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Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev

Abstract. We develop the connection between Rota-Baxter operators
arisen from algebra and mathematical physics and Bernoulli polynomials.
We state that a trivial property of Rota-Baxter operators implies the sym-
metry of the power sum polynomials and Bernoulli polynomials. We show
how Rota-Baxter operators equalities rewritten in terms of Bernoulli poly-
nomials generate identities for the latter.

1 Introduction
Given an algebra A and a scalar λ ∈ F , where F is a ground field, a linear operator
R : A→ A is called a Rota-Baxter operator (RB-operator) on A of weight λ if the
following identity

R(x)R(y) = R(R(x)y + xR(y) + λxy) (1)

holds for all x, y ∈ A. The algebra A is called Rota-Baxter algebra. By algebra we
mean a vector space endowed a bilinear not necessarily associative product.

The notion of Rota-Baxter operator was introduced by G. Baxter [6] in 1960
as formal generalization of integration by parts formula (when λ = 0) and then
developed by G.-C. Rota [30] and others [5], [9].

In 1980s, the deep connection between constant solutions of the classical Yang-
-Baxter equation from mathematical physics and Rota-Baxter operators of weight
zero on a semisimple finite-dimensional Lie algebra was discovered [7], [31]. Further,
the connection of Rota-Baxter operators with the associative Yang-Baxter equation
was found [4], [12], [28].

To the moment, applications of Rota-Baxter operators in symmetric polynomi-
als, quantum field renormalization, Loday algebras, shuffle algebra etc. were found
[4], [5], [10], [11], [17], [18], [19]. The notion of Rota-Baxter operator is useful in
such branch of number theory as multiple zeta function [13], [35].
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In 1966, J. Miller found an interesting connection between Rota-Baxter oper-
ators and the power sum polynomials [25] over a field of characteristic zero. We
start with an algebra A which is unital and power-associative (it means that every
one-generated subalgebra is associative). Let R be a Rota-Baxter operator on A
of weight −1. Denote by 1 the unit of A and put a = R(1). For each n ∈ N, define
a polynomial Fn(x) ∈ Q[x] by the equalities

Fn(m) =

m∑
j=1

jn .

Then R(an) = Fn(a).
In 2010, O. Ogievetsky and V. Schechtman restated this connection to find a

new proof of the Schlömilch-Ramanujan formula [29]. In 2017, the author reproved
the connection formula to apply for Rota-Baxter operators of nonzero weight on
the matrix algebra [16].

Our goal is to develop this connection. There exist several different proofs of
the symmetry of the power sum polynomials

Fn(y) = (−1)n+1Fn(−1− y)

and the symmetry of Bernoulli polynomials

Bn(x) = (−1)nBn(1− x)

involving infinite series, generating functions or some special identities [22], [26],
[33]. In section 2, we prove that both symmetries follow from the trivial property
of Rota-Baxter operators: let P be an RB-operator of weight −1, then the operator
(id−P ) is so.

In section 3, we show how identities concerned Rota-Baxter operators rewrit-
ten in terms of Bernoulli polynomials and Bernoulli numbers generate a plenty of
identities for both of them. In particular, we find a symmetric expression for the
product Bi(x)Bj(x)Bk(x) and count the sum∑

i+j+k=n
i,j,k>0

Bi(x)Bj(x)Bk(x) ,

where Bs(x) = Bs(x)/s is the divided Bernoulli polynomial. The approach for
counting the same sum for usual (not divided) Bernoulli polynomials was developed
in [20]. About the products of Bernoulli polynomials and Bernoulli numbers see
also [3], [8], [14].

2 Symmetry of the power sum polynomials
Statement 1 ([18]). Let P be an RB-operator of weight λ. Then

a) the operator −P − λ id is an RB-operator of weight λ,

b) the operator λ−1P is an RB-operator of weight 1, provided λ 6= 0.
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Given an algebra A, let us define a map φ on the set of all RB-operators on A
as φ(P ) = −P − λ(P ) id. It is clear that φ2 coincides with the identity map.

