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On Balancing and Lucas-balancing Quaternions

Bijan Kumar Patel, Prasanta Kumar Ray

Abstract. The aim of this article is to investigate two new classes of quater-
nions, namely, balancing and Lucas-balancing quaternions that are based on
balancing and Lucas-balancing numbers, respectively. Further, some iden-
tities including Binet’s formulas, summation formulas, Catalan’s identity,
etc. concerning these quaternions are also established.

1 Introduction
Quaternions were introduced by W. R. Hamilton in the middle of 19th century;
they are an extension of complex numbers. A quaternion q is a hyper-complex
number defined by the equation

q = ae0 + be1 + ce2 + de3 = (a, b, c, d)

where a, b, c, d are members of the set of real numbers R and e0, e1, e2, e3 with
e0 = 1 form a standard orthonormal basis in R4. The set of quaternions is usually
denoted by H and constitutes a non-commutative field known as skew field that
extends the complex field C. The standard basis vectors e0, e1, e2, e3 satisfy the
quaternion multiplication as per the following multiplication table (Table 1).

If p and q are any two quaternions in H, say,

p = (p0, p1, p2, p3) and q = (q0, q1, q2, q3) ,

then their addition and substraction are defined as

p± q = (p0 ± q0)e0 + (p1 ± q1)e1 + (p2 ± q2)e2 + (p3 ± q3)e3 .

2020 MSC: 11B37, 11B39, 20G20
Key words: Recurrence relations, Balancing numbers, Lucas-balancing numbers, Quaternions
Affiliation:

Bijan Kumar Patel – Department of Mathematics, KIIT Deemed to be University,
Bhubaneswar, India
E-mail: iiit.bijan@gmail.com

Prasanta Kumar Ray – Department of Mathematics, Sambalpur University, Jyoti
Vihar, Burla, India
E-mail: prasantamath@suniv.ac.in



326 Bijan Kumar Patel, Prasanta Kumar Ray

∗ 1 e1 e2 e3

1 1 e1 e2 e3

e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1

e3 e3 e2 −e1 −1

Table 1: The multiplication table for the basis of H

Further, if we rewrite p = p0 + P and q = q0 + Q where P = p1e1 + p2e2 + p3e3
and Q = q1e1 + q2e2 + q3e3, then their multiplication is defined as

pq = p0q0 − P ·Q+ p0Q+ q0P + P ×Q .

Here “ · ” and “× ” are respectively the scalar and vector products of the vectors.
The complex conjugate of q = q0 +Q, denoted by q̄ is defined as q̄ = q0−Q, while
the norm of q, denoted by |q|, is given as |q| =

√
qq̄.

Fibonacci and Lucas quaternions were introduced by Horadam [8], and are
defined by the equations

QFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

and
QLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3 .

Here Fn and Ln denote the nth Fibonacci and Lucas number, respectively. Some
more properties including recurrence relation were studied in [9]. Iyer [10] derived
some relations between the Fibonacci and Lucas quaternions. Halici [7] investigated
the Fibonacci and Lucas quaternions and derived some identities of them which
includes Binet’s formulas and generating functions. Subsequently, Akyigit et al.
[1] generalized the Fibonacci quaternions and studied many of their properties.
Recently, Çimen and Ipek [5] defined the Pell and Pell-Lucas quaternions as follows:

QPn = Pne0 + Pn+1e1 + Pn+2e2 + Pn+3e3

and
QPLn = Qne0 +Qn+1e1 +Qn+2e2 +Qn+3e3 ,

where Pn and Qn are the nth Pell and Pell-Lucas numbers respectively. As usual,
Pell and Pell-Lucas numbers are defined recursively by

Pn = 2Pn−1 + Pn−2

and
Qn = 2Qn−1 +Qn−2

for n ≥ 2 with their respective initials

(P0, P1) = (0, 1) and (Q0, Q1) = (1, 1) .
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Consequently, Szynal-Liana and W loch [14] obtained several identities concerning
QPn and QPLn using matrix methods. Motivated by the work of Szynal-Liana
and W loch, Catarino [4] introduced the Modified Pell and the Modified k-Pell
quaternions and established some of their properties. Motivated by these works,
in this paper we introduce the balancing and Lucas-balancing quaternions and
establish some identities.

