
HAL Id: hal-03665008
https://hal.science/hal-03665008v1

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Crystallographic actions on Lie groups and post-Lie
algebra structures

Dietrich Burde

To cite this version:
Dietrich Burde. Crystallographic actions on Lie groups and post-Lie algebra structures. Communica-
tions in Mathematics, 2021, Volume 29 (2021), Issue 1 (Special Issue: Ostrava Mathematical Seminar)
(1), pp.67 - 89. �10.2478/cm-2021-0003�. �hal-03665008�

https://hal.science/hal-03665008v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Communications in Mathematics 29 (2021) 67–89
DOI: 10.2478/cm-2021-0003
c©2021 Dietrich Burde

This is an open access article licensed
under the CC BY-NC-ND 3.0

67

Crystallographic actions on Lie groups and post-Lie
algebra structures

Dietrich Burde

Abstract. This survey on crystallographic groups, geometric structures on
Lie groups and associated algebraic structures is based on a lecture given
in the Ostrava research seminar in 2017.

1 Introduction
Crystallographic groups and crystallographic actions already have a long history.
They were studied more than hundred years ago as the symmetry groups of crystals
in three-dimensional Euclidean space and as wallpaper groups in two-dimensional
Euclidean space. Such groups are discrete and cocompact subgroups of the group
of isometries of a Euclidean space. After Hilbert asked in 1900 about Euclidean
crystallographic groups in his 18th problem, Bieberbach solved this question in
1910. Since then Euclidean crystallographic structures are quite well understood,
and several other types of crystallographic structures have been considered, such
as almost-crystallographic and affine crystallographic structures. For the affine
case it was expected that the results from the Euclidean case should generalize
in a straightforward manner. This, however, turned out to be not the case. The
Bieberbach theorems do not hold. In particular, groups admitting an affine crys-
tallographic action need not be virtually abelian. However, it was conjectured that
such groups are virtually polycyclic. This became known as Auslander’s conjecture.
J. Milnor proved several results on affine crystallographic actions in his fundamen-
tal paper [47] in 1977. See also the discussion in [41] by W. M. Goldman. This
resulted in an active research on affine crystallographic actions and more generally
on nil-affine crystallographic actions until today. We want to give a survey on these
developments and state some results which we have obtained in this context. An
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important step here is to be able to formulate the problems on the level of Lie
algebras and in terms of pre-Lie algebra and post-Lie algebra structures.

This survey is by no means complete and there are several other interesting
results in this area, which we do not mention.

2 Euclidean crystallographic actions
Let E(n) denote the isometry group of the Euclidean space Rn. This group is given
by matrices as follows,

E(n) =

{(
A v
0 1

)
| A ∈ On(R), v ∈ Rn

}
.

The multiplication is the usual matrix multiplication(
A v
0 1

)(
B w
0 1

)
=

(
AB Aw + v
0 1

)
.

The translations form a normal subgroup of E(n), given by

T (n) =

{(
En v
0 1

)
| v ∈ Rn

}
.

In particular we have E(n) ∼= On(R) n T (n) ∼= On(R) nRn. The group E(n) acts
on Rn by (

A b
0 1

)(
v
1

)
=

(
Av + b

1

)
.

More generally, the affine group of the Euclidean space Rn, denoted by A(n), is
given as follows

A(n) =

{(
A v
0 1

)
| A ∈ GLn(R), v ∈ Rn

}
.

We will use the following definition of an Euclidean crystallographic group (ECG),
which can be found in [4], section 1.

Definition 1. A Euclidean crystallographic group Γ is a subgroup of E(n) which
is discrete and cocompact, i.e., has compact quotient Rn/Γ.

Let Γ be an ECG. Then Γ acts properly discontinuously on Rn, i.e., for all
compact sets K ⊆ Rn the set of returns

{γ ∈ Γ | γK ∩K 6= ∅}

is finite.

Definition 2. Let Γ be a group acting on Rn via a homomorphism

ρ : Γ→ E(n).

The action is called a crystallographic action, if Γ acts properly discontinuously on
Rn and the orbit space Rn/Γ is compact, i.e., Γ acts cocompactly.
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Example 1. The group Γ = Zn acts crystallographically on Rn by translations.

A homomorphism ρ : Γ→ E(n) determines a crystallographic action if and only
if the kernel of ρ is finite, and the image of ρ is a crystallographic group.

As already said, the study of ECGs has a long history. ECGs in dimension 2 are
the 17 wallpaper groups, which have been known for several centuries. However the
proof that the list was complete was only given in 1891 by Fedorov, after the much
more difficult classification in dimension 3 had been completed by Fedorov and
independently by Schönflies in 1891. There are 219 distinct ECGs in dimension 3.
All of them are realized as symmetry groups of genuine crystals. Hilbert published
in 1900 his famous 23 problems [44]. In the first part of the 18th problem he
asked, whether there are only finitely many different crystallographic groups in
any dimension. This was answered affirmatively by Bieberbach [9], [10] in 1910.
His theorems are usually stated as follows.

Proposition 1 (Bieberbach 1). Let Γ ≤ E(n) be an Euclidean crystallographic
group. Then Γ contains the translation subgroup Zn as a normal subgroup with
finite quotient F = Γ/Zn.

Proposition 2 (Bieberbach 2). Two Euclidean crystallographic groups in dimen-
sion n are isomorphic if and only if they are conjugated in the affine group A(n) ∼=
GLn(R) nRn.

Proposition 3 (Bieberbach 3). In each dimension there are only finitely many Eu-
clidean crystallographic groups.