Let Fn(m) =
m∑
j=1

jn for natural n,m. Bernoulli polynomials Bn(x) are con-

nected with the power sum polynomials in the following way:

Fn(m) =
Bn+1(m+ 1)−Bn+1

n+ 1
. (2)

Statement 2 ([16], [25], [29]). Let A be a unital power-associative algebra, R be
an RB-operator on A of weight λ, a = R(1). Then R(an) = (−λ)n+1Fn(−a/λ) for
all n ∈ N. In particular, R(an) = Fn(a) for all n ∈ N provided that λ = −1.

Let us show how the trivial property of Rota-Baxter operators from State-
ment 1 a) implies the symmetry of the power sum polynomials and the symmetry
of Bernoulli polynomials.

Lemma 1. Let A be a unital power-associative algebra, R be an RB-operator on A
of weight −1, a = R(1) and b = φ(R)(1) = 1 − a. For all positive natural n, we
have

R(an)− an = (−1)n+1(φ(R)(bn)− bn) . (3)

Proof. From

(−1)n+1(φ(R)(bn)− bn) = (−1)n+1(−R)(bn) = R((−b)n) = R((a− 1)n) ,

we conclude that it is enough to state R((a − 1)n) = R(an) − an. We prove the
last equality by induction on n. For n = 1, we get the true equality a2−a

2 = a2−a
2 .

Suppose that this holds true for all natural numbers less than n. Now we rewrite
R((a− 1)n+1) by (1) and the induction hypothesis

R((a− 1)n+1) = R((a− 1)n(a− 1)) = R((a− 1)nR(1))−R((a− 1)n)

= R((a− 1)n)R(1)−R(R((a− 1)n)) +R((a− 1)n)−R((a− 1)n)

= (R(an)− an)a−R(R(an)− an) . (4)

Again by (1), we calculate

R(R(an)) = R(R(an) · 1) = R(an)R(1)−R(anR(1)) +R(an · 1)
= R(an)a−R(an+1) +R(an) . (5)

Substituting (5) in (4) gives us the proof of the inductive step. �

Theorem 1. Let n be a positive natural number. Then

a) Fn(y) = (−1)n+1Fn(−1− y) for all y,

b) Bn(x) = (−1)nBn(1− x) for all x.
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Proof. a) Let us consider a unital power-associative algebra A with a Rota-Baxter
operator R on A of weight λ = −1. Put a = R(1). We may consider the free
(unital) associative RB-algebra of weight −1 generated by 1 [18] instead of A.
Actually it is the polynomial algebra F [x] with x = a. Define Q = φ(R) = id−R
and b = Q(1) = 1− a. Applying Statement 2 to the formula (3), we get

Fn(a− 1) = (−1)n+1Fn(−a) ,

which gives a).
b) It follows from a) via (2). �

3 Product of two Bernoulli polynomials
For any n,

Fn(m) =
1

n+ 1

n∑
j=0

(−1)j
(
n+ 1

j

)
Bjm

n+1−j , (6)

where Bj is Bernoulli number.
Let us show how Rota-Baxter operators could generate a plenty of identities

for Bernoulli numbers and Bernoulli polynomials. Let A be a power-associative
algebra and R be a Rota-Baxter operator of weight −1 on A, a = R(1). Consider
the equality

R(an)R(am) = R(R(an)am + anR(am)− an+m) , n,m ∈ N. (7)

The left-hand side of (7) by (2) and Statement 2 is equal to

R(an)R(am) = Bn+1(a+ 1)Bm+1(a+ 1)− Bm+1Bn+1(a+ 1)

− Bn+1Bm+1(a+ 1) + Bn+1Bm+1 , (8)

where Bn(x) = Bn(x)/n and Bn = Bn/n.
Let us write down the right-hand side of (7) by (2), (6), and Statement 2,

R(R(an)am + anR(am)− an+m)

=

n∑
i=0

(−1)n−i 1

n+ 1

(
n+ 1

n− i

)
Bn−i(Bm+2+i(a+ 1)− Bm+2+i)

+

m∑
j=0

(−1)m−j 1

m+ 1

(
m+ 1

m− j

)
Bm−j(Bn+2+j(a+ 1)− Bn+2+j)

− Bn+m+1(a+ 1) + Bn+m+1 . (9)

Comparing (8) and (9), we get the identity

Bi(x)Bj(x)− BiBj =
∑
l≥0

(
1

i

(
i

2l

)
+

1

j

(
j

2l

))
B2l(Bi+j−2l(x)− Bi+j−2l) . (10)

Here i = n+ 1 ≥ 1, j = m+ 1 ≥ 1 and x = a+ 1.
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Up to constant, the equality (10) coincides with the famous identity

Bi(x)Bj(x) =
∑
l≥0

(
1

i

(
i

2l

)
+

1

j

(
j

2l

))
B2lBi+j−2l(x)

+
(−1)i−1(i− 1)!(j − 1)!

