((2i− 1)a1 + a2)e2i +

+

n∑
t=2i+1

(at−2i+2 + (2i− 2)a2αt−2i+3)et,
2 ≤ i ≤

⌊n
2

⌋
,

P (e2i+1) = c2e2i + ((2i− 2)a1 + c3)e2i+1 +

+

n∑
t=2i+2

(ct−2i+2 + (2i− 2)a2αt−2i+2)et,
2 ≤ i ≤

⌊
n− 1

2

⌋
,

where bac is the integer part of the real number a and

(1 + (−1)n)c2 = 0, c2αt = 0, 4 ≤ t ≤ n− 1,

(a1 − a2)α4 = 0, (3a1 − c3)α4 = 0,

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2α2k−2t+4)α2t−2 = 0, 3 ≤ k ≤ bn− 1

2
c,

(2a1 + a2 − c3)α2k +

+

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2α2k−2t+5)α2t−2 = 0,
3 ≤ k ≤ bn

2
c − 1,

(a2 − (k − 3)a1)αk =
k − 1

2
a2

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2,



192 K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov

(a2 − (n− 4)a1)αn−1 = a2

n−2
2∑
t=3

(2t− 3)αn−2t+3α2t−1 +

+

n−2
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2αn−2t+2)α2t,

n is even,

(2a2 − c3 − (n− 6)a1)αn−1 =

= a2

n−1
2∑
t=3

(2t− 3)αn−2t+3α2t−1 +

+

n−3
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2αn−2t+2)α2t,

n is odd.

(2)

Proof. Let L be a filiform Leibniz algebra from the family F1(α4, α5, . . . , αn, θ) and
let P : L→ L be a pre-derivation of L. Put

P (e1) =

n∑
t=1

atet, P (e2) =

n∑
t=1

btet, P (e3) =

n∑
t=1

ctet.

From

0 = P ([[e1, e1], e3]) = [[P (e1), e1], e3] + [[e1, P (e1)], e3] + [[e1, e1], P (e3)]

= [e3,

n∑
t=1

ctet] = c1e4 + c2

n−1∑
t=4

αtet+1,

we have
c1 = 0

c2αt = 0, 4 ≤ t ≤ n− 1.

By the definition of a pre-derivation, we have

P (e4) = P ([[e1, e1], e1]) = [[P (e1), e1], e1] + [[e1, P (e1)], e1] + [[e1, e1], P (e1)]

= [(a1 + a2)e3 +

n∑
t=4

at−1et, e1] + [a1e3 + a2
( n−1∑
t=4

αtet + θen
)
, e1]

+ a1e4 + a2

n∑
t=5

αt−1et

= (3a1 + a2)e4 +

n∑
t=5

(at−2 + 2a2αt−1)et.
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On the other hand,

P (e4) = P ([[e2, e1], e1]) = [[P (e2), e1], e1] + [[e2, P (e1)], e1] + [[e2, e1], P (e1)]

= [(b1 + b2)e3 +

n∑
t=4

bt−1et, e1] + [a1e3 + a2

n∑
t=4

αtet, e1]

+ a1e4 + a2

n∑
t=5

αt−1et

= (2a1 + b1 + b2)e4 +

n∑
t=5

(bt−2 + 2a2αt−1)et.

By comparing the coefficients of the basis elements we have

b1 + b2 = a1 + a2,

bt = at, 3 ≤ t ≤ n− 2.

Using the property of pre-derivation, we get

P (e5) = P ([[e3, e1], e1]) = [[P (e3), e1], e1] + [[e3, P (e1)], e1] + [[e3, e1], P (e1)]

= [c2e3 +

n∑
t=4

ct−1et, e1] + [a1e4 + a2

n∑
t=5

αt−1et, e1]

+ a1e5 + a2

n∑
t=6

αt−2et

= c2e4 + (2a1 + c3)e5 +

n∑
t=6

(ct−2 + 2a2αt−2)et.

Similarly, from the identity

P (ej+2) = P ([[ej , e1], e1]) =

= [[P (ej), e1], e1] + [[ej , P (e1)], e1] + [[ej , e1], P (e1)],
2 ≤ j ≤ n− 2,

inductively, we derive

P (e2i) = ((2i− 1)a1 + a2)e2i +

+

n∑
t=2i+1

(at−2i+2 + (2i− 2)a2αt−2i+3)et,
2 ≤ i ≤

⌊n
2

⌋
.

P (e2i+1) = c2e2i + ((2i− 2)a1 + c3)e2i+1 +

+

n∑
t=2i+2

(ct−2i+2 + (2i− 2)a2αt−2i+2)et,
2 ≤ i ≤

⌊
n− 1

2

⌋
.