Let Γ ≤ E(n) be an ECG. By the first Bieberbach Theorem, the translation
subgroup is an abelian subgroup of finite index, isomorphic to the full lattice Zn
in Rn. Hence we have a short exact sequence

1→ Zn → Γ→ F → 1

with a finite group F ∼= Γ/Zn acting by conjugation of Zn. We obtain a faithful
representation

F ↪→ Aut(Zn) = GLn(Z),

so that we may consider F as a finite subgroup in GLn(Z) up to conjugation. Now
GLn(Z) has only finitely many conjugacy classes of finite subgroups. This was first
shown by Jordan, then by Zassenhaus and more generally later by Harish-Chandra
for arithmetic groups. Hence we have only finitely many such groups F up to
isomorphism with given action of F on Zn. Furthermore there are only finitely
many inequivalent extensions 1 → Zn → Γ → F → 1, since the extension classes
are classified by the group

H2(F,Zn) ∼= H1(F,Qn/Zn),

which is discrete and compact, hence finite. This yields Bieberbach’s third Theo-
rem. Zassenhaus [55] showed that every ECG arises as an exact sequence as above
and gave an algorithm yielding the n-dimensional ECGs up to affine equivalence,
given the finitely many conjugacy classes of finite subgroups F in GLn(Z) together
with their normalizers.
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Proposition 4. For a given finite group F ≤ GLn(Z) the isomorphism classes of
crystallographic groups Γ with conjugacy class represented by F are in bijection
with the orbits of the normalizer NGLn(Z)(F ) on the finite group H2(F,Zn).

In 1978 the classification in dimension 4 was achieved in [12].

Proposition 5 (Zassenhaus et al. 1978). There are exactly 4783 different crystal-
lographic groups in four-dimensional space R4.

In 2000 Plesken and Schulz [48] classified all ECGs in dimension 5 and 6. There
are 222018 different ECGs in dimension 5 and 28927922 different ECGs in dimen-
sion 6.

Example 2. The group GL2(Z) has exactly 13 different conjugacy classes of finite
subgroups, called arithmetic ornament classes. Zassenhaus’ algorithm yields 17
ECGs up to isomorphism.

It is easy to see that the 13 arithmetic ornament classes are given as follows:

C1
∼=
〈(

1 0
0 1

)〉
, C2

∼=
〈(
−1 0
0 −1

)〉
, C3

∼=
〈(

0 1
−1 −1

)〉
,

C4
∼=
〈(

0 1
−1 0

)〉
, C6

∼=
〈(

0 1
−1 1

)〉
, D1

∼=
〈(

1 0
0 −1

)〉
,

D1
∼=
〈(

0 1
1 0

)〉
, D2

∼=
〈(

1 0
0 −1

)
,

(
−1 0
0 −1

)〉
,

D2
∼=
〈(

0 1
1 0

)
,

(
−1 0
0 −1

)〉
, D3

∼=
〈(

0 1
1 0

)
,

(
0 1
−1 −1

)〉
,

D3
∼=
〈(

0 −1
−1 0

)
,

(
0 1
−1 −1

)〉
, D4

∼=
〈(

0 1
1 0

)
,

(
0 1
−1 0

)〉
,

D6
∼=
〈(

0 1
1 0

)
,

(
0 1
−1 1

)〉
.

The groups are isomorphic to one of the cyclic groups C1, C2, C3, C4, C6, or one of
the dihedral groups D1, D2, D3, D4, D6. The conjugacy classes are finer than the
isomorphism classes. The indices 1, 2, 3, 4, 6 are no coincidence here. An element
A ∈ GL2(Z) of finite order has one of the orders 1, 2, 3, 4, 6. Indeed, if there
is an element A ∈ GL2(Z) of order n, then ϕ(n), the degree of the irreducible
cyclotomic polynomial Φn divides 2 by Cayley-Hamilton. But ϕ(n) | 2 is equivalent
to n = 1, 2, 3, 4, 6. The wallpaper groups Γ arise from these 13 arithmetic ornament
classes by equivalence classes of extensions 1 → Z2 → Γ → F → 1, determined
by H2(F,Z2). For each of these classes we can compute this group. In case that
H2(F,Z2) = 0 the ornament class just yields one extension. This happens in 10
cases. In the other three cases H2(F,Z2) is isomorphic to Z/2, Z/2 and Z/2×Z/2
respectively. This yields 2 + 2 + 4 = 8 further extensions. Altogether we obtain 18
inequivalent extensions leading to 17 different groups.
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Remark 1. Denote by c(n) the number of different ECGs in E(n). Peter Buser
[36] showed in 1985, using Gromov’s work on almost flat manifolds, the estimate

c(n) ≤ ee
4n2

.

This bound seems to be not yet optimal, but I haven’t found better estimates.
Schwarzenberger [49] has shown that c(n) grows at least as fast as 2n

2

and conjec-
tured that this is the exact asymptotic result. This seems to be still open.

By Bieberbach’s first Theorem the translation group of an ECG is an abelian
subgroup of finite index. Hence every ECG is virtually abelian. We can reformulate
the structure results by Bieberbach as follows.

Proposition 6. The groups admitting a Euclidean crystallographic action are pre-
cisely the finitely generated virtually abelian groups. For a given group the crys-
tallographic action is unique up to affine conjugation.

Definition 3. An Euclidean crystallographic group Γ ≤ E(n) is called a Bieberbach
group, if it is torsionfree, i.e., if it acts freely on Rn.

If M = Rn/Γ is a compact complete connected flat Riemannian manifold,
then its fundamental group π1(M) ∼= Γ is a Bieberbach group. Conversely, every
flat complete Riemannian manifold M is the quotient Rn/Γ for a subgroup Γ ≤
E(n) acting freely and properly discontinuously on Rn. This shows the geometric
importance of Bieberbach groups. Among the 17 wallpaper groups, there are just
2 Bieberbach groups, namely the fundamental groups of the torus and of the Klein
bottle. Among the 219 space groups there are only 10 Bieberbach groups. In
dimension 4, 5, 6 we have 74, 1060, 38746 Bieberbach groups respectively, so also
these numbers grow rapidly.

3 Hyperbolic and spherical crystallographic actions
ECGs have been generalized to non-Euclidean crystallographic groups, namely to
spherical and hyperbolic crystallographic groups. We will shortly explain the no-
tions and give a few examples, but we will not attempt to give a survey. Let X
be a space of constant curvature κ, i.e., a simply-connected complete Riemannian
manifold of constant curvature κ up to scaling, together with its isometry group
G = Iso(X). Any space of constant curvature is isomorphic to either the Eu-
clidean space (En, On(R) n Rn) with κ = 0, or to the sphere (Sn, On+1(R)) with
κ = 1, or to the hyperbolic space (Hn, O+(n, 1)) with κ = −1. Here O+(n, 1)
is the index 2 subgroup of O(n, 1) preserving the two connected components of
{A ∈ Rn+1 | 〈A,A〉 = −1}, where 〈A,B〉 denotes the standard Lorentzian form on
Rn+1. Then Definition 1 is generalized as follows.