(i+ j)!
Bi+j (11)

known at least since 1923 [27].

Remark 1. Writing down (7) on the first power of a, we get the identity

Bn+m +
1

n+ 1

n∑
k=0

(
n+ 1

n− k

)
Bn−kBm+k+1

+
1

m+ 1

m∑
l=0

(
m+ 1

m− l

)
Bm−lBn+l+1 = 0 (12)

discovered by T. Agoh in 1988 [1].

Remark 2. Let us sum (11) for i+ j = N ≥ 2 and i = 1, . . . , N − 1:∑
i+j=N
i,j>0

Bi(x)Bj(x) =
N−1∑
i=1

(
1

i
+

1

N − i

)
BN (x)

+
∑

i+j=N
i,j>0

∑
l>0

(
1

i

(
i

2l

)
+

1

j

(
j

2l

))
B2lBN−2l(x)

+
BN

N(N − 1)

N−1∑
i=1

(−1)i−1(i− 1)!(N − 1− i)!
(N − 2)!

= 2HN−1BN (x) + 2

[N−1
2 ]∑

l=1

B2lBN−2l(x)
1

2l

N−1∑
i=1

(
i− 1

2l − 1

)

+
BN

N(N − 1)

N−2∑
p=0

(−1)p(
N−2
p

)
= 2HN−1BN (x) +

2

N

[N−1
2 ]∑

l=1

(
N

2l

)
B2lBN−2l(x) +

2BN
N

= 2HN−1BN (x) +
2

N

N∑
k=1

(
N

k

)
BkBN−k(x)

+BN−1(x) , (13)

where Hi = 1 + 1/2 + · · ·+ 1/i. We have used the equality (14) from [32]
n∑

r=0

(−1)r/
(
n

r

)
= (1 + (−1)n)n+ 1

n+ 2
. (14)
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Thus, we got in (13) the identity found by I. Gessel in 2005 [14] (see also [34]),

N

2

(
−BN−1(x) +

N−1∑
k=1

Bk(x)BN−k(x)

)

=

N∑
k=1

(
N

k

)
BkBN−k(x) +HN−1BN (x) . (15)

By the same strategy, we can compute

N∑
k=0

Bk(x)BN−k(x) =
2

N + 2

∑
t≥0

(
N + 2

2t+ 2

)
B2tBN−2t(x) , (16)

which is the identity obtained by D. Kim et al. in 2012 [21] (see also [2]).
The case x = 0 for (15) implies the famous identity of H. Miki [24] (1978)

N−2∑
k=2

BkBN−k =

N−2∑
k=2

(
N

k

)
BkBN−k + 2HNBN (17)

and for (16) it implies the identity of Yu. Matiyasevich [23] (1997)

(N + 2)

N−2∑
k=2

BkBN−k = 2

N−2∑
k=2

(
N + 2

k

)
BkBN−k +N(N + 1)BN . (18)

4 Product of three Bernoulli polynomials
We may also produce other identities involving the products of three, four etc.
Bernoulli numbers. To do this, it is enough to consider the equality

R(an)R(am)R(al) = R
(
R(an)R(al)am +R(am)R(al)an +R(an)R(am)al

−R(an)am+l −R(am)an+l −R(al)an+m + an+m+l
)

(19)

and the same equalities for four, five etc. multipliers (see the formulas in [17]).
Let us derive the explicit identity which follows from (19).

