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Insertion of a Contra-Baire-1 (Baire-.5) Function

Majid Mirmiran

Abstract. Necessary and sufficient conditions in terms of lower cut sets
are given for the insertion of a Baire-.5 function between two comparable
real-valued functions on the topological spaces that Fσ-kernel of sets are
Fσ-sets.

1 Introduction
A generalized class of closed sets was considered by Maki in 1986 [17]. He inves-
tigated the sets that can be represented as union of closed sets and called them
V -sets. Complements of V -sets, i.e., sets that are intersection of open sets are
called Λ-sets [17].

Recall that a real-valued function f defined on a topological space X is called
A-continuous [20] if the preimage of every open subset of R belongs to A, where A
is a collection of subsets of X. Most of the definitions of function used throughout
this paper are consequences of the definition of A-continuity. However, for unknown
concepts the reader may refer to [4], [10]. In the recent literature many topolo-
gists had focused their research in the direction of investigating different types of
generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity.
A good number of researchers have also initiated different types of contra-continuous
like mappings in the papers [1], [3], [7], [8], [9], [11], [12], [19].

Results of Katětov [13], [14] concerning binary relations and the concept of
an indefinite lower cut set for a real-valued function, which is due to Brooks [2],
are used in order to give a necessary and sufficient condition for the insertion of
a Baire-.5 function between two comparable real-valued functions on the topological
spaces that Fσ-kernel of sets are Fσ-sets.
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A real-valued function f defined on a topological spaceX is called contra-Baire-.5
(Baire-.5) if the preimage of every open subset of R is a Gδ-set in X [21].

If g and f are real-valued functions defined on a space X, we write g ≤ f (resp.
g < f) in case g(x) ≤ f(x) (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is

a B-.5-property provided that any constant function has property P and provided
that the sum of a function with property P and any Baire-.5 function also has
property P . If P1 and P2 are B-.5-properties, the following terminology is used:

(i) A space X has the weak B-.5-insertion property for (P1, P2) if and only if for
any functions g and f on X such that g ≤ f , g has property P1 and f has
property P2, then there exists a Baire-.5 function h such that g ≤ h ≤ f .

(ii) A space X has the B-.5-insertion property for (P1, P2) if and only if for any
functions g and f on X such that g < f, g has property P1 and f has property
P2, then there exists a Baire-.5 function h such that g < h < f .

In this paper, for a topological space that Fσ-kernel of sets are Fσ-sets, is given
a sufficient condition for the weak B-.5-insertion property. Also for a space with the
weak B-.5-insertion property, we give a necessary and sufficient condition for the
space to have the B-.5-insertion property. Several insertion theorems are obtained
as corollaries of these results.

2 The Main Result
Before giving a sufficient condition for insertability of a Baire-.5 function, the nec-
essary definitions and terminology are stated.

Definition 1. Let A be a subset of a topological space (X, τ). We define the subsets
AΛ and AV as follows:

AΛ =
⋂
{O : O ⊇ A,O ∈ (X, τ)}

and
AV =

⋃
{F : F ⊆ A,F c ∈ (X, τ)} .

In [6], [16], [18], AΛ is called the kernel of A.

Definition 2. We define the subsets Gδ(A) and Fσ(A) as follows:

Gδ(A) =
⋃
{O : O ⊆ A,O is Gδ-set}

and
Fσ(A) =

⋂
{F : F ⊇ A,F is Fσ-set} .

Fσ(A) is called the Fσ-kernel of A.

The following first two definitions are modifications of conditions considered in [13],
[14].
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Definition 3. If ρ is a binary relation in a set S then ρ̄ is defined as follows: x ρ̄ y
if and only if y ρ v implies x ρ v and u ρ x implies u ρ y for any u and v in S.

Definition 4. A binary relation ρ in the power set P (X) of a topological space X
is called a strong binary relation in P (X) in case ρ satisfies each of the following
conditions:

1. If Ai ρ Bj for any i ∈ {1, . . . ,m} and for any j ∈ {1, . . . , n}, then there exists
a set C in P (X) such that Ai ρ C and C ρ Bj for any i ∈ {1, . . . ,m} and
any j ∈ {1, . . . , n}.

