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Symmetric identity for polynomial sequences
satisfying A′

n+1(x) = (n + 1)An(x)

Farid Bencherif, Rachid Boumahdi, Tarek Garici

Abstract. Using umbral calculus, we establish a symmetric identity for
any sequence of polynomials satisfying A′

n+1(x) = (n+1)An(x) with A0(x)
a constant polynomial. This identity allows us to obtain in a simple way
some known relations involving Apostol-Bernoulli polynomials, Apostol-
-Euler polynomials and generalized Bernoulli polynomials attached to a
primitive Dirichlet character.

1 Introduction and preliminaries
With each formal power series S(z) =

∑∞
k=0 ak

zk

k! ∈ C[[z]] we can associate a
polynomial sequence (Ak(x))k≥0 defined by

∞∑
k=0

Ak(x)
zk

k!
= S(z)exz, (1)

or equivalently by Ak(x) =
∑k
i=0

(
k
i

)
aix

k−i. Clearly

A′k(x) = kAk−1(x), k ≥ 1, A′0(x) = 0. (2)

Reciprocally, it is not difficult to prove that if a polynomial sequence (Ak(x))k≥0
satisfies (2) then (1) holds for

S(z) =

∞∑
k=0

Ak(0)
zk

k!
.
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Apostol-Bernoulli polynomials (Bk(x;λ))k≥0 and Apostol-Euler polynomials
(Ek(x;λ))k≥0 in the variable x defined for λ ∈ C by

z

λez − 1
exz =

∞∑
k=0

Bk(x;λ)
zk

k!

and for λ ∈ C \ {−1} by

2

λez + 1
exz =

∞∑
k=0

Ek(x;λ)
zk

k!

provide an example of such polynomials. If χ is a primitive Dirichlet character
with conductor f = fχ, then Bn,χ(x), n = 0, 1, 2, . . . , the generalized Bernoulli
polynomials attached to χ are defined by the generating function [1]

Fχ(t, x) =
t

eft − 1

f∑
a=1

χ(a)eatext =

∞∑
n=0

Bn,χ(x)
tn

n!
, |t| < 2π

f
.

The polynomial sequence (Bn,χ(x))n≥0 is another example of polynomial sequence
satisfying (1). Furthermore, if a0 6= 0, the polynomial sequence (Ak(x))k≥0 is
called an Appell sequence [2]. Which is the case for the classical Bernoulli and
Euler polynomials Bk(x) and Ek(x) defined respectively by

z

ez − 1
exz =

∞∑
k=0

Bk(x)
zk

k!

and
2

ez + 1
exz =

∞∑
n=0

Ek(x)
zk

k!
.

In 2003, motivated by the work of Kaneko [8], Momiyama [10] and Wu et
al. [17], Sun [14] derived a general combinatorial identity in terms of polynomials
with dual sequences of coefficients. More precisely, he considered the two following
polynomial sequences

Rk(x) =

k∑
i=0

(
k

i

)
(−1)iuixk−i and R∗k(x) =

k∑
i=0

(
k

i

)
(−1)iu∗i xk−i , (3)

where (un)n≥0 is any complex sequence and (u∗n)n≥0 is its dual sequence defined
for k ≥ 0 by u∗k =

∑k
i=0

(
k
i

)
(−1)iui, and proved [14, Theorem 1.1], for any integers

n,m ≥ 0 and x+ y + z = 1, the following identities

(−1)n−1
m∑
k=0

(
m

k

)
xm−k

Rn+k+1(y)

n+ k + 1

+ (−1)m+1
n∑
k=0

(
n

k

)
xn−k

R∗m+k+1(z)

m+ k + 1
=
m!n!xm+n+1u0
(m+ n+ 1)!