Theorem 2. The following identity holds for all i, j, k > 0,

Bi(x)Bj(x)Bk(x) =
∑
q,t≥0

B2qB2t−2q

[(
i+ j − 2q

2t− 2q

)
1

i+ j − 2q

(
1

i

(
i

2q

)
+

1

j

(
j

2q

))

+

(
i+ k − 2q

2t− 2q

)
1

i+ k − 2q

(
1

i

(
i

2q

)
+

1

k

(
k

2q

))
+

(
j + k − 2q

2t− 2q

)
1

j + k − 2q

(
1

j

(
j

2q

)
+

1

k

(
k

2q

))]
× Bi+j+k−2t(x)

− (−1)j

ij
(
i+j
i

)Bi+jBk(x)−
(−1)k

ik
(
i+k
i

)Bi+kBj(x)

− (−1)k

jk
(
j+k
j

)Bj+kBi(x)−
1

2
Bi+j+k−2(x) + const . (20)
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Proof. Let i = n+1 ≥ 2, j = m+1 ≥ 2, k = l+1 ≥ 2 and x = a+1. We calculate
the left-hand side of (19) as

(Bi(x)− Bi)(Bj(x)− Bj)(Bk(x)− Bk) = Bi(x)Bj(x)Bk(x)− (BiBj(x)Bk(x)
+ BjBi(x)Bk(x) + BkBi(x)Bj(x))
+ (BiBjBk(x) + BiBkBj(x)
+ BjBkBi(x))− BiBjBk . (21)

The last term on the right-hand side of (19) equals

Bi+j+k−2(x)− Bi+j+k−2 . (22)

We also have

−R
(
R(an)am+l +R(am)an+l +R(al)an+m

)
= −

∑
q≥0

(
1

i

(
i

2q

)
+

1

j

(
j

2q

)
+

1

k

(
k

2q

))
B2qBi+j+k−1−2q(x) + BiBj+k−1(x)

+ BjBi+k−1(x) + BkBi+j−1(x)−
3

2
Bi+j+k−2(x) + const . (23)

We write down

R(R(R(an)am)al) =
1

n+ 1

n∑
p=0

(−1)n−p
(
n+ 1

n− p

)
Bn−p

1

m+ p+ 2

×
p+m+1∑
s=0

(−1)m+p+1−s
(

m+ p+ 2

m+ p+ 1− s

)
Bm+p+1−s(Bl+s+2(x)− Bl+s+2) . (24)

We want to transform (24) to the form

∑
q≥0

1

i

(
i

2q

)
B2q

∑
t≥0

1

i+ j − 2q

(
i+ j − 2q

2t

)
B2tBi+j+k−2t−2q(x) + const . (25)

By exchange n− p = 2q in (24), we get the summand

1

2
R(R(an+m)al) . (26)

Further, by exchange m+n−2q+1−s = 2t, we have the additional summands

1

2

∑
q≥0

1

i

(
i

2q

)
B2q(Bi+j+k−1−2q(x)− Bi+j+k−1−2q)

− 1

2
Bi(Bj+k−1(x)− Bj+k−1) . (27)
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If we let 2q be equal i, up to a constant we get the summand

− Bi
[(j−1)/2]∑

t=0

1

j

(
j

2t

)
B2tBj+k−2t(x)

= −Bi
∑
t≥0

1

j

(
j

2t

)
B2tBj+k−2t(x) + BiBjBk(x) . (28)

Finally, letting 2t be equal j, we get (25) and the additional summand

(Bk − Bk(x))
∑
q≥0

1

i

(
i

2q

)
B2qBi+j−2q . (29)

Applying the formula

R
(
R(an)R(am)al

)
= R

(
R(R(an)am)al

)
+R

(
R(R(am)an)al

)
−R

(
R(an+m)al

)
,

summing all such six expressions, by the formulas (21)–(29) we prove the statement.
We have rewritten the sum of (29) and the analogue of (29) for j by (11), the sum
equals

(Bk − Bk(x))
(
BiBj +

(−1)i(i− 1)!(j − 1)!

(i+ j)!
Bi+j

)
.

Theorem is proved. �

Corollary 1. For all i, j, k > 0, we have

x∫
0

Bi(y)Bj(y)Bk(y) dy

=
∑
q,t≥0

B2qB2t−2q

[(
i+ j − 2q

2t− 2q

)
1

i+ j − 2q

(
1

i

(
i

2q

)
+

1

j

(
j

2q

))

+

(
i+ k − 2q

2t− 2q

)
1

i+ k − 2q

(
1

i

(
i

2q

)
+

1

k

(
k

2q

))
+

(
j + k − 2q

2t− 2q

)
1

j + k − 2q

(
1

j

(
j

2q

)
+

1

k

(
k

2q

))]
Bi+j+k+1−2t(x)

i+ j + k − 2t

− 1

ijk

(
(−1)j(
i+j
i

) Bi+jBk+1(x) +
(−1)k(
i+k
i

) Bi+kBj+1(x) +
(−1)k(
j+k
j

)Bj+kBi+1(x)