2. If A ⊆ B, then A ρ̄ B.

3. If A ρ B, then Fσ(A) ⊆ B and A ⊆ Gδ(B).

The concept of a lower indefinite cut set for a real-valued function was defined by
Brooks [2] as follows:

Definition 5. If f is a real-valued function defined on a space X and if

{x ∈ X : f(x) < `} ⊆ A(f, `) ⊆ {x ∈ X : f(x) ≤ `}

for a real number `, then A(f, `) is a lower indefinite cut set in the domain of f at
the level `.

We now give the following main results:

Theorem 1. Let g and f be real-valued functions on the topological space X, that
Fσ-kernel of sets in X are Fσ-sets, with g ≤ f . If there exists a strong binary
relation ρ on the power set of X and if there exist lower indefinite cut sets A(f, t)
and A(g, t) in the domain of f and g at the level t for each rational number t
such that if t1 < t2 then A(f, t1) ρ A(g, t2), then there exists a Baire-.5 function h
defined on X such that g ≤ h ≤ f .

Proof. Let g and f be real-valued functions defined on the X such that g ≤ f . By
hypothesis there exists a strong binary relation ρ on the power set of X and there
exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of f and g at the
level t for each rational number t such that if t1 < t2 then A(f, t1) ρ A(g, t2).

Define functions F and G mapping the rational numbers Q into the power
set of X by F (t) = A(f, t) and G(t) = A(g, t). If t1 and t2 are any elements
of Q with t1 < t2, then F (t1) ρ̄ F (t2), G(t1) ρ̄ G(t2), and F (t1) ρ G(t2). By
Lemmas 1 and 2 of [14] it follows that there exists a function H mapping Q into
the power set of X such that if t1 and t2 are any rational numbers with t1 < t2,
then F (t1) ρ H(t2), H(t1) ρ H(t2) and H(t1) ρ G(t2).

For any x in X, let

h(x) = inf{t ∈ Q : x ∈ H(t)} .

We first verify that g ≤ h ≤ f : If x is in H(t) then x is in G(t′) for any t′ > t;
since x in G(t′) = A(g, t′) implies that g(x) ≤ t′, it follows that g(x) ≤ t. Hence
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g ≤ h. If x is not in H(t), then x is not in F (t′) for any t′ < t; since x is not in
F (t′) = A(f, t′) implies that f(x) > t′, it follows that f(x) ≥ t. Hence h ≤ f .

Also, for any rational numbers t1 and t2 with t1 < t2, we have

h−1(t1, t2) = Gδ(H(t2)) \ Fσ(H(t1)) .

Hence h−1(t1, t2) is a Gδ-set in X, i.e., h is a Baire-.5 function on X. �

The above proof used the technique of Theorem 1 of [13].

Theorem 2. Let P1 and P2 be B-.5-property and X be a space that satisfies the
weak B-.5-insertion property for (P1, P2). Also assume that g and f are functions
on X such that g < f, g has property P1 and f has property P2. The space X
has the B-.5-insertion property for (P1, P2) if and only if there exist lower cut
sets A(f − g, 3−n+1) and there exists a decreasing sequence {Dn} of subsets of X
with empty intersection and such that for each n, X \Dn and A(f − g, 3−n+1) are
completely separated by Baire-.5 functions.

Proof. Assume that X has the weak B-.5-insertion property for (P1, P2). Let g
and f be functions such that g < f, g has property P1 and f has property P2. By
hypothesis there exist lower cut sets A(f − g, 3−n+1) and there exists a sequence
(Dn) such that

⋂∞
n=1Dn = ∅ and such that for each n,X \Dn and A(f −g, 3−n+1)

are completely separated by Baire-.5 functions. Let kn be a Baire-.5 function such
that kn = 0 on A(f − g, 3−n+1) and kn = 1 on X \Dn. Let a function k on X be
defined by

k(x) = 1/2

∞∑
n=1

3−nkn(x) .

By the Cauchy condition and the B-.5-properties, the function k is a Baire-.5
function. Since

⋂∞
n=1Dn = ∅ and since kn = 1 on X \Dn, it follows that 0 < k.

Also 2k < f − g: In order to see this, observe first that if x is in A(f − g, 3−n+1),
then k(x) ≤ 1/4(3−n). If x is any point in X, then x /∈ A(f − g, 1) or for some n,

x ∈ A(f − g, 3−n+1)−A(f − g, 3−n) ;

in the former case 2k(x) < 1, and in the latter 2k(x) ≤ 1/2(3−n) < f(x) − g(x).
Thus if f1 = f − k and if g1 = g + k, then g < g1 < f1 < f . Since P1 and P2 are
B-.5-properties, then g1 has property P1 and f1 has property P2. Since X has the
weak B-.5-insertion property for (P1, P2), then there exists a Baire-.5 function such
that g1 ≤ h ≤ f1. Thus g < h < f , it follows that X satisfies the B-.5-insertion
property for (P1, P2). (The technique of this proof is by Katětov [13].)