Moreover, in the case of n being even we deduce from the definition of a pre-
derivation applied to the triple {en−1, e1, e1} that c2 = 0. Thus we get

(1 + (−1)n)c2 = 0.
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Consider

P ([[e1, e1], e2]) = P ([e3, e2]) = P
( n∑
t=5

αt−1et

)

=

bn−1
2 c∑
t=2

[
c2e2t + ((2t− 2)a1 + c3)e2t+1

+

n∑
k=2t+2

(ck−2t+2 + (2t− 2)a2αk−2t+2)ek

]
α2t

+

bn2 c∑
t=3

[
((2t− 1)a1 + a2)e2t +

n∑
k=2t+1

(ak−2t+2 + (2t− 2)a2αk−2t+3)ek

]
α2t−1

=

bn−1
2 c∑

k=2

((2k − 2)a1 + c3)α2ke2k+1 +

n∑
k=6

b k−2
2 c∑
t=2

(ck−2t+2 + (2t− 2)a2αk−2t+2)α2tek

+

bn2 c∑
k=3

((2k − 1)a1 + a2)α2k−1e2k

+

n∑
k=7

b k−1
2 c∑
t=3

(ak−2t+2 + (2t− 2)a2αk−2t+3)α2t−1ek

= (2a1 + c3)α4e5

+

bn2 c∑
k=3

[
((2k − 1)a1 + a2)α2k−1 +

k−1∑
t=2

(c2k−2t+2 + (2t− 2)a2α2k−2t+2)α2t

+

k−1∑
t=3

(a2k−2t+2 + (2t− 2)a2α2k−2t+3)α2t−1

]
e2k

+

bn−1
2 c∑

k=3

[
((2k − 2)a1 + c3)α2k +

k−1∑
t=2

(c2k−2t+3 + (2t− 2)a2α2k−2t+3)α2t

+

k∑
t=3

(a2k−2t+3 + (2t− 2)a2α2k−2t+4)α2t−1

]
e2k+1.

On the other hand, using the property of pre-derivation, we get

P ([[e1, e1], e2]) = [[P (e1), e1], e2] + [[e1, P (e1)], e2] + [[e1, e1], P (e2)]

= [(a1 + a2)e3 +

n∑
t=4

at−1et, e2] + [a1e3 + a2

( n−1∑
t=4

αtet + θen

)
, e2]

+ b1e4 + b2

n∑
t=5

αt−1et
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= (a1 + a2)

n∑
t=5

αt−1et +

n−2∑
t=4

at−1

n∑
k=t+2

αk−t+2ek

+ a1

n∑
t=5

αt−1et + a2

n−2∑
t=4

αt

n∑
k=t+2

αk−t+2ek + b1e4 + b2

n∑
t=5

αt−1et

= b1e4 + (2a1 + a2 + b2)α4e5

+

bn2 c∑
k=3

[
(2a1 + a2 + b2)α2k−1 +

2k−2∑
t=4

(at−1 + a2αt)α2k−t+2

]
e2k

+

bn−1
2 c∑

k=3

[
(2a1 + a2 + b2)α2k +

2k−1∑
t=4

(at−1 + a2αt)α2k−t+3

]
e2k+1.

By comparing the coefficients of the basis elements we have

b1 = 0,

(2a1 + a2 + b2)α4 = (2a1 + c3)α4,
(3)

(2a1 + a2 + b2)α2k−1 +

2k−2∑
t=4

(at−1 + a2αt)α2k−t+2 =

= ((2k − 1)a1 + a2)α2k−1 +

+

k−1∑
t=2

(c2k−2t+2 + (2t− 2)a2α2k−2t+2)α2t +

++

k−1∑
t=3

(a2k−2t+2 + (2t− 2)a2α2k−2t+3)α2t−1,

3 ≤ k ≤
⌊n
2

⌋
(4)

(2a1 + a2 + b2)α2k +

2k−1∑
t=4

(at−1 + a2αt)α2k−t+3 =

= ((2k − 2)a1 + c3)α2k +

+

k−1∑
t=2

(c2k−2t+3 + (2t− 2)a2α2k−2t+3)α2t +

+

k∑
t=3

(a2k−2t+3 + (2t− 2)a2α2k−2t+4)α2t−1.

3 ≤ k ≤
⌊
n− 1

2

⌋
(5)

Now, we consider

P ([[e3, e1], e2]) = P ([e4, e2]) = P
( n∑
t=6

αt−2et

)

=

bn−1
2 c∑
t=3

[
((2t− 2)a1 + c3)e2t+1 +

n∑
k=2t+2

(ck−2t+2 + (2t− 2)a2αk−2t+2)ek

]
α2t−1

+

bn2 c∑
t=3

[
((2t− 1)a1 + a2)e2t +

n∑
k=2t+1

(ak−2t+2 + (2t− 2)a2αk−2t+3)ek

]
α2t−2
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=

bn−1
2 c∑

k=3

((2k − 2)a1 + c3)α2k−1e2k+1

+

n∑
k=8

b k−2
2 c∑
t=3

(ck−2t+2 + (2t− 2)a2αk−2t+2)α2t−1ek

+

bn2 c∑
k=3

((2k − 1)a1 + a2)α2k−2e2k

+

n∑
k=7

b k−1
2 c∑
t=3

(ak−2t+2 + (2t− 2)a2αk−2t+3)α2t−2ek

= (5a1 + a2)α4e6 +

bn−1
2 c∑

k=3

[
((2k − 2)a1 + c3)α2k−1

+

k−1∑
t=3

(c2k−2t+3 + (2t− 2)a2α2k−2t+3)α2t−1

+

k∑
t=3

(a2k−2t+3 + (2t− 2)a2α2k−2t+4)α2t−2

]
e2k+1

+

bn2 c∑
k=4

[
((2k − 1)a1 + a2)α2k−2

+

k−1∑
t=3

(c2k−2t+2 + (2t− 2)a2α2k−2t+2)α2t−1

+

k−1∑
t=3

(a2k−2t+2 + (2t− 2)a2α2k−2t+3)α2t−2

]
e2k.