)

− Bi+j+k−1(x)

2(i+ j + k − 2)
+ const . (30)

Proof. It follows from (20) and the formula
x∫
0

Bn(y) dy = Bn+1(x)− Bn+1. �

Let us denote by Hn,s = 1 + 1/2s + . . .+ 1/ns. So, Hn = Hn,1.
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Corollary 2. For all N ≥ 3, we have

1

3!

∑
i+j+k=N
i,j,k>0

Bi(x)Bj(x)Bk(x)

=
∑
t>0

(
N − 1

2t

)
BN−2t(x)

(
B2t(HN−1 −H2t) +

1

2!

∑
i+j=2t;
i,j>0

BiBj

)

− 1

12

(
N − 1

2

)
BN−2(x) +

H2
n −Hn,2

2
BN (x) + const. (31)

Proof. We apply the formula (20) for all i+ j + k +N ≥ 3 and i, j, k > 0. Let us
compute the summation of the right-hand side of (20) divided by 6 for q > 0:

A =
∑
t≥0
q>0

B2qB2t−2q

N−2∑
i=1

1

i

(
i

2q

)N−i−1∑
j=1

1

i+ j − 2q

(
i+ j − 2q

2t− 2q

)
BN−2t(x)

=
∑

t>q>0

B2qB2t−2q
N−2∑
i=1

1

i

(
i

2q

)((
N − 2q − 1

2t− 2q

)
−
(
i− 2q

2t− 2q

))
BN−2t(x)

+
∑
t>0

B2t

N−2∑
i=1

1

i

(
i

2t

)
(HN−1−2q −Hi−2t)BN−2t(x)

=
∑

t>q>0

B2qB2t−2qBN−2t(x)
((

N − 1− 2q

2t− 2q

)(
N − 2

2q

)
−
(
2t− 1

2q − 1

)(
N − 2

2t

))

+
∑
t>0

B2t

[(
N − 2

2t

)
HN−1−2t −

(
N − 2

2t

)
HN−2t−2

+
1

2t

(
N − 2

2t

)
− 1

2t

]
BN−2t(x)

=
∑

t>q>0

(
N − 1

2t

)(
2t− 1

2q

)
B2qB2t−2qBN−2t(x)

+
∑
t>0

1

2t

(
N − 1

2t

)
B2tBN−2t(x)−

∑
t>0

1

2t
B2tBN−2t(x)

=
∑
t>0

(
N − 1

2t

)
BN−2t(x)

(
B2t
2t

+
∑

t>q>0

(
2t− 1

2q

)
B2qB2t−2q

)

−
∑
t>0

1

2t
B2tBN−2t(x)

=
∑
t>0

(
N − 1

2t

)
BN−2t(x)

∑
q>0

1

2t

(
2t

2q

)
B2qB2t−2q −

∑
t>0

1

2t
B2tBN−2t(x) . (32)
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By the Miki identity (17), we may rewrite (32) as

A =
∑
t>0

(
N − 1

2t

)
BN−2t(x)

(
−H2t−1B2t +

1

2!

∑
i+j=2t,
i,j>0

BiBj

)

−
∑
q>0

1

2q
B2qBN−2q(x) . (33)

Above we have used the equalities

N−i−1∑
j=1

1

i+ j − 2q

(
i+ j − 2q

2t− 2q

)
=

1

2t− 2q

N−i−1∑
j=1

(
i+ j − 2q − 1

2t− 2q − 1

)

=
1

2t− 2q

N−2q−2∑
s=i−2q

(
s

2t− 2q − 1

)

=
1

2t− 2q

((
N − 2q − 1

2t− 2q

)
−
(
i− 2q

2t− 2q

))
;

N−2∑
i=1

(
i− 1

2q − 1

)
Hi−2q =

N−2−2q∑
j=1

1

j

N−2∑
i=j+2q

(
i− 1

2q − 1

)

=

N−2−2q∑
j=1

1

j

((
N − 2

2q

)
−
(
j + 2q − 1

2q

))

=

(
N − 2

2q

)
HN−2q−2 −

1

2q

N−2−2q∑
j=1

(
j + 2q − 1

2q − 1

)

=

(
N − 2

2q

)
HN−2q−2 −

1

2q

((
N − 2

2q

)
− 1

)
.