, (4)
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(−1)n−1
m∑
k=0

(
m

k

)
xm−kRn+k(y) + (−1)m

n∑
k=0

(
n

k

)
xn−kR∗m+k(z) = 0 , (5)

(−1)n
{ m∑
k=0

(
m+ 1

k

)
xm+1−k(n+ 1 + k)Rn+k(y)

+ (n+m+ 2)Rn+m+1(y)

}
+ (−1)m

{ n∑
k=0

(
n+ 1

k

)
xn+1−k(m+ 1 + k)R∗m+k(z)

+ (n+m+ 2)R∗m+n+1(z)

}
= 0 . (6)

Which allowed him to derive various known identities involving Bernoulli numbers.

Chen and Sun [3], by applying the extended Zeilberger’s algorithm, established
several recurrence relations for Bernoulli numbers and polynomials which generalize
the relations of Momiyama [10], Gessel [6] and Gelfand [5]. Prévost [11], by using
the Padé approximation of the exponential function, extended Chen and Sun’s
results and obtained numerous recurrence relations involving Apostol-Bernoulli
polynomials Bk(x;λ) or Apostol-Euler polynomials Ek(x;λ). Recently, Agoh [1]
found some shortened recurrence relations for generalized Bernoulli polynomials
attached to a primitive Dirichlet character χ which allowed him to reprove and
generalize several identities on classical Bernoulli numbers and polynomials such
as Saalschütz-Gelfand [5], von Ettingshausen-Seidel-Stern-Kaneko’s [15], [16], [13],
[8] and Chen and Sun [3] formulas. In particular, he showed [1, Theorem 2.1] that
for any integers n,m ≥ 0 and s ≥ 1, we have

m∑
k=0

(
m

k

)
(sf)m−kBn+1+k,χ(x)

n+ 1 + k
−

n∑
k=0

(
n

k

)
(−1)n−k (sf)

n−kBm+1+k,χ(x)

m+ 1 + k

=

f∑
a=1

χ(a)

s−1∑
r=0

(a+ x+ rf)m(a+ x+ (r − s)f)n

+
(−1)n+1

m+ n+ 1

(
n+m

n

)−1
(sf)n+m+1B0,χ(x) . (7)

With the use of the well-known relation [1, Eq. (2.4)]

Bn,χ(x+ sf) = Bn,χ(x) +

s−1∑
k=0

f∑
a=1

χ(a)n(a+ x+ kf)n−1, (8)

where n and s are non-negative integers, identity (7) can be deduced from the
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following relation, due to He and Zhang [7, Theorem 1.2]

m∑
k=0

(
m

k

)
αm−kAn+k+q(x)

(n+ q + k)q
−

n∑
k=0

(
n

k

)
(−1)n−kα

n−kAm+q+k(x+ α)

(m+ q + k)q

=
(−1)n+1αn+m+1

(q − 1)!

∫ 1

0

(1− t)mtnAq−1(x+ αt) dt , (9)

where (An(x))n≥0 is any sequence of polynomials defined by relation (1), α a
complex number, and n,m ≥ 0, q ≥ 1 any integers. Recall that the falling factorial
zq is a polynomial in z defined by z0 = 1 and

zq =

q−1∏
j=0

(z − j) ,

for q ≥ 1.
It is the main aim of this paper to establish in Theorem 1 a Saalschütz-Gelfand

type identity for the polynomial sequence (An(x))n≥0 satisfying (2). This identity
allows us to reprove some known identities for generalized Bernoulli polynomials
attached to a primitive Dirichlet character due to Agoh [1] and Apostol-Bernoulli
polynomials due to Prévost [11, Theorem 2] in a simple way.

2 Main result
Before giving our main result it is convenient to have the following lemma.

Lemma 1. For any non-negative integers n, m and q, we have the following identity

m∑
k=0

(
m

k

)
zn+k+q

(n+ k + q)q
−

n∑
k=0

(
n

k

)
(−1)n−k (1 + z)m+k+q

(m+ k + q)q

=
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
m!(n+ q − k − 1)!

(m+ n+ q − k)!
zk . (10)

Proof. Consider the polynomial P (z) = zn(1 + z)m and let Q(z) denote the q-fold
primitive of P (z) defined by

Q(z) =

∫ z

0

∫ z1

0

· · ·
∫ zq−1

0

P (t) dtdzq−1 · · · dz1 . (11)

On the one hand, by the Cauchy well-known formula [4, p. 115] for repeated inte-
gration, we have

Q(z) =
1

(q − 1)!