Conversely, let g and f be functions on X such that g has property P1, f has
property P2 and g < f . By hypothesis, there exists a Baire-.5 function such that
g < h < f . We follow an idea contained in Lane [15]. Since the constant function
0 has property P1, since f −h has property P2, and since X has the B-.5-insertion
property for (P1, P2), then there exists a Baire-.5 function k such that 0 < k < f−h.
Let A(f − g, 3−n+1) be any lower cut set for f − g and let

Dn = {x ∈ X : k(x) < 3−n+2} .
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Since k > 0 it follows that
⋂∞
n=1Dn = ∅. Since

A(f − g, 3−n+1) ⊆ {x ∈ X : (f − g)(x) ≤ 3−n+1} ⊆ {x ∈ X : k(x) ≤ 3−n+1}

and since
{x ∈ X : k(x) ≤ 3−n+1}

and
{x ∈ X : k(x) ≥ 3−n+2} = X \Dn

are completely separated by Baire-.5 function sup{3−n+1, inf{k, 3−n+2}}, it follows
that for each n,A(f − g, 3−n+1) and X \Dn are completely separated by Baire-.5
functions. �

3 Applications
Definition 6. A real-valued function f defined on a space X is called contra-upper
semi-Baire-.5 (resp. contra-lower semi-Baire-.5) if f−1(−∞, t) (resp. f−1(t,+∞))
is a Gδ-set for any real number t.

The abbreviations usc, lsc, cusB-.5 and clsB-.5 are used for upper semicontin-
uous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-
Baire-.5, respectively.

Remark 1. [13], [14]. A space X has the weak c-insertion property for (usc, lsc) if
and only if X is normal.

Before stating the consequences of Theorem 1, and Theorem 2 we suppose that
X is a topological space that Fσ-kernel of sets are Fσ-sets.

Corollary 1. For each pair of disjoint Fσ-sets F1, F2, there are two Gδ-sets G1 and
G2 such that F1 ⊆ G1, F2 ⊆ G2 and G1 ∩ G2 = ∅ if and only if X has the weak
B-.5-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is
lscB1, g is uscB1, and g ≤ f . If a binary relation ρ is defined by A ρ B in case
Fσ(A) ⊆ Gδ(B), then by hypothesis ρ is a strong binary relation in the power set
of X. If t1 and t2 are any elements of Q with t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is a Fσ-set and since {x ∈ X : g(x) < t2} is a Gδ-set, it
follows that

Fσ(A(f, t1)) ⊆ Gδ(A(g, t2)) .

Hence t1 < t2 implies that A(f, t1) ρ A(g, t2). The proof follows from Theorem 1.
On the other hand, let F1 and F2 are disjoint Fσ-sets. Set f = χF c

1
and g = χF2

,
then f is clsB-.5, g is cusB-.5, and g ≤ f . Thus there exists Baire-.5 function h
such that g ≤ h ≤ f . Set

G1 =
{
x ∈ X : h(x) <

1

2

}
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and

G2 =
{
x ∈ X : h(x) >

1

2

}
,

then G1 and G2 are disjoint Gδ-sets such that F1 ⊆ G1 and F2 ⊆ G2. �

Remark 2. [22] A space X has the weak c-insertion property for (lsc,usc) if and
only if X is extremally disconnected.

Corollary 2. For every G of Gδ-set, Fσ(G) is a Gδ-set if and only if X has the weak
B-.5-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 1. The following conditions on the space X are equivalent:

(i) For every G of Gδ-set we have Fσ(G) is a Gδ-set.

(ii) For each pair of disjoint Gδ-sets as G1 and G2 we have Fσ(G1)∩Fσ(G2) = ∅.

The proof of Lemma 1 is a direct consequence of the definition Fσ-kernel of
sets.

We now give the proof of Corollary 2.

