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Polynomials and degrees of maps in real normed
algebras

Takis Sakkalis

Abstract. Let A be the algebra of quaternions H or octonions O. In this
manuscript an elementary proof is given, based on ideas of Cauchy and
D’Alembert, of the fact that an ordinary polynomial f(t) ∈ A[t] has a root
in A. As a consequence, the Jacobian determinant |J(f)| is always non-
negative in A. Moreover, using the idea of the topological degree we show
that a regular polynomial g(t) over A has also a root in A. Finally, utilizing
multiplication (∗) in A, we prove various results on the topological degree of
products of maps. In particular, if S is the unit sphere in A and h1, h2 : S →
S are smooth maps, it is shown that deg(h1 ∗ h2) = deg(h1) + deg(h2).

1 Introduction
Eilenberg and Niven in [3], proved the fundamental theorem of algebra (FTA) for
quaternions using a degree argument. The key ingredient was Lemma 2 whose
proof was depended on the positiveness of |J(tn)| at the roots of the equation
tn = i along with the fact that deg(tn) = n for t ∈ S4. Since then, there have been
many proofs of the FTA for A, [5], [6], [8], [9]. All of them, however, follow the
spirit of [3] and are based on homotopy and degree theory.

In this work we first give an elementary proof, based on ideas of analysis rather
than of topology, of the fact that an ordinary polynomial f(t) ∈ A[t] has a root
in A. Further, it is shown that the Jacobian determinant |J(f)| is always non
negative in A, a result similar to the one for holomorphic functions in complex
analysis. Using this fact, we also prove various results on the topological degree –
in the sense of Brower – of products of maps between spheres. In particular, we
show that the degree of h(t) : Sm → Sm, h(t) = tk, k ∈ Z is equal to k, where m is
either 3 or 7.

2020 MSC: 26B10, 12E15, 11R52
Key words: ordinary polynomials; regular polynomials; Jacobians; degrees of maps
Affiliation:

Takis Sakkalis – Mathematics Laboratory, Agricultural University of Athens, 75 Iera
Odos, Athens 11855, Greece
E-mail: psakkalis@aua.gr



44 Takis Sakkalis

We now state some preliminaries needed for this work. We begin with the
description of the normed algebras of quaternions H and octonions O. For further
reading we refer to the work of John Baez, [1].
Quaternions: An element c of H is of the form c = c0 + ic1 + jc2 + kc3, where

ci ∈ R and i, j,k are such that i2 = j2 = k2 = −1 and ij = −ji = k, jk =
−kj = i, ki = −ik = j. The real part of c is Re(c) = c0 while the imaginary part
Im(c) = ic1 + jc2 + kc3. The norm of c, |c| =

√
c20 + c21 + c22 + c23, its conjugate

c̄ = c0 − ic1 − jc2 − kc3 while its inverse is c−1 = c̄ · |c|−2, provided that |c| 6=
0. Element c is called an imaginary unit if Re(c) = 0 and |c| = 1, and it has
the property c2 = −1. In that regard, multiplication in H is associative but not
commutative.
Octonions: An octonion c is an element of the form c = c0 +

∑7
k=1 ek ck,

where c0, ck ∈ R, and e2k = −1. To define the algebra structure of octonions, it is
enough to specify the multiplication table for the imaginary elements e1, . . . , e7.

1

For brevity this can be described as follows: write out seven triples of imaginary
elements (1) e1, e2, e3; (2) e1, e4, e5; (3) e1, e6, e7; (4) e2, e6, e4; (5) e2, e5, e7;
(6) e3, e4, e7 and (7) e3, e5, e6. In each triple, we multiply elements just in the same
way as in quaternions. For example, in triple (3) we have: e1e6 = −e6e1 = e7,
e6e7 = −e7e6 = e1, e7e1 = −e1e7 = e6. The real part of c is Re(c) = c0 while the
imaginary part Im(c) =

∑7
k=1 ekck. The norm of c,

|c| =
√
c20 + c21 + · · ·+ c27 ,

its conjugate c̄ = c0 −
∑7
k=1 ekck while its inverse is c−1 = c̄ · |c|−2, provided that

|c| 6= 0. Element c is called an imaginary unit if Re(c) = 0 and |c| = 1, and
it has the property c2 = −1. The algebra of octonions is non commutative, non
associative, but it is alternative; that is, for every a, b ∈ O, we have (ab)b = a(bb)
and b(ba) = (bb)(a). Moreover, for any octonions a, b, we have

(. . . ((a b)b) . . . b︸ ︷︷ ︸
n times

) = abn.

