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A new parameterized logarithmic kernel function for
linear optimization with a double barrier term yielding
the best known iteration bound

Benhadid Ayache, Saoudi Khaled

Abstract. In this paper, we propose a large-update primal-dual interior
point algorithm for linear optimization. The method is based on a new class
of kernel functions which differs from the existing kernel functions in which
it has a double barrier term. The investigation according to it yields the
best known iteration bound O(

√
n log(n) log(n

ε
)) for large-update algorithm

with the special choice of its parameter m and thus improves the iteration
bound obtained in Bai et al. [2] for large-update algorithm.

1 Introduction
After the groundbreaking paper of Karmarkar [7], Kernel functions play an impor-
tant role in the complexity analysis of the interior point methods (IPMs) for linear
optimization (LO).

In 2001, Peng et al. [9] designed a new paradigm of primal-dual algorithms based
on the so-called self-regular proximity functions for LO. They improved iteration
bound and achieved the best known complexity results for large and small-update
methods. Subsequently, in 2004 Bai et al. [2] proposed new kernel function with
an exponential barrier term, and introduced the first new kernel function with
a trigonometric barrier term. These functions enjoy useful properties and deter-
mine new search directions for primal-dual interior point algorithms. Based on
these functions, they obtained the best known complexity results for large-update
methods, namely, O(

√
n log n log n

ε ) and good numerical results.
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In 2008, El Ghami et al. [6] proposed parameterized kernel function with a
logarithmic barrier term. This function generalized the kernel functions given
in [5], [12].

In 2018, Bouafia et al. [4] proposed a parameterized logarithmic kernel func-
tion for primal-dual IPMs. They obtained the best known complexity results for
large and small-update methods, they took the middle between Peng [9] and El
Ghami’s [6] barrier as a barrier term. The objective of this paper is to introduce
a new class of kernel functions which differs from the existing kernel functions in
which it has a double barrier term (logarithmic-exponential barrier term).

The paper is organized as follows. In Section 2, we recall the preliminaries. In
Sections 3 and 4, we define a new kernel function and give its properties which
are essential for the complexity analysis. The estimate of the step size and the
decrease behavior of the new barrier function are discussed in Section 5. Also
we derive the complexity result for both large-update and small-update methods.
Some numerical results are provided in Section 6. Finally, we end up the paper by
a conclusion.

2 Preliminaries
In this section we recall some basic concepts and the generic IPMs, we consider
linear optimization (LO) problem in the standard format:

min 〈c, x〉 : Ax = b, x ≥ 0, (P)

where A ∈ Rm×n, rank(A) = m, b ∈ Rm, and c ∈ Rn, and its dual problem

max 〈b, y〉 : AT y + s = c, s ≥ 0. (D)

A new polynomial-time method for solving LO is proposed by Karmarkar [7]. After
that, this method was developped in the literature which play an important role
for solving linear optimization problem and its variants are now called IPMs. For
more details about the subject, we can refer to Bai et al. [1], Peng et al. [11], Roos
et al. [12] and Ye [14]. Without loss of generality, we assume that (P) and (D)
satisfy the interior point condition (IPC), i.e., there exist (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0. (1)

It is well known that finding an optimal solution of (P) and (D) is equivalent to
solving the following system

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = 0. (2)

The basic idea of primal-dual IPMs is to replace the third equation in (2), the so-
called complementarity condition for (P) and (D), by the parameterized equation
xs = µe, with µ ≥ 0. Thus we consider the system

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = µe. (3)

Surprisingly enough, if the IPC is satisfied, then there exists a solution, for each
µ > 0, and this solution is unique. It is denoted as (x(µ), y(µ), s(µ)), and we call
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x(µ) the µ-center of (P) and (y(µ), s(µ)) the µ-center of (D). The set of µ-centers
(with µ running through all positive real numbers) gives a homotype path, which
is called the central path of (P) and (D). The relevance of the central path for LO
was recognized first by Megiddo [8] and Sonnevend [13]. If µ → 0, then the limit
of the central path exists, and since the limit points satisfy the complementarity
condition, the limit yields optimal solutions for (P) and (D). From a theoretical
point of view, the IPC can be assumed without loss of generality. In fact, we may,
and will, assume that x0 = s0 = e. In practice, this can be realized by embedding
the given problems (P) and (D) into a homogeneous self-dual problem, which has
two additional variables and two additional constraints. For this and the other
properties mentioned above, see [12].