Proof of Corollary 2. Let g and f be real-valued functions defined on the X, such
that f is clsB-.5, g is cusB-.5, and f ≤ g. If a binary relation ρ is defined by A ρ B
in case

Fσ(A) ⊆ G ⊆ Fσ(G) ⊆ Gδ(B)

for some Gδ-set g in X, then by hypothesis and Lemma 1 ρ is a strong binary
relation in the power set of X. If t1 and t2 are any elements of Q with t1 < t2,
then

A(g, t1) = {x ∈ X : g(x) < t1} ⊆ {x ∈ X : f(x) ≤ t2} = A(f, t2) ;

since {x ∈ X : g(x) < t1} is a Gδ-set and since {x ∈ X : f(x) ≤ t2} is a Fσ-set, by
hypothesis it follows that A(g, t1) ρ A(f, t2). The proof follows from Theorem 1.

On the other hand, Let G1 and G2 are disjoint Gδ-sets. Set f = χG2
and

g = χGc
1
, then f is clsB-.5, g is cusB-.5, and f ≤ g.

Thus there exists Baire-.5 function h such that f ≤ h ≤ g. Set

F1 =
{
x ∈ X : h(x) ≤ 1

3

}
and

F2 =
{
x ∈ X : h(x) ≥ 2

3

}
then F1 and F2 are disjoint Fσ-sets such that G1 ⊆ F1 and G2 ⊆ F2. Hence

Fσ(F1) ∩ Fσ(F2) = ∅ . �
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Before stating the consequences of Theorem 2, we state and prove the necessary
lemmas.

Lemma 2. The following conditions on the space X are equivalent:

(i) Every two disjoint Fσ-sets of X can be separated by Gδ-sets of X.

(ii) If F is a Fσ-set of X which is contained in a Gδ-set G, then there exists a
Gδ-set H such that F ⊆ H ⊆ Fσ(H) ⊆ G.

Proof. (i)⇒ (ii) Suppose that F ⊆ G, where F and G are Fσ-set and Gδ-set of X,
respectively. Hence, Gc is a Fσ-set and F ∩Gc = ∅.

By (i) there exists two disjoint Gδ-sets G1, G2 such that F ⊆ G1 and Gc ⊆ G2.
But

Gc ⊆ G2 ⇒ Gc2 ⊆ G,

and
G1 ∩G2 = ∅ ⇒ G1 ⊆ Gc2

hence
F ⊆ G1 ⊆ Gc2 ⊆ G

and since Gc2 is a Fσ-set containing G1 we conclude that Fσ(G1) ⊆ Gc2, i.e.,

F ⊆ G1 ⊆ Fσ(G1) ⊆ G.

By setting H = G1, condition (ii) holds.
(ii) ⇒ (i) Suppose that F1, F2 are two disjoint Fσ-sets of X.
This implies that F1 ⊆ F c2 and F c2 is a Gδ-set. Hence by (ii) there exists a

Gδ-set H such that F1 ⊆ H ⊆ Fσ(H) ⊆ F c2 .
But

H ⊆ Fσ(H)⇒ H ∩ (Fσ(H))c = ∅

and
Fσ(H) ⊆ F c2 ⇒ F2 ⊆ (Fσ(H))c.

Furthermore, (Fσ(H))c is a Gδ-set of X. Hence F1 ⊆ H, F2 ⊆ (Fσ(H))c and
H ∩ (Fσ(H))c = ∅. This means that condition (i) holds. �

Lemma 3. Suppose that X is the topological space such that we can separate every
two disjoint Fσ-sets by Gδ-sets. If F1 and F2 are two disjoint Fσ-sets of X, then
there exists a Baire-.5 function h : X → [0, 1] such that

h(F1) = {0} and h(F2) = {1} .

Proof. Suppose F1 and F2 are two disjoint Fσ-sets of X. Since F1 ∩ F2 = ∅, hence
F1 ⊆ F c2 . In particular, since F c2 is a Gδ-set of X containing F1, by Lemma 2, there
exists a Gδ-set H1/2 such that,

F1 ⊆ H1/2 ⊆ Fσ(H1/2) ⊆ F c2 .
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Note that H1/2 is a Gδ-set and contains F1, and F c2 is a Gδ-set and contains
Fσ(H1/2). Hence, by Lemma 2, there exists Gδ-sets H1/4 and H3/4 such that,

F1 ⊆ H1/4 ⊆ Fσ(H1/4) ⊆ H1/2 ⊆ Fσ(H1/2) ⊆ H3/4 ⊆ Fσ(H3/4) ⊆ F c2 .

