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Oscillation in deviating differential equations using an
iterative method

George E. Chatzarakis, Irena Jadlovská

Abstract. Sufficient oscillation conditions involving lim sup and lim inf for
first-order differential equations with non-monotone deviating arguments
and nonnegative coefficients are obtained. The results are based on the iter-
ative application of the Grönwall inequality. Examples, numerically solved
in MATLAB, are also given to illustrate the applicability and strength of
the obtained conditions over known ones.

1 Introduction
Consider the first-order linear delay differential equation (DDE) of the form

x′(t) + p(t)x (τ(t)) = 0 (1)

and the (dual) first-order linear advanced differential equation (ADE) of the form

x′(t)− q(t)x (σ(t)) = 0 (2)

with t ≥ t0 > 0, where p, q, τ, σ are continuous functions on [t0,∞) such that p, q
are nonnegative and do not vanish eventually, τ(t) < t for t ≥ t0, limt→∞ τ(t) =∞
and σ(t) > t for t ≥ t0.

Definition 1. By a solution of (1) we mean a function which is continuous on
[t̄∗,∞) for some t∗ ≥ t0, where t̄∗ = inf{τ(t) : t ≥ t∗} and satisfies (1) for all
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t ≥ t∗. Similarly, by a solution of (2) we mean a function which is continuous on
[t0,∞) and satisfies (2) for all t ≥ t0.

Definition 2. A solution of (1) or (2) is said to be oscillatory, if it is neither even-
tually positive nor eventually negative. If there exists an eventually positive or
an eventually negative solution, the equation is nonoscillatory. An equation is
oscillatory if all its solutions oscillate.

Mathematical modeling involving DDEs is widely used for analysis and predic-
tions in various areas of the life sciences, e.g., population dynamics, epidemiology,
immunology, physiology, neural networks, etc. Here, the delay is proposed to play
an essential role in order to represent basically a time taken to complete some
hidden processes, which are known to cause a time lag, like the stages of the life
cycle, the time between infection of a cell and the production of new viruses, the
duration of the infectious period, the immune period and so on. Time delays also
allow to model the memory effects of the studied phenomenon, taking into account
the dependence of the model’s present state on its past history.

Analogously, ADEs are used in many applied problems where the evolution rate
depends not only on the present, but also on the future. While delays in DDEs
represent the retrospective memory of the past, advances in ADEs represent the
prospective memory of the future, accounting for the influence on the system of
potential future actions, which are available at the present time. For instance,
population dynamics, economics problems or mechanical control engineering are
typical fields where such phenomena are thought to occur.

The problem of establishing sufficient conditions for the oscillation of all solu-
tions of equations (1) and (2) has been the subject of many investigations. The
reader is referred to [1], [2], [3], [4], [5], [6], [7], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [20], [21], [22], [23], [24], [25] and the references cited therein. Most
of these papers, however, concern the special case where the arguments are non-
decreasing. Some of these papers study the general case where the arguments are
not necessarily monotone. See, for example, [1], [2], [3], [4], [5], [6], [7], [15], [21]
and the references cited therein.

Apart from the pure mathematical interest, the importance of considering non-
monotone arguments is justified by the fact that they approximate the natural
phenomena described by equations of the type (1) or (2). That is because there
are always natural disturbances (e.g. noise in communication systems) that affect
all the parameters of the equation and therefore the fair (from a mathematical
point of view) monotone arguments become non-monotone almost always. In view
of this, an interesting question arising in the case where the arguments τ(t) and
σ(t) are non-monotone, is whether we can state further oscillation criteria which
essentially improve all the known results in the literature.

In the present paper, we give a positive answer to the above question by estab-
lishing new iterative sufficient conditions for the oscillation of all solutions of (1)
and (2), when the arguments are not necessarily monotone.