Throughout this note, A will stand for either H or O equipped with multi-
plication (∗) as defined above. Also, m will either be 3 or 7 and it shall not be
confused with m which might be used as an index. An element c ∈ A can also
be represented via a real matrix C so that xCt = c ∗ x, x = (x0, x1, . . . , xm). For
example, if c = c0 + ic1 + jc2 + kc3 ∈ H, matrix C has the form:

C =


c0 −c1 −c2 −c3
c1 c0 −c3 c2
c2 c3 c0 −c1
c3 −c2 c1 c0


Notice that |C| = |c|4; if c ∈ O, |C| = |c|8. The following notation will be needed

in the sequel:
1There are several ways to define multiplication in O since the vector product of two elements

in R7 is not unique. We opt to choose this way to conform with multiplication in H – as a natural
subset of O – and identify e1 = i, e2 = j and e3 = k.
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Definition 1. For any real-valued (k × k)-matrix B (k = 4, 8) and c ∈ H,O, we
define: cB ≡ CB and Bc ≡ BC, respectively.

The elements c1, c2 ∈ A are called similar, and denoted by c1 ∼ c2, if c1η =
ηc2 for a non zero η ∈ A. Similarity is an equivalence relation and for c ∈ A
let us denote by [c] its equivalence class. The following is a useful criterion of
similarity, [9]:

Proposition 1. c1, c2 ∈ A are similar if and only if Re(c1) = Re(c2) and |Im(c1)| =
|Im(c2)|. Furthermore, any c ∈ A is similar to the complex number α + iβ with
α = Re(c) and |β| = |Im(c)|.

We may identify A with Rm+1 via the map

(x0 +

m∑
k=1

ekxk) 7→ (x0, x1, . . . , xm) .

Let f : A → A. In view of this identification, we can also think of f as a map from
Rm+1 → Rm+1. Indeed, if

f(x0 +

m∑
k=1

ekxk) = f0(x0, x1, . . . , xm) +

m∑
k=1

ekfk(x0, x1, . . . , xm)

we define f : Rm+1 → Rm+1 by f(x0, x1, . . . , xm) = (f0, f1, . . . , fm). We can also
multiply maps in A. For example, if A = H and f, g : H → H, f = (f0, f1, f2, f3),
g = (g0, g1, g2, g3), we define

f ∗ g = (f0g0 − f1g1 − f2g2 − f3g3, f0g1 + f1g0 + f2g3 − f3g2,
f0g2 + f2g0 + f3g1 − f1g3, f0g3 + f3g3 + f1g2 − f2g1).

In addition, if f : A → A, we set in analogy to the real and complex cases.

Definition 2. The Jacobian J(f)(c), c ∈ A, is the matrix
[
∂fi
∂xj

]
, i, j = 0, . . . ,m

evaluated at c. The determinant of J(f) will be denoted by |J(f)|.

2 Polynomials over A
Let n ∈ N ∪ {0} and t, ai ∈ A. A “monomial” of degree n is defined as

φna(t) = a1ta2t . . . ant .

A finite sum of monomials of degree n will be denoted by φn(t). In the above,
special care has to be taken if A = O, where parenthesis are needed to be taken
into account in the definition of φna(t).

Definition 3. A polynomial f(t) : A → A of degree n over A is a function of the
form

f(t) =

n∑
k=0

φk(t) .

Polynomial f(t) shall be called regular if either n = 0 or lim|t|→∞|φn(t)| = ∞;
otherwise f(t) will be called non-regular. Furthermore, f(t) is called ordinary if it
is of the form
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(1) f(t) = ant
n + an−1t

n−1 + · · ·+ a0 or

(2) f(t) = tnan + tn−1an−1 + · · ·+ a0, ai ∈ A

In the former case f is called left while in the latter right.

Example 1. Let f1(t) = it2j + jt2i− 1, f2(t) = itj + jtk + kti + 7 and f3(t) be an
ordinary polynomial. Then, f1 is non regular and f2, f3 are regular.

If c ∈ A with f(c) = 0, then c is called a zero or a root of f . For the sake of
brevity we shall call in the sequel, unless otherwise stated, an ordinary polynomial
simply polynomial. For convenience, we will work with left polynomials and note
that all the results proven hold true for right polynomials as well. To this end we
shall give an elementary proof, based on the ideas of Cauchy and D’Alembert [2],
of the fact that every ordinary polynomial f(t) of positive degree has a root in A,
(Theorem 1). The proof that every regular polynomial of positive degree has also
a root in A will be deferred to the next section.