Definition 4. Let (X,G) be a space of constant curvature. A subgroup Γ ≤ G =
Iso(X) is called a crystallographic group, or CG, if Γ is discrete and X/Γ has finite
volume.
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Any discrete subgroup Γ ≤ Iso(X) has a convex fundamental domain. So for an
ECG any fundamental domain is bounded since any unbounded convex domain in
Euclidean space has infinite volume. Hence any CG in En is cocompact and thus
an ECG. This shows that both definitions coincide for ECGs. Any CG in Sn is a
discrete subgroup of a compact group On+1(R) and hence finite. So spherical CRs
are finite subgroups of On+1(R). For small n, all finite subgroups of On+1(R) are
classified. For example, any finite subgroup of O2(R) is either cyclic or dihedral.
For higher n this is not the case. A special case of the Margulis lemma implies
that for each n, there is a positive integer m(n) such that any finite subgroup of
On(R) has an abelian subgroup of index m(n), see Corollary 4.2.4 of Thurston’s
book [51]. The most interesting case of non-Euclidean CGs is the hyperbolic case.
Already in dimension 2 there is a continuum of CGs, even of cocompact ones. The
latter arise as fundamental groups of closed surfaces of genus g > 1. Their totality
can be described via Teichmüller theory.

Example 3. Let X = H2 be the upper half-plane, G = Iso(X) ∼= PSL2(R) and Γ
be the modular group consisting of transformations of the form

z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SL2(Z)

Then Γ is a non-cocompact hyperbolic CG with vol(H2/Γ) = π
3 .

Another example is given by Bianchi groups.

Example 4. Let d be a positive squarefree integer and K = Q(
√
−d) an imaginary-

quadratic number field. Denote by Od its ring of integers in K. Let Γ(d) =
PSL2(Od) ⊂ PSL2(C). Then Γ(d) is a discrete subgroup of Iso(H3), called a
Bianchi group. It is a non-compact hyperbolic CG.

In fact, the covolume of Γ(d) is given by

vol(H3/Γ(d)) =
|dK |3/2

4π2
ζK(2),

where dK denotes the discriminant of K and ζK(s) denotes the Dedekind zeta
function of the base field K = Q(

√
−d).

There is a general method of constructing arithmetic discrete subgroups of
semisimple Lie groups due to Margulis. On the other hand, there exist also non-
arithmetic hyperbolic CGs in any dimension [42]. By Mostow rigidity, any isomor-
phism of hyperbolic CGs in Hn for n ≥ 3 is induced by a conjugation in the group
Iso(Hn). This is far from being true for n = 2, see above. An important numerical
invariant of a hyperbolic CG is its covolume

v(Γ) = vol(Hn/Γ).

For n ≥ 4 the set of covolumes is discrete and for n = 3 it is a non-discrete closed
well-ordered set of order-type ωω, where each point has finite multiplicity. The
covolumes are bounded from below by a positive constant depending only on n.
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There is much more to say for this section, in particular we should mention the
classical work of E. Vinberg concerning hyperbolic CGs and hyperbolic reflections
groups. The references can be found in the book [54]. We will finish this sec-
tion by referring to related topics such as lattices in Lie groups, Fuchsian groups
and Kleinian groups. A Fuchsian group is a discrete subgroup of PSL2(R) and a
Kleinian group is a discrete subgroup of PSL2(C).

4 Affine and nil-affine crystallographic actions
We are mainly interested in this survey in another generalization of Euclidean crys-
tallographic groups, namely in affine and nil-affine crystallographic groups. Let X
be a locally compact topological Hausdorff space and G the group of homeomor-
phisms of X.

Definition 5. A subgroup Γ of G is called crystallographic, if G acts properly
discontinuously and cocompactly on X. A continuous action of a group Γ on X is
called a crystallographic action, if it is properly discontinuous and cocompact.

For X being the affine space An and G = A(n), a crystallographic group Γ
is called an ACG, an affine crystallographic group. For X = En, a group Γ ≤
G = E(n) acts properly discontinuously on X if and only if Γ is discrete. In
general acting properly discontinuously is stronger than being discrete. The group
A(n) is a generalization of the Euclidean isometry group E(n) as we have seen in
section 2 in the context of the Bieberbach theorems. As in the Euclidean case,
torisonfree ACGs arise as fundamental groups of flat manifolds, i.e., of complete
compact affinely flat manifolds. A natural question in this context is whether the
Bieberbach theorems hold for ACGs. Looking at some examples it is clear that
this is not the case.

Example 5. Let k be a fixed integer. The group

Γk =




1 kc 0 ka
0 1 0 kb
0 0 1 kc
0 0 0 1


∣∣∣∣∣∣∣∣ a, b, c ∈ Z

 ≤ A(3)

is a 3-dimensional ACG, which is not virtually abelian. Because of

Γk/[Γk,Γk] ∼= Z2 ⊕ Z/kZ

two groups Γk and Γk′ are isomorphic if and only if k = k′. Hence there are
infinitely many different ACGs in dimension 3.

Indeed, every abelian subgroup of finite index in Γk would necessarily be isomor-
phic to Z3, but is is easy to see that Γk does not contain such a subgroup. So ACGs
need not be virtually abelian. On the other hand, all such examples are virtually
solvable and then, being a discrete solvable subgroup of a Lie group with finitely
many components, already virtually polycyclic. Is this a possible generalization of
Bieberbach’s First Theorem, i.e., is it true that every ACG is virtually polycyclic?
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In other words, is the fundamental group of every complete compact affine manifold
virtually polycylic? L. Auslander studied this problem and published a paper [3]
in 1964 stating an even more general result, namely that the fundamental group
of every complete affine manifold is virtually polycyclic, without the compactness
assumption. Unfortunately his proof was in error. Nevertheless the statement later
on became widely known as the Auslander conjecture:

Conjecture 1 (Auslander). Every ACG is virtually polycyclic.

