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(φ, ϕ)-derivations on semiprime rings and Banach
algebras

Bilal Ahmad Wani

Abstract. Let R be a semiprime ring with unity e and φ, ϕ be automor-
phisms of R. In this paper it is shown that if R satisfies

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1)

for all x ∈ R and some fixed integer n ≥ 2, then D is an (φ, ϕ)-derivation.
Moreover, this result makes it possible to prove that if R admits an additive
mappings D,G : R→ R satisfying the relations

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)G(x) + G(x)φ(xn−1) + ϕ(x)G(xn−1) ,

2G(xn) = G(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1) ,

for all x ∈ R and some fixed integer n ≥ 2, then D and G are (φ, ϕ)-
-derivations under some torsion restriction. Finally, we apply these purely
ring theoretic results to semi-simple Banach algebras.

1 Introduction and Results
Throughout this paper R will denote an associative ring with the center Z(R).
Recall that a ring R is said to be prime if for any a, b ∈ R, aRb = {0} implies a = 0
or b = 0, and R is semiprime if for any a ∈ R, aRa = {0} implies a = 0. A ring R
is said to be n-torsion free, where n > 1 is an integer, if nx = 0 implies x = 0 for
all x ∈ R. For any x, y ∈ R, the symbol [x, y] will denote the commutator xy− yx.
By a Banach algebra B we mean an algebra equipped with a norm ‖ · ‖ that makes
it into a Banach space and additionally satisfies the inequality ‖uv‖ ≤ ‖u‖‖v‖
for all u, v ∈ B (see [3]). The Jacobson radical of B, denoted by rad(B), is the
intersection of all the primitive ideals of B. An algebra B is called semi-simple
Banach algebra if rad(B) = 0.
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An additive mapping D : R → R is said to be a derivation (resp. Jordan
derivation)on R if

D(xy) = D(x)y + xD(y)

(resp. D(x2) = D(x)x + xD(x)) holds for all x, y ∈ R. A derivation D is inner
if there exists a ∈ R such that D(x) = [a, x] holds for all x ∈ R. It is easy to
verify that every derivation is a Jordan derivation but the converse is not true
in general. A classical result of Herstein [10] states that every Jordan derivation is
a derivation on a prime ring of characteristic different from two. A brief proof of
Herstein’s result can be found in [6]. An additive mapping D : R → R is called a
Jordan triple derivation if

D(xyx) = D(x)yx+ xD(y)x+ xyD(x)

holds for all x, y ∈ R. Obviously, every derivation is a Jordan triple derivation but
not conversely. Brešar [5, Theorem 4.3], established that a Jordan triple derivation
on a 2-torsion free semiprime ring is a derivation. Motivated by the above result,
Vukman [17] recently showed that if D : R → R an additive mapping on a 2-torsion
free semiprime ring R satisfying either

D(xyx) = D(xy)x+ xyD(x)

for all pairs x, y ∈ R or

D(xyx) = D(x)yx+ xD(yx)

for all pairs x, y ∈ R, then D is a derivation. In 2016 Širovnik [16] generalized
the above result. In fact, he established that if D,G : R → R are two additive
mappings on a 2-torsion free semiprime ring R satisfying either

D(xyx) = D(xy)x+ xyG(x)

and
G(xyx) = G(xy)x+ xyD(x)

for all pairs x, y ∈ R or

D(xyx) = D(x)yx+ xG(yx)

and
G(xyx) = G(x)yx+ xD(yx)

for all pairs x, y ∈ R, then D and G are derivations and D = G. Following the
same line, a number of results have been obtained by several authors (see [1], [2],
[4], [8], [12], [13], [14], [15], [18], [19], [20]), where further references can be found.

