

Insertion of a Contra-Baire-1 (Baire-.5) Function Majid Mirmiran

▶ To cite this version:

Majid Mirmiran. Insertion of a Contra-Baire-1 (Baire-.5) Function. Communications in Mathematics, 2019, Volume 27 (2019), Issue 2 (2), pp.89 - 101. 10.2478/cm-2019-0009. hal-03664970

HAL Id: hal-03664970

https://hal.science/hal-03664970

Submitted on 11 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Communications in Mathematics 27 (2019) 89–101 DOI: 10.2478/cm-2019-0009 ©2019 Majid Mirmiran This is an open access article licensed under the CC BY-NC-ND 3.0

Insertion of a Contra-Baire-1 (Baire-.5) Function

Majid Mirmiran

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [20] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4], [10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1], [3], [7], [8], [9], [11], [12], [19].

Results of Katětov [13], [14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

E-mail: mirmir@sci.ui.ac.ir

²⁰¹⁰ MSC: 26A15, 54C30.

Key words: Insertion, strong binary relation, Baire-.5 function, kernel of sets, lower cut set. This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

Affiliation:

Majid Mirmiran – Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

A real-valued function f defined on a topological space X is called *contra-Baire-*.5 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ} -set in X [21].

If g and f are real-valued functions defined on a space X, we write $g \le f$ (resp. g < f) in case $g(x) \le f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [15].

A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-.5 function also has property P. If P_1 and P_2 are B-.5-properties, the following terminology is used:

- (i) A space X has the weak B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that $g \leq h \leq f$.
- (ii) A space X has the B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that g < h < f.

In this paper, for a topological space that F_{σ} -kernel of sets are F_{σ} -sets, is given a sufficient condition for the weak B-.5-insertion property. Also for a space with the weak B-.5-insertion property, we give a necessary and sufficient condition for the space to have the B-.5-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

$$A^{\Lambda} = \bigcap \{ O : O \supseteq A, O \in (X, \tau) \}$$

and

$$A^V = \left\{ \begin{array}{l} \left| \{F : F \subseteq A, F^c \in (X, \tau) \} \right. \end{array} \right.$$

In [6], [16], [18], A^{Λ} is called the kernel of A.

Definition 2. We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$G_{\delta}(A) = \bigcup \{O : O \subseteq A, O \text{ is } G_{\delta}\text{-set}\}\$$

and

$$F_{\sigma}(A) = \bigcap \{F : F \supseteq A, F \text{ is } F_{\sigma}\text{-set}\}.$$

 $F_{\sigma}(A)$ is called the F_{σ} -kernel of A.

The following first two definitions are modifications of conditions considered in [13], [14].

Definition 3. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 4. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- 1. If $A_i \rho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.
- 2. If $A \subseteq B$, then $A \bar{\rho} B$.
- 3. If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 5. If f is a real-valued function defined on a space X and if

$$\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \le \ell\}$$

for a real number ℓ , then $A(f,\ell)$ is a lower indefinite cut set in the domain of f at the level ℓ .

We now give the following main results:

Theorem 1. Let g and f be real-valued functions on the topological space X, that F_{σ} -kernel of sets in X are F_{σ} -sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$, then there exists a Baire-.5 function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$.

Define functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let

$$h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$$

We first verify that $g \le h \le f$: If x is in H(t) then x is in G(t') for any t' > t; since x in G(t') = A(g, t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence

 $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$. Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have

$$h^{-1}(t_1, t_2) = G_{\delta}(H(t_2)) \setminus F_{\sigma}(H(t_1)).$$

Hence $h^{-1}(t_1, t_2)$ is a G_{δ} -set in X, i.e., h is a Baire-.5 function on X.

The above proof used the technique of Theorem 1 of [13].

Theorem 2. Let P_1 and P_2 be B-.5-property and X be a space that satisfies the weak B-.5-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the B-.5-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f-g,3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f-g,3^{-n+1})$ are completely separated by Baire-.5 functions.

Proof. Assume that X has the weak B-.5-insertion property for (P_1, P_2) . Let g and f be functions such that g < f, g has property P_1 and f has property P_2 . By hypothesis there exist lower cut sets $A(f-g,3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each $n, X \setminus D_n$ and $A(f-g,3^{-n+1})$ are completely separated by Baire-.5 functions. Let k_n be a Baire-.5 function such that $k_n = 0$ on $A(f-g,3^{-n+1})$ and $k_n = 1$ on $X \setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x)$$
.