First we will need the following:

Remark 1. Let n ∈ N and a ∈ A. Then, the equation tn − a = 0 has a solution
in A.

Proof. Let α + iβ ∈ C be similar to a; that is, a = η(α + iβ)η−1. Write α + iβ =

|α+ iβ|eiθ and let b = |α+ iβ|1/neiφ, where φ = θ/n. Then, if ζ = ηbη−1 we have
ζn = ηbnη−1 = a. �

Now we have:

Lemma 1. If f(t) is a polynomial of positive degree n, then for every t0 ∈ A
with f(t0) 6= 0 and for every r > 0, there exists t ∈ A with |t − t0| < r so that
|f(t)| < |f(t0)|.

Proof. We argue by contradiction. Assume then that there exists an r0 > 0 so that
for each |t− t0| ≤ r0,

0 < |f(t0)| ≤ |f(t)| .

We may assume that t0 ∈ R; for if not, replace t with u = t ∗ t0 and thus f(1) =
f(1 ∗ t0) = f(t0).

We now consider the polynomial q(t) = f(t+t0)
f(t0)

. Then, q(t) has degree n and
constant term equal to 1. Also, observe that 1 = q(0) ≤ |q(t)| for all |t| ≤ r0. Now

q(t) = 1 + bkt
k + · · ·+ bnt

n

with bk 6= 0 since t0 ∈ R. Let ζ be a solution of the equation tk = − |bk|bk . Note that
|ζ| = 1. Let I = {rζ : 0 < r ≤ r0}. For rζ ∈ I we have

|q(rζ)| ≤ |1 + bkr
kζk|+ |bk+1r

k+1ζk+1|+ · · ·+ |bnrnζn| .

Now we have
|1 + bkr

kζk| = |1− rk|bk|| = 1− ρk|bk| ,
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for some ρ < r0. Thus we get

|q(ρζ)| ≤ 1− ρk(|bk| − |bk+1|ρ− · · · − |bn|ρn−k) .

Now for perhaps an even smaller 0 < ρ1 < ρ we will have |q(rζ)| < 1 for 0 < r < ρ1,
a contradiction to the fact that |q(t)| ≥ 1 for all |t| ≤ r0. �

Theorem 1. Let f(t) = ant
n + an−1t

n−1 + · · · + a0, with n ≥ 1. Then, f has a
root in A.

Proof. First note that lim|t|→∞|f(t)| = +∞ because lim|t|→∞|antn| = +∞. Let
now

γ = inf{|f(t)| : t ∈ A} .

Since lim|t|→∞|f(t)| = +∞, there exists an r > γ so that

γ = inf{|f(t)| : |t| ≤ r} .

Since the closed ball B = {t ∈ A : |t| ≤ r} is compact and the function t → |f(t)|
is continuous, there must be a t0, |t0| ≤ r with γ = |f(t0)|. Finally observe that
|f(t0)| ≤ |f(t)| for |t| ≤ r. But if f(t0) 6= 0 this contradicts Lemma 1. �

If g(t) = bmt
m+ bm−1t

m−1 + · · ·+ b0 is another polynomial, their product fg(t)
is defined in the usual way:

fg(t) =

m+n∑
k=0

ckt
k , where ck =

k∑
i=0

aibk−i .

Note that in the above setting the multiplication is performed as if the coeffi-
cients were chosen in a commutative field. However, due to the non-commutative
nature of A, we have that (fg)(t) 6= f(t) ∗ g(t), when

(fg)(t) = F0 +

m∑
i=1

eiFi , f = f0 +

m∑
i=1

eifi , g = g0 +

m∑
i=1

eigi .