Let φ, ϕ be any two mappings on R. An additive mapping D : R → R is said
to be an (φ, ϕ)-derivation (resp. Jordan (φ, ϕ)-derivation) on R if

D(xy) = D(x)φ(y) + ϕ(x)D(y)
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(resp. D(x2) = D(x)φ(x)+ϕ(x)D(x)) holds for all x, y ∈ R. An additive mapping
D : R → R is called a Jordan triple (φ, ϕ)-derivation if

D(xyx) = D(x)φ(yx) + ϕ(x)D(y)φ(x) + ϕ(xy)D(x)

holds for all x, y ∈ R. Obviously, every (φ, ϕ)-derivation is a Jordan (φ, ϕ)-
derivation and a Jordan triple (φ, ϕ)-derivation, but not conversely. Brešar and
Vukman [7] obtained that every Jordan (φ, ϕ)-derivation is a (φ, ϕ)-derivation
on a prime ring of characteristic different from two . For these kind of results we
refer the reader to ([9], [11]), where further references can be found. Liu and Shiue
[11] have recently generalized the above result to 2-torsion free semiprime rings.
Moreover in the same paper they showed that every Jordan triple (φ, ϕ)-derivation
is a (φ, ϕ)-derivation on a 2-torsion free semiprime ring.

In view of the above results we begin our investigation by extending the results
of Vukman [17] to (φ, ϕ)-derivations. In fact, we have shown that an additive
mapping D on a semiprime ring R which satisfies either of the identities

D(xyx) = D(xy)φ(x) + ϕ(xy)D(x)

or
D(xyx) = D(x)φ(yx) + ϕ(x)D(yx)

for all x, y ∈ R is a (φ, ϕ)-derivation. Further, it is also shown that if the additive
mapping D on R satisfies

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1)

for all x ∈ R, then D is a (φ, ϕ)-derivation. Finally, we have shown that under
what conditions and additive mapping D on R satisfying

D(xn) =
n∑

j=1

φ(xn−j)D(x)ϕ(xj−1) for all x ∈ R

is an (φ, ϕ)-derivations.

2 Main Results
We facilitate our investigation with the following theorem:

Theorem 1. Let R be a 2-torsion free semiprime ring and φ, ϕ be automorphisms
of R. Suppose D : R → R is an additive mapping such that either

D(xyx) = D(xy)φ(x) + ϕ(xy)D(x) for all x, y ∈ R, (1)

or
D(xyx) = D(x)φ(yx) + ϕ(x)D(yx) for all x, y ∈ R. (2)

Then D is a (φ, ϕ)-derivation.

For developing the proof of our theorem, we need the following Lemma.



374 Bilal Ahmad Wani

Lemma 1. Let R be a semiprime ring and φ be an automorphism of R. Suppose
f : R → R is an additive mapping such that either f(x)φ(x) = 0 holds for all x ∈ R
or φ(x)f(x) = 0 holds for all x ∈ R, then f = 0.

Proof. Since, we have
f(x)φ(x) = 0 for all x ∈ R. (3)

The linearization of the above relation gives

f(x)φ(y) + f(y)φ(x) = 0 for all x, y ∈ R. (4)

Replace y by y2 in the above equation, we see that

f(x)φ(y2) + f(y2)φ(x) = 0 for all x, y ∈ R. (5)

Right multiplication of (4) by φ(y) gives

f(x)φ(y2) + f(y)φ(x)φ(y) = 0 for all x, y ∈ R. (6)

By comparing (5) and (6), we obtain

f(y2)φ(x)− f(y)φ(x)φ(y) = 0 for all x, y ∈ R. (7)

Since φ is an automorphism, we have

f(y2)z − f(y)zφ(y) = 0 for all y, z ∈ R.

Replace z by φ(x)f(y) in the above relation, and use (3), we obtain,

f(y2)φ(x)f(y) = 0 for all x, y ∈ R.

In view of the above relation right multiplication of (7) by f(y) yields

f(y)φ(x)φ(y)f(y) = 0

for all x, y ∈ R, which leads to φ(y)f(y)φ(x)φ(y)f(y) = 0 for all x, y ∈ R. Hence
we have

φ(y)f(y) = 0 for all y ∈ R. (8)

Right multiplication of (4) by f(x) and using (8), we find that

f(x)φ(y)f(x) = 0 for all x, y ∈ R.