It is worth defining balancing and Lucas-balancing numbers. A balancing num-
ber B is a solution of the Diophantine equation

1 + 2 + 3 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ (B +R)

with R as a balancer corresponding to B [2]. For each balancing number B, the
square root of 8B2 + 1 is called a Lucas-balancing number [11]. The nth balancing
number Bn and the nth Lucas-balancing number Cn are defined recursively by

Bn = 6Bn−1 −Bn−2

with (B0, B1) = (0, 1) and
Cn = 6Cn−1 − Cn−2

with (C0, C1) = (1, 3) respectively for n ≥ 2. The Binet formulas for Bn and Cn
are respectively given by

Bn =
λn1 − λn2
λ1 − λ2

and Cn =
λn1 + λn2

2
,

where λ1 = 3 +
√

8 and λ2 = λ−11 .
In this article we introduce two new classes of quaternions, namely, balancing

and Lucas-balancing quaternions and then derive some of their properties. Further,
we also study various results of these classes of quaternions including recurrence
relations, Binet’s formulas, summation formulas, Catalan’s identity etc.

2 Balancing and Lucas-balancing quaternions
In this section we define balancing and Lucas-balancing quaternions and derive
some properties of these quaternions.

Definition 1. Let Bn and Cn denote the nth balancing and the nth Lucas-balancing
numbers respectively. Then balancing and Lucas-balancing quaternions are respec-
tively defined as

QBn = Bne0 +Bn+1e1 +Bn+2e2 +Bn+3e3 =

3∑
r=0

Bn+rer ,

and

QCn = Cne0 + Cn+1e1 + Cn+2e2 + Cn+3e3 =

3∑
r=0

Cn+rer ,

where e0, e1, e2 and e3 are the standard orthonormal basis vectors in R4.
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We can observe from the above definition that addition and substraction of
these quaternions can be obtained as follows:

QBn ±QCn =

3∑
r=0

(Br ± Cr)er .

Balancing and Lucas-balancing quaternions satisfy similar recurrence relations
as those of balancing and Lucas-balancing numbers. The following propositions
demonstrate this fact.

Proposition 1. The recurrence relations for balancing and Lucas-balancing quater-
nions are respectively

QBn = 6QBn−1 −QBn−2 and QCn = 6QCn−1 −QCn−2
for n ≥ 2.

Proof. Using the recurrence relation of {Bn}n≥2, we have

QBn =

3∑
r=0

Bn+rer

=

3∑
r=0

(6Bn−1+r −Bn−2+r)er

= 6QBn−1 −QBn−2 ,

which completes the proof. The proof is similar for Lucas-balancing quaternions.
�

The following lemma is useful while deriving the Binet formulas for both QBn
and QCn.

Lemma 1. For any natural number n,

QCn +
√

8QBn = Aλn1 and QCn −
√

8QBn = Bλn2 ,

where

A =

3∑
r=0

λr1er and B =

3∑
r=0

λr2er .

Proof. Using the identity Cn +
√

8Bn = λn1 , we have

QCn +
√

8QBn =

3∑
r=0

Cn+rer +
√

8

3∑
r=0

Bn+rer

=

3∑
r=0

(Cn+r +
√

8Bn+r)er

=

3∑
r=0

λr+n1 er

= Aλn1 ,
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where A =
3∑
r=0

λr1er. Similarly, using the identity Cn −
√

8Bn = λn2 , the second

result can be obtained. �

Theorem 1. The Binet formulas for QBn and QCn are respectively given by

QBn =
Aλn1 −Bλn2
λ1 − λ2

and QCn =
Aλn1 +Bλn2

2
,

where A =
3∑
r=0

λr1er and B =
3∑
r=0

λr2er with n ≥ 0.

Proof. By virtue of Lemma 1,

Aλn1 −Bλn2 = (λ1 − λ2)QBn and Aλn1 +Bλn2 = 2QCn ,

and the results follow. �

By using the Binet form of balancing and Lucas-balancing quaternions, we
derive some identities concerning QBn and QCn. Before that we first define con-
jugates and norms of these quaternions.