∫ z

0

(z − t)q−1P (t) dt . (12)
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Changing variable t into u− 1 in the right-hand side of (12) gives

Q(z) =
1

(q − 1)!

∫ z+1

0

((z + 1)− u)q−1um(u− 1)n du

− 1

(q − 1)!

∫ 1

0

(z + (1− u))q−1um(u− 1)n du

=

n∑
k=0

(
n

k

)
(−1)n−k 1

(q − 1)!

∫ z+1

0

((z + 1)− u)q−1um+k du

− 1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
(−1)nzk

∫ 1

0

um(1− u)n+q−k−1 du .

Recall that for any non-negative integers i and j,∫ 1

0

ui(1− u)j du =
i!j!

(i+ j + 1)!

and for any non-negative integer k, from the Cauchy formula (12) we have

1

(q − 1)!

∫ z

0

(z − u)q−1uk du =
zk+q

(k + q)q
. (13)

From this, we can deduce that

Q(z) =

n∑
k=0

(
n

k

)
(−1)n−k (z + 1)m+k+q

(m+ k + q)q

− 1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
(−1)nm!(n+ q − k − 1)!

(m+ n+ q − k)!
zk . (14)

On the other hand, expanding P (t) in (11) and using the well-known identity∫ z

0

∫ z1

0

· · ·
∫ zq−1

0

tn+k dtdzq−1 · · · dz1 =
zn+k+q

(n+ k + q)q
,

where k is any non-negative integer, give

Q(z) =

m∑
k=0

(
m

k

)
zn+k+q

(n+ k + q)q
. (15)

Finally, by equalling both expressions (14) and (15) of Q(z) we obtain (10). �

Theorem 1. Let S(z) ∈ C[[z]] be a formal power series and (Ak(x))k≥0 be a se-
quence of polynomials given by

+∞∑
k=0

Ak(x)
zk

k!
= S(z)exz . (16)
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For any complex number α and any integers n, m ≥ 0 and q ≥ 1, we have

m∑
k=0

(
m

k

)
αm−kAn+q+k(x)

(n+ q + k)q
−

n∑
k=0

(
n

k

)
(−1)n−kα

n−kAm+q+k(x+ α)

(m+ q + k)q

=
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
αn+m+q−km!(n+ q − k − 1)!

(m+ n+ q − k)!
Ak(x) . (17)

Proof. Let

S(z) =

∞∑
k=0

ak
zk

k!
.

Then, from (16) we have, for r ≥ 0,

Ar(x) =

r∑
k=0

(
r

k

)
ar−kx

k .

Inspired by the work of Rota [12], let us consider the linear map L from C[x, y] to
C[x] defined for any non-negative integers r and s by

L(xrys) = asx
r . (18)

For α = 0, it is obvious that equation (17) holds. Assume that α 6= 0. As for any
r ≥ 0 we have

L((x+ y)r) =

r∑
i=0

(
r

i

)
ar−ix

i = Ar(x),

L((x+ α+ y)r) =

r∑
i=0

(
r

i

)
ar−i(x+ α)i = Ar(x+ α) ,

replacing z with (x+yα ) in (10) and applying L we get the desired relation (17). �

Remark 1. If I and J denote respectively the right-hand sides of relations (9) and
(17), then it is not difficult to show that I = J . In fact, for each fixed x and α, the
Taylor expansion of the polynomial Aq−1(x+ αt) in power of t is given by

Aq−1(x+ αt) =

q−1∑
k=0

(
q − 1

k

)
tq−1−kαq−1−kAk(x) .

Thus,

J =
αn+m+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
αq−1−kAk(x)

∫ 1

0

tn+q−1−k(1− t)m dt = I .