By the Cauchy condition and the *B*-.5-properties, the function k is a Baire-.5 function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that 0 < k. Also 2k < f - g: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \le 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f-g,3^{-n+1}) - A(f-g,3^{-n});$$

in the former case 2k(x) < 1, and in the latter $2k(x) \le 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are B-.5-properties, then g_1 has property P_1 and f_1 has property P_2 . Since X has the weak B-.5-insertion property for (P_1, P_2) , then there exists a Baire-.5 function such that $g_1 \le h \le f_1$. Thus g < h < f, it follows that X satisfies the B-.5-insertion property for (P_1, P_2) . (The technique of this proof is by Katětov [13].)

Conversely, let g and f be functions on X such that g has property P_1 , f has property P_2 and g < f. By hypothesis, there exists a Baire-.5 function such that g < h < f. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_1 , since f - h has property P_2 , and since X has the B-.5-insertion property for (P_1, P_2) , then there exists a Baire-.5 function k such that 0 < k < f - h. Let $A(f - g, 3^{-n+1})$ be any lower cut set for f - g and let

$$D_n = \{x \in X : k(x) < 3^{-n+2}\}.$$

Since k > 0 it follows that $\bigcap_{n=1}^{\infty} D_n = \emptyset$. Since

$$A(f-g,3^{-n+1}) \subseteq \{x \in X : (f-g)(x) \le 3^{-n+1}\} \subseteq \{x \in X : k(x) \le 3^{-n+1}\}$$

and since

$${x \in X : k(x) \le 3^{-n+1}}$$

and

$$\{x \in X : k(x) \ge 3^{-n+2}\} = X \setminus D_n$$

are completely separated by Baire-.5 function $\sup\{3^{-n+1},\inf\{k,3^{-n+2}\}\}$, it follows that for each $n,A(f-g,3^{-n+1})$ and $X\setminus D_n$ are completely separated by Baire-.5 functions.

3 Applications

Definition 6. A real-valued function f defined on a space X is called *contra-upper semi-Baire-*.5 (resp. *contra-lower semi-Baire-*.5) if $f^{-1}(-\infty,t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ} -set for any real number t.

The abbreviations usc, lsc, cusB-.5 and clsB-.5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [13], [14]. A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of Theorem 1, and Theorem 2 we suppose that X is a topological space that F_{σ} -kernel of sets are F_{σ} -sets.

Corollary 1. For each pair of disjoint F_{σ} -sets F_1, F_2 , there are two G_{δ} -sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak B-.5-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is $\operatorname{lsc} B_1$, g is $\operatorname{usc} B_1$, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a F_{σ} -set and since $\{x \in X : g(x) < t_2\}$ is a G_{δ} -set, it follows that

$$F_{\sigma}(A(f,t_1)) \subseteq G_{\delta}(A(g,t_2))$$
.

Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 1. On the other hand, let F_1 and F_2 are disjoint F_{σ} -sets. Set $f = \chi_{F_1^c}$ and $g = \chi_{F_2}$, then f is clsB-.5, g is cusB-.5, and $g \le f$. Thus there exists Baire-.5 function h such that $g \le h \le f$. Set

$$G_1 = \left\{ x \in X : h(x) < \frac{1}{2} \right\}$$

and

$$G_2 = \left\{ x \in X : h(x) > \frac{1}{2} \right\},\,$$

then G_1 and G_2 are disjoint G_δ -sets such that $F_1 \subseteq G_1$ and $F_2 \subseteq G_2$.

Remark 2. [22] A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 2. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set if and only if X has the weak B-.5-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 1. The following conditions on the space X are equivalent:

- (i) For every G of G_{δ} -set we have $F_{\sigma}(G)$ is a G_{δ} -set.
- (ii) For each pair of disjoint G_{δ} -sets as G_1 and G_2 we have $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$.

The proof of Lemma 1 is a direct consequence of the definition F_{σ} -kernel of sets.

We now give the proof of Corollary 2.

Proof of Corollary 2. Let g and f be real-valued functions defined on the X, such that f is clsB-.5, g is cusB-.5, and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case

$$F_{\sigma}(A) \subset G \subset F_{\sigma}(G) \subset G_{\delta}(B)$$

for some G_{δ} -set g in X, then by hypothesis and Lemma 1 ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(g, t_1) = \{x \in X : g(x) < t_1\} \subseteq \{x \in X : f(x) \le t_2\} = A(f, t_2);$$

since $\{x \in X : g(x) < t_1\}$ is a G_{δ} -set and since $\{x \in X : f(x) \le t_2\}$ is a F_{σ} -set, by hypothesis it follows that $A(g, t_1) \rho A(f, t_2)$. The proof follows from Theorem 1.