On the other hand,

P ([[e3, e1], e2]) = [[P (e3), e1], e2] + [[e3, P (e1)], e2] + [[e3, e1], P (e2)]

= [

n∑
t=3

ct−1et, e2] + [a1e4 + a2

n∑
t=5

αt−1et, e2] + b2

n∑
t=6

αt−2et

=

n−2∑
t=4

ct−1

n∑
k=t+2

αk−t+2ek + a1

n∑
t=6

αt−2et

+ a2

n−2∑
t=5

αt−1

n∑
k=t+2

αk−t+2ek + b2

n∑
t=6

αt−2et

= (2a1 + a2 + c3)α4e6

+

n∑
k=7

[
(2a1 + a2 + c3)αk−2 +

k−2∑
t=5

(ct−1 + a2αt−1)αk−t+2

]
ek
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= (2a1 + a2 + c3)α4e6

+

bn−1
2 c∑

k=3

[
(2a1 + a2 + c3)α2k−1 +

2k−1∑
t=5

(ct−1 + a2αt−1)α2k−t+3

]
e2k+1

+

bn2 c∑
k=4

[
(2a1 + a2 + c3)α2k−2 +

2k−2∑
t=5

(ct−1 + a2αt−1)α2k−t+2

]
e2k.

By comparing the coefficients of the basis elements we get

(2a1 + a2 + c3)α4 = (5a1 + a2)α4 (6)

(2a1 + a2 + c3)α2k−1 +

2k−1∑
t=5

(ct−1 + a2αt−1)α2k−t+3 =

= ((2k − 2)a1 + c3)α2k−1 +

+

k−1∑
t=3

(c2k−2t+3 + (2t− 2)a2α2k−2t+3)α2t−1 +

+

k∑
t=3

(a2k−2t+3 + (2t− 2)a2α2k−2t+4)α2t−2,

3 ≤ k ≤
⌊
n− 1

2

⌋
(7)

(2a1 + a2 + c3)α2k−2 +

2k−2∑
t=5

(ct−1 + a2αt−1)α2k−t+2 =

= ((2k − 1)a1 + a2)α2k−2 +

+

k−1∑
t=3

(c2k−2t+2 + (2t− 2)a2α2k−2t+2)α2t−1 +

+

k−1∑
t=3

(a2k−2t+2 + (2t− 2)a2α2k−2t+3)α2t−2.

4 ≤ k ≤
⌊n
2

⌋
(8)

According to b1 + b2 = a1 + a2, from equalities (3) and (6) we obtain

(a1 − a2)α4 = 0, (3a1 − c3)α4 = 0.

By subtracting of identities (4) and (7) we obtain

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2α2k−2t+4)α2t−2 = 0, 3 ≤ k ≤
⌊
n− 1

2

⌋
.

By summarizing of identities (4) and (7) we get

αk(a2 − (k − 3)a1) =
k − 1

2
a2

k∑
t=5

αt−1αk−t+4
5 ≤ k ≤ n− 2,

k is odd.
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Similarly, we obtain from identities (5) and (8)

(2a1 + a2 − c3)α2k +

+

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2α2k−2t+5)α2t−2 = 0,
3 ≤ k ≤

⌊n
2

⌋
− 1

and

αk(a2 − (k − 3)a1) =
k − 1

2
a2

k∑
t=5

αt−1αk−t+4
5 ≤ k ≤ n− 2,

k is even.

From equalities (4) and (5) in the case of 2k = n and 2k = n− 1, respectively,
we obtain last the two restrictions of equality (2).

Considering the properties of the pre-derivation for P ([[ei, e1], e2]), 4 ≤ i ≤ n
and P ([[ei, e2], e2]), 3 ≤ i ≤ n, we have identical equalities. �

In the following proposition we give descriptions of the pre-derivations of alge-
bras from the second class of filiform Leibniz algebras.

Proposition 2. The pre-derivations of the filiform Leibniz algebras from the family
F2(β4, β5, . . . , βn, γ) have the following form:

P (e1) =

n∑
t=1

atet,

P (e2) = b2e2 + bn−1en−1 + bnen,

P (e3) =

n∑
t=2

ctet,

P (e2i) = (2i− 1)a1e2i +

+

n∑
t=2i+1

(at−2i+2 + (2i− 2)a2βt−2i+3)et,
2 ≤ i ≤

⌊n
2

⌋
,

P (e2i+1) = ((2i− 2)a1 + c3)e2i+1 +

+

n∑
t=2i+2

(ct−2i+2 + (2i− 2)a2βt−2i+2)et,
2 ≤ i ≤

⌊
n− 1

2

⌋
,

where

(c3 − 2a1)β4 = 0,

(b2 − 2a1)β4 = 0,

c2βt = 0,

4 ≤ t ≤ n− 1,

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2β2k−2t+4)β2t−2 = 0, 3 ≤ k ≤ bn− 1

2
c,
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(c3 − 2a1)β2k =

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2β2k−2t+5)β2t−2, 3 ≤ k ≤ bn
2
c − 1,

(b2 − (k − 2)a1)βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4, 5 ≤ k ≤ n− 2,

(b2 − c3 − (n− 5)a1)βn−1 = a2

n−1
2∑
t=3

(2t− 3)βn−2t+3β2t−1 +

+

n−3
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2βn−2t+2)β2t,

n is odd,

(b2 − (n− 3)a1)βn−1 = a2

n−2
2∑
t=3

(2t− 3)βn−2t+3β2t−1 +

+

n−2
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2βn−2t+2)β2t,

n is even.