Definition 2. The conjugates of QBn and QCn are respectively defined as

QBn = Bne0 −Bn+1e1 −Bn+2e2 −Bn+3e3 = Bn −
3∑
r=1

Bn+rer ,

QCn = Cne0 − Cn+1e1 − Cn+2e2 − Cn+3e3 = Cn −
3∑
r=1

Cn+rer ,

and the norms of QBn and QCn are respectively defined as

NQBn
= QBnQBn = B2

n +B2
n+1 +B2

n+2 +B2
n+3 =

3∑
r=0

B2
n+r ,

NQCn = QCnQCn = C2
n + C2

n+1 + C2
n+2 + C2

n+3 =

3∑
r=0

C2
n+r .

Proposition 2. If n ≥ 2, then

(i) QBn +QBn = 2Bn,

(ii) QB2
n +QBnQBn = 2BnQBn,

(iii) QBnQBn = 1
32 (B2n+7 −B2n−1 − 8).

Proof. Using Definition 2, we have

QBn +QBn =

3∑
r=0

Bn+rer +Bn −
3∑
r=1

Bn+rer = 2Bn ,
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which ends the proof of (i). Since

QB2
n = QBnQBn = QBn(2Bn −QBn) = 2BnQBn −QBnQBn

and so
QB2

n +QBnQBn = 2BnQBn .

In order to prove (iii) we use the following identity for all positive integers n and m,

m∑
r=0

B2
n+r =

1

32
(B2m+2n+1 −B2n−1 − 2(m+ 1)) ([6, Theorem 2.2]).

Since QBnQBn =
3∑
r=0

B2
n+r, the identity follows by letting m = 3. �

Proposition 3. If m and n are positive integers, then

QBm+n = BmQCn + CmQBn

and
QCm+n = CmQCn + 8BmQBn .

Proof. Using the identity Bm+n = BmCn + CmBn, we have

QBm+n =

3∑
r=0

Bm+n+rer

= Bm

3∑
r=0

Cn+rer + Cm

3∑
r=0

Bn+rer

= BmQCn + CmQBn .

Similarly,

QCm+n =

3∑
r=0

Cm+n+rer .

Further simplification leads the right side expression to

3∑
r=0

(CmCn+r + 8BmBn+r)er .

It follows that

QCm+n = Cm

3∑
r=0

Cn+rer + 8Bm

3∑
r=0

Bn+rer ,

and the result follows. �

The following result can also be shown analogously.



On Balancing and Lucas-balancing Quaternions 331

Proposition 4. If m and n are positive integers, then

QBm−n = CnQBm −BnQCm and QCm−n = CnQCm − 8BnQBm .

Replacing n by n+r in the identities Bn = 3Bn−1+Cn−1 and Cn+1 = 8Bn+3Cn
[11], we have the following formulas that are useful while proving the subsequent
results.

For any natural numbers n and r,

Bn+r = 3Bn−1+r + Cn−1+r , (1)

Cn+r = 8Bn−1+r + 3Cn−1+r . (2)

Using (2) and the recurrence relation for Lucas-balancing numbers, we have

Bn+1+r −Bn−1+r = 2Cn+r . (3)

The following result demonstrates some relations between the balancing and
Lucas-balancing quaternions.

Proposition 5. For n ≥ 2 we have the following identities,

(i) QBn = 3QBn−1 +QCn−1,

(ii) QCn = 8QBn−1 + 3QCn−1,

(iii) 2QCn = QBn+1 −QBn−1,

(iv) QCn −QCn−1 = 2(QBn−1 +QBn).

Proof. From (1), we have

QBn =

3∑
r=0

Bn+rer

=

3∑
r=0

(3Bn−1+r + Cn−1+r)er

= 3QBn−1 +QCn−1 ,

which implies the first identity. Similarly, applying (2) and (3), (ii) and (iii) can
be derived. (iv) immediately follows from (ii) and (iii). This completes the proof.

�

Theorem 2 (Catalan’s identity). If n, r ∈ N, then

QB2
n −QBn+rQBn−r =

−1

8
[(C2r − C0) + (C2r−1 − C1)e1 + (C2r+2 − C2)e2]

+
1

16
[(C2r+3 + C2r−3 + C2r−1 − C2r+1 − 2C3)]e3

and

QC2
n −QCn+rQCn−r = (C2r − C0)− (C2r−1 − C1)e1 − (C2r+2 − C2)e2

+ (2C3 + C2r+1 − C2r−3 − C2r−1 − C2r+3/2)e3 .
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Proof. Using the Binet formula for balancing quaternions and the fact λ1λ2 = 1,
we have