According to Theorem 1 of [6] an element c ∈ A is a zero of f if and only if there
exists a polynomial g(t) such that f(t) = g(t)(t−c). In that way, f can be factored
into a product of linear factors (t− ci), ci ∈ A. Indeed, since f(t) = g(t)(t− c) and
g(t) has a root, simple induction shows that

f(t) = an(t− cn)(t− cn−1) . . . (t− c1), cj ∈ A

A word of caution: In the above factorization, while c1 is necessarily a root of
f , cj , j = 2, . . . , n, might not be roots of f . For example, the polynomial

f(t) = (t+ k)(t+ j)(t+ i) = t3 + (i + j + k)t2 + (−i + j− k)t+ 1

has only one root, namely t = −i. Theorem 2.1 of [4] provides a more detailed
version of the above factorization in the case A = H.
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Roots of f are distinguished into two types: (i) isolated and (ii) spherical.
A root c of f is called spherical if and only if its characteristic polynomial

qc(t) = t2 − 2tRe(c) + |c|2

divides f ; for any such polynomial, call αc± iβc its complex roots. In that case any
γ ∈ A similar to c, is also a root of f . For example, if f(t) = t2 + 1, any imaginary
unit element c ∈ A is a root of f .

Remark 2. The polynomial f(t) has a spherical root if and only if it has roots
α+ iβ, α− iβ, α, β ∈ R, β 6= 0.

If we write f in the form f(t) = a0(t) +
∑m
i=1 eiai(t) we see that f has no

spherical roots if and only if gcd(aj)
m
j=0 = 1. Such an f will be called primitive.

Then, it is easy to see that a primitive f(t) of degree n, has at most n distinct
roots in A.

The conjugate f̄ of f is defined as f̄ = a0 −
∑m
i=1 eiai. Note that

f̄f = a20 + a21 + · · ·+ a2m ,

which is a real positive polynomial. Observe that if α + iβ is a root of f̄f , then
there exists c ∈ A, similar to α+ iβ so that f(c) = 0 [6, Theorem 4, p. 221].

Definition 4. Let φ(t) ∈ C[t] and ζ ∈ C be a root of φ. We denote by µ(φ)(ζ) the
multiplicity of ζ. Now let c ∈ A be a root of f and let m = µ(f̄f)(αc+ iβc). Then,

(1) if c is isolated, we define its multiplicity µ(f)(c), as a root of f , to be m;

(2) if c is spherical, its multiplicity is set to be 2m.

Note that:

Remark 3. Let t0 be a root of f and write f(t) = g(t)(t − t0). Then, t0 is sim-
ple (multiple) if and only if g(t1) 6= 0, (g(t1) = 0) for any t1 ∼ t0 respectively.
Moreover, a primitive polynomial f has simple roots if and only if f̄f does.

2.1 |J(f)| ≥ 0 over A
In this paragraph we will show that |J(f)| of a polynomial f is non negative over O;
the case of A = H is similar. In particular, we will prove that if t0 is a root of f ,
t0 is simple if and only if |J(f)(t0)| > 0. Thus, at a multiple root |J(f)| vanishes.

A first indication of |J(f)(t)| being non negative is when t ∈ R. Indeed, if
t = r ∈ R, divide f(t)− f(r) by (t− r) to get

f(t)− f(r) = g(t)(t− r) .

Since r commutes with every element of A, we see that

f(t)− f(r) = g(t) ∗ (t− r) .
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Thus,
|J(f)(r)| = |g(r)|8|I| ≥ 0 .

Now let

t0 = τ0 +

7∑
k=1

ekτk = τ0 + τ ∈ A .

Since
J(f)(t0) = J(f − f(t0))(t0)

we may assume that f(t0) = 0. Further, by replacing f with f(t+ τ0) we see that
f(τ) = 0. Now let η ∈ A, |η| = 1 so that η ∗ τ ∗ η−1 = is, s = |τ |. If u = η−1tη and
F (t) = (f ◦ u)(t), then F (is) = 0 and

|J(F )| = |J(f(u))||J(u)| .

But |J(u)| = 1 since J(u) is nothing but an orthogonal matrix. Finally, by replacing
t with t/s in F (t) we may assume that f(i) = 0. Therefore, it is enough to show
that |J(f)(i)| ≥ 0.

Divide f(t) by t− i to get f(t) = g(t)(t− i). Let

g(t) = bmt
m + · · ·+ b1t+ b0 ,

bk ∈ A. We write

f(t) = b0(t− i) + b1t(t− i) + · · ·+ bmt
m(t− i) .

Let A be the matrix

A =


N 0 0 0
0 −N 0 0
0 0 −N 0
0 0 0 −N

 , where N =

[
0 −1
1 0

]

Notice that A2 = −I. Furthermore, we have

Lemma 2. J(tk(t− i))(i) = Ak for k ≥ 0.

Proof. We use induction on k. When k = 0 we have J(t − i) = I = A0. Now we
have

tk+1(t− i) = (tk+1 − itk)t .