(9)

Proof. Let P be a pre-derivation of a filiform Leibniz algebra L from the second
class. Put

P (e1) =

n∑
t=1

atet, P (e2) =

n∑
t=1

btet, P (e3) =

n∑
t=1

ctet.

From the definition of a pre-derivation we obtain that

P ([[e2, e1], e1]) = [[P (e2), e1], e1] + [[e2, P (e1)], e1] + [[e2, e1], P (e1)]

= [[

n∑
t=1

btet, e1], e1] + [[e2,

n∑
t=1

atet], e1]

= [b1e3 +

n−1∑
t=3

btet+1, e1] = b1e4 +

n∑
t=5

bt−2et.

On the other hand, P ([[e2, e1], e1]) = 0, since [e2, e1] = 0. Thus, we have

b1 = 0,

bt = 0, 3 ≤ t ≤ n− 2.

Hence, P (e2) = b2e2 + bn−1en−1 + bnen.
From

0 = P ([[e1, e1], e3]) = [[P (e1), e1], e3] + [[e1, P (e1)], e3] + [[e1, e1], P (e3)]

= [e3,

n∑
t=1

ctet] = c1e4 + c2

n∑
t=5

βt−1et,
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we get
c1 = 0, c2βt = 0, 4 ≤ t ≤ n− 1.

Inductively, we obtain from the definition of a pre-derivation applied to the
triples {e1, e1, e1} and {ei, e1, e1} for 3 ≤ i ≤ n− 2,

P (e2i) = (2i− 1)a1e2i +

+

n∑
t=2i+1

(at−2i+2 + (2i− 2)a2βt−2i+3)et,
2 ≤ i ≤

⌊n
2

⌋
,

P (e2i+1) = ((2i− 2)a1 + c3)e2i+1 +

+

n∑
t=2i+2

(ct−2i+2 + (2i− 2)a2βt−2i+2)et,
2 ≤ i ≤

⌊
n− 1

2

⌋
.

Now, we consider

P ([[e1, e1], e2]) = [[P (e1), e1], e2] + [[e1, P (e1)], e2] + [[e1, e1], P (e2)]

= [[

n∑
t=1

atet, e1], e2] + [[e1,

n∑
t=1

atet], e2] + [e3, b2e2 + bn−1 + btet]

= (2a1 + b2)β4e5

+

bn2 c∑
k=3

[
(2a1 + b2)β2k−1

2k−2∑
t=4

(at−1 + a2βt)β2k−t+2

]
e2k

+

bn−1
2 c∑

k=3

[
(2a1 + b2)β2k +

2k−1∑
t=4

(at−1 + a2βt)β2k−t+3

]
e2k+1.

On the other hand,

P ([[e1, e1], e2]) = P ([e3, e2]) = P
( n∑
t=5

βt−1et

)

= β4(2a1 + c3)e5 +

bn2 c∑
k=3

[
β2k−1(2k − 1)a1

+

k−1∑
t=2

β2t(c2k−2t+2 + (2t− 2)a2β2k−2t+2)

+

k−1∑
t=3

β2t−1(a2k−2t+2 + (2t− 2)a2β2k−2t+3)
]
e2k

+

bn−1
2 c∑

k=3

[
β2k((2k − 2)a1 + c3) +

k−1∑
t=2

β2t(c2k−2t+3 + (2t− 2)a2β2k−2t+3)

+

k∑
t=3

β2t−1(a2k−2t+3 + (2t− 2)a2β2k−2t+4)
]
e2k+1.
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By comparing the coefficients of the basis elements, we have

(2a1 + b2)β4 = (2a1 + c3)β4, (10)

(2a1 + b2)β2k−1 +

2k−2∑
t=4

(at−1 + a2βt)β2k−t+2 =

= β2k−1(2k − 1)a1 +

+

k−1∑
t=2

β2t(c2k−2t+2 + (2t− 2)a2β2k−2t+2) +

+

k−1∑
t=3

β2t−1(a2k−2t+2 + (2t− 2)a2β2k−2t+3),

3 ≤ k ≤
⌊n
2

⌋
(11)

(2a1 + b2)β2k +

2k−1∑
t=4

(at−1 + a2βt)β2k−t+3 =

= β2k((2k − 2)a1 + c3) +

+

k−1∑
t=2

β2t(c2k−2t+3 + (2t− 2)a2β2k−2t+3) +

+

k∑
t=3

β2t−1(a2k−2t+3 + (2t− 2)a2β2k−2t+4).

3 ≤ k ≤
⌊
n− 1

2

⌋
(12)

Analogously, from the identity

P ([e4, e2]) = P ([[e3, e1], e2]) = [[P (e3), e1], e2] + [[e3, P (e1)], e2] + [[e3, e1], P (e2)],

we obtain the following conditions for the coefficients:

(a1 + b2 + c3)β4 = 5a1β4, (13)

(a1 + b2 + c3)β2k−1 +

2k−1∑
t=5

(ct−1 + a2βt−1)β2k−t+3 =

= β2k−1((2k − 2)a1 + c3) +

+

k−1∑
t=3

β2t−1(c2k−2t+3 + (2t− 2)a2β2k−2t+3) +

+

k∑
t=3

β2t−2(a2k−2t+3 + (2t− 2)a2β2k−2t+4),

3 ≤ k ≤
⌊
n− 1

2

⌋
(14)
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(a1 + b2 + c3)β2k−2 +

2k−2∑
t=5

(ct−1 + a2βt−1)β2k−t+2 =

= β2k−2(2k − 1)a1 +

+

k−1∑
t=3

β2t−1(c2k−2t+2 + (2t− 2)a2β2k−2t+2) +

+
k−1∑
t=3

β2t−2(a2k−2t+2 + (2t− 2)a2β2k−2t+3).