Throughout, we are going to use the following notation:

α := lim inf
t→∞

∫ t

τ(t)

p(s) ds , β := lim inf
t→∞

∫ σ(t)

t

q(s) ds (3)
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and

D(ω) :=

{
0 if ω > 1/e ,
1−ω−

√
1−2ω−ω2

2 if ω ∈ [0, 1/e] .
(4)

2 Chronological review of known results
2.1 DDEs
The first systematic study on the oscillation of all solutions to equation (1) was
made by Myškis in 1950 [22] when he proved that every solution of (1) oscillates if

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1

e
. (5)

In 1972, Ladas, Lakshmikantham and Papadakis [17] proved that if τ(t) is nonde-
creasing and

lim sup
t→∞

∫ t

τ(t)

p(s) ds > 1 , (6)

then all solutions of (1) oscillate.
In 1982, Koplatadze and Chanturija [14] improved (5) to

α >
1

e
. (7)

Concerning the constant 1/e in (7), it is to be pointed out that if the inequality∫ t

τ(t)

p(s) ds ≤ 1

e

holds eventually, then, according to a result in [14], (1) has a nonoscillatory solu-
tion. Obviously, when the limit limt→∞

∫ t
τ(t)

p(s) ds does not exist, a gap appears
between the conditions (6) and (7). How to fill this gap is an interesting problem
which has attracted the attention of several authors. For example, in 2000, Jaroš
and Stavroulakis [11] proved that if τ(t) is nondecreasing and

lim sup
t→∞

∫ t

τ(t)

p(s) ds >
1 + lnλ0

λ0
−D(α) , (8)

where λ0 is the smaller root of the transcendental equation λ = eαλ, then all
solutions of (1) oscillate.

Now we come to the case that the argument τ(t) is not necessarily monotone.
Set

h(t) := sup
s≤t

τ(s) , t ≥ t0 . (9)

Clearly, the function h(t) is nondecreasing and τ(t) ≤ h(t) < t for all t ≥ t0.
In 1994, Koplatadze and Kvinikadze [15] proved that if

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

h(s)

p(u)ψj(u) du

)
ds > 1−D(α) , (10)
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where

ψ1(t) = 0 , ψj(t) = exp

(∫ t

τ(t)

p(u)ψj−1(u) du

)
, j ≥ 2 ,

then all solutions of (1) oscillate.
In 2011, Braverman and Karpuz [2] proved that if

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) du

)
ds > 1 , (11)

then all solutions of (1) oscillate.
In 2016, El-Morshedy and Attia [21] proved that if

lim sup
t→∞

∫ t

g(t)

pn(s) ds+D(α) exp

∫ t

g(t)

n−1∑
j=0

pj(s) ds

 > 1 , (12)

where p0(t) = p(t) and

pn(t) = pn−1(t)

∫ t

g(t)

pn−1(s) exp

(∫ t

g(s)

pn−1(u) du

)
ds , n ≥ 1 ,

then all solutions of (1) are oscillatory. Here, g(t) is a nondecreasing continuous
function such that τ(t) ≤ g(t) ≤ t, t ≥ t1 for some t1 ≥ t0. Clearly, g(t) is more
general than h(t) defined by (9).

In 2016, Chatzarakis [3] proved that if for some j ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

pj(u) du

)
ds > 1 , (13)

where

pj(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ h(t)

τ(s)

pj−1(u) du

)
ds

]
, (14)

with p0(t) = p(t), then all solutions of (1) oscillate.

Remark 1. Since

p1(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) du

)
ds

]
≥ p(t) ,

clearly

exp

(∫ h(t)

τ(s)

p1(u) du

)
≥ exp

(∫ h(t)

τ(s)

p(u) du

)
.
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Thus

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p1(u) du

)
ds

≥ lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) du

)
ds .

This means that the condition (13) (for j = 1) is weaker than the condition (11)
(for m = 1 and r = 1) of Theorem 4 [1]. We can easily prove that this is valid for
every j = r > 1.

Several improvements were made to the above condition, see [4], [5], [6] to arrive
at the recent form [5]

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

R`(ξ) dξ

)
du

)
ds > 1 , (15)

where

R`(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

R`−1(ξ) dξ

)
du

)
ds

]
,

with

R0(t) = p(t)

[
1 + λ0

∫ t

τ(t)

p(s)ds

]
and λ0 is the smaller root of the transcendental equation λ = eαλ.