The IPMs follow the central path approximately. We briefly describe the usual
approach. Without loss of generality, we assume that (x(µ), y(µ), s(µ)) is known
for some positive µ. For example, due to the above assumption, we may assume
this for µ = 1, with x(1) = s(1) = e. We then decrease µ to µ = (1− θ)µ for some
fixed θ ∈ (0, 1), and we solve the following Newton system:

A∆x = 0, AT∆y + ∆s = 0, s∆x+ x∆s = µe− xs. (4)

This system uniquely defines a search direction (∆x,∆y,∆s). By taking a step
along the search direction, with the step size defined by some line search rules, we
construct a new triple (x, y, s). If necessary, we repeat the procedure until we find
iterates that are “close” to (x(µ), y(µ), s(µ)). Then µ is again reduced by the factor
1−θ, and we apply Newton’s method targeting the new µ-centers, and so on. This
process is repeated until µ is small enough, say until nµ ≤ ε, at this stage, we have
found an ε-solution of problems (P) and (D). The result of a Newton step with
step size α is denoted as

x+ = x+ α∆x, s+ = s+ α∆s, y+ = y + α∆y, (5)

where the step size α satisfies 0 < α ≤ 1. Now we introduce the scaled vector v
and the scaled search directions dx and ds as follows:

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (6)

System (4) can be rewritten as follows:

Adx = 0, A
T

∆y + ds = 0, dx + ds = v−1 − v, (7)

where A = 1
µAV

−1X, V = diag(v), X = diag(x). Note that the right-hand side of
the third equation in (7) is equal to the negative gradient of the logarithmic barrier
function Φ(v), i.e., dx + ds = −∇Φ(v), system (7) can be rewritten as follows:

Adx = 0, A
T

∆y + ds = 0, dx + ds = −∇Φ(v), (8)
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where the barrier function Φ(v) : Rn++ → R+ is defined as follows:

Φ(v) = Φ(x, s;µ) =

n∑
i=1

ψ(vi), (9)

ψ(vi) =
v2
i − 1

2
− log vi . (10)

We use Φ(v) as the proximity function to measure the distance between the current
iterate and the µ-center for given µ > 0. We also define the norm-based proximity
measure, δ(v) : Rn++ → R+, as follows

δ(v) =
1

2
‖∇Φ(v)‖ =

1

2
‖dx + ds‖, (11)

We call ψ(t) the kernel function of the logarithmic barrier function Φ(v). In this
paper, we replace ψ(t) by a new kernel function ψNew(t) and Φ(v) by a new barrier
function ΦNew(v), which will be defined in Section 3. Note that the pair (x, s)
coincides with the µ-center (x(µ), s(µ)) if and only if v = e. It is clear from the
above description that the closeness of (x, s) to (x(µ), s(µ)) is measured by the
value of Φ(v) with τ > 0 as a threshold value. If Φ(v) ≤ τ , then we start a new
outer iteration by performing a µ-update; otherwise, we enter an inner iteration by
computing the search directions at the current iterates with respect to the current
value of µ and apply (5) to get new iterates. If necessary, we repeat the procedure
until we find iterates that are in the neighborhood of (x(µ), s(µ)). Then µ is again
reduced by the factor 1 − θ with 0 < θ < 1, and we apply Newton’s method
targeting the new µ-centers, and so on. This process is repeated until µ is small
enough, say until nµ < ε; at this stage, we have found an ε-approximate solution
of LO. The parameters τ , θ and the step size α should be chosen in such a way
that the algorithm is optimized in the sense that the number of iterations required
by algorithm is as small as possible. The choice of the so-called barrier update
parameter θ plays an important role in both theory and practice of IPMs. Usually,
if θ is a constant independent of the dimension n of the problem, for instance,
θ = 1

2 , then we call the algorithm a large-update (or long-step) method. If θ
depends on the dimension of the problem, such as θ = 1√

n
, then the algorithm is

called a small-update (or short-step) method. The generic form of the algorithm
is shown in Table 1.