QB2
n −QBn+rQBn−r

=

(
Aλn1 −Bλn2
λ1 − λ2

)2

−
(
Aλn+r1 −Bλn+r2

λ1 − λ2

)(
Aλn−r1 −Bλn−r2

λ1 − λ2

)

=
AB

((
λ1

λ2

)r
− 1
)

+BA
((

λ2

λ1

)r
− 1
)

(λ1 − λ2)2

=
AB(λ2r1 − 1) +BA(λ2r2 − 1)

(λ1 − λ2)2

=
{−2 + 2λ2e1 + 2λ21e2 + (λ31 + λ32 + λ2 − λ1)e3}(λ2r1 − 1)

(λ1 − λ2)2

+
{−2 + 2λ1e1 + 2λ22e2 + (λ31 + λ32 + λ1 − λ2)e3}(λ2r2 − 1)

(λ1 − λ2)2

=

(
1

8
− λ2r1 + λ2r2

16

)
+

(
λ2r−11 + λ2r−12

16
− λ1 + λ2

16

)
e1

+

(
λ2r+2
1 + λ2r+2

2

16
− λ21 + λ22

16

)
e2

+

(
λ2r+3
1 + λ2r+3

2

32
+
λ2r−31 + λ2r−32

32

+
λ2r−11 + λ2r−12

32
− λ2r+1

1 + λ2r+1
2

32
− λ31 + λ32

16

)
e3

which completes the proof of first part. The second part follows analogously. �

Since Cassini’s identity is a special case of Catalan’s identity where r = 1, the
following result immediately follows from Theorem 2.

Corollary 1. For any positive integer n, the Cassini identity for balancing quater-
nions is

QBn+1QBn−1 −QB2
n =

AB(λ21 − 1) +BA(λ22 − 1)

(λ1 − λ2)2
= −2 + 70e2 + 192e3 ,

whereas that for Lucas-balancing quaternions is

QCn+1QCn−1 −QC2
n =

AB(1− λ21) +BA(1− λ22)

4
= 16− 560e2 − 1536e3 .

Theorem 3 (d’Ocagne’s identity). If m,n ∈ N with n ≥ m, then

QBm+1QBn −QBmQBn+1 = 2(−Bn−me0 +Bn−m+1e1 +Bn−m−2e2)

+ (Bn−m+3 +Bn−m−3 +Bn−m+1 −Bn−m−1)e3
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and

QCm+1QCn −QCmQCn+1 = 16 [Bn−m −Bn−m+1e1 −Bn−m−2e2]

− 8(Bn−m+3 +Bn−m+1 −Bn−m−1 +Bn−m+1)e3 .

Proof. Using the Binet formula for balancing quaternions and since λ1λ2 = 1, we
have

QBm+1QBn −QBmQBn+1 =

(
Aλm+1

1 −Bλm+1
2

λ1 − λ2

)(
Aλn1 −Bλn2
λ1 − λ2

)
−
(
Aλm1 −Bλm2
λ1 − λ2

)(
Aλn+1

1 −Bλn+1
2

λ1 − λ2

)
=
BAλn−m1 −ABλn−m2

λ1 − λ2
= −2Bn−me0 + 2Bn−m+1e1 + 2Bn−m−2e2

+ (Bn−m+3 +Bn−m−3 +Bn−m+1 −Bn−m−1)e3 ,

which completes the proof of the first part. Similarly using the Binet formula
for QCn, the second result can be shown. �

An interesting observation from the above results is that the Catalan identities
for balancing and Lucas-balancing quaternions are expressed in terms of Lucas-
-balancing numbers whereas the d’Ocagne identities for both these quaternions are
in terms of balancing numbers.

Theorem 4. The identity QC2
n − 8QB2

n = AB+BA
2 holds for n ≥ 1.

Proof. Applying the Binet formulas for balancing and Lucas-balancing quaternions,
we get

QC2
n − 8QB2

n =

(
Aλn1 +Bλn2

2

)2

− 8

(
Aλn1 −Bλn2
λ1 − λ2

)2

=
(A2λ2n1 +AB +BA+B2λ2n2 )− (A2λ2n1 −AB −BA+B2λ2n2 )

4

=
AB +BA

2
,

which completes the proof. �

3 Sum formulas of balancing and Lucas-balancing quaternions
In this section, we derive some sum formulas involving QBn and QCn.