2.2 ADEs
By Theorem 2.4.3 in [19], if σ(t) is nondecreasing and

lim sup
t→∞

∫ σ(t)

t

q(s) ds > 1 , (16)

then all solutions of (2) oscillate.
In 1983, Fukagai and Kusano [10] proved that if

β >
1

e
, (17)

then all solutions of (2) oscillate, while if∫ σ(t)

t

q(s) ds ≤ 1

e
for all sufficiently large t,

then Eq. (2) has a nonoscillatory solution.
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Assume that the argument σ(t) is not necessarily monotone. Set

ρ(t) = inf
s≥t

σ(s) , t ≥ t0 . (18)

Clearly, the function ρ(t) is nondecreasing and σ(t) ≥ ρ(t) > t for all t ≥ t0.
In 2015, Chatzarakis and Ocalan [7] proved that if

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) du

)
ds > 1 , (19)

then all solutions of (2) oscillate.
In 2016, Chatzarakis [3] proved that if for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj(u) du

)
ds > 1 , (20)

where

qj(t) = q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj−1(u) du

)
ds

]
, j ≥ 1

with q0(t) = q(t), then all solutions of (2) oscillate.
Several improvements were made to above conditions, see [4], [5], [6] to arrive

at the recent form [5]

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) exp

(∫ σ(u)

u

G`(ξ) dξ

)
du

)
ds > 1, (21)

where

G`(t) = q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(∫ σ(s)

t

q(u) exp

(∫ σ(u)

u

G`−1(ξ) dξ

)
du

)
ds

]
,

with

G0(t) = q(t)

[
1 + λ0

∫ σ(t)

t

q(s)ds

]
and λ0 is the smaller root of the transcendental equation λ = eβλ.

3 Main results
3.1 DDEs
We further study (1) and derive new sufficient oscillation conditions, involving
lim sup and lim inf, which improve all the previous results. The method we apply is
based on the iterative construction of solution estimates and repetitive application
of the Grönwall inequality.

The proofs of our main results are essentially based on the following lemmas.
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Lemma 1 (See [8, Lemma 2.1.1]). Assume that h(t) is defined by (9). Then

α := lim inf
t→∞

∫ t

τ(t)

p(s) ds = lim inf
t→∞

∫ t

h(t)

p(s) ds .

Lemma 2 (See [8, Lemma 2.1.3]). Assume that h(t) is defined by (9), α ∈ (0, 1/e]
and x(t) is an eventually positive solution of (1). Then

lim inf
t→∞

x(t)

x(h(t))
≥ D(α) , (22)

where D(α) is defined by (4).

Lemma 3 (See [25]). Assume that h(t) is defined by (9), α ∈ (0, 1/e] and x(t) is
an eventually positive solution of (1). Then

lim inf
t→∞

x(h(t))

x(t)
≥ λ0 , (23)

where λ0 is the smaller root of the transcendental equation λ = eαλ.

Theorem 1. Assume that h(t) is defined by (9) and for some ` ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds > 1 , (24)

where

g`(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`−1(ξ) dξ

)
du

)
ds

]
, (25)

with

g0(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(
λ0

∫ t

τ(s)

p(u)du

)
ds

]
and λ0 is the smaller root of the transcendental equation λ = eαλ. Then all
solutions of (1) are oscillatory.

Proof. Assume for the sake of contradiction that there exists a nonoscillatory solu-
tion x(t) of (1). Since −x(t) is also a solution of (1), we can confine our discussion
only to the case where the solution x(t) is eventually positive. Then there exists a
t1 > t0 such that x(t) and x (τ(t)) > 0 for all t ≥ t1. Thus, from (1) we have

x′(t) = −p(t)x (τ(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.
Now we divide (1) by x (t) > 0 and integrate on [s, t], so∫ t

s

x′(u)

x(u)
du = −

∫ t

s

p(u)
x (τ(u))

x(u)
du ,
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or

ln
x(s)

x(t)
=

∫ t

s

p(u)
x (τ(u))

x(u)
du .