Since R is semiprime, it follows that f = 0, which completes the proof. �

Proof. [Proof of Theorem 1] We will restrict our attention on the relation (1),
the proof in case when R satisfies the relation (2) is similar and will therefore be
omitted. Linearize the relation (1), we see that

D(xyz + zyx) = D(xy)φ(z) +D(zy)φ(x) + ϕ(xy)D(z) + ϕ(zy)D(x),
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for all x, y, z ∈ R. In particular for z = x2, the above relation gives

D(xyx2 + x2yx) = D(xy)φ(x2) +D(x2y)φ(x) + ϕ(xy)D(x2) + ϕ(x2y)D(x), (9)

for all x, y,∈ R. Putting xy + yx for y in (1) and applying the relation (1), we
obtain

D(xyx2 + x2yx) = D(x2y + xyx)φ(x) + ϕ(x2y + xyx)D(x) (10)

= D(x2y)φ(x) +D(xy)φ(x2) + ϕ(xy)D(x)φ(x)
+ ϕ(x2y)D(x) + ϕ(xyx)D(x),

for all x, y ∈ R. By comparing (9) and (10), we have

ϕ(x)ϕ(y)A(x) = 0, for all x, y ∈ R, (11)

where A(x) stands for D(x2)−D(x)φ(x)−ϕ(x)D(x). Since ϕ is surjective, we have

ϕ(x)zA(x) = 0, for all x, z ∈ R. (12)

Right multiplication of (12) by ϕ(x) and left multiplication by A(x) gives,

A(x)ϕ(x)zA(x)ϕ(x) = 0, for all x, z ∈ R.

By the semiprimeness of R, it follows that

A(x)ϕ(x) = 0, for all x ∈ R. (13)

The substitution of A(x)yϕ(x) for z in the relation (12), gives

ϕ(x)A(x)yϕ(x)A(x) = 0

for all pairs x, y ∈ R. Hence, we obtain

ϕ(x)A(x) = 0, for all x ∈ R. (14)

The linearization of the relation (13) gives

B(x, y)ϕ(x) +A(x)ϕ(y) +B(x, y)ϕ(y) +A(y)ϕ(x) = 0

for all pairs x, y ∈ R, where B(x, y) denotes

D(xy + yx)−D(x)φ(y)− ϕ(x)D(y)−D(y)φ(x)− ϕ(y)D(x).

Putting in the above relation −x for x and comparing the relation so obtained with
the above relation one obtains

B(x, y)ϕ(x) +A(x)ϕ(y) = 0, for all x, y ∈ R.

In view of the relation (14), right multiplication by A(x) gives, A(x)ϕ(y)A(x) = 0
for all pairs x, y ∈ R. Hence it follows that A(x) = 0 for all x ∈ R. In other words,
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D is a Jordan (φ, ϕ)-derivation. By [11, Corollary 1] one can conclude that D is
a (φ, ϕ)-derivation. It is our aim to show that Theorem 1 can be proved without
using [11, Corollary 1]. From the fact that D is a Jordan (φ, ϕ)-derivation, it
follows that D is a Jordan triple (φ, ϕ)-derivation. Now, comparing the relation
D(xyx) = D(x)φ(yx) + ϕ(x)D(y)φ(x) + ϕ(xy)D(x), for all x, y ∈ R, with the
relation (1), we get(

D(xy)−D(x)φ(y)− ϕ(x)D(y)
)
φ(x) = 0, for all x, y ∈ R.

For any fixed y ∈ R, we have an additive mapping x 7→ D(xy) − D(x)φ(y) −
ϕ(x)D(y) on R. Thus from the above relation and Lemma 1 it follows that D(xy)−
D(x)φ(y) − ϕ(x)D(y) = 0 for all pairs x, y ∈ R. In other words, D is a (φ, ϕ)-
derivation. This completes the proof.

�

Remark 1. It is to be noted that if φ and ϕ are the identity automorphisms on R,
then the above result reduces to the [17, Theorem 2].

Theorem 2. Let R be a 2-torsion free semiprime ring and φ, ϕ be automorphisms
of R. Suppose D : R → R is an additive mapping such that either

D(xyx) = D(xy)φ(x)− ϕ(xy)D(x) for all x, y ∈ R, (15)

or
D(xyx) = D(x)φ(yx)− ϕ(x)D(yx) for all x, y ∈ R. (16)

Then D = 0.