In most cases, the best complexity result obtained for small-update IPMs is
O(
√
n log n

ε ). For large-update methods the best obtained bound is

O
(√

n log n log
n

ε

)
,

which until now has been the best known bound for such methods [2], [9].
In this paper, we define a new kernel function and propose primal-dual in-

terior point methods which improve all the results of the complexity bound for
large-update methods based on a logarithmic-exponential kernel function for LO.
Another interesting choice is m dependent with n, which minimizes the iteration
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Generic Primal-dual IPMs for LO

Input: A proximity the function ΦNew(v),
a threshold parameter τ > 1
an accuracy parameter 0,
a fixed barrier update parameter θ, 0 < θ < 1,
begin
x = e, s = e, µ = 1, v = e.
while nµ ≥ ε do
begin (outer iteration)
µ = (1− θ)µ,
while Φ(x, s;µ) > τ do
begin (inner iteration)
solve the system (8), Φ(v) replaced by ΦNew(v) to obtain (∆x,∆y,∆s),
choose a suitable step size α,
x = x+ α∆x, y = y + α∆y, s = s+ α∆s

v =
√

xs
µ ,

end (inner iteration)
end (outer iteration)

end.

Table 1: Generic algorithm

complexity bound. In fact, if we take m = log n, we obtain the best known com-
plexity bound for large-update methods namely O(

√
n log(n) log(nε )). This bound

improves the so far obtained complexity results for large-update methods based on
a logarithmic kernel function given by El Ghami et al. [2].

3 The New Kernel Function and Its Properties
This section is devoted to introduce our new kernel function, which are used in the
Generic Algorithm 1.

ψ(t) = t2 − 1− log(t) +
em( 1

t−1) − 1

m
, m ≥ 1. (12)

It can be easily seen that as t→ 0+ or t→ +∞, then ψ(t)→ +∞. Therefore,
ψ(t) is indeed a kernel function. As we need the first three derivatives of ψ(t), we
list them here:

ψ′(t) = 2t− t−1 − t−2em( 1
t−1) , (13)

ψ′′(t) = 2 + t−2 + (m+ 2t)t−4em( 1
t−1) , (14)

ψ′′′(t) = −[2t−3 + (6t2 + 6mt+m2)t−6em( 1
t−1)] . (15)
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Kernel function Large update References
1

2
(t2 − 1)− log(t) O(n log n

ε ) [2]

1

2

(
t− 1

t

)2

O(n
2
3 log n

ε ) [10]

1

1 + p
(t1+p − 1)− log(t), p ∈ [0, 1] O(n log n

ε ) [6]

1

2
(t2 − 1) + e( 1

t−1) − 1 O(
√
n(log n)2 log n

ε ) [2]

1

2
(t2 − 1) +

t1−q − 1

q − 1
, q > 1 O(qn

q+1
2q log n

ε ) [9]

t− 1 +
t1−q − 1

q − 1
, q > 1 O(qn log n

ε ) [1]

1

2
(t2 − 1− log(t)) +

t1−q − 1

2(q − 1)
, q > 1 O(qn

q+1
2q log n

ε ) [4]

p

2
(t2 − 1) + ep(

1
t−1) − 1, p ≥ 1 O(

√
np5(log pn)2 log n

ε ) [3]

t2 − 1− log(t) +
em( 1

t−1) − 1

m
,m ≥ 1 O(

√
n log n log n

ε ) New

Table 2: Examples of kernel functions and its iteration bound for large-update
methods.