By continuing this method for every t ∈ D, where D ⊆ [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain Gδ-sets Ht with
the property that if t1, t2 ∈ D and t1 < t2, then Ht1 ⊆ Ht2 . We define the function
h on X by

h(x) = inf{t : x ∈ Ht}

for x 6∈ F2 and h(x) = 1 for x ∈ F2.
Note that for every x ∈ X, 0 ≤ h(x) ≤ 1, i.e., h maps X into [0,1]. Also, we

note that for any t ∈ D,F1 ⊆ Ht; hence h(F1) = {0}. Furthermore, by definition,
h(F2) = {1}. It remains only to prove that h is a Baire-.5 function on X. For every
α ∈ R, we have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅ and if 0 < α then

{x ∈ X : h(x) < α} =
⋃
{Ht : t < α} ,

hence, they are Gδ-sets of X. Similarly, if α < 0 then

{x ∈ X : h(x) > α} = X

and if 0 ≤ α then

{x ∈ X : h(x) > α} =
⋃
{(Fσ(Ht))

c : t > α}

hence, every of them is a Gδ-set. Consequently h is a Baire-.5 function. �

Lemma 4. Suppose that X is the topological space such that every two disjoint
Fσ-sets can be separated by Gδ-sets. The following conditions are equivalent:

(i) Every countable convering of Gδ-sets of X has a refinement consisting of
Gδ-sets such that, for every x ∈ X, there exists a Gδ-set containing x such
that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence {Fn} of Fσ-sets with empty
intersection there exists a decreasing sequence {Gn} of Gδ-sets such that,⋂∞
n=1Gn = ∅ and for every n ∈ N, Fn ⊆ Gn.

Proof. (i) ⇒ (ii). suppose that {Fn} be a decreasing sequence of Fσ-sets with
empty intersection. Then {F cn : n ∈ N} is a countable covering of Gδ-sets. By
hypothesis (i) and Lemma 2, this covering has a refinement {Vn : n ∈ N} such that
every Vn is a Gδ-set and Fσ(Vn) ⊆ F cn. By setting Fn = (Fσ(Vn))c, we obtain a
decreasing sequence of Gδ-sets with the required properties.

(ii) ⇒ (i). Now if {Hn : n ∈ N} is a countable covering of Gδ-sets, we set
for n ∈ N, Fn = (

⋃n
i=1Hi)

c. Then {Fn} is a decreasing sequence of Fσ-sets with
empty intersection. By (ii) there exists a decreasing sequence {Gn} consisting of
Gδ-sets such that,

⋂∞
n=1Gn = ∅ and for every n ∈ N, Fn ⊆ Gn. Now we define the

subsets Wn of X in the following manner:
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W1 is a Gδ-set of X such that Gc1 ⊆W1 and Fσ(W1) ∩ F1 = ∅.
W2 is a Gδ-set of X such that Fσ(W1) ∪ Gc2 ⊆ W2 and Fσ(W2) ∩ F2 = ∅, and

so on. (By Lemma 2, Wn exists).
Then since {Gcn : n ∈ N} is a covering for X, hence {Wn : n ∈ N} is a covering

for X consisting of Gδ-sets. Moreover, we have

(i) Fσ(Wn) ⊆Wn+1

(ii) Gcn ⊆Wn

(iii) Wn ⊆
⋃n
i=1Hi.

Now suppose that S1 = W1 and for n ≥ 2, we set Sn = Wn+1 \ Fσ(Wn−1).
Then since Fσ(Wn−1) ⊆Wn and Sn ⊇Wn+1 \Wn, it follows that {Sn : n ∈ N}

consists of Gδ-sets and covers X. Furthermore, Si∩Sj 6= ∅ if and only if |i−j| ≤ 1.
Finally, consider the following sets:

S1 ∩H1, S1 ∩H2

S2 ∩H1, S2 ∩H2, S2 ∩H3

S3 ∩H1, S3 ∩H2, S3 ∩H3, S3 ∩H4

and continue ad infinitum. These sets are Gδ-sets, cover X and refine {Hn : n ∈ N}.
In addition, Si ∩Hj can intersect at most the sets in its row, immediately above,
or immediately below row.