Which leads to another proof of Theorem 1.2 of He and Zhang [7].
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3 Corollaries
Using Theorem 1, we can give an alternative proof of He and Zhang’s theorem [7,
Theorem 1.1 and Corollary 1.2] as follows.

Corollary 1. Let S(z) ∈ C[[z]] be a formal power series and (Ak(x))k≥0 be a se-
quence of polynomials given by

+∞∑
k=0

Ak(x)
zk

k!
= S(z)exz .

For any complex number α and any non-negative integers n, m and q, we have

m∑
k=0

(
m

k

)
(n+ k)qαm−kAn−q+k(x)

−
n∑
k=0

(
n

k

)
(−1)n−k(m+ k)qαn−kAm−q+k(x+ α) = 0 . (19)

Proof. From (2) we have for each k ≥ 1, A′k(x) = kAk−1(x) and A′0(x) = 0. Taking
q = 1 in relation (17) and then differentiating the obtained relation q + 1 times
with respect to x gives (19). �

Remark 2. Relation (19) is clearly satisfied for α = 0. Note that in the case α 6= 0
relation (19) can also be obtained by using the same method as in the proof of
Theorem 1. Indeed, by differentiating the following identity

m∑
k=0

(
m

k

)
zn+k =

n∑
k=0

(
n

k

)
(−1)n−k(1 + z)m+k

q times with respect to z, we obtain
m∑
k=0

(
m

k

)
(n+ k)qzn−q+k −

n∑
k=0

(
n

k

)
(−1)n−k(m+ k)q(1 + z)m−q+k = 0 .

Replacing z with (x+yα ) and applying the linear map L defined by (18) we get (19).

Next applying Theorem 1 and Corollary 1 for α = sf to the sequence

(Bn,χ(x))n≥0 ,

with the help of relation (8) we get the following two corollaries.

Corollary 2. For integers q, s ≥ 1, and n,m ≥ 0, we have

m∑
k=0

(
m

k

)
(sf)m−kBn+q+k,χ(x)

(n+ q + k)q
−

n∑
k=0

(
n

k

)
(−1)n−k (sf)

n−kBm+q+k,χ(x)

(m+ q + k)q

=

s−1∑
i=0

f∑
a=1

χ(a)

n∑
k=0

(
n

k

)
(−1)n−k (sf)

n−k(a+ x+ if)m+q−1+k

(m+ q − 1 + k)q−1

+
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
(sf)n+m+q−km!(n+ q − k − 1)!

(m+ n+ q − k)!
Bk,χ(x) . (20)
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With the help of relation (13), the right hand-side of (20) can also be written,
for q ≥ 2, as

1

(q − 2)!

s−1∑
i=0

f∑
a=1

χ(a)

∫ a+x+if

0

(a+ x+ if − u)q−2um(u− sf)n du

+
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
(sf)n+m+q−km!(n+ q − k − 1)!

(m+ n+ q − k)!
Bk,χ(x) .

Taking q = 1 in (20) gives immediately Theorem 2.1 of Agoh [1].

Corollary 3. For integers s ≥ 1, and n,m, q ≥ 0, we have

m∑
k=0

(
m

k

)
(n+ k)q(sf)m−kBn−q+k,χ(x)

−
n∑
k=0

(
n

k

)
(−1)n−k(m+ k)q(sf)n−kBm−q+k,χ(x)

= (q+1)!

f∑
a=1

χ(a)

s−1∑
r=0

q+1∑
j=0

(
m

q + 1− j

)(
n

j

)
(a+x+rf)m−q−1+j(a+x+(r−s)f)n−j .

One observes that the left hand side of the previous identity can be expressed
as

dq+1

dxq+1

f∑
a=1

χ(a)

s−1∑
r=0

(a+ x+ rf)m(a+ x+ (r − s)f)n .

By taking respectively q = 0 and q = 1 in Corollary 3, we get Theorems 2.3 and
2.4 of Agoh [1].

The following corollary enables us to obtain Sun’s result by giving different
values to q.