4 ≤ k ≤
⌊n
2

⌋
(15)

It is not difficult to see from (10) and (13) that we have

(c3 − 2a1)β4 = 0, (b2 − 2a1)β4 = 0.

Similarly to the proof of Proposition 1, by summarizing and subtracting equal-
ities (11) and (14), we obtain

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2β2k−2t+4)β2t−2 = 0, 3 ≤ k ≤
⌊
n− 1

2

⌋
and

(b2 − (k − 2)a1)βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4
5 ≤ k ≤ n− 2,

k is odd.

From equalities (12) and (15) we have

(c3 − 2a1)β2k =

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2β2k−2t+5)β2t−2, 3 ≤ k ≤
⌊n
2

⌋
− 1,

and

(b2 − (k − 2)a1)βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4
5 ≤ k ≤ n− 2,

k is even.

From equalities (11) and (12) in the case of 2k = n−1 and 2k = n, respectively,
we obtain the last two restrictions of equalities (9).

Considering the properties of the pre-derivation for P ([[ei, e1], e2]) for 4 ≤ i ≤ n
and P ([[ei, e2], e2]) for 3 ≤ i ≤ n, we have the identical equalities. �

4 Strongly nilpotent filiform Leibniz algebras
In this section we determine those algebras in the first two classes of filiform Leibniz
algebras that are non-strongly nilpotent. For the third class this question is reduced
to the same question about Lie algebras.
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First, we consider the case of filiform Leibniz algebras from the first class. From
Proposition 1 it is obvious that if there exist the parameters a1, a2, c2, c3 such that
(a1, a2, c2, c3) 6= (0, 0, 0, 0) and the conditions (2) hold, then a filiform Leibniz
algebra of the first family is non-strongly nilpotent, otherwise is strongly nilpotent.

Proposition 3. Let L(α4, α5, . . . , αn, θ) be a filiform Leibniz algebra of the first
family. If α4 = α5 = · · · = αn−1 = 0, then L is non-strongly nilpotent.

Proof. It is immediate that, if α4 = α5 = · · · = αn−1 = 0, then the restriction
(2) holds for any values of a1, a2, c3. Thus, we have that L has a non-nilpotent
pre-derivation, which implies that L is non-strongly nilpotent. �

It is obvious that any algebra from the family F1(0, . . . , 0, αn, θ) is isomorphic
to one of the following four algebras:

F1(0, . . . , 0, 0, 0), F1(0, . . . , 0, 0, 1), F1(0, . . . , 0, 1, 0), F1(0, . . . , 0, 1, 1).

Note that the algebras F1(0, . . . , 0, 0, 0), F1(0, . . . , 0, 0, 1) and F1(0, . . . , 0, 1, 1)
are non-characteristically nilpotent (see [18]). The algebra F1(0, . . . , 0, 1, 0) is char-
acteristically nilpotent, but non-strongly nilpotent.

Now we consider the case of αi 6= 0 for some i (4 ≤ i ≤ n− 1). Then from (2)
we have that c2 = 0.

Theorem 2. Let L be a filiform Leibniz algebra from the family F1(α4, α5, . . . , αn, θ)
and let n be even. Then L is non-strongly nilpotent if and only if the parameters
(α4, α5, α6, . . . , αn−1, αn, θ) have one of the following values:

i)
α4 6= 0

αk = (−1)kC2
k−3α

k−3
4 , 5 ≤ k ≤ n− 2;

ii)

α(2s−3)t+3 = (−1)t+1C2s−2
t αt2s,

3 ≤ s ≤ n− 2

2
,

1 ≤ t ≤
⌊
n− 5

2s− 3

⌋
,

αj = 0,
4 ≤ j ≤ n− 2,

j 6= (2s− 3)t+ 3;

iii) α2i = 0, 2 ≤ i ≤ n− 2

2
;

where Cpn = 1
(p−1)n+1

(
pn
n

)
is the p-th Catalan number.
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Proof. From Proposition 1 we have

(a1 − a2)α4 = 0, (3a1 − c3)α4 = 0,

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2α2k−2t+4)α2t−2 = 0, 3 ≤ k ≤ n− 2

2
,

(2a1 + a2 − c3)α2k +

+

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2α2k−2t+5)α2t−2 = 0,
3 ≤ k ≤ n− 2

2
,

(a2 − (k − 3)a1)αk =
k − 1

2
a2

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2,

(a2 − (n− 4)a1)αn−1 = a2

n−2
2∑
t=3

(2t− 3)αn−2t+3α2t−1 +

+

n−2
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2αn−2t+2)α2t.

(16)
Case 1. If α4 6= 0, then from the first two equalities of (16) we get a2 = a1,

c3 = 3a1 and from the next two equalities of (16) we obtain

ci = ai−1 + a1αi, 4 ≤ i ≤ n− 3.