On the other hand, Let G_1 and G_2 are disjoint G_{δ} -sets. Set $f = \chi_{G_2}$ and $g = \chi_{G_1^c}$, then f is clsB-.5, g is cusB-.5, and $f \leq g$.

Thus there exists Baire-.5 function h such that $f \leq h \leq g$. Set

$$F_1 = \left\{ x \in X : h(x) \le \frac{1}{3} \right\}$$

and

$$F_2 = \left\{ x \in X : h(x) \ge \frac{2}{3} \right\}$$

then F_1 and F_2 are disjoint F_{σ} -sets such that $G_1 \subseteq F_1$ and $G_2 \subseteq F_2$. Hence

$$F_{\sigma}(F_1) \cap F_{\sigma}(F_2) = \emptyset$$
.

Before stating the consequences of Theorem 2, we state and prove the necessary lemmas.

Lemma 2. The following conditions on the space X are equivalent:

- (i) Every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets of X.
- (ii) If F is a F_{σ} -set of X which is contained in a G_{δ} -set G, then there exists a G_{δ} -set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ} -set and G_{δ} -set of X, respectively. Hence, G^c is a F_{σ} -set and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint G_{δ} -sets G_1, G_2 such that $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G$$
,

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a F_{σ} -set containing G_1 we conclude that $F_{\sigma}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq F_{\sigma}(G_1) \subseteq G$$
.

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint F_{σ} -sets of X.

This implies that $F_1 \subseteq F_2^c$ and F_2^c is a G_{δ} -set. Hence by (ii) there exists a G_{δ} -set H such that $F_1 \subseteq H \subseteq F_{\sigma}(H) \subseteq F_2^c$. But

$$H \subseteq F_{\sigma}(H) \Rightarrow H \cap (F_{\sigma}(H))^c = \emptyset$$

and

$$F_{\sigma}(H) \subset F_2^c \Rightarrow F_2 \subset (F_{\sigma}(H))^c$$
.

Furthermore, $(F_{\sigma}(H))^c$ is a G_{δ} -set of X. Hence $F_1 \subseteq H$, $F_2 \subseteq (F_{\sigma}(H))^c$ and $H \cap (F_{\sigma}(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X, then there exists a Baire-.5 function $h: X \to [0,1]$ such that

$$h(F_1) = \{0\}$$
 and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint F_{σ} -sets of X. Since $F_1 \cap F_2 = \emptyset$, hence $F_1 \subseteq F_2^c$. In particular, since F_2^c is a G_{δ} -set of X containing F_1 , by Lemma 2, there exists a G_{δ} -set $H_{1/2}$ such that,

$$F_1 \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq F_2^c$$
.

Note that $H_{1/2}$ is a G_{δ} -set and contains F_1 , and F_2^c is a G_{δ} -set and contains $F_{\sigma}(H_{1/2})$. Hence, by Lemma 2, there exists G_{δ} -sets $H_{1/4}$ and $H_{3/4}$ such that,

$$F_1 \subseteq H_{1/4} \subseteq F_{\sigma}(H_{1/4}) \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq H_{3/4} \subseteq F_{\sigma}(H_{3/4}) \subseteq F_2^c$$
.

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain G_{δ} -sets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by

$$h(x) = \inf\{t : x \in H_t\}$$

for $x \notin F_2$ and h(x) = 1 for $x \in F_2$.

Note that for every $x \in X$, $0 \le h(x) \le 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D$, $F_1 \subseteq H_t$; hence $h(F_1) = \{0\}$. Furthermore, by definition, $h(F_2) = \{1\}$. It remains only to prove that h is a Baire-.5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \le 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then

$$\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\},\,$$

hence, they are G_{δ} -sets of X. Similarly, if $\alpha < 0$ then

$$\{x \in X : h(x) > \alpha\} = X$$

and if $0 \le \alpha$ then

$$\{x \in X : h(x) > \alpha\} = \bigcup \{(F_{\sigma}(H_t))^c : t > \alpha\}$$

hence, every of them is a G_{δ} -set. Consequently h is a Baire-.5 function.