4 Eligibility of the New Kernel Function
Next lemma serves to prove that the new kernel function (12) is efficient.

Lemma 1. Let ψ(t) be as defined in (12) and t > 0. Then,

ψ′′(t) > 2, (16)

ψ′′′(t) < 0, (17)

tψ′′(t)− ψ′(t) > 0, (18)

tψ′′(t) + ψ′(t) > 0. (19)

Proof. It is easy to see that (16) and (17) follow from (14) and (15) respectively.
To prove (18) and (19), we have from (13) and (14) the following

tψ′′(t)− ψ′(t) = 2t−1 + (m+ 3t)t−3em( 1
t−1) > 0.

and
tψ′′(t) + ψ′(t) = 4t+ (m+ t)t−3em( 1

t−1) > 0,

the right-hand side of the above equality is positive, which proves (19). �

The last property (19) in Lemma 1 is equivalent to convexity of composed
functions t→ ψ(et) and this holds if only if

ψ(
√
t1t2) ≤ 1

2
(ψ(t2) + ψ(t2)), for any t1, t2 ≥ 0. (20)
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This property is known in the literature, and it was demonstrated by several re-
searchers (see [7], [14]).

Lemma 2. For ψ(t), we have

(t− 1)2 ≤ ψ(t) ≤ 1

4
[ψ′(t)]2, t > 0. (21)

ψ(t) ≤ 1

2
[5 +m](t− 1)2, t > 1. (22)

Proof. For (21), using (16), we have

ψ(t) =

∫ t

1

∫ x

1

ψ′′(y) dy dx ≥
∫ t

1

∫ x

1

2 dy dx = (t− 1)2.

ψ(t) =

∫ t

1

∫ x

1

ψ′′(y) dy dx ≤
∫ t

1

∫ x

1

1

2
ψ′′(x)ψ′′(y) dy dx

=
1

2

∫ t

1

ψ′′(x)ψ′(x) dx

=
1

2

∫ t

1

ψ′(x) dψ′(x) =
1

4
[ψ′(t)]2.

Since ψ(1) = ψ′(1) = 0, ψ′′′(t) < 0, ψ′′(1) = 5+m, and by using Taylor’s Theorem,
we have

ψ(t) = ψ(1) + ψ′(1)(t− 1) +
1

2
ψ′′(1)(t− 1)2 +

1

6
ψ′′′(ξ)(t− 1)3

≤ 1

2
ψ′′(1)(t− 1)2

=
1

2
[5 +m](t− 1)2,

for some ξ, 1 ≤ ξ ≤ t. This completes the proof. �

Now, we analyze the generic algorithm by following the steps presented in [2].

Step 1.
(Steps 1 and 3 in [2].) We derive some bounds for σ(t) and ρ(t).

Let σ : [0,∞)→ [1,+∞) be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,∞)→
(0, 1] be the inverse function of − 1

2ψ
′(t) for all t ∈ (0, 1]. Then we have the following

lemma.

Proposition 1. For ψ(t), we have

1 +

√
2s

5 +m
≤ σ(s) ≤ 1 +

√
s , s ≥ 0. (23)

ρ(z) ≥ 1

1 + 1
m log(2z + 1)

, z > 0. (24)
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Proof. For (23), let s = ψ(t), t ≥ 1, i.e., σ(s) = t, t ≥ 1.
By (21), we have s ≥ (t− 1)2, this implies that t = σ(s) ≤ 1 +

√
s.

By (22), we have:

s = ψ(t) ≤ 1

2
(5 +m)(t− 1)2, t ≥ 1, so t = σ(s) ≥ 1 +

√
2s

5 +m
.

For (24), let z = − 1
2ψ
′(t), t ∈ (0, 1]. By the definition of ψ′(t), we have:

2z = −2t+ t−1 + t−2em( 1
t−1)

≥ −2 + t−1 + t−2em( 1
t−1)

≥ −1 + t−2em( 1
t−1)

≥ −1 + em( 1
t−1).

which implies

t = ρ(z) ≥ 1

1 + 1
m log(2z + 1)

.

This completes the proof. �

Step 2.
Derive a lower bound for δ in term of Φ.