The history of this conjecture is as follows. In 1977 J. Milnor studied the funda-
mental groups of flat affine manifolds in his famous paper [47]. He proved that every
torsion-free virtually polycyclic group can be realized as the fundamental group of
some complete flat affine manifold. Then he conjectured also the converse, namely
Auslander’s statement that the fundamental group of every complete flat affine
manifold is virtually polycyclic. However, Margulis [46] found a counterexample in
dimension 3.

Proposition 7 (Margulis). There exists non-compact complete affine manifolds in
dimension 3 with a free non-abelian fundamental group of rank 2.

A free non-abelian group cannot be virtually polycyclic. So it is clear that one
needs the compactness assumption and Auslander’s original claim cannot hold.
This led to the formulation of the Auslander conjecture in terms of affine crystal-
lographic groups. Auslander’s conjecture is still open, although many special cases
are known. Fried and Goldman proved the conjecture in 1983 in dimension n ≤ 3
[40]. Tomanov [52] proved it in 2016 for n ≤ 5 and Abels, Margulis and Soifer
[1] have worked on several cases for many years. In 2005 they showed that every
crystallographic subgroup Γ ≤ A(n + 2) with linear part contained in O(n, 2) is
virtually polycyclic [2]. They had a proof for Auslander’s conjecture in dimension
6 available on the arXiv. However, they have withdrawn it now. In his paper [47]
Milnor also asked the following important question.

Question 1 (Milnor 1977). Does every virtually polycyclic group admit an affine
crystallographic action?

Actually, the original question uses the terminology of left-invariant affine struc-
tures on Lie groups, see section 6. Because of some positive evidence this question
was also sometimes called the Milnor conjecture. A positive answer for both Milnor
and Auslander would give a very nice algebraic description of the class of groups ad-
mitting an affine crystallographic action. In fact, then this class would be precisely
the class of virtually polycyclic groups and we would have a perfect analogue to
Proposition 6 concerning the Euclidean case. Moreover, it is known that an affine
crystallographic action of a virtually polycyclic group is unique up to conjugation
with a polynomial diffeomorphism of Rn.

However, Y. Benoist found a counterexample to Milnor’s conjecture in [11] and
we provided families of counterexamples in [14], [16]. The counterexamples in [16]
are torsion-free nilpotent groups of Hirsch length 11 and nilpotency class 10 not
admitting an affine crystallographic action. Hence one needs to replace A(n) by a
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larger group for such a correspondence to hold. Indeed, other alternatives have been
proposed. First it was shown that the group P (n) of polynomial diffeomorphisms
of Rn is a possible alternative. In [37] it was shown that any virtually polycyclic
group admits a polynomial crystallographic action of bounded degree. However,
this group appears to be too large and does not have such a geometric meaning
as E(n) and A(n) have. A more natural generalization of A(n) = Aff(Rn) turned
out to be the group Aff(N) = Aut(N)nN , the group of nil-affine transformations,
in this context. Here N denotes a connected and simply-connected nilpotent Lie
group. For the abelian Lie group N = Rn we recover the group A(n). We repeat
the definition of a crystallographic action for Aut(N).

Definition 6. A nil-affine crystallographic action consists of a representation ρ :
Γ→ Aff(N) for some connected and simply connected nilpotent Lie groupN letting
ρ act properly discontinuously and cocompactly on N . The image ρ(Γ) of such an
nil-affine crystallographic action will be referred to as an nil-affine crystallographic
group.

In 2003 K. Dekimpe showed the following result in [38].

Proposition 8. Every virtually polycyclic group Γ admits a nil-affine crystallo-
graphic action ρ : Γ → Aff(N). This action is unique up to conjugation inside of
Aff(N).

It is now also natural to ask for the converse, i.e., to ask for the Auslander
conjecture for nil-affine crystallographic groups.

Conjecture 2 (Generalized Auslander). Let N be a connected and simply con-
nected nilpotent Lie group and let Γ ⊆ Aff(N) be a group acting crystallographi-
cally on N . Then Γ is virtually polycyclic.

If this conjecture has a positive answer, then we have an analogue of Proposi-
tion 6 for nil-affine crystallographic actions. Then the groups admitting a nil-affine
crystallographic action would be precisely the virtually polycyclic groups. We have
shown in [18] that the generalized Auslander conjecture is true for n ≤ 5 and that it
can be reduced to the ordinary Auslander conjecture in case N is 2-step nilpotent.

5 Simply transitive groups of affine and nil-affine transformations
Affine and nil-affine crystallographic actions of discrete groups are closely related
to simply transitive actions by affine and nil-affine transformations of Lie groups.

Definition 7. A group G acts simply transitively on Rn by affine transformations
if there is a homomorphism ρ : G → A(n) letting G act on Rn, such that for all
y1, y2 ∈ Rn there is a unique g ∈ G such that ρ(g)(y1) = y2.

Such groups are connected and simply connected n-dimensional Lie groups
which are homeomorphic to Rn. L. Auslander named such groups simply tran-
sitive groups of affine motions. He proved that such groups are solvable [5]. We
mention the following generalization of this result.
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Proposition 9. Let G be a Lie group which is homeomorphic to Rn for some n ≥ 1.
If G admits a faithful linear representation then G is solvable.

Proof. Let G be a connected Lie group. By a theorem of Malcev and Iwasawa, G
is homeomorphic to C×Rk for some k, where C is the maximal compact subgroup
of G. If we assume that G is homeomorphic to Rn then it follows that G has no
nontrivial compact subgroup.

Since G has a faithful linear representation, it is the semidirect product B nH
with a reductive group H and a simply connected solvable group B, which is normal
in G. This reduces the proof to the case where G is reductive. We have to show
that our group is trivial then.

A reductive group G having a faithful linear representation has a compact center
Z with semisimple quotient G/Z. So we may assume that G is semisimple and has
trivial center. A semisimple group G with trivial center is analytically isomorphic
to its adjoint group and hence has a non-trivial compact subgroup unless G is
trivial. But since our G has no nontrivial compact subgroup it is trivial. �

Let us explain the connection between crystallographic actions of a discrete
group and simply transitive actions of a Lie group. If G is a solvable Lie group
admitting a simply transitively action by affine transformations on Rn, then a
cocompact lattice Γ in G admits an affine crystallographic action. Conversely, if a
torsionfree nilpotent group Γ admits an affine crystallographic action via ρ : Γ →
A(n), then ρ(Γ) is unipotent. Hence its Malcev completion GΓ is inside A(n), and
acts simply transitively by affine transformations. We have the following result.