Proof. We will restrict our attention on the relation (15), the proof in the other
case is similar. Linearization of the relation (15) gives

D(xyz + zyx) = D(xy)φ(z) +D(zy)φ(x)− ϕ(xy)D(z)− ϕ(zy)D(x),

for all x, y, z ∈ R. Following the same procedure as used in the above theo-
rem we get, A(x) = 0 for all pairs x, y ∈ R, where A(x) stands for D(x2) −
D(x)φ(x) − ϕ(x)D(x). Thus D is a Jordan (φ, ϕ)-derivation and hence it fol-
lows that D is a Jordan triple (φ, ϕ)-derivation. Now, comparing the relation
D(xyx) = D(x)φ(yx) + ϕ(x)D(y)φ(x) + ϕ(xy)D(x), for all x, y ∈ R, with the
relation (15), one obtains

ϕ(x)ϕ(y)D(x) = 0, for all x, y ∈ R. (17)

Since ϕ is surjective, we have

ϕ(x)zD(x) = 0, for all x, z ∈ R. (18)

Right multiplication of (18) by ϕ(x) and left multiplication by D(x) gives

D(x)ϕ(x)zD(x)ϕ(x) = 0, for all x, z ∈ R.
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By the semiprimeness of R it follows that

D(x)ϕ(x) = 0, for all x ∈ R. (19)

The substitution of D(x)yϕ(x) for z in the relation (18), gives

ϕ(x)D(x)yϕ(x)D(x) = 0

for all pairs x, y ∈ R. Hence, we obtain

ϕ(x)D(x) = 0, for all x, y ∈ R. (20)

The linearization of the relation (19) gives

D(x)ϕ(y) +D(y)ϕ(x) = 0, for all x, y ∈ R.

In view of the relation (20), right multiplication by D(x) gives,

D(x)ϕ(y)D(x) = 0, for all x, y ∈ R.

Hence it follows that D = 0, which completes the proof. �

Corollary 1. Let R be a 2-torsion free semiprime ring and φ, ϕ be automorphisms
of R. Suppose D,G : R → R is an additive mappings such that either

D(xyx) = D(xy)φ(x) + ϕ(xy)G(x), (21)

G(xyx) = G(xy)φ(x) + ϕ(xy)D(x) for all x, y ∈ R,

or

D(xyx) = D(x)φ(yx) + ϕ(x)G(yx), (22)

G(xyx) = G(x)φ(yx) + ϕ(x)D(yx) for all x, y ∈ R.

Then D and G are (φ, ϕ)-derivations and D = G.

Proof. We will restrict our attention on the relations (21), the proof in case we
have the relations (22) is similar and will therefore be omitted. Thus the relations
are

D(xyx) = D(xy)φ(x) + ϕ(xy)G(x), for all x, y ∈ R, (23)

G(xyx) = G(xy)φ(x) + ϕ(xy)D(x), for all x, y ∈ R. (24)

Combining the relations (24) and (23), gives

T (xyx) = T (xy)φ(x)− ϕ(xy)T (x), for all x, y ∈ R, (25)

where T = D − G. By applying Theorem 2 one obtains that D = G. Thus relation
(21) reduces to

D(xyx) = D(xy)φ(x) + ϕ(xy)D(x), for all x, y ∈ R.

Using Theorem 1, it follows that D is a (φ, ϕ)-derivation, which completes the
proof. �
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Disadvantage of Theorem 1 is that in identities (1) and (2) there is no symmetry.
Therefore, Theorem 1, together with the desire for symmetry leads to the following
conjecture.

Conjecture 1. LetR be a 2-torsion free semiprime ring and φ, ϕ be automorphisms
of R. Suppose D : R → R is an additive mapping such that

2D(xyx) = D(xy)φ(x) + ϕ(xy)D(x) +D(x)φ(yx) + ϕ(x)D(yx), (26)

holds for all pairs x, y ∈ R. Then D is a (φ, ϕ)-derivation.

Note that in case a ring has the identity element, the proof of the above conjecture
is immediate. The substitution y = e in the relation (26), where e stands for the
identity element, gives that D is a Jordan (φ, ϕ)-derivation and then it follows
from [11, Corollary 1] that D is a (φ, ϕ)-derivation.