Proposition 2. Let δ(v) be as defined in (11). Then we have

δ(v) ≥
√

Φ(v) . (25)

Proof. Using (21), we have

Φ(v) =
n∑
i=1

ψ(vi) ≤
n∑
i=1

1

4
[ψ′(vi)]

2 =
1

4
‖∇Φ(v)‖2 = δ(v)2,

so δ(v) ≥
√

Φ(v). �

5 An Estimation for the Step Size
Step 3.
In this section, we compute a default step size α, we have

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s.

Using (6), we have

x+ = x
(

e + α
∆x

x

)
= x

(
e + α

dx
v

)
=
x

v
(v + αdx),

s+ = s
(

e + α
∆s

s

)
= s
(

e + α
ds
v

)
=
s

v
(v + αds).
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So, we have

v+ =

√
x+s+

µ
=
√

(v + αdx)(v + αds) .

Define for α > 0, f(α) = Φ(v+)− Φ(v).
Then f(α) is the difference of proximities between a new iterate and a current

iterate for fixed µ. By (19), we have

Φ(v+) = Φ(
√

(v + αdx)(v + αds)) ≤
1

2
(Φ((v + αdx)) + Φ((v + αds))).

Therefore, we have f(α) ≤ f1(α), where

f1(α) =
1

2
(Φ((v + αdx)) + Φ((v + αds)))− Φ(v). (26)

Obviously, f(0) = f1(0) = 0. Taking the first two derivatives of f1(α) with respect
to α, we have

f ′1(α) =

n∑
i=1

(ψ′(vi + αdxi)dxi + ψ′(vi + αdsi)dsi) ,

f ′′1(α) =

n∑
i=1

(ψ′′(vi + αdxi)d
2
xi + ψ′′(vi + αdsi)d

2
si) .

Using (6) and (11), we have

f ′1(0) =
1

2
〈∇Φ(v), (dx + ds)〉 = −1

2
〈∇Φ(v),∇Φ(v)〉 = −2δ(v)2.

For convenience, we denote v1 = min(v), δ = δ(v), Φ = Φ(v).

Remark 1. Throughout the paper, we assume that τ ≥ 1. Using Lemma 2 and the
assumption that Φ(v) ≥ τ , we have δ(v) ≥ 1.

From Lemmas 4.1–4.4 in [2], we have the following Lemmas 3–6, because ψ(t) is
kernel function and ψ′′(t) is monotonically decreasing.

Lemma 3 (Bai et al. [2]). Let f1(α) be as defined in (26) and δ(v) be as defined
in (11). Then we have f ′′1(α) ≤ 2δ2ψ′′(vmin − 2αδ). Since f1(α) is convex, we will
have f ′1(α) ≤ 0 for all α less than or equal to the value where f1(α) is minimal,
and vice versa.

The previous Lemma leads to the following three Lemmas:

Lemma 4 (Bai et al. [2]). f ′1(α) ≤ 0 certainly holds if α satisfies the inequality

ψ′(vmin)− ψ′(vmin − 2αδ) ≤ 2δ . (27)

Lemma 5 (Bai et al. [2]). The largest step size α holding (27) is given by

α =
ρ(δ)− ρ(2δ)

2δ
.
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Lemma 6 (Bai et al. [2]). Let α be as defined in Lemma 5. Then

α ≥ 1

ψ′′(ρ(2δ))
.

Now, we are in position to prove the following Lemma

Lemma 7. Let ρ and α be as defined in Lemma 6. If Φ(v) ≥ τ ≥ 1, then we have

α ≥ 1

2 + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

.

Proof. Using Lemma 6, (14), (24), and (25) we have

α ≥ 1

ψ′′(ρ(2δ))

=
1

2 + [ρ(2δ)]−2 + (m+ 2ρ(2δ))[ρ(2δ)]−4em( 1
ρ(2δ)

−1)

≥ 1

2 + [1 + 1
m log(4δ + 1)]2 + (m+ 2)[ρ(2δ)]−2[ρ(2δ)]−2em( 1

ρ(2δ)
−1)

≥ 1

2 + [1 + 1
m log(4δ + 1)]2 + (m+ 2)[1 + 1

m log(4δ + 1)]2[4δ + 1]

≥ 1

2 + [1 + 1
m log(4δ + 1)]2[1 + (m+ 2)(4δ + 1)]

≥ 1

2 + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

This completes the proof. �

Denoting

α̃ =
1

2 + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

, (28)

we have that α̃ is the default step size and that α̃ ≤ α.