Since a2 = a1, c3 = 3a1, we get that L is non-strongly nilpotent if and only if
a1 6= 0. Therefore we have

αk =
k − 1

2(4− k)

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2,

(5− n)a1αn−1 =

= (cn−2 − an−3 + a1αn−2)α4 + a1

n−2∑
t=5

(t− 2)αn−t+2αt.

Using identity (1) we get that

αk = (−1)kC2
k−3α

k−3
4 , 5 ≤ k ≤ n− 2

and

cn−2 =
1

α4

(
(5− n)a1αn−1 − a1

n−2∑
t=5

(t− 2)αn−t+2αt

)
+ an−3 − a1αn−2.

Note that the parameters αn−1, αn and θ are free and we have the case i).
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Case 2. Let α2s 6= 0 for some s (3 ≤ s ≤ n−2
2 ) and α2i = 0 for 2 ≤ i ≤ s − 1.

Then similarly to the previous case from identity (16) we get

(2a1 + a2 − c3)α2s = 0, (a2 − (2s− 3)a1)α2s = 0,

which derive a2 = (2s− 3)a1, c3 = (2s− 1)a1 and

ci = ai−1 + a2αi, 4 ≤ i ≤ n− 2s+ 1.

If L is non-strongly nilpotent then a1 6= 0. Consequently, we have

(2s− k)αk =
(k − 1)(2s− 3)

2

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2.

Inductively, we obtain by using α2i = 0 for 2 ≤ i ≤ s−1 and applying (1) that

αj = 0,
4 ≤ j ≤ n− 2,

j 6= (2s− 3)t+ 3,

α(2s−3)t+3 = (−1)t+1C2s−2
t αt2s, 1 ≤ t ≤

⌊
n− 5

2s− 3

⌋
.

From the last identity of (16) we have

cn−2s+2 =
1

α2s

(
(2s+ 1− n)a1αn−1 − (2s− 3)a1

n−2s+2∑
t=2s+1

(t− 2)αn−t+2αt

)
+ an−2s+1 − (2s− 3)2a1αn−2s+2.

The parameters αn−1, αn and θ may take any values and we obtain case ii).
Case 3. Let α2i = 0 for all i (2 ≤ i ≤ n−2

2 ). Then the first four equalities
of (16) hold and from the last equalities we have

α5(a2 − 2a1) = 0,

α2s+1(a2 − (2s− 2)a1) = sa2

s∑
t=3

α2t−1α2s+5−2t, 3 ≤ s ≤ n− 2

2
.

(a2 − (n− 4)a1)αn−1 = a2

n−2
2∑
t=3

(2t− 3)αn−2t+3α2t−1.

Taking a1 = a2 = 0 and c3 6= 0, we have that previous equalities hold for any
values of α2s+1. Since c3 6= 0, this algebra is non-strongly nilpotent and we obtain
the case iii). �
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Theorem 3. Let L be a filiform Leibniz algebra from the family F1(α4, α5, . . . , αn, θ)
and let n be odd. L is non-strongly nilpotent if and only if the parameters
(α4, α5, α6, . . . , αn−1, αn, θ) have one of the following values:

i)
α4 6= 0

(−1)kC2
k−3α

k−3
4 , 5 ≤ k ≤ n− 2;

ii)

α(2s−3)t+3 = (−1)t+1C2s−2
t αt2s,

3 ≤ s ≤ n− 3

2
,

1 ≤ t ≤ b n− 5

2s− 3
c,

αj = 0,
4 ≤ j ≤ n− 2,

j 6= (2s− 3)t+ 2;

iii) α2i = 0, 2 ≤ i ≤ n− 1

2
;

iv)

α(2s−2)t+3 = (−1)t+1C2s−1
t αt2s+1,

2 ≤ s ≤ n− 3

2
,

1 ≤ t ≤ b n− 5

2s− 2
c,

αj = 0,
4 ≤ j ≤ n− 2

j 6= (2s− 2)t+ 3.

Proof. From Proposition 1 we have

(a1 − a2)α4 = 0,

(3a1 − c3)α4 = 0,

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2α2k−2t+4)α2t−2 = 0, 3 ≤ k ≤ n− 1

2
,

(2a1 + a2 − c3)α2k +

+

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2α2k−2t+5)α2t−2 = 0,
3 ≤ k ≤ n− 3

2
,

(a2 − (k − 3)a1)αk =
k − 1

2
a2

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2,

(2a2 − c3 − (n− 6)a1)αn−1 = a2

n−1
2∑
t=3

(2t− 3)αn−2t+3α2t−1 +

+

n−3
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2αn−2t+2)α2t

(17)
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Case 1. α2s 6= 0 for some s (2 ≤ s ≤ n−3
2 ) and α2i = 0 for 2 ≤ i ≤ s− 1. Then

similarly to the proof of Theorem 2 we get

a2 = (2s− 3)a1,

c3 = (2s− 1)a1,

ci = ai−1 + a2αi, 4 ≤ i ≤ n−2s+1.

Consequently we have

αk =
(k − 1)(2s− 3)

2(2s− k)

k∑
t=5

αt−1αk−t+4, 5 ≤ k ≤ n− 2.