Hence if x ∈ X and x ∈ Sn ∩Hm, then Sn ∩Hm is a Gδ-set containing x that
intersects at most finitely many of sets Si ∩Hj . Consequently,

{Si ∩Hj : i ∈ N, j = 1, . . . , i+ 1}

refines {Hn : n ∈ N} such that its elements are Gδ-sets, and for every point in X we
can find a Gδ-set containing the point that intersects only finitely many elements
of that refinement. �

Remark 3. [13], [14] A space X has the c-insertion property for (usc, lsc) if and
only if X is normal and countably paracompact.

Corollary 3. X has the B-.5-insertion property for (cusB-.5, clsB-.5) if and only
if every two disjoint Fσ-sets of X can be separated by Gδ-sets, and in addition,
every countable covering of Gδ-sets has a refinement that consists of Gδ-sets such
that, for every point of X we can find a Gδ-set containing that point such that, it
intersects only a finite number of refining members.

Proof. Suppose that F1 and F2 are disjoint Fσ-sets . Since F1 ∩ F2 = ∅, it follows
that F2 ⊆ F c1 . We set f(x) = 2 for x ∈ F c1 , f(x) = 1

2 for x 6∈ F c1 , and g = χF2 .
Since F2 is a Fσ-set, and F c1 is a Gδ-set, therefore g is cusB-.5,f is clsB-.5 and

furthermore g < f . Hence by hypothesis there exists a Baire-.5 function h such
that, g < h < f . Now by setting

G1 = {x ∈ X : h(x) < 1}
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and
G2 = {x ∈ X : h(x) > 1} .

We can say thatG1 andG2 are disjointGδ-sets that contain F1 and F2, respectively.
Now suppose that {Fn} is a decreasing sequence of Fσ-sets with empty intersection.
Set F0 = X and define for every x ∈ Fn \ Fn+1,

f(x) =
1

n+ 1
.

Since
∞⋂
n=0

Fn = ∅

and for every x ∈ X, there exists n ∈ N, such that, x ∈ Fn \Fn+1, f is well defined.
Furthermore, for every r ∈ R, if r ≤ 0 then

{x ∈ X : f(x) > r} = X

is a Gδ-set and if r > 0 then by Archimedean property of R, we can find i ∈ N
such that

1

i+ 1
≤ r .

Now suppose that k is the least natural number such that 1
k+1 ≤ r. Hence 1

k > r
and consequently,

{x ∈ X : f(x) > r} = X \ Fk
is a Gδ-set. Therefore, f is clsB-.5. By setting g = 0, we have g is cusB-.5 and
g < f . Hence by hypothesis there exists a Baire-.5 function h on X such that,
g < h < f .

By setting

Gn =
{
x ∈ X : h(x) <

1

n+ 1

}
,

we have Gn is a Gδ-set. But for every x ∈ Fn, we have

f(x) ≤ 1

n+ 1

and since g < h < f therefore

0 < h(x) <
1

n+ 1
,

i.e., x ∈ Gn therefore Fn ⊆ Gn and since h > 0 it follows that

∞⋂
n=1

Gn = ∅ .

Hence by Lemma 4, the conditions holds.
On the other hand, since every two disjoint Fσ-sets can be separated by

Gδ-sets, therefore by Corollary 1, X has the weak B-.5-insertion property for
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(cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with
g < f , such that, g is cusB-.5 and f is clsB-.5. For every n ∈ N, set

A(f − g, 3−n+1) = {x ∈ X : (f − g)(x) ≤ 3−n+1} .

Since g is cusB-.5, and f is clsB-.5, therefore f−g is clsB-.5. Hence A(f−g, 3−n+1)
is a Fσ-set ofX. Consequently, {A(f−g, 3−n+1)} is a decreasing sequence of Fσ-sets
and furthermore since 0 < f − g, it follows that

∞⋂
n=1

A(f − g, 3−n+1) = ∅ .

Now by Lemma 4, there exists a decreasing sequence {Dn} of Gδ-sets such that

A(f − g, 3−n+1) ⊆ Dn

and
∞⋂
n=1

Dn = ∅ .

But by Lemma 3, A(f−g, 3−n+1) andX\Dn of Fσ-sets can be completely separated
by Baire-.5 functions. Hence by Theorem 2, there exists a Baire-.5 function h
defined on X such that, g < h < f , i.e., X has the B-.5-insertion property for
(cusB-.5, clsB-.5). �

Remark 4. [15] A space X has the c-insertion property for (lsc,usc) iff X is ex-
tremally disconnected and if for any decreasing sequence {Gn} of open subsets of X
with empty intersection there exists a decreasing sequence {Fn} of closed subsets
of X with empty intersection such that Gn ⊆ Fn for each n.