The following identity is available in [6].

Lemma 2. For all positive integers k and i,

n∑
i=0

Bk+i =
1

4
[B(n+1)+k −Bn+k −Bk +Bk−1] . (4)
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Theorem 5. If Pr is the rth Pell number, then

n∑
r=1

QBr =
1

4

(
QBn+2 −QBn+1 −

3∑
r=0

P2r+1er

)
.

Proof. Using (4), we have

n∑
r=0

QBr =

( n∑
r=0

Br

)
e0 +

( n∑
r=0

Br+1

)
e1

+

( n∑
r=0

Br+2

)
e2 +

( n∑
r=0

Br+3

)
e3

=

[
1

4
(Bn+2 −Bn+1 − 1)

]
e0 +

[
1

4
(Bn+3 −Bn+2 − 5)

]
e1

+

[
1

4
(Bn+4 −Bn+3 − 29)

]
e2 +

[
1

4
(Bn+5 −Bn+4 − 169)

]
e3

=
1

4

( 3∑
r=0

Bn+2+rer −
3∑
r=0

Bn+1+r −
3∑
r=0

P2r+1er

)

=
1

4

(
QBn+2 −QBn+1 −

3∑
r=0

P2r+1er

)
,

which completes the proof. �

The following result gives a general relation concerning balancing and Lucas-
-balancing quaternions.

Theorem 6. For m,n ≥ 0,

QBmn =

n∑
r=0

(
n

r

)
(−1)n−rBrmB

n−r
m−1QBr ,

and

QCmn =

n∑
r=0

(
n

r

)
(−1)n−rCrmC

n−r
m−1QCr .

Proof. Using the identity

Bkm+n =

m∑
r=0

(
m

r

)
(−1)m−rBrkB

m−r
k−1 Br+n ([12, Eq. (11)]),
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we have

QBmn =

3∑
l=0

Bmn+lel

=

3∑
l=0

( n∑
r=0

(
n

r

)
(−1)n−rBrmB

n−r
m−1Br+l

)
el

=
n∑
r=0

(
n

r

)
(−1)n−rBrmB

n−r
m−1

( 3∑
l=0

Br+lel

)
,

which completes the proof of the first part. The second part can be obtained
similarly using the identity

Ckm+n =

m∑
r=0

(
m

r

)
(−1)m−rBrkB

m−r
k−1 Cr+n ([12, Theorem 2.1]). �

The next result follows directly from Theorem 6 by setting m = 2.

Corollary 2. For n ≥ 0,

QB2n =

n∑
r=0

(
n

r

)
(−1)n−r6rQBr ,

and

QC2n =

n∑
r=0

(
n

r

)
(−1)n−r6rQCr .

The balancing and Lucas-balancing sums involving binomial coefficients were
studied in [13]. The following are analogous to the identities studied in Theo-
rem 4.1, [13].

Theorem 7. For any positive integers m and k with m > k ≥ 0, we have

n∑
r=0

QBmr+k =
(QBk −QBmn+m+k) + (QBmn+k −QBk−m)

2(1−QCm)

and
n∑
r=0

QCmr+k =
(QCk −QCmn+m+k) + (QCmn+k −QCk−m)

2(1−QCm)
.
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Proof. Using the Binet formula for balancing quaternions, we obtain

n∑
r=0

QBmr+k =

n∑
r=0

Aλmr+k1 −Bλmr+k2

λ1 − λ2

=
1

λ1 − λ2

(
Aλk1

n∑
r=0

λmr1 −Bλk2
n∑
r=0

λmr2

)

=
1

λ1 − λ2

[
Aλk1

(
λmn+m1 − 1

λm1 − 1

)
−Bλk2

(
λmn+m2 − 1

λm2 − 1

)]

=
1

λ1 − λ2

[
A

(
λmn+m+k
1 − λk1
λm1 − 1

)
−B

(
λmn+m+k
2 − λk2
λm2 − 1

)]

=
1

λ1 − λ2

[
(Aλk1 −Bλk2)

2− (λm1 + λm2 )
− (Aλmn+m+k

1 −Bλmn+m+k
2 )

2− (λm1 + λm2 )

]

+

[
(Aλmn+k1 −Bλmn+k2 )

2− (λm1 + λm2 )
− (Aλk−m1 −Bλk−m2 )

2− (λm1 + λm2 )

]

=
(QBk −QBmn+m+k) + (QBmn+k −QBk−m)

2(1−QCm)
.