Inductively, we obtain by applying (1) that

α(2s−3)t+3 = (−1)t+1C2s−2
t αt2s, 1 ≤ t ≤

⌊
n− 5

2s− 3

⌋
,

αj = 0,
4 ≤ j ≤ n− 2,

j 6= (2s− 3)t+ 3.

From the last identity of (17) we have

cn−2s+2 =
1

α2s

(
(2s+ 1− n)a1αn−1 − (2s− 3)a1

n−2s+2∑
t=2s+1

(t− 2)αn−t+2αt

)
+ an−2s+1 − (2s− 3)2a1αn−2s+2.

Thus, we have the cases i) and ii).
Case 2. Let α2i = 0 for all i (2 ≤ i ≤ n−3

2 ). Then the first four equalities
of (17) hold and from the last two equalities we have

α5(a2 − 2a1) = 0,

α2s+1(a2 − (2s− 2)a1) = sa2

s∑
t=3

α2t−1α2s+5−2t, 3 ≤ s ≤ n− 3

2
,

(2a2 − c3 − (n− 6)a1)αn−1 = 0.

(18)
If αn−1 = 0, then taking a1 = a2 = 0 and c3 6= 0, we have a non-nilpotent

pre-derivation for any values of α2i+1, and so we have the case iii).
If αn−1 6= 0, then c3 = 2a2 + (n− 6)a1 and we obtain that
non-nilpotency of pre-derivations depends of the parameters α2i+1.
Let α2s+1 be the first non-vanishing parameter among {α5, α7, . . . , αn−4, αn−2}.

Then we get
a2 = (2s− 2)a1.
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Inductively, we obtain by applying (1) and (18) that

α(2s−2)t+3 = (−1)t+1C2s−1
t αt2s+1, 1 ≤ t ≤

⌊
n− 5

2s− 3

⌋
and

αj = 0,
4 ≤ j ≤ n− 2,

j 6= (2s− 2)t+ 3.

Therefore, we have the case iv). �

Now we give the classification of non-strongly nilpotent filiform Leibniz algebras
from the second class.

Proposition 4. Let L(β4, β5, . . . , βn, γ) be a filiform Leibniz algebra of the second
family. If β4 = β5 = · · · = βn−1 = 0, then L is non-strongly nilpotent.

Proof. Analogously to the proof of Proposition 3. �

It is obvious that any algebra from the family F2(0, . . . , 0, βn, γ) is isomorphic
to one of the algebras F2(0, . . . , 0, 0, 0), F2(0, . . . , 0, 1, 0), F2(0, . . . , 0, 0, 1). Note
that these algebras are non-characteristically nilpotent (see [18]).

Now we consider the case of βi 6= 0 for some i (4 ≤ i ≤ n− 1). Then from (9)
we have that c2 = 0.

Theorem 4. Let L be a n-dimensional complex non-strongly nilpotent filiform
Leibniz algebra from the family F2(β4, . . . , βn, γ) and n even. Then L is isomorphic
to one of the following algebras:

F 2s
2 (0, . . . , 0, β2s, 0 . . . , 0, βn−1, βn, γ), β2s = 1, 2 ≤ s ≤ n− 2

2
,

F2(0, β5, 0, β7, 0, . . . , 0, βn−1, βn, γ).

Proof. From Proposition 2 we have:

(c3 − 2a1)β4 = 0,

(b2 − 2a1)β4 = 0,

k∑
t=3

(a2k−2t+3 − c2k−2t+4 + a2β2k−2t+4)β2t−2 = 0, 3 ≤ k ≤ n− 2

2
,

(c3 − 2a1)β2k =

k∑
t=3

(a2k−2t+4 − c2k−2t+5 + a2β2k−2t+5)β2t−2, 3 ≤ k ≤ n− 2

2
,

(b2 − (k − 2)a1)βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4, 5 ≤ k ≤ n− 2,
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(b2 − (n− 3)a1)βn−1 = a2

n−2
2∑
t=3

(2t− 3)βn−2t+3β2t−1 +

+

n−2
2∑
t=2

(cn−2t+2 − an−2t+1 + (2t− 3)a2βn−2t+2)β2t.

(19)
Case 1. Let β4 6= 0, then from (19) we have

c3 = b2 = 2a1,

ci = ai−1 + a2βi, 4 ≤ i ≤ n− 3,

(4− k)a1βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4, 5 ≤ k ≤ n− 2,

(5− n)a1βn−1 = (cn−2 − an−3 − a2βn−2)β4 +

+ a2

n−2∑
t=5

(t− 2)βn−t+2βt.

Since L is non-strongly nilpotent, we get a1 6= 0 and

β5 = −2a2
a1

β2
4 ,

βk =
(k − 1)a2
2(4− k)a1

k∑
t=5

βt−1βk−t+4, 6 ≤ k ≤ n− 2.

From the isomorphism criterion in [10, Theorem 4.4] we have that if two algebras
from the family F2(β4, . . . , βn, γ) are isomorphic, then there exist A,B,D ∈ C, such
that

β′4 =
D

A2
β4, β′5 =

D

A3
(β5 −

2B

A
β2
4),

where βi and β′i are parameters of the first and second algebras, respectively.
Putting D = A2

β4
and B = Aβ5

2β2
4

we obtain β′4 = 1, β′5 = 0. Therefore,
we have shown that, if L is a non-strongly nilpotent algebra from the family
F2(β4, . . . , βn, γ), with β4 6= 0, then we may always suppose

β4 = 1, β5 = 0.