Corollary 4. Let (Rk(x))n≥0 and (R∗k(x))n≥0 be the polynomial sequences defined
by (3), then for any non-negative integers n, m and q and for any complex num-
ber α, we have

(−1)n−1
m∑
k=0

(
m

k

)
αm−k

Rn+k+q(x)

(n+ k + q)q

+ (−1)m+q
n∑
k=0

(
n

k

)
αn−k

R∗m+k+q(1− x− α)
(m+ k + q)q

=
1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
m!(n+ q − k − 1)!

(m+ n+ q − k)!
αm+n+q−kRk(x) , (21)
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(−1)n−1
m∑
k=0

(
m

k

)
αm−k(n+ k)qRn−q+k(x)

+ (−1)m−q
n∑
k=0

(
n

k

)
αn−k(m+ k)qR∗m−q+k(1− x− α) = 0 . (22)

Proof. If

F (z) =

∞∑
k=0

uk
zk

k!

denotes the exponential generating function for the sequence u, then it is easy to
see that the polynomial sequences (Rk(x))k≥0 and (R∗k(x))k≥0 satisfy

+∞∑
k=0

Rk(x)
zk

k!
= F (−z)ezx and

+∞∑
k=0

R∗k(x)
zk

k!
= F (z)ez(x−1) .

Thus, it comes immediately that

Rk(x) = (−1)kR∗k(1− x) .

With this, a direct application of Theorem 1 and Corollary 1 for the polynomial
sequence (Rk(x))k≥0 gives (21) and (22). �

For q = 1 in (21) and q ∈ {0, 1} in (22) we obtain respectively Sun’s results (4),
(5), and (6).

To conclude this section, we deal with Apostol-Bernoulli polynomials
(Bk(x;λ))k≥0 defined [9] for any complex number λ, by means of the following
generating function

zexz

λez − 1
=

∞∑
k=0

Bk(x;λ)
zn

n!
,

with |z + lnλ| < 2π. Let ` be a positive integer. Expanding the both sides of the
functional relation

λ`ze(`+x)z

λez − 1
=

zexz

λez − 1
+

`−1∑
i=0

λizeizexz

into power series of z and then equating the coefficients of zk

k! (k ≥ 0), yields

λ`B0(x+ `;λ) = B0(x;λ)

and

λ`Bk(x+ `;λ) = Bk(x;λ) +
`−1∑
i=0

λik(x+ i)k−1

for k ≥ 1. One can see that the previous equality also holds true even when k = 0.
Therefore, for any positive integer ` and any non-negative integer k

λ`Bk(x+ `;λ) = Bk(x;λ) +
`−1∑
i=0

λik(x+ i)k−1 . (23)
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Theorem 1 enables us to obtain simply the following corollary due to Prévost [11,
Theorem 2].

Corollary 5. For any integers n,m, p ≥ 0 and ` ≥ 1, if p ≥ n+m+ 1 then

m∑
k=0

(
m

k

)
λ`

(n+m− k)!Bp−k(x;λ)
(p− k)!`p−k

−
n∑
k=0

(
n

k

)
(−1)k (n+m− k)!Bp−k(x;λ)

(p− k)!`p−k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)k (n+m− k)!(x+ i)p−k−1

(p− k − 1)!`p−k

− λ` (−1)
nn!m!

p!

p−m−n−1∑
k=0

(
p

k

)(
p−m− k − 1

n

)
Bk(x;λ)

`k
, (24)

and if p ≤ n+m then

min{m,p}∑
k=0

(
m

k

)
λ`

(n+m− k)!Bp−k(x;λ)
(p− k)!`p−k

−
min{n,p}∑
k=0

(
n

k

)
(−1)k (n+m− k)!Bp−k(x;λ)

(p− k)!`p−k

=

`−1∑
i=0

λi
min(p−1,n)∑

k=0

(
n

k

)
(−1)k (n+m− k)!(x+ i)p−k−1

(p− k − 1)!`p−k
. (25)

Proof. Applying Theorem 1 and Corollary 1 for S(z) = z
λez−1 and α = `, multi-

plying the whole by λ` and using identity (23) give

m∑
k=0

(
m

k

)
λ`Bn+q+k(x;λ)

(n+ q + k)q`n+q+k
−

n∑
k=0

(
n

k

)
(−1)n−k Bm+q+k(x;λ)

(m+ q + k)q`m+q+k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)n−k (m+ q + k)(x+ i)m+q+k−1

(m+ q + k)q`m+q+k

+ λ`
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
m!(n+ q − k − 1)!