The proof for the Lucas-balancing quaternions is similar. �

The following result is an immediate consequence of the above result.

Corollary 3. For m ≥ 0, we have

n∑
r=0

QBmr =
(QB0 −QBmn+m) + (QBmn +QBm)

2(1−QCm)
,

and
n∑
r=0

QBr =
(QB0 −QBn+1) + (QBn +QB1)

2(1−QC1)
.

4 Generating functions for balancing and Lucas-balancing quater-
nions

Generating functions are used to solve linear recurrence relations with constant
coefficients. Recall that a generating function for a sequence {an} of real numbers
is defined by

L(s) =

∞∑
n=0

ans
n .

The generating function for the balancing sequence is given by

G(s) =
s

1− 6s+ s2
([2, Theorem 6.1])
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whereas that for the Lucas-balancing sequence is

g(s) =
1− 3s

1− 6s+ s2
([3, Proposition 4.4]).

In order to find the generating functions for both QBn and QCn, we need the
following result.

Theorem 8. For any natural numbers k and m with k > m ≥ 0 and n ∈ N, the
generating functions of QBkn+m and QCkn+m are respectively

∞∑
n=0

QBkn+ms
n =

QBm −QBm−ks
1− 2Cks+ s2

and
∞∑
n=0

QCkn+ms
n =

QCm −QCm−ks
1− 2Cks+ s2

.

Proof. Using the Binet formula for QBn, we have

∞∑
n=0

QBkn+ms
n =

∞∑
n=0

(
Aλkn+m1 −Bλkn+m2

λ1 − λ2

)
sn

=
1

λ1 − λ2

(
Aλm1

1− λk1s
− Bλm2

1− λk2s

)
=

1

λ1 − λ2

[
(Aλm1 −Bλm2 )− (Aλm−k1 −Bλm−k2 )s

1− (λk1 + λk2)s+ s2

]
=
QBm −QBm−ks

1− 2Cks+ s2
,

which is the desired result. For QCkn+m the proof is similar as QBkn+m. �

The following results are direct consequences of Theorem 8.

Corollary 4. The generating function GQ(s) for balancing quaternions and gQ(s)
for Lucas-balancing quaternions are respectively

GQ(s) =
se0 + e1 + (6− s)e2 + (35− 6s)e3

1− 6s+ s2

and

gQ(s) =
(1− 3s)e0 + (3− s)e1 + (17− 3s)e2 + (99− 17s)e3

1− 6s+ s2
.

Proof. Let the generating function for QBn be

GQ(s) =

∞∑
n=0

QBns
n .
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By putting k = 1 and m = 0, Theorem 8 becomes

GQ(s) =
1

1− 6s+ s2

3∑
r=0

(Br −Br−1s)er

=
se0 + e1 + (6− s)e2 + (35− 6s)e3

1− 6s+ s2
,

which completes the proof. The proof is similar for Lucas-balancing quaternions.
�

The next results demonstrate the exponential generating functions and Poission
generating functions for both balancing and Lucas-balancing quaternions.

Theorem 9. For m,n ∈ N, the exponential generating functions of the quaternions
QBm+n and QCm+n are respectively

∞∑
n=0

QBm+n

n!
sn =

Aλm1 e
λ1s −Bλm2 eλ2s

λ1 − λ2

and
∞∑
n=0

QCm+n

n!
sn =

Aλm1 e
λ1s +Bλm2 e

λ2s

2
.

Proof. Using Binet’s formula for QBm+n, we have

∞∑
n=0

QBm+n
sn

n!
=

∞∑
n=0

(
Aλm+n

1 −Bλm+n
2

λ1 − λ2

)
sn

n!

=
Aλm1
λ1 − λ2

∞∑
n=0

(λ1s)
n

n!
− Bλm2
λ1 − λ2

∞∑
n=0

(λ2s)
n

n!

=

(
Aλm1
λ1 − λ2

)
eλ1s −

(
Bλm2
λ1 − λ2

)
eλ2s ,

and the result follows. Further simplification gives

∞∑
n=0

QBm+n

n!
sn = QCm

( ∞∑
n=0

Bn
sn

n!

)
+QBm

( ∞∑
n=0

Cn
sn

n!