Proposition 10. There is a bijective correspondence between affine crystallographic
actions of a finitely generated torsionfree nilpotent group Γ and simply transitive
actions by affine transformations of its Malcev completion GΓ.

This generalizes to nil-affine crystallographic actions. We say that G admits a
simply transitively action by nil-affine transformations on N , if there is a homo-
morphism ρ : G→ Aff(N) letting G act simply transitively on N .

6 Left-invariant affine structures on Lie groups
Milnor formulated his question 1 in terms of left-invariant affine structures on Lie
groups. We follow here his article [47].

Definition 8. An affine structure (or affinely flat structure) on an n-dimensional
manifold M is a collection of coordinate homeomorphisms

fα : Uα → Vα ⊆ Rn,

where the Uα are open sets covering M , and the Vα are open subsets of Rn; when-
ever Uα ∩ Uβ 6= ∅, it is required that the change of coordinate homeomorphism

fβf
−1
α : fα(Uα ∩ Uβ)→ fβ(Uα ∩ Uβ)

extends to an affine transformation in A(n) = Aff(Rn). We call M together with
this structure an affine manifold, or an affinely flat manifold.
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A special case of affinely flat manifolds are Riemannian-flat manifolds, where
the coordinate changes extend to isometries in E(n), i.e., to affine transformations
x 7→ Ax+ b with A ∈ On(R).

For surfaces we have the following result by Benzecri [8].

Proposition 11. A closed surface admits an affine structure if and only if its Euler
characteristic vanishes.

In particular, a closed surface different from the 2-torus or the Klein bottle does
not admit any affine structure.

Definition 9. An affine structure on a Lie group G is called left-invariant if each
left-multiplication map L(g) : G→ G is an affine diffeomorphism.

Definition 10. An affine structure on G is called complete, if the universal covering
G̃ is affinely diffeomorphic to Rn.

Proposition 12. There is a canonical bijection between left-invariant complete
affine structures on G and simply transitive actions of G on Rn by affine motions.

If G admits a left-invariant complete affine structure, then for any discrete
group Γ the coset space G/Γ is a complete affinely flat manifold with fundamental
group isomorphic to Γ.

Here is Milnor’s question in the original context.

Question 2 (Milnor 1977). Does every solvable n-dimensional Lie group G admit
a complete left-invariant affine structure, or equivalently, does the universal cover-
ing group G̃ act simply transitively by affine transformations on Rn?

Milnor remarked that the answer is positive for 2-step nilpotent and 3-step
nilpotent Lie groups and for Lie groups whose Lie algebra admits a non-singular
derivation. Such Lie algebras are necessarily nilpotent. Furthermore the answer
is positive for all connected and simply connected complex nilpotent Lie groups
of dimension n ≤ 7. However, as we have mentioned above, Benoist gave a coun-
terexample in [11] and we gave families of counterexamples in [14], [16]. The Lie
algebras of all such counterexamples here are filiform nilpotent Lie algebras. One
can verify that all connected and simply-connected filiform nilpotent Lie groups
of dimension n ≤ 9 admit a complete left-invariant affine structure. Hence the
minimal dimension for this kind of counterexamples is 10. The result in [16] is the
following.

Proposition 13. There exist families of nilpotent Lie groups of dimension 10 and
nilpotency class 9 not admitting any left-invariant affine structure.

There are also families of such counterexamples in dimension 11, 12 and 13, but
a general result for all dimensions n ≥ 10 is only conjectured, see [21], but not
known.
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7 Pre-Lie algebra and post-Lie algebra structures
Several statements from the previous sections can be formulated on the level of Lie
algebras in terms of certain compatible algebraic structures on the Lie algebra of
the corresponding Lie group. In particular, Milnor’s question can be reduced to
the level of Lie algebras, namely to pre-Lie algebra structures on Lie algebras and
to faithful finite-dimensional representations of Lie algebras. All bijective corre-
spondence mentioned are understood up to suitable equivalence of the structures
involved.

Definition 11. A pre-Lie algebra (V, ·) is a vector space V equipped with a binary
operation (x, y) 7→ x · y such that for all x, y, z ∈ V

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z).

If (V, ·) is a pre-Lie algebra, then for x, y ∈ V the binary operation

[x, y] := x · y − y · x

defines a Lie algebra.

Definition 12. A bilinear product x ·y on g×g is called a pre-Lie algebra structure
on g, if it satisfies

[x, y] = x · y − y · x,
[x, y] · z = x · (y · z)− y · (x · z),

for all x, y, z ∈ g. A Lie algebra g over a field K is said to admit a pre-Lie algebra
structure, if there exists a pre-Lie algebra structure on g.

Example 6. The Heisenberg Lie algebra n3(K) of dimension 3 with basis{e1, e2, e3}
and Lie bracket [e1, e2] = e3 admits a pre-Lie algebra structure, given by

e1 · e2 =
1

2
e3, e2 · e1 = −1

2
e3.

Denote by L(x) the left multiplication operator given by L(x)(y) = x · y. Then
the second identity becomes

L([x, y]) = [L(x), L(y)].

for all x, y ∈ g. Hence the left multiplication operators define a g-module gL by

L : g→ gl(g), x 7→ L(x).

Denote by I : g→ gL the identity map. Then the first identity becomes

I([x, y]) = I(x) · y − I(y) · x.

Hence the identity map is a 1-cocycle, i.e., I ∈ Z1(g, gL). We have the following
result [13].
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Proposition 14. Let g be a n-dimensional Lie algebra. Then g admits a pre-Lie al-
gebra structure if and only if there is a n-dimensional g-module M with nonsingular
1-cocycle in Z1(g,M).

Example 7. Let g be a Lie algebra admitting a nonsingular derivation D. Then g
admits a pre-Lie algebra structure, given by

x · y = D−1([x,D(y)])

for all x, y ∈ g.

Jacobson [45] proved the following result in 1955.

Proposition 15. Let g be a Lie algebra over a field of characteristic zero admitting
a nonsingular derivation. Then g is nilpotent.