Thus,

x(s) = x(t) exp

(∫ t

s

p(u)
x (τ(u))

x(u)
du

)
. (26)

Since τ(s) < s ≤ t, (26) gives

x(τ(s)) = x(t) exp

(∫ t

τ(s)

p(u)
x (τ(u))

x(u)
du

)
. (27)

Integrating (1) from τ(t) to t, we have

x(t)− x(τ(t)) +

∫ t

τ(t)

p(s)x (τ(s)) ds = 0 . (28)

Combining (27) and (28), we have

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u)
x (τ(u))

x(u)
du

)
ds = 0 .

Multiplying the last inequality by p(t), we take

p(t)x(t)− p(t)x(τ(t)) + p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u)
x (τ(u))

x(u)
du

)
ds = 0 ,

or

x′(t) + p(t)x(t) + p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u)
x (τ(u))

x(u)
du

)
ds = 0 .

Since τ(u) ≤ h(u), it is clear that

x′(t) + p(t)x(t) + p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u)
x (h(u))

x(u)
du

)
ds ≤ 0 .

Taking into account the fact that (23) of Lemma 3 is satisfied, the last inequality
becomes

x′(t) + p(t)x(t) + p(t)x(t)

∫ t

τ(t)

p(s) exp

(
(λ0 − ε)

∫ t

τ(s)

p(u) du

)
ds ≤ 0 ,

where ε is small with t large enough. Thus,

x′(t) + p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(
(λ0 − ε)

∫ t

τ(s)

p(u) du

)
ds

]
x(t) ≤ 0 ,
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or
x′(t) + g0(t, ε)x(t) ≤ 0 (29)

with

g0(t, ε) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(
(λ0 − ε)

∫ t

τ(s)

p(u) du

)
ds

]
.

Applying the Grönwall inequality in (29), we obtain

x(s) ≥ x(t) exp

(∫ t

s

g0(ξ, ε)dξ

)
, t ≥ s.

Thus,

x(τ(u)) ≥ x(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
. (30)

Now we divide (1) by x (t) > 0 and integrate on [s, t], so

−
∫ t

s

x′(u)

x(u)
du =

∫ t

s

p(u)
x (τ(u))

x(u)
du

or

ln
x(s)

x(t)
=

∫ t

s

p(u)
x (τ(u))

x(u)
du . (31)

Combining (30) and (31), we have

ln
x(s)

x(t)
=

∫ t

s

p(u)
x (τ(u))

x(u)
du ≥

∫ t

s

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

or

x(s) ≥ x(t) exp

(∫ t

s

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
. (32)

Setting s = τ (s) in (32), we take

x(τ (s)) ≥ x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
. (33)

Combining (28) and (33) we obtain

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
ds ≤ 0 .

Multiplying the last inequality by p(t), we find

p(t)x(t)− p(t)x(τ(t))

+ p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
ds ≤ 0 ,
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which, in view of (1), becomes

x′(t) + p(t)x(t)

+ p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
ds ≤ 0 .

Hence, for all sufficiently large t,

x′(t) + p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
ds

]
x(t) ≤ 0

or
x′(t) + g1(t, ε)x(t) ≤ 0 , (34)

where

g1(t, ε) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g0(ξ, ε) dξ

)
du

)
ds

]
.

Now, it becomes apparent that by repeating the above steps, we can build in-
equalities on x′(t) with progressively higher indices g`(t), ` ∈ N. In general, for
sufficiently large t, the positive solution x(t) satisfies the inequality

x′(t) + g`(t)x(t, ε) ≤ 0, (` ∈ N) ,

where

g`(t, ε) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`−1(ξ, ε) dξ

)
du

)
ds

]
and

x(τ (s)) ≥ x(h(t)) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
. (35)

Integrating (1) from h(t) to t, and using (35) we have

x(t)− x(h(t))

+ x(h(t))

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 0 . (36)

The inequality is valid if we omit x(t) > 0 in the left-hand side. Therefore,

x(h(t))

[∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds− 1

]
< 0 ,

which means that

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 1 .