Step 4.
Finding a positive constants κ and γ.

Lemma 8 (Lemma 4.5 in [2]). If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2.

Proposition 3. Let Φ0 ≥ Φ(v) ≥ 1 and let α̃ be the default step size as defined
in (28). Then, we have

f(α̃) ≤ −κ[(Φ)0]1−γ (29)

with κ =
1

18m[1 + 1
m log(4

√
Φ0 + 1)]2

and γ = 1
2 .
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Proof. From (25), (28) and by using Lemma 8 (Lemma 4.5 in [2]) with α = α̃ we
have

α̃δ2 =
δ2

2 + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

≥ Φ(v)

2 + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

≥ Φ(v)

2
√

Φ(v) + [1 + 1
m log(4

√
Φ(v) + 1)]2[1 + (m+ 2)5]

√
Φ(v)

≥
√

Φ(v)

2 + [1 + 1
m log(4

√
Φ0 + 1)]2[1 + (m+ 2)5]

≥
√

Φ(v)

18m[1 + 1
m log(4

√
Φ0 + 1)]2

This completes the proof. �

Step 5.
Calculate the uniform upper bound (Φ)0 for Φ(v).

Lemma 9. Let σ : [0,∞)→ [1,+∞) be the inverse function of ψ(t) for t ≥ 1. Then
we have

Φ(βv) ≤ nψ
(
βσ

(
Φ(v)

n

))
, v ∈ R∗, β ≥ 1.

Proof. Using (17) and (18), and Lemma 2.4 in [2], we can get the result. This
completes the proof. �

Proposition 4. Let 0 ≤ θ < 1, v+ =
v√

1− θ
. If Φ(v) ≤ τ , then we have

Φ(v+) ≤ 2
√

2τn+ 2τ + θn

(1− θ)
.

Proof. Since 1√
1−θ ≥ 1 and σ

(Φ(v)
n

)
≥ 1, then σ(

Φ(v)
n )√

1−θ ≥ 1. And for t ≥ 1, we have

ψ(t) ≤ t2 − 1.
Using Lemma 9 with β = 1√

1−θ , (23), and Φ(v) ≤ τ , we have

Φ(v+) ≤ nψ
(

1√
1− θ

σ

(
Φ(v)

n

))
≤ n

((
σ
(Φ(v)

n

)
√

1− θ

)2

− 1

)
=

n

(1− θ)

((
σ

(
Φ(v)

n

))2

− (1− θ)
)

≤ n

(1− θ)

((
1 +

√
2

Φ(v)

n

)2

− (1− θ)
)

≤ n

(1− θ)

(
2

√
2τ

n
+

2τ

n
+ θ

)
=

2
√

2τn+ 2τ + θn

(1− θ)
.

This completes the proof. �



38 Benhadid Ayache, Saoudi Khaled

Denote

(Φ)0 =
2
√

2τn+ 2τ + θn

(1− θ)
= L(n, θ, τ), (30)

then (Φ)0 is an upper bound for Φ(v+) during the process of the algorithm.

Step 6.

(An upper bound for the total iteration bound.)

Lemma 10. Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 36m
[
1 +

1

m
log
(
4
√

Φ0 + 1
)]2

(Φ0)
1
2

Proof. By Lemma 1.3.2 in [11], we have:

K ≤ [(Φ)0]γ

κγ
= 36m

[
1 +

1

m
log
(
4
√

Φ0 + 1
)]2

(Φ0)
1
2 .