This result does not hold for fields of prime characteristic p > 0. There are even
simple modular Lie algebras of nonclassical type admitting nonsingular derivations,
see [7]. This is of interest in the theory of pro-p groups of finite coclass. In general
a given Lie algebra need not admit a pre-Lie algebra structure.

Example 8. The Lie algebra sl2(K) over a field K of characteristic zero does not
admit a pre-Lie algebra structure.

More generally, we have the following result.

Proposition 16. Let g be a finite-dimensional semisimple Lie algebra over a field
of characteristic zero. Then g does not admit a pre-Lie algebra structure.

Proof. Let g be n-dimensional. Suppose that g admits a pre-Lie algebra structure.
Then we have I ∈ Z1(g, gL). By Whitehead’s first Lemma, I ∈ B1(g, gL). Hence
there exists an e ∈ g with R(e) = I, where R(x) denotes the right multiplication
operator. The adjoint operators ad(x) = L(x) − R(x) have trace zero, since g is
perfect. So do all L(x) and hence all R(x). Then we obtain n = tr(I) = tr(R(e)) =
0, a contradiction. �

Helmstetter [43] proved more generally that if g is perfect, i.e., if g = [g, g],
then g does not admit a pre-Lie algebra structure. We have the following canonical
bijections (up to suitable equivalence).

Proposition 17. There is a canonical bijection between left-invariant affine struc-
tures on G and pre-Lie algebra structures on g.

Proposition 18. There is a canonical bijection between simply transitive affine
actions of G and complete pre-Lie algebra structures on g.

Here a pre-Lie algebra structure on g is complete, if all right multiplications
R(x) in End(g) are nilpotent. A left-invariant affine structure on G is complete if
and only if the corresponding pre-Lie algebra structure on the Lie algebra of G is
complete, see [50]. Hence the algebraic analogue of Milnor’s question is as follows.
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Question 3 (Milnor 1977). Does every solvable Lie algebra over a field of charac-
teristic zero admit a (complete) pre-Lie algebra structure?

In the nilpotent case the different versions of Milnor’s question are equivalent.
By Proposition 10 we obtain also a correspondence to affine crystallographic ac-
tions. The counterexamples to Milnor’s question are given by n-dimensional nilpo-
tent Lie algebras not admitting a faithful linear representation of degree n + 1.
This is based on the following important observation, see [11].

Proposition 19. Let g be a n-dimensional Lie algebra over a field K of character-
istic zero. Suppose that g admits a pre-Lie algebra structure. Then g admits a
faithful linear Lie algebra representation ϕ : g→ gln+1(K) of degree n+ 1.

This motivates to study a refinement of Ado’s theorem.

Definition 13. Let g be a finite-dimensional Lie algebra over a field K of dimension
n. Denote by µ(g) the minimal dimension of a faithful linear representation of g.

By the Ado-Iwasawa theorem, µ(g) is always finite. However the proofs for
Ado’s theorem do not give good upper bounds for µ(g). The following result was
proved in [17]. Here p(n) denotes the partition function.

Theorem 1. Let g be a k-step nilpotent Lie algebra of dimension n over a field of
characteristic zero. Then we have

µ(g) ≤
k∑
j=0

(
n− j
k − j

)
p(j) < 3 · 2n√

n
.

In the general case we have the following result [23].

Theorem 2. Let g be a Lie algebra with r-dimensional solvable radical and nilrad-
ical n over an algebraically closed field of characteristic zero. Then we have

µ(g) ≤ µ(g/n) + 3 · 2r√
r
.

For the 10-dimensional counterexamples to Milnor’s question we proved that
12 ≤ µ(g) ≤ 18, but we do not know the exact value in all cases. The canonical
bijections of Proposition 17 and Proposition 18 can be generalized to nil-affine
transformations and post-Lie algebra structures, see [24].

Theorem 3. Let G and N be connected and simply connected nilpotent Lie groups.
Then there exists a simply transitive action by nil-affine transformations of G on
N if and only if the corresponding pair of Lie algebras (g, n) admits a complete
post-Lie algebra structure.

In the classical case N = Rn a complete post-Lie algebra structure on (g,Rn) is
just a complete pre-Lie algebra structure on g. In the other extreme case G = Rn
a complete post-Lie algebra structure on (Rn, n) is a complete LR-structure on n,
see [22].

The definitions of a post-Lie algebra and a post-Lie algebra structure are as
follows [53], [24].
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Definition 14. A post-Lie algebra (V, ·, { , }) is a vector space V over a field K
equipped with two K-bilinear operations x · y and {x, y}, such that g = (V, { , }) is
a Lie algebra, and

{x, y} · z = (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z)
x · {y, z} = {x · y, z}+ {y, x · z}

for all x, y, z ∈ V .

Note that if g is abelian then (V, ·) is a pre-Lie algebra. We can associate to a
post-Lie algebra (V, ·, {, }) a second Lie algebra n = (V, [ , ]) via

[x, y] := x · y − y · x+ {x, y}.

This Lie bracket satisfies the following identity

[x, y] · z = x · (y · z)− y · (x · z),

i.e., the post-Lie algebra is a left module over the Lie algebra n.

Definition 15. Let (g, [x, y]), (n, {x, y}) be two Lie brackets on a vector space V . A
post-Lie algebra structure on the pair (g, n) is a K-bilinear product x · y satisfying
the identities

x · y − y · x = [x, y]− {x, y}
[x, y] · z = x · (y · z)− y · (x · z)
x · {y, z} = {x · y, z}+ {y, x · z}

for all x, y, z ∈ V .

These identities imply the identities given before, so that (V, ·, [ , ]) is a post-
Lie algebra with associated Lie algebra n. If n is abelian then the conditions of a
post-Lie algebra structure reduce to the conditions

[x, y] = x · y − y · x,
[x, y] · z = x · (y · z)− y · (x · z),

so that x · y is a pre-Lie algebra structure on g. On the other hand, if g is abelian
then the conditions reduce to

x · y − y · x = −{x, y}
x · (y · z) = y · (x · z),
(x · y) · z = (x · z) · y,

so that −x · y is an LR-structure on n.
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8 Milnor’s question for nil-affine transformations
Milnor’s question 2 and the algebraic version 3 can be asked more generally for nil-
affine transformations and post-Lie algebra structures. So we may ask the following
existence question.