Lemma 4. Suppose that X is the topological space such that every two disjoint F_{σ} -sets can be separated by G_{δ} -sets. The following conditions are equivalent:

- (i) Every countable convering of G_{δ} -sets of X has a refinement consisting of G_{δ} -sets such that, for every $x \in X$, there exists a G_{δ} -set containing x such that it intersects only finitely many members of the refinement.
- (ii) Corresponding to every decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection there exists a decreasing sequence $\{G_n\}$ of G_{δ} -sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$, $F_n \subseteq G_n$.
- Proof. (i) \Rightarrow (ii). suppose that $\{F_n\}$ be a decreasing sequence of F_{σ} -sets with empty intersection. Then $\{F_n^c: n \in \mathbb{N}\}$ is a countable covering of G_{δ} -sets. By hypothesis (i) and Lemma 2, this covering has a refinement $\{V_n: n \in \mathbb{N}\}$ such that every V_n is a G_{δ} -set and $F_{\sigma}(V_n) \subseteq F_n^c$. By setting $F_n = (F_{\sigma}(V_n))^c$, we obtain a decreasing sequence of G_{δ} -sets with the required properties.
- (ii) \Rightarrow (i). Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of G_{δ} -sets, we set for $n \in \mathbb{N}$, $F_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{F_n\}$ is a decreasing sequence of F_{σ} -sets with empty intersection. By (ii) there exists a decreasing sequence $\{G_n\}$ consisting of G_{δ} -sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$, $F_n \subseteq G_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is a G_{δ} -set of X such that $G_1^c \subseteq W_1$ and $F_{\sigma}(W_1) \cap F_1 = \emptyset$.

 W_2 is a G_{δ} -set of X such that $F_{\sigma}(W_1) \cup G_2^c \subseteq W_2$ and $F_{\sigma}(W_2) \cap F_2 = \emptyset$, and so on. (By Lemma 2, W_n exists).

Then since $\{G_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of G_{δ} -sets. Moreover, we have

- (i) $F_{\sigma}(W_n) \subseteq W_{n+1}$
- (ii) $G_n^c \subseteq W_n$
- (iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now suppose that $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus F_{\sigma}(W_{n-1})$.

Then since $F_{\sigma}(W_{n-1}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of G_{δ} -sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$S_1 \cap H_1,$$
 $S_1 \cap H_2$ $S_2 \cap H_1,$ $S_2 \cap H_2,$ $S_2 \cap H_3$ $S_3 \cap H_1,$ $S_3 \cap H_2,$ $S_3 \cap H_3,$ $S_3 \cap H_4$

and continue ad infinitum. These sets are G_{δ} -sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a G_{δ} -set containing x that intersects at most finitely many of sets $S_i \cap H_i$. Consequently,

$${S_i \cap H_j : i \in \mathbb{N}, j = 1, \dots, i+1}$$

refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are G_{δ} -sets, and for every point in X we can find a G_{δ} -set containing the point that intersects only finitely many elements of that refinement.

Remark 3. [13], [14] A space X has the c-insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 3. X has the B-.5-insertion property for (cusB-.5, clsB-.5) if and only if every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets, and in addition, every countable covering of G_{δ} -sets has a refinement that consists of G_{δ} -sets such that, for every point of X we can find a G_{δ} -set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_1 and F_2 are disjoint F_{σ} -sets. Since $F_1 \cap F_2 = \emptyset$, it follows that $F_2 \subseteq F_1^c$. We set f(x) = 2 for $x \in F_1^c$, $f(x) = \frac{1}{2}$ for $x \notin F_1^c$, and $g = \chi_{F_2}$.

Since F_2 is a F_{σ} -set, and F_1^c is a G_{δ} -set, therefore g is cusB-.5, f is clsB-.5 and furthermore g < f. Hence by hypothesis there exists a Baire-.5 function h such that, g < h < f. Now by setting

$$G_1 = \{x \in X : h(x) < 1\}$$

and

$$G_2 = \{x \in X : h(x) > 1\}.$$

We can say that G_1 and G_2 are disjoint G_{δ} -sets that contain F_1 and F_2 , respectively. Now suppose that $\{F_n\}$ is a decreasing sequence of F_{σ} -sets with empty intersection. Set $F_0 = X$ and define for every $x \in F_n \setminus F_{n+1}$,