The substitution of y = xn−2 in the relation (26) gives

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1),

which leads to the following conjecture.

Conjecture 2. Let R be a semiprime ring with a suitable torsion restriction and φ,
ϕ be automorphisms of R. Suppose D : R → R is an additive mapping such that

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1),

holds for all x ∈ R and some fixed integer n ≥ 2. Then D is a (φ, ϕ)-derivation.

Now we prove the above conjecture in case a ring has the identity element.

Theorem 3. Let R be a (n− 1)!-torsion free semiprime ring with identity e and φ,
ϕ be automorphisms of R. Suppose D : R → R is an additive mapping such that

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1),

for all x ∈ R and some fixed integer n ≥ 2. Then D is a (φ, ϕ)-derivation.

Proof. We have the relation

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1), (27)

holds for all x ∈ R. The substitution of x = e in the relation (27) gives D(e) = 0.
Let y be any element of the center Z(R). Putting x+y for x in the above relation,
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we obtain

2

n∑
i=0

(
n

i

)
D(xn−iyi) =

( n−1∑
i=0

(
n− 1

i

)
D(xn−1−iyi)

)
φ(x+ y)

+

( n−1∑
i=0

(
n− 1

i

)
ϕ(xn−1−iyi)

)
D(x+ y)

+D(x+ y)

( n−1∑
i=0

(
n− 1

i

)
φ(xn−1−iyi)

)

+ ϕ(x+ y)

( n−1∑
i=0

(
n− 1

i

)
D(xn−1−iyi)

)
.

Using (27) in the above relation and rearranging it in sense of collecting together
terms involving equal number of factors of y, we obtain

n−1∑
i=1

fi(x, y) = 0, (28)

where fi(x, y) stands for the expression of terms involving i factors of y. Replace x
by x+2y, x+3y, . . . , x+(n−1)y in the relation (27) and expressing the resulting
system of (n− 2) homogeneous equations of variables fi(x, y) for i = 1, 2, . . . n− 1
together with (28), we see that the coefficient matrix of the system of (n − 1)
homogenous equations is a Van-der Monde matrix

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n− 1 (n− 1)2 . . . (n− 1)n−1

 .

Since the determinant of this matrix is different from zero, it follows that the system
has only a trivial solution. In particular, if y is replaced with the identity element
e, we obtain

fn−2(x, e) = 2

(
n

n− 2

)
D(x2)−

(
n− 1

n− 2

)
D(x)φ(x)−

(
n− 1

n− 3

)
D(x2)

−
(
n− 1

n− 2

)
ϕ(x)D(x)−

(
n− 1

n− 3

)
ϕ(x2)D(e)−

(
n− 1

n− 2

)
D(x)φ(x)

−
(
n− 1

n− 3

)
D(e)φ(x2)−

(
n− 1

n− 3

)
D(x2)−

(
n− 1

n− 2

)
ϕ(x)D(x).

After few calculations and considering the relation D(e) = 0, we obtain

(n(n− 1)− (n− 1)(n− 2))D(x2) = 2(n− 1)
(
D(x)φ(x) + ϕ(x)D(x)

)
.

Since R is (n− 1)!-torsion free, it follows from the above relation that

D(x2) = D(x)φ(x) + ϕ(x)D(x) for all x ∈ R.
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HenceD is a Jordan (φ, ϕ)-derivation. By [11, Corollary 1], D is a (φ, ϕ)-derivation,
which completes the proof. �

Theorem 4. Let R be a (n− 1)!-torsion free semiprime ring with identity e and φ,
ϕ be automorphisms of R. Suppose there exist additive mappings D,G : R → R
satisfying the relations

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)G(x) + G(x)φ(xn−1) + ϕ(x)G(xn−1),

2G(xn) = G(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1),

for all x ∈ R and some fixed integer n ≥ 2. Then D and G are (φ, ϕ)-derivations.