Corollary 4. For every G of Gδ-set, Fσ(G) is a Gδ-set and in addition for every
decreasing sequence {Gn} ofGδ-sets with empty intersection, there exists a decreas-
ing sequence {Fn} of Fσ-sets with empty intersection such that for every n ∈ N,
Gn ⊆ Fn if and only if X has the B-.5-insertion property for (clsB-.5, cusB-.5).

Proof. Since for every G of Gδ-set, Fσ(G) is a Gδ-set, therefore by Corollary 2,
X has the weak B-.5-insertion property for (clsB-.5, cusB-.5). Now suppose that
f and g are real-valued functions defined on X with g < f, g is clsB-.5, and f is
cusB-.5. Set

A(f − g, 3−n+1) = {x ∈ X : (f − g)(x) < 3−n+1} .

Then since f − g is cusB-.5, hence {A(f − g, 3−n+1)} is a decreasing sequence
of Gδ-sets with empty intersection. By hypothesis, there exists a decreasing se-
quence {Dn} of Fσ-sets with empty intersection such that, for every n ∈ N,
A(f − g, 3−n+1) ⊆ Dn. Hence X \Dn and A(f − g, 3−n+1) are two disjoint Gδ-sets
and therefore by Lemma 1, we have

Fσ(A(f − g, 3−n+1)) ∩ Fσ((X \Dn)) = ∅
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and therefore by Lemma 3, X \Dn and A(f−g, 3−n+1) are completely separable by
Baire-.5 functions. Therefore by Theorem 2, there exists a Baire-.5 function h on X
such that, g < h < f , i.e., X has the B-.5-insertion property for (clsB-.5, cusB-.5).

On the other hand, suppose that G1 and G2 be two disjoint Gδ-sets. Since
G1 ∩G2 = ∅. We have G2 ⊆ Gc1. We set f(x) = 2 for x ∈ Gc1, f(x) = 1

2 for x 6∈ Gc1
and g = χG2 .

Then since G2 is a Gδ-set and Gc1 is a Fσ-set, we conclude that g is clsB-.5 and
f is cusB-.5 and furthermore g < f . By hypothesis, there exists a Baire-.5 function
h on X such that, g < h < f . Now we set

F1 =
{
x ∈ X : h(x) ≤ 3

4

}
and

F2 = {x ∈ X : h(x) ≥ 1} .

Then F1 and F2 are two disjoint Fσ-sets contain G1 and G2, respectively. Hence
Fσ(G1) ⊆ F1 and Fσ(G2) ⊆ F2 and consequently Fσ(G1) ∩ Fσ(G2) = ∅. By
Lemma 1, for every G of Gδ-set, the set Fσ(G) is a Gδ-set.

Now suppose that {Gn} is a decreasing sequence of Gδ-sets with empty inter-
section.

We set G0 = X and f(x) = 1
n+1 for x ∈ Gn \Gn+1. Since

⋂∞
n=0Gn = ∅ and for

every n ∈ N there exists x ∈ Gn \ Gn+1, f is well-defined. Furthermore, for every
r ∈ R, if r ≤ 0 then

{x ∈ X : f(x) < r} = ∅

is a Gδ-set and if r > 0 then by Archimedean property of R, there exists i ∈ N
such that 1

i+1 ≤ r. Suppose that k is the least natural number with this property.
Hence 1

k > r. Now if 1
k+1 < r then

{x ∈ X : f(x) < r} = Gk

is a Gδ-set and if 1
k+1 = r then

{x ∈ X : f(x) < r} = Gk+1

is a Gδ-set. Hence f is a cusB-.5 on X. By setting g = 0, we have conclude that
g is clsB-.5 on X and in addition g < f . By hypothesis there exists a Baire-.5
function h on X such that, g < h < f .

Set

Fn =

{
x ∈ X : h(x) ≤ 1

n+ 1

}
.

This set is a Fσ-set. But for every x ∈ Gn, we have f(x) ≤ 1
n+1 and since g < h < f

thus h(x) < 1
n+1 , this means that x ∈ Fn and consequently Gn ⊆ Fn.

By definition of Fn, {Fn} is a decreasing sequence of Fσ-sets and since h > 0,⋂∞
n=1 Fn = ∅. Thus the conditions holds. �
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