$$f(x) = \frac{1}{n+1} \,.$$

Since

$$\bigcap_{n=0}^{\infty} F_n = \emptyset$$

and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_n \setminus F_{n+1}$, f is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$\{x \in X : f(x) > r\} = X$$

is a G_{δ} -set and if r > 0 then by Archimedean property of \mathbb{R} , we can find $i \in \mathbb{N}$ such that

$$\frac{1}{i+1} \le r.$$

Now suppose that k is the least natural number such that $\frac{1}{k+1} \le r$. Hence $\frac{1}{k} > r$ and consequently,

$$\{x \in X : f(x) > r\} = X \setminus F_k$$

is a G_{δ} -set. Therefore, f is clsB-.5. By setting g=0, we have g is cusB-.5 and g < f. Hence by hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

By setting

$$G_n = \left\{ x \in X : h(x) < \frac{1}{n+1} \right\},\,$$

we have G_n is a G_{δ} -set. But for every $x \in F_n$, we have

$$f(x) \le \frac{1}{n+1}$$

and since g < h < f therefore

$$0 < h(x) < \frac{1}{n+1} \,,$$

i.e., $x \in G_n$ therefore $F_n \subseteq G_n$ and since h > 0 it follows that

$$\bigcap_{n=1}^{\infty} G_n = \emptyset.$$

Hence by Lemma 4, the conditions holds.

On the other hand, since every two disjoint F_{σ} -sets can be separated by G_{δ} -sets, therefore by Corollary 1, X has the weak B-.5-insertion property for

(cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with g < f, such that, g is cusB-.5 and f is clsB-.5. For every $n \in \mathbb{N}$, set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}.$$

Since g is cusB-.5, and f is clsB-.5, therefore f-g is clsB-.5. Hence $A(f-g,3^{-n+1})$ is a F_{σ} -set of X. Consequently, $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of F_{σ} -sets and furthermore since 0 < f - g, it follows that

$$\bigcap_{n=1}^{\infty} A(f-g, 3^{-n+1}) = \emptyset.$$

Now by Lemma 4, there exists a decreasing sequence $\{D_n\}$ of G_{δ} -sets such that

$$A(f-g,3^{-n+1}) \subseteq D_n$$

and

$$\bigcap_{n=1}^{\infty} D_n = \emptyset.$$

But by Lemma 3, $A(f-g, 3^{-n+1})$ and $X \setminus D_n$ of F_{σ} -sets can be completely separated by Baire-.5 functions. Hence by Theorem 2, there exists a Baire-.5 function h defined on X such that, g < h < f, i.e., X has the B-.5-insertion property for (cusB-.5, clsB-.5).

Remark 4. [15] A space X has the c-insertion property for (lsc, usc) iff X is extremally disconnected and if for any decreasing sequence $\{G_n\}$ of open subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of closed subsets of X with empty intersection such that $G_n \subseteq F_n$ for each n.

Corollary 4. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set and in addition for every decreasing sequence $\{G_n\}$ of G_{δ} -sets with empty intersection, there exists a decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection such that for every $n \in \mathbb{N}$, $G_n \subseteq F_n$ if and only if X has the B-.5-insertion property for (clsB-.5, cusB-.5).

Proof. Since for every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set, therefore by Corollary 2, X has the weak B-.5-insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with g < f, g is clsB-.5, and f is cusB-.5. Set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) < 3^{-n+1}\}.$$

Then since f-g is cusB-.5, hence $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of G_{δ} -sets with empty intersection. By hypothesis, there exists a decreasing sequence $\{D_n\}$ of F_{σ} -sets with empty intersection such that, for every $n \in \mathbb{N}$, $A(f-g,3^{-n+1}) \subseteq D_n$. Hence $X \setminus D_n$ and $A(f-g,3^{-n+1})$ are two disjoint G_{δ} -sets and therefore by Lemma 1, we have

$$F_{\sigma}(A(f-g,3^{-n+1})) \cap F_{\sigma}((X \setminus D_n)) = \emptyset$$

and therefore by Lemma 3, $X \setminus D_n$ and $A(f-g, 3^{-n+1})$ are completely separable by Baire-.5 functions. Therefore by Theorem 2, there exists a Baire-.5 function h on X such that, g < h < f, i.e., X has the B-.5-insertion property for (clsB-.5, cusB-.5).