)
.

The proof for the Lucas-balancing quaternions is similar. �

Corollary 5. The exponential generating functions for balancing and Lucas-balancing
quaternions are respectively

∞∑
n=0

QBn
n!

sn =
Aeλ1s −Beλ2s

λ1 − λ2
and

∞∑
n=0

QCn
n!

sn =
Aeλ1s +Beλ2s

2
.
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The following result relating to Poisson generating functions is an immediate
consequence of Theorem 9 because Poisson generating functions for balancing and
Lucas-balancing quaternions can be obtained by multiplying e−s to the exponential
generating functions for both these quaternions.

Corollary 6. The Poisson generating function for balancing and Lucas-balancing
quaternions are

∞∑
n=0

QBn
n!

sne−s =
Aeλ1s −Beλ2s

es(λ1 − λ2)
and

∞∑
n=0

QCn
n!

sne−s =
Aeλ1s +Beλ2s

2es
,

respectively.

The various generating functions discussed above are applied to derive the fol-
lowing identities.

Lemma 3. For any natural number n, QBn+r+1 −QBn+r−1 = 2QCn+r.

Proof. Using Proposition 5, we get

∞∑
n=0

QBn+r+1s
n −

∞∑
n=0

QBn+r−1s
n =

QBr+1 −QBrs
1− 6s+ s2

− QBr−1 −QBr−2s
1− 6s+ s2

=
(QBr+1 −QBr−1)− (QBr −QBr−2)s

1− 6s+ s2

=
2QCr − 2QCr−1s

1− 6s+ s2

= 2

∞∑
n=0

QCn+rs
n ,

which completes the proof. �

Lemma 4. For any natural number n,

∞∑
n=0

QBn
n!

sn =
e3s√

8

[
QC0 sinh(

√
8s) +

√
8QB0 cosh(

√
8s)
]

and
∞∑
n=0

QCn
n!

sn = e3s
[√

8QB0 sinh(
√

8s) +QC0 cosh(
√

8s)
]
.
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Proof. For any natural number n, we have

∞∑
n=0

QBn
n!

sn =
Aeλ1s −Beλ2s

λ1 − λ2

=
e3s

2
√

8
(Ae

√
8s −Be−

√
8s)

=
e3s

2
√

8

[(
QCr +

√
8QBr

λr1

)
e
√
8s −

(
QCr −

√
8QBr

λr2

)
e−
√
8s

]

=
e3s√

8

[
CrQCr

(
e
√
8s − e−

√
8s

2

)
−
√

8BrQCr

(
e
√
8s + e−

√
8s

2

)

+
√

8CrQBr

(
e
√
8s + e−

√
8s

2

)
− 8BrQBr

(
e
√
8s − e−

√
8s

2

)]

=
e3s√

8

[
sinh(

√
8s) (CrQCr − 8BrQBr)

+
√

8 cosh(
√

8s)(CrQBr −BrQCr)
]
.

Using the Proposition 4 in the above expression we get the desired result. �

Binet’s formulas for balancing and Lucas-balancing quaternions was already
shown in Theorem 1. However, these formulas can also be derived by applying
generating functions for both balancing and Lucas-balancing quaternions as follows.

By virtue of Corollary 4, we have

GQ(s) =
1

1− 6s+ s2

3∑
r=0

(Br −Br−1s)er .

Further simplification using partial fractions reduces the above identity to

GQ(s) =
1

λ1 − λ2

[
QB1 − λ2QB0

1− sλ1
− QB1 − λ1QB0

1− sλ2

]
=

1

λ1 − λ2

[
3∑
s=0

(Bs+1 − λ2Bs)es
∞∑
n=0

λn1 s
n

3∑
s=0

(Bs+1 − λ1Bs)es
∞∑
n=0

λn2 s
n

]

=
1

λ1 − λ2

[
3∑
s=0

λs1es

∞∑
n=0

λn1 s
n −

3∑
s=0

λs2es

∞∑
n=0

λn2 s
n

]
.

That is,

GQ(s) =

∞∑
n=0

QBns
n =

∞∑
n=0

(
Aλn1 −Bλn2
λ1 − λ2

)
sn ,
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and hence the Binet formula for QBn is obtained. Similarly, the Binet formula
for QCn can also be obtained by using the generating function for Lucas-balancing
quaternions.
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