Question 4. Exactly which pairs of Lie algebras (g, n) over a given vector space V
over a field of characteristic zero admit a post-Lie algebra structure?

For the correspondence to nil-affine transformations we would need to consider
complete post-Lie algebra structures, see [24], but we would like to ask more gen-
erally for all post-Lie algebra structures. Of course this question is very ambitious
and it is not clear how a complete answer should look like. It seems reasonable
to study here first certain algebraic properties of g and n, such as being abelian,
nilpotent, solvable, simple, semisimple, reductive and complete as the most basic
ones.

If n is abelian we are back to Milnor’s original question and we ask exactly
which Lie algebras g admit a pre-Lie algebra structure. This is as we already
know a difficult question and there are only partial answers. For example, if g is
semisimple or more generally perfect, then g does not admit any pre-Lie algebra
structure, see Proposition 16 and [43]. If g is reductive, the question is already
open. Certainly gln(K) does admit a pre-Lie algebra structure, but on the other
hand, there are several restrictions. For example, we have the following result, see
[15].

Proposition 20. Let g = a⊕ s be a reductive Lie algebra, where s is simple and a
is the center of g with dim(a) = 1. Then g admits a pre-Lie algebra structure if
and only if s ∼= sln(K) for some n ≥ 2.

For more results and details concerning the reductive case and étale affine rep-
resentations of reductive groups see [6], [15], [28], [29]. On the other hand, if g
is abelian, then we ask which Lie algebras exactly admit an LR-structure. This
question is more accessible and we have obtained several results, see [20].

Proposition 21. Let n be a Lie algebra admitting an LR-structure. Then n is
two-step solvable.

However, not every two-step solvable Lie algebra admits an LR-structure.

Proposition 22. There are 3-step nilpotent Lie algebras with 4 generators of di-
mension n ≥ 13 not admitting any LR-structure.

There are no such examples with less than 4 generators.

Proposition 23. Let n be a 2-step nilpotent Lie algebra or a 3-step nilpotent Lie
algebra with at most 3 generators. Then g admits a complete LR-structure.

For further results we refer to [20], [22].
For the general case concerning post-Lie algebra structures on pairs of Lie al-

gebras (g, n) we also have several results, see [24], [25], [26], [31], [32], [39]. Let us
explain some of them.
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Proposition 24. Suppose that (g, n) admits a post-Lie algebra structure, where g
is nilpotent. Then n is solvable. If g is nilpotent with H0(g, n) = 0, then n is
nilpotent.

In case one of the Lie algebras is semisimple, but the other Lie algebra not, we
have the following result.

Proposition 25. Let (g, n) be a pair of Lie algebras, where g is semisimple and n
is solvable. Then (g, n) does not admit a post-Lie algebra structure.

The situation is not symmetric in g and n.

Proposition 26. Let (g, n) be a pair of Lie algebras, where n is semisimple and g is
solvable and unimodular. Then (g, n) does not admit a post-Lie algebra structure.

The unimodularity assumption is essential here. Otherwise any triangular de-
composition of n induces an obvious post-Lie algebra structure on (g, n), where g
is solvable but not unimodular.

In case one of the Lie algebras g, n is simple we have the following results.

Proposition 27. Suppose that (g, n) admits a post-Lie algebra structure, where g
is simple. Then n is simple and isomorphic to g. The post-Lie algebra product
then is either x · y = 0 with [x, y] = {x, y}, or x · y = [x, y] with [x, y] = −{x, y}.

If we interchange the roles of g and n we only can prove the following result,
see [35].

Proposition 28. Suppose that (g, n) admits a post-Lie algebra structure, where n
is simple and g is reductive. Then g is simple and isomorphic to n.

In case both g and n are semisimple, but not simple, we can have many inter-
esting post-Lie algebra structures.

Example 9. Let g and n both isomorphic to sl2(C)⊕ sl2(C). Then there exist non-
trivial post-Lie algebra structures on (g, n). If n = sl2(C) ⊕ sl2(C) has the basis
(e1, f1, h1, e2, f2, h2) with Lie brackets

{e1, f1} = h1, {e2, f2} = h2,
{e1, h1} = −2e1, {e2, h2} = −2e2,
{f1, h1} = 2f1, {f2, h2} = 2f2,

then the following product defines a post-Lie algebra structure on (g, n):

e1 · e2 = −4e2 + h2, f1 · e2 = 2e2 − h2, h1 · e2 = 6e2 − 2h2,
e1 · f2 = 4f2 + 4h2, f1 · f2 = −2f2 − h2, h1 · f2 = −6f2 − 4h2,
e1 · h2 = −8e2 − 2f2, f1 · h2 = 2e2 + 2f2, h1 · h2 = 8e2 + 4f2.
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Here the Lie brackets of g are given by

[e1, f1] = h1, [f1, h1] = 2f1, [h1, f2] = −6f2 − 4h2,
[e1, h1] = −2e1, [f1, e2] = 2e2 − h2, [h1, h2] = 8e2 + 4f2,
[e1, e2] = −4e2 + h2, [f1, f2] = −2f2 − h2, [e2, f2] = h2,
[e1, f2] = 4f2 + 4h2, [f1, h2] = 2e2 + 2f2, [e2, h2] = −2e2,
[e1, h2] = −8e2 − 2f2, [h1, e2] = 6e2 − 2h2, [f2, h2] = 2f2.

It is easy to see that g is isomorphic to sl2(C)⊕ sl2(C).

The following table shows, what we know about the existence of post-Lie alge-
bra structures on pairs (g, n), with respect to the seven different classes of Lie alge-
bras given below. So more precisely the classes are abelian, nilpotent non-abelian,
solvable non-nilpotent, simple, semisimple non-simple, reductive non-semisimple,
non-abelian and complete non-semisimple Lie algebras.

(g, n) n abe n nil n sol n sim n sem n red n com
g abelian X X X − − − X
g nilpotent X X X − − − X
g solvable X X X X X X X
g simple − − − X − − −
g semisimple − − − − X ? −
g reductive X ? ? − ? X X
g complete X X X ? ? X X

Note that a checkmark only means that there is some pair (g, n) with the given
algebraic properties admitting a post-Lie algebra structure. It does not imply that
all such pairs admit a post-Lie algebra structure.