On the other hand, suppose that G_1 and G_2 be two disjoint G_{δ} -sets. Since $G_1 \cap G_2 = \emptyset$. We have $G_2 \subseteq G_1^c$. We set f(x) = 2 for $x \in G_1^c$, $f(x) = \frac{1}{2}$ for $x \notin G_1^c$ and $g = \chi_{G_2}$.

Then since G_2 is a G_δ -set and G_1^c is a F_σ -set, we conclude that g is clsB-.5 and f is cusB-.5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function h on X such that, g < h < f. Now we set

$$F_1 = \left\{ x \in X : h(x) \le \frac{3}{4} \right\}$$

and

$$F_2 = \{x \in X : h(x) > 1\}.$$

Then F_1 and F_2 are two disjoint F_{σ} -sets contain G_1 and G_2 , respectively. Hence $F_{\sigma}(G_1) \subseteq F_1$ and $F_{\sigma}(G_2) \subseteq F_2$ and consequently $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$. By Lemma 1, for every G of G_{δ} -set, the set $F_{\sigma}(G)$ is a G_{δ} -set.

Now suppose that $\{G_n\}$ is a decreasing sequence of G_{δ} -sets with empty intersection.

We set $G_0 = X$ and $f(x) = \frac{1}{n+1}$ for $x \in G_n \setminus G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_n \setminus G_{n+1}$, f is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$\{x \in X : f(x) < r\} = \emptyset$$

is a G_{δ} -set and if r > 0 then by Archimedean property of \mathbb{R} , there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k} > r$. Now if $\frac{1}{k+1} < r$ then

$$\{x \in X : f(x) < r\} = G_k$$

is a G_{δ} -set and if $\frac{1}{k+1} = r$ then

$${x \in X : f(x) < r} = G_{k+1}$$

is a G_{δ} -set. Hence f is a cusB-.5 on X. By setting g = 0, we have conclude that g is clsB-.5 on X and in addition g < f. By hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

Set

$$F_n = \left\{ x \in X : h(x) \le \frac{1}{n+1} \right\}.$$

This set is a F_{σ} -set. But for every $x \in G_n$, we have $f(x) \leq \frac{1}{n+1}$ and since g < h < f thus $h(x) < \frac{1}{n+1}$, this means that $x \in F_n$ and consequently $G_n \subseteq F_n$.

By definition of F_n , $\{F_n\}$ is a decreasing sequence of F_{σ} -sets and since h > 0, $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Thus the conditions holds.

References

- A. Al-Omari, M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2) (2009) 213–230.
- [2] F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971) 1007–1010.
- [3] M. Caldas, S. Jafari: Some properties of contra-β-continuous functions. Mem. Fac. Sci. Kochi. Univ. 22 (2001) 19–28.
- [4] J. Dontchev: The characterization of some peculiar topological space via α and β -sets. Acta Math. Hungar. 69 (1–2) (1995) 67–71.
- [5] J. Dontchev: Contra-continuous functions and strongly S-closed space. Internat. J. Math. Math. Sci. 19 (2) (1996) 303-310.
- [6] J. Dontchev, H. Maki: On sg-closed sets and semi-λ-closed sets. Questions Answers Gen. Topology 15 (2) (1997) 259–266.
- [7] E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004) 127–137.
- [8] E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (1) (2008) 37-45.
- [9] A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (1-2) (2010) 55-64.
- [10] M. Ganster, I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (3–4) (1990) 299–301.
- [11] S. Jafari, T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001) 153–167.
- [12] S. Jafari, T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002) 115–128.
- [13] M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951) 85-91.
- [14] M. Katětov: Correction to "On real-valued functions in topological spaces". Fund. Math. 40 (1953) 203–205.
- [15] E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976) 181–190.
- [16] S.N. Maheshwari, R. Prasad: On R_{Os} -spaces. Portugal. Math. 34 (1975) 213–217.
- [17] H. Maki: Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986) 139–146.
- [18] M. Mrsevic: On pairwise R and pairwise R₁ bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (1986) 141–145.
- [19] A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005) 471–477.
- [20] M. Przemski: A decomposition of continuity and α-continuity. Acta Math. Hungar. 61 (1–2) (1993) 93–98.
- [21] H. Rosen: Darboux Baire-.5 functions. Proc. Amer. math. Soc. 110 (1) (1990) 285-286.
- [22] M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math 1 (1949) 176–189.

Received: 15 May 2018

Accepted for publication: 7 July 2019 Communicated by: Karl Dilcher