Proof. We have

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)G(x) + G(x)φ(xn−1) + ϕ(x)G(xn−1), (29)

2G(xn) = G(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1), (30)

for all x ∈ R, where n ≥ 2 is a fixed integer. Subtracting the two relations of
equation, we obtain

2T (xn) = T (xn−1)φ(x)− ϕ(xn−1)T (x)− T (x)φ(xn−1)− ϕ(x)T (xn−1), (31)

where T = D − G. We denote the identity element of the ring R by e. Putting e
for x in the above relation gives

T (e) = 0. (32)

Let y be any element of the center Z(R). Putting x + y for x in the relation 31
and follow the same procedure as used in Theorem 3, we arrive at

fn−1(x, e) = 2

(
n

n− 1

)
T (x)−

(
n− 1

n− 1

)(
T (e)ϕ(x) + eT (x) + T (x)e+ φ(x)T (e)

)
−
(
n− 1

n− 2

)(
T (x)e+ φ(x)T (e) + T (e)ϕ(x) + eT (x)

)
= 0.

Using 32 in the above identity, we obtain

2nT (x) = 2T (x)− 2(n− 1)T (x)

Since R is (n − 1)!-torsion free, it follows from the above relation that T (x) = 0
for all x ∈ R. Therefore, we get D = G. Thus equations 29 and 30 reduces into
one relation, which is

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1).

Using Theorem 3, we conclude that D and G are (φ, ϕ)-derivations. This
completes the proof. �
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Following are the immediate consequences of above theorems.
Since every semi-simple Banach algebra B is a semiprime ring (see [3] for de-

tails), we have the following results.

Corollary 2. Let B be a semi-simple Banach algebra and φ, ϕ be automorphisms
of B. Suppose D,G : B → B are linear mappings such that either

D(uvu) = D(uv)φ(u) + ϕ(uv)G(u),
G(uvu) = G(uv)φ(u) + ϕ(uv)D(u) for all u, v ∈ B,

or

D(uvu) = D(u)φ(vu) + ϕ(u)G(vu),
G(uvu) = G(u)φ(vu) + ϕ(u)D(vu) for all u, v ∈ B.

Then D and G are (φ, ϕ)-derivations and D = G.

Corollary 3. Let B be a semi-simple Banach algebra with identity e and φ, ϕ be
automorphisms of B. Suppose D,G : B → B are additive mappings such that

2D(un) = D(un−1)φ(u) + ϕ(un−1)G(u) + G(u)φ(un−1) + ϕ(u)G(un−1),

2G(un) = G(un−1)φ(u) + ϕ(un−1)D(u) +D(u)φ(un−1) + ϕ(u)D(un−1),

holds for all u ∈ B and some fixed integer n ≥ 2. Then D and G are (φ, ϕ)-
derivations.

Theorem 4 and Corollary 1 leads to the following conjectures. So, we conclude
our paper by giving the following conjectures:

Conjecture 3. Let R be a semiprime ring with a suitable torsion restriction and φ,
ϕ be automorphisms of R. Suppose D,G : R → R are additive mappings satisfying
the relations

2D(xn) = D(xn−1)φ(x) + ϕ(xn−1)G(x) + G(x)φ(xn−1) + ϕ(x)G(xn−1),

2G(xn) = G(xn−1)φ(x) + ϕ(xn−1)D(x) +D(x)φ(xn−1) + ϕ(x)D(xn−1),

for all x ∈ R and some fixed integer n ≥ 2. Then D and G are (φ, ϕ)-derivations.

Conjecture 4. Let R be a semiprime ring with a suitable torsion restriction and
φ, ϕ be automorphisms of R. Suppose D,G : R → R are additive mappings such
that either

D(x3) = D(x2)φ(x) + ϕ(x2)G(x), (33)

G(x3) = G(x2)φ(x) + ϕ(x2)D(x) for all x, y ∈ R,

or

D(x3) = D(x)φ(x2) + ϕ(x)G(x2), (34)

G(x3) = G(x)φ(x2) + ϕ(x)D(x2) for all x, y ∈ R.

Then D and G are (φ, ϕ)-derivations and D = G.
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Conjecture 5. Let R be a semiprime ring with a suitable torsion restriction and φ,
ϕ be automorphisms of R. Suppose D : R → R is an additive mapping such that

D(xn) =
n∑

j=1

φ(xn−j)D(x)ϕ(xj−1),

holds for all x ∈ R and some fixed integer n ≥ 2. Then D is a (φ, ϕ)-derivation.
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