Set

tk+1 − itk = a0 +

7∑
m=1

ema
m ,

t = x0 +

7∑
m=1

emxm .
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Then, a calculation shows that

J(tk+1(t− i))(i) =


M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

 ,
where

M1 =

[
−a1x0

−a1x1

a0x0
a0x1

]
, M2 =

[
a3x2

a3x3

−a2x2
−a2x3

]
,

M3 =

[
a5x4

a5x5

−a4x4
−a4x5

]
, M4 =

[
a7x6

a7x7

−a6x6
−a6x7

]
.

But then,

J(tk+1(t− i))(i) = A (J(tk(t− i))(i)) = A ·Ak .

This finishes induction and the proof. �

In view of the above Lemma we get

J(f)(i) = b0I + b1A+ b2A
2 + · · ·+ bmA

m =

m∑
k=0

(−1)kb2kI +

m∑
l=0

(−1)lb2l+1A .

Set
m∑
k=0

(−1)kb2k = Be ,

m∑
l=0

(−1)lb2l+1 = Bo .

We claim that |BeI +BoA| ≥ 0. Indeed, if either of Be, Bo is zero there is nothing
to prove. Suppose then Be ∗ Bo 6= 0. Then it is enough to show |I + CA| ≥ 0 for
C = Bo/Be. If

C = γ0 +

7∑
i=1

eiγi = γ0 + γ ,

a calculation – via Maple – shows that

|I + CA| =
[
(1− |γ|2)2 + 2γ20(1 + |C|2)

][
(γ1 − 1)2 + |C|2 − γ21

]2
The above proves the claim. Moreover, |I+CA| vanishes precisely when C = γ

or C = i; that is C is an imaginary unit. In short, |BeI + BoA| = 0 if and only
Be +Boδ = 0, for a suitable imaginary unit δ.

Let δ ∈ A be an imaginary unit. Recall that δ ∼ i. Then, g(δ) = Be + Boδ,
since δ2 = −1. Thus, if g(δ) 6= 0, which in turn says that µ(f)(i) = 1,

|BeI +BoA| > 0 .

On the other hand, if g(γ) = 0, which means that µ(f)(i) ≥ 2, then |J(f)(i)|
vanishes, as required. We summarize the above into the following:

Theorem 2. Let f(t) be a polynomial of positive degree. Then, |J(f)(t)| ≥ 0 for
all t ∈ A. Moreover, if t0 is a root of f , t0 is simple if and only if |J(f)(t0)| > 0.
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3 Degrees of maps in A
In this section we will prove that any regular polynomial of positive degree over A
has a root in A. In addition, we will show that the topological degree of products
of maps is additive.

Let f : A → A be a smooth map with the property that lim|t|→∞|f(t)| = ∞.
Then, if Σ is the spherical compactification of A [Σ is Sm+1], f can be smoothly
extended to give f̂ : Σ → Σ; i.e. f̂(t) = f(t), t ∈ A and f̂(∞) = ∞. In that case
we define deg(f) := deg(f̂). Now suppose that g : A → A is also smooth with the
same property as f . Consider the map F (t) := f(t) ∗ g(t) : A → A. Obviously
lim|t|→∞|F (t)| =∞. Here is our first result:

Proposition 2. Let f, g, F be as above. Then, deg(F ) = deg(f) + deg(g).

Proof. According to Sard’s Theorem, there exist h, z ∈ A so that:

(1) h, z are regular values of f, g and

(2) the equations f(t)− h = 0, g(t)− z = 0 have no common roots.

Since Σ is compact, the sets

A = {t ∈ A : f(t)− h = 0}

and
B = {t ∈ A : g(t)− z = 0}

are finite. Then,
deg(f) =

∑
a∈A

sign|J(f)(a)|

and
deg(g) =

∑
b∈b

sign|J(g)(b)| .

Let
Φ(t) = (f(t)− h) ∗ (g(t)− z) .

Obviously, lim|t|→∞|Φ(t)| =∞. In that case for a ∈ A, b ∈ B we have

sign|J(Φ)(a)| = sign|J(f)(a)| · |g(a)− z|m+1 ,

sign|J(Φ)(b)| = sign|J(g)(b)| · |f(b)− h|m+1 .