Moreover, from β5 = − 2a2
a1
β2
4 , we obtain a2 = 0, which implies βk = 0 for

6 ≤ k ≤ n− 2 and

cn−2 = an−3 +
(5− n)a1βn−1

β4
.

Thus, L is isomorphic to the algebra F2(1, 0, . . . , 0, βn−1, βn, γ).
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Case 2. Let β2s 6= 0 for some s (3 ≤ s ≤ n−2
2 ) and β2i = 0 for 2 ≤ i ≤ s − 1.

Then we have

b2 = (2s− 2)a1,

c3 = 2a1,

ci = ai−1 + a2βi, 4 ≤ i ≤ n− 2s+ 1,

(2s− k)a1βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4, 5 ≤ k ≤ n− 2,

(2s+1− n)a1βn−1 = (cn−2s+2 − an−2s+1 − a2βn−2s+2)β2s +

+ a2

n−2∑
t=5

(t− 2)βn−t+2βt.

Since L is non-strongly nilpotent, we get a1 6= 0, which implies

β5 = · · · = β2s−1 = 0.

Moreover, we have

β4s−3 = − (2s− 2)a2
(2s− 3)a1

β2
2s.

From the isomorphism criterion for filiform Leibniz algebras of the second class
in [10, Theorem 4.4], we obtain

β′2s =
D

A2s−2 β2s,

β′4s−3 =
D

A4s−2

(
β4s−3 −

(2s− 2)B

A
β2
2s

)
.

Putting D = A2s−2

β2s
and B = Aβ4s−3

(2s−2)β2
2s

, we have β′2s = 1, β′4s−3 = 0. There-
fore, we have shown that, if L is non-strongly nilpotent algebra from the family
F2(β4, . . . , βn, γ), with β2s 6= 0 and β2i = 0 for 2 ≤ i ≤ s− 1, then we may always
suppose

β2s = 1, β4s−3 = 0.

Moreover, from β4s−3 = − (2s−2)a2
(2s−3)a1 β

2
2s, we obtain a2 = 0, which implies βk = 0

for 2s+ 1 ≤ k ≤ n− 2 and

cn−2s+2 = an−2s+1 +
(2s+ 1− n)a1βn−1

β2s
.

Thus, L isomorphic to the algebra

F 2s
2 (0, . . . , 0, β2s, 0 . . . , 0, βn−1, βn, γ), β2s = 1.
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Case 3. Let β2s = 0 for 2 ≤ s ≤ n−2
2 , then we have

(b2 − (k − 2)a1)βk =
k − 1

2
a2

k∑
t=5

βt−1βk−t+4, 5 ≤ k ≤ n− 2,

(b2 − (n− 3)a1)βn−1 = a2

n−2
2∑
t=3

(2t− 3)βn−2t+3β2t−1.

Taking a1 = b2 = 0 and c3 6= 0, we have that the previous identities hold for any
values of β2s+1. Since c3 6= 0, this algebra is non-strongly nilpotent. Therefore, we
obtain the algebra F2(0, β5, 0, β7, 0, . . . , 0, βn−1, βn, γ). �

Theorem 5. Let L be a n-dimensional complex non-strongly nilpotent filiform
Leibniz algebra from the family F2(β4, . . . , βn, γ) and n odd. Then L is isomorphic
to one of the following algebras:

F j2 (0, . . . , 0, βj , 0 . . . , 0, βn−1, βn, γ), βj = 1, 4 ≤ j ≤ n− 2,

F2(0, β5, 0, β7, 0, . . . , 0, βn−2, 0, βn, γ).

Proof. Analogously to the proofs of Theorems 3 and 4. �

Now, we consider a Leibniz algebra L from the third family F3(θ1, θ2, θ3). Note
that L is a parametric algebra with parameters θ1, θ2, θ3 and αki,j . The parameters
αki,j appear from the multiplications [ei, ej ] for ≤ i < j ≤ n− 1. In the case of
θ1 = θ2 = θ3 = 0, the algebra L is a Lie algebra.

In the next proposition we assert that the strongly nilpotency of L(θ1, θ2, θ3) is
equivalent to the strongly nilpotency of L(0, 0, 0).

Proposition 5. An algebra L(θ1, θ2, θ3) from the family F3(θ1, θ2, θ3) is strongly
nilpotent if and only if the algebra L(0, 0, 0) is strongly nilpotent.

Proof. Note that the parameters θ1, θ2, θ3 appear only in the multiplications [e1, e1],
[e1, e2], [e2, e2]. Since [P (x), y], [x, P (y)], [x, y] ∈ L2 and e1, e2 6∈ L2 the parameters
θi do not appear in the identity

P ([[x, y], z]) = [[P (x), y], z] + [[x, P (y)], z] + [[x, y], P (z)], x, y, z ∈ L.

Therefore, the spaces of pre-derivations of L(θ1, θ2, θ3) and L(0, 0, 0) coincide.
�

It should be noted that family F3(0, 0, 0) give us the class of filiform Lie algebras.
Filiform Lie algebras admitting a non-singular pre-derivation but no non-singular
derivation are classified up to dimension 11 in [6]. From this result we have the
classification of non-strongly nilpotent filiform Lie algebras with dimension n ≤ 11,
but it is not known the description of strongly nilpotent filiform Lie algebras for
arbitrary dimension.
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