Besides existence of post-Lie algebra structures it is also interesting to obtain
classification results. For the general case such results are difficult to obtain. There
are only some classifications in low dimensions. We refer to [31] for a classification
of post-Lie algebra structures on (g, n), where both g and n are isomorphic to the
3-dimensional Heisenberg Lie algebra. We have much better classification results
for commutative post-Lie algebra structures, which will be discussed in the next
section.

9 Commutative post-Lie algebra structures

A post-Lie algebra structure (V, ·) on a pair (g, n) is called commutative, if the
algebra product is commutative, i.e., if x · y = y · x for all x, y ∈ V . This implies
that [x, y] = {x, y}, so that the Lie algebras g and n are equal. We only write g
instead of the pair (g, g).
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Definition 16. A commutative post-Lie algebra structure, or CPA-structure on a
Lie algebra g is a K-bilinear product x · y satisfying the identities:

x · y = y · x
[x, y] · z = x · (y · z)− y · (x · z)
x · [y, z] = [x · y, z] + [y, x · z]

for all x, y, z ∈ V .

There is always the trivial CPA-structure on g, given by x ·y = 0 for all x, y ∈ g.
Any CPA-structure on a semisimple Lie algebra over a field of characteristic zero
is trivial, see [26]. This was generalized in [27] as follows.

Proposition 29. Any CPA-structure on a perfect Lie algebra of characteristic zero
is trivial.

For complete Lie algebras one can classify all CPA-structures. A Lie algebra
g is called complete, if Z(g) = 0 and Der(g) = Inn(g). This is equivalent to the
cohomological conditions H0(g, g) = H1(g, g) = 0. A complete Lie algebra is called
simply-complete, if g does not have a non-trivial complete ideal. Every complete
Lie algebra can be written as the direct sum of simply-complete Lie algebras. We
have the following result [27].

Theorem 4. Let g be a complex simply-complete Lie algebra with nilradical n.
Suppose that g is not metabelian and that n = [g, n]. Then there is a bijective
correspondence between CPA-structures on g and elements z ∈ Z([g, g]), given by

x · y = [[z, x], y].

We believe that the condition n = [g, n] is automatically satisfied for complete
Lie algebras. However, we could not find this statement with a proof in the lit-
erature. The only simply-complete metabelian Lie algebra is the 2-dimensional
non-abelian Lie algebra r2(C), where we can classify all CPA-structures directly.
There are also classification results concerning CPA-structures on nilpotent Lie
algebras. An important fact here is the following, see [30].

Theorem 5. Let g be a nilpotent Lie algebra over a field of characteristic zero
satisfying Z(g) ⊆ [g, g]. Then every CPA-structure on g is complete, i.e., all left
multiplications L(x) are nilpotent.

In this case we have

L(Z(g))d
dimZ(g)+1

2 e(g) = 0.

Definition 17. A CPA-structure (V, ·) on g is called associative if g · [g, g] = 0. It
is called central if g · g ⊆ Z(g).

The first part of the definition is justified by the following lemma [34].
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Lemma 1. Let (V, ·) be a CPA-structure on a Lie algebra g. Then we have g·[g, g] =
0 if and only if the algebra (V, ·) is associative.

It is easy to see that every central CPA-structure on g is associative and con-
versely that every associative CPA-structure on g satisfies g · g ⊆ Z([g, g]). Also,
every central CPA-structure on g satisfies g · Z(g) = 0. If dimZ(g) = 1 then the
formula after Theorem 5 yields the following corollary.

Corollary 1. Let g be a nilpotent Lie algebra over a field of characteristic zero
satisfying Z(g) ⊆ [g, g] and dimZ(g) = 1. Then every CPA-structure on g satisfies
g · Z(g) = 0.

In particular, every CPA-structure on a filiform nilpotent Lie algebra g satisfies
g ·Z(g) = 0. On the other hand, not all CPA-structures on a filiform nilpotent Lie
algebra are central or associative. But we have shown the following result in [34].

Theorem 6. Let g be a complex filiform Lie algebra of solvability class d ≥ 3.
Then every CPA-structure (V, ·) on g is associative and the algebra (V, ·) is Poisson-
admissible.

For certain families of filiform nilpotent Lie algebras a classification of all CPA-
structures is possible [34], [39]. As an example let us consider the Witt Lie algebra.

Definition 18. The Witt Lie algebra Wn for n ≥ 5 over a field of characteristic
zero is defined by the Lie brackets

[e1, ej ] = ej+1, 2 ≤ j ≤ n− 1,

[ei, ej ] =
6(j − i)

j(j − 1)
(
j+i−2
i−2

)ei+j , 2 ≤ i ≤ n− 1

2
, i+ 1 ≤ j ≤ n− i,

where (e1, . . . , en) is an adapted basis for Wn.

To give a CPA-structure (V, ·) on g explicitly it is enough to list the non-zero
products ei · ej for all 1 ≤ i ≤ j ≤ n.

Proposition 30. Every CPA-structure on the complex Witt algebra Wn for n ≥ 7
with respect to an adapted basis (e1, . . . , en) is given as follows,

e1 · e1 = αen−2 + βen−1 + γen,

e1 · e2 =
6(n− 4)

(n− 2)(n− 3)
αen−1 + δen,

e2 · e2 = εen,

where α, β, γ, δ, ε ∈ C are arbitrary parameters.

Note that all CPA-structures on the Witt algebra are associative but not nec-
essarily central. We also have a result concerning CPA-structures on free-nilpotent
Lie algebras Fg,c with g ≥ 2 generators and nilpotency class c ≥ 2, see [30].
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Theorem 7. All CPA-structures on F3,c with c ≥ 3 are central.

The result is not true for F3,2. We believe that all CPA-structures on Fg,c with
g ≥ 2 and c ≥ 3 are central. However, we could only prove a part of it so far, see [30].
Finally we have determined the CPA-structures on certain infinite-dimensional Lie
algebras, e.g., on Kac-Moody algebras [33]. For the infinite-dimensional Witt alge-
bra W in characteristic zero with a set of basis vectors {ei} and Lie brackets

[ei, ej ] = (j − i)ei+j

we have that all CPA-structures on W are trivial. Note that in case the basis is
finite, W is isomorphic to Wn for some n.
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