The above calculation shows that 0 is a regular value of Φ and thus deg(Φ) =
deg(f) + deg(g). Finally, since

Φ = f ∗ g − f ∗ z− h ∗ g + h ∗ z ,

Φ is homotopic to F via the homotopy

φr(t) = (f ∗ g)(t) + (1− r)((−f ∗ z− h ∗ g + h ∗ z)(t))

for t ∈ A and φr(∞) =∞, 0 ≤ r ≤ 1. �
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Using the result above and simple induction, we get:

Corollary 1. The degree of tn : A → A, n ∈ N is equal to n.

Note that Corollary 1 is the same as Lemma 4 of [8] which was proved using
K-theoretical tools.

Now, we are ready to prove the Fundamental Theorem of Algebra over A.

Theorem 3. Any regular polynomial of positive degree over A has a root in A.

Proof. Let f(t) =
∑n
k=0 φ

k(t) be regular with n ≥ 1. Then, since

lim
|t|→∞

|φn(t)| =∞,

we see that lim|t|→∞|f(t)| = ∞ as well. A slight modification of the proof of
Lemma 1 of [3] shows that f is homotopic to the map tn : A → A. Corollary 1
shows that deg(f) = n and therefore f is onto. �

Regularity is a necessary condition for a polynomial to have roots as the fol-
lowing example indicates:

Example 2. The polynomial f(t) = it2j + jt2i− 1 has no roots over H.

In the above, observe that lim|t|→∞|it2j + jt2i| does not exist.
Let now S denote the unit sphere in A; i.e. S = Sm. Obviously S is equipped

with the multiplication (∗) in A. Let k ∈ Z and consider the map h(t) : S → S,
h(t) = tk. We then have:

Lemma 3. The degree of h is equal to k.

Proof. If k = 0, h is constant and thus has degree 0. Suppose first that k ≥ 1.
For a fixed 0 < r < 1, consider the polynomial p(t) = tk − ir. Then, p has simple
roots (Remark 3) ρi ∈ A, i = 1, . . . , k with ρi ∈ Int(S) since |ρi| = r < 1. Further,
from Theorem 2 we get |J(p)(ρi)| > 0 for each i. Let g(t) : S → S be defined by
g(t) = p(t)

|p(t)| . In that case,

deg(g) =

k∑
i=1

sign|J(p)(ρi)| = k ,

[7, Lemma 3, p. 36]. We now claim that |g(t) − h(t)| < 2 for t ∈ S. Indeed, note
first that |g(t)− h(t)| ≤ 2. Furthermore, if for some t0 ∈ S,

|g(t0)− h(t0)| = 2 ,

we must have g(t0) = −h(t0); that is

tk0(1 + |tk0 − ir|) = ir ,
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a contradiction to 0 < r < 1. Thus, |g(t)− h(t)| < 2 and this shows that h and g
are homotopic, [7, p. 52]. Therefore, deg(g) = deg(h) = k.

Let now k = −1. Then, h(t) = t−1 is nothing but a composition of m reflections.
Indeed, if S = S3 and

f1 = (x,−y, z, w) ,

f2 = (x, y,−z, w) ,

f3 = (x, y, z,−w) ,

then

h(x, y, z, w) = (x,−y,−z,−w) = (f1 ◦ f2 ◦ f3)(x, y, z, w) .

The case of S = S7 is similar. Therefore, deg(h) = (−1)m.
Finally, let k ≤ −2. If f(t) = t−1 we observe that (h ◦ f)(t) = t−k and thus

deg(h) deg(f) = −k, or deg(h) = k. This finishes the proof. �

Let now f, g : S → S be smooth and F : S → S be defined by F (t) = f(t)∗g(t).
Then,

Theorem 4. deg(F ) = deg(f) + deg(g).

Proof. Let deg(f) = n, deg(g) = k. According to Hopf’s Theorem, [7], f, g are
smoothly homotopic to f1, g1 : S → S where f1(t) = tn and g1(t) = tk. Let

φr(t), ψr(t) : [0, 1]× S → S

be smooth maps so that

φr(0) = f(t) , φr(1) = f1

and

ψr(0) = g(t) , ψr(1) = g1 .

Define

Φr(t) = φr(t) ∗ ψr(t) : [0, 1]× S → S .

Notice that Φr(t) is continuous and

Φr(1) = f(t) ∗ g(t) ,

Φr(0) = f1(t) ∗ g1(t) .

Thus, f ∗ g is homotopic to the map t→ tn+k. The latter implies that

deg(F ) = n+ k = deg(f) + deg(g)

as required. �
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