This completes the proof. �

The number of outer iterations is bounded above by
log(nε )

θ
(see [12] Lemma II.17,

page 116). By multiplying the number of outer iterations by the number of inner
iterations, we get an upper bound for the total number of iterations, namely,

36m
[
1 +

1

m
log
(
4
√

Φ0 + 1
)]2

(Φ0)
1
2

log(nε )

θ
. (31)

Step 7.

For large-update methods with τ = O(n) and θ = Θ(1), we get

Φ0 = O(n)

and by choosing m = log(n) the iteration bound becomes

O

(√
n log(n) log

(n
ε

))
iterations complexity.

In case of a small-update methods, we have τ = O(1) and θ = Θ( 1√
n

). Sub-

stitution of these values into (31) does not give the best possible bound. A better
bound is obtained as follows.
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By (22), (23) with ψ(t) ≤ 1
2 [m+ 5](t− 1)2, t > 1. We have

Φ(v+) ≤ nψ
(

1√
1− θ

σ
(Φ(v)

n

))
≤ n(m+ 5)

2

(
1√

1− θ
σ
(Φ(v)

n

)
− 1

)2

=
n(m+ 5)

2(1− θ)

(
σ
(Φ(v)

n

)
−
√

1− θ
)2

≤ n(m+ 5)

2(1− θ)

(
1 +

√
Φ(v)

n
−
√

1− θ
)2

≤ (m+ 5)

2(1− θ)
(θ
√
n+
√
τ)2

where we also used that 1 −
√

1− θ =
θ

1 + θ
≤ θ and Φ(v) ≤ τ , using this upper

bound for (Φ)0, we get

Φ0 = O(m)

and the iteration bound becomes

O

(
m

3
2
√
n log

(n
ε

))
iterations complexity.

6 Numerical Results
In this section, we deal with the numerical implementation of this algorithm applied
to the large dimension problem. Here we used Iter which means the iterations
number produced by the algorithm. The implementation is manipulated in Matlab.
Our tolerance is ε = 10−4. For our kernel we take m = log(n).

Example 1. We consider the following (LO) problem (see [4])

n = 2k, A(i, j) =

{
0 if i 6= j and j 6= i+ k

1 if i = j or j = i+ k

c(i) = −1, c(i + k) = 0, b(i) = 2, and the interior point condition (IPC), x0(i) =
x0(i + k) = 1, y0(i) = −2, s0(i) = 1, s0(i + k) = 2 for i = 1, . . . , k. To prove the
effectiveness of our new kernel function ψ and evaluate its effect on the behavior of
the algorithm, we conducted comparative numerical tests between it and Elghami’s
kernel [2], ψGh = 1

2 (t2−1)−log(t). We summarize this numerical study in Tables 3,
4 and 5.
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Kernel functions Large update Outer It. Inner It. Time(s)

ψGh O(n log(nε )) 5 6219 0.4998

ψ O(
√
n log(n) log(nε )) 5 3943 0.4785

Table 3: Comparison for k = 25, n = 50.

Kernel functions Large update Outer It. Inner It. Time(s)

ψGh O(n log(nε )) 5 11977 2.9003

ψ O(
√
n log(n) log(nε )) 5 5830 1.9039

Table 4: Comparison for k = 50, n = 100.

Kernel functions Large update Outer It. Inner It. Time(s)

ψGh O(n log(nε )) 5 17675 15.4944

ψ O(
√
n log(n) log(nε )) 5 7355 8.2340

Table 5: Comparison for k = 75, n = 150.

7 Conclusion
In this paper, we propose a new double barrier function and primal-dual interior
point algorithms for LO and analyze the large-update and small-update versions
of the primal-dual interior point algorithm described in Figure 1 that are based
on the parameterized kernel function (12) with a logarithmic-exponential barier
term. Another interesting choice is m dependent with n, which minimizes the
iteration complexity bound. In fact, if we take m = log n, we obtain the best known
complexity bound for large-update methods namely O(

√
n log(n) log(nε )). This

bound improves the so far obtained complexity results for large-update methods
based on a logarithmic kernel function given by El Ghami et al. [2].
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