The summation of the right-hand side of (20) for q = 0 gives us

3
∑
t≥0

B2t

N−2∑
k=1

∑
i+j=N−k

i,j>0

(
i+ j

2t

)
1

i+ j

(
1

i
+

1

j

)
BN−2t(x)

= 3
∑
t≥0

B2t

N−2∑
k=1

(
N − k
2t

)N−k−1∑
i=1

1

N − k

(
1

i
+

1

N − k − i

)
BN−2t(x)

= 6
∑
t>0

B2t

N−2∑
k=1

(
N − k
2t

)
HN−k−1

N − k
BN−2t(x) + 6BN (x)

N−2∑
k=1

HN−k−1

N − k

= 6
∑
t>0

B2t
(
N − 1

2t

)(
HN−1 −

1

2t

)
BN−2t(x)

+ 3
(
H2

N−1 −HN−1,2
)
BN (x) . (34)
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Here we have used the formulas (see [15, p. 279–280])

n−1∑
s=1

(
s

m

)
Hs =

(
n

m+ 1

)(
Hn −

1

m+ 1

)
,

n∑
s=1

Hs

s
=

1

2

(
H2

n +Hn,2

)
.

The sum of the first three summands from the fourth line of (20) by (14) gives

−3
N−2∑
k=1

BN−kBk(x)
1

(N − k)(N − k − 1)

N−k−1∑
i=1

(−1)i(
N−k−2

i−1
)

= 3

N−2∑
k=1

(1 + (−1)N−k)
(N − k)(N − k − 1)

N − k − 1

N − k
BN−kBk(x)

= 6
∑

0<t<N/2

1

2t
B2tBN−2t(x) . (35)

Finally, for the last non-constant term of (20) we have

N−2∑
i=1

(N − 1− i)BN−2(x) =
(
N − 1

2

)
BN−2(x) . (36)

The formulas (33)–(36) imply (31). �

In [20], authors studied the expressions

S≥0(r, n) =
∑

i1+···+ir=n

Bi1(x) . . . Bir (x) , (37)

where the sum runs over all nonnegative integers i1, . . . , ir and r ≥ 1. Moreover,
in [20] it was shown that

S≥0(r, n) =

n∑
k=1

Bk(x)

((n+r
k

)
n+ r

∑
i1+···+ir=n−k+1

(
Bi1(1) . . . Bir (1)

−Bi1 . . . Bir

))
+ const , (38)

and the formula for the last constant term was given. The simple idea lies behind
such kind of decomposition: polynomials 1 = B0(x), B1(x), . . . , Bn(x) form a linear
basis of the vector space Span(1, x, x2, . . . , xn). Also, (Bk(x))

′ = kBk−1(x), the
property which is not fulfilled for the polynomials 1,B1(x), . . . ,Bn(x), and so the
approach from [20] could not be applied directly for calculating the analogues of
S≥0(r, n) or S>0(r, n) for the sum of products Bi1(x) . . .Bir (x).

Let us decompose S≥0(r, n) =
n∑

k=0

αkBn−k(x). In [20], it was shown that α1 = 0.

It is easy to see from (38) that all odd coefficients α2s+1 are zero.
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Remark 3. The formula (38) applied for r = 2 up to a constant coincides with (16).
Due to (38), we have

S≥0(3, n) =

n∑
k=1

Bk(x)

((
n+3
k

)
n+ 3

∑
a+b+c=n−k+1

Ba(1)Bb(1)Bc(1)−BaBbBc

)

= − 2

n+ 3

∑
t≥0

(
n+ 3

n− 2t

)( ∑
a+b+c=2t+1

BaBbBc

)
Bn−2t(x)

=

(
n+ 2

2

)
Bn(x) +

1

4

(
n+ 2

4

)
Bn−2(x)

+
3

n+ 3

∑
t≥2

(
n+ 3

n− 2t

)
Bn−2t(x)

t∑
q=0

B2qB2t−2q . (39)

If we calculate the sum S≥0(3, n) due to the formula (20), we will get the same
as (39) modulo the equality (16).
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