(n+m+ q − k)!
Bk(x;λ)

`k
,

m∑
k=0

(
m

k

)
(n+ k)q

λ`Bn−q+k(x;λ)
`n−q+k

−
n∑
k=0

(
n

k

)
(−1)n−k(m+ k)q

Bm−q+k(x;λ)
`m−q+k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)n−k(m+ k)q

(m− q + k)(x+ i)m−q+k−1

`m−q+k
.



Symmetric identity for polynomial sequences satisfying A′
n+1(x) = (n+ 1)An(x) 353

Reverse the order of summations in the two previous relations to obtain

m∑
k=0

(
m

k

)
λ`Bn+m+q−k(x;λ)

(n+m+ q − k)q`n+m+q−k

−
n∑
k=0

(
n

k

)
(−1)k Bn+m+q−k(x;λ)

(n+m+ q − k)q`m+n+q−k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)k (n+m+ q − k)(x+ i)n+m+q−k−1

(n+m+ q − k)q`n+m+q−k

+ λ`
(−1)n+1

(q − 1)!

q−1∑
k=0

(
q − 1

k

)
m!(n+ q − k − 1)!

(n+m+ q − k)!
Bk(x;λ)

`k
, (26)

m∑
k=0

(
m

k

)
(n+m− k)q λ

`Bn+m−q−k(x;λ)
`n+m−q−k

−
n∑
k=0

(
n

k

)
(−1)k(n+m− k)qBn+m−q−k(x;λ)

`n+m−q−k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)k(n+m− k)q (n+m− q − k)(x+ i)n+m−q−k−1

`n+m−q+k
. (27)

Suppose first that p ≥ n+m+ 1. Substituting q by p− n−m in (26) gives

m∑
k=0

(
m

k

)
λ`

(n+m− k)!Bp−k(x;λ)
(p− k)!`p−k

−
n∑
k=0

(
n

k

)
(−1)k (n+m− k)!Bp−k(x;λ)

(p− k)!`p−k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)k (n+m− k)!(x+ i)p−k−1

(p− k − 1)!`p−k

− λ` (−1)
nn!m!

p!

p−n−m−1∑
k=0

(
p

k

)(
p−m− k − 1

n

)
Bk(x;λ)

`k
.

Thus, we obtain relation (24). Suppose now that p ≤ n+m. Taking q = n+m− p
in (27) gives

m∑
k=0

(
m

k

)
(n+m− k)n+m−pλ

`Bp−k(x;λ)
`p−k

−
n∑
k=0

(
n

k

)
(−1)k(n+m− k)n+m−pBp−k(x;λ)

`p−k

=

`−1∑
i=0

λi
n∑
k=0

(
n

k

)
(−1)k(n+m− k)n+m−p (p− k)(x+ i)p−k−1

`p+k
. (28)
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Noting that the factor (n+m−k)n+m−p in the left hand side vanishes when k > p,
and the factor (n + m − k)n+m−p(p − k) in the right hand side vanishes when
k > p− 1, relation (28) leads to relation (25). �

Remark 3. In a similar way, by making use of

λ`Ek(x+ `;λ) = (−1)`Ek(x;λ) + 2(−1)`−1
`−1∑
i=0

(−1)iλi(x+ i)k ,

we obtain an identity due to Prévost [11, Theorem 2], for Apostol-Euler polynomials
(Ek(x;λ))k≥0 defined [9] for λ ∈ C \ {−1} by means of the following generating
function

2

λez + 1
exz =

∞∑
n=0

En(x;λ)
zn

n!
(|z + lnλ| < π).
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