Since ε may be taken arbitrarily small, this inequality contradicts (24).
The proof of the theorem is complete. �
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Theorem 2. Assume that h(t) is defined by (9) and α ∈ (0, 1/e]. If for some ` ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds > 1−D(α) , (37)

where g` is defined by (25) and D(α) by (4), then all solutions of (1) are oscillatory.

Proof. Let x be an eventually positive solution of (1). Then, as in the proof of
Theorem 1, we obtain (36), i.e., for sufficiently large t we have

x(t)− x(h(t))

+ x(h(t))

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 0 .

Thus,∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 1− x(t)

x(h(t))
,

which gives

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

≤ 1− lim inf
t→∞

x(t)

x(h(t))
. (38)

By Lemma 2, it is obvious that inequality (22) is fulfilled. So, (38) leads to

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 1−D(α) .

Since ε may be taken arbitrarily small, this inequality contradicts (37).
The proof of the theorem is complete. �

Theorem 3. Assume that h(t) is defined by (9) and α ∈ (0, 1/e]. If for some ` ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds >

1

D(α)
− 1 , (39)

where g` is defined by (25) and D(α) by (4), then all solutions of (1) are oscillatory.

Proof. Assume for the sake of contradiction that there exists a nonoscillatory solu-
tion x of (1) and that x is eventually positive. Then, as in the proof of Theorem 1,
for sufficiently large t we have

x(τ(s)) ≥ x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
. (40)
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Integrating (1) from h(t) to t, we have

x(t)− x(h(t)) +

∫ t

h(t)

p(s)x(τ(s)) ds = 0 ,

which, in view of (40), gives

x(t)− x(h(t)) +

∫ t

h(t)

p(s)x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 0

or ∫ t

h(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds <

x(h(t))

x(t)
− 1 .

Therefore,

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

≤ lim sup
t→∞

x(h(t))

x(t)
− 1 . (41)

By Lemma 2, it is obvious that inequality (22) is fulfilled. So, (41) leads to

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 1

D(α)
− 1 .

Since ε may be taken arbitrarily small, this inequality contradicts (39).
The proof of the theorem is complete. �

Theorem 4. Assume that h(t) is defined by (9) and α ∈ (0, 1/e]. If for some ` ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

>
1 + lnλ0

λ0
−D(α) , (42)

where g` is defined by (25), D(α) by (4) and λ0 is the smaller root of the tran-
scendental equation λ = eαλ, then all solutions of (1) are oscillatory.

Proof. Let x be an eventually positive solution and obtain (40) as in Theorem 3,
i.e.,

x(τ(s)) ≥ x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
.
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Since τ(s) ≤ h(s), the above inequality gives

x(τ(s)) ≥ x(h(s)) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
. (43)

Observe that (23) implies that for each ε > 0 there exists a tε such that

x(h(t))

x(t)
> λ0 − ε for all t ≥ tε ≥ t1 . (44)

Noting that by nondecreasing nature of the function x(h(t))/x(s) in s, it holds

1 =
x(h(t))

x(h(t))
≤ x(h(t))

x(s)
≤ x(h(t))

x(t)
, tε ≤ h(t) ≤ s ≤ t,

in particular for ε ∈ (0, λ0 − 1), by continuity we see that there exists a t∗ ∈ (h(t), t]
such that

1 < λ0 − ε =
x(h(t))

x(t∗)
. (45)

Integrating (1) from t∗ to t, we have

x(t)− x(t∗) +

∫ t

t∗
p(s)x(τ(s)) ds = 0 ,

so, by using (43) along with h(s) ≤ h(t) in combination with the nonincreasingness
of x, we have

x(t)− x(t∗) + x(h(t))

∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ 0 ,

or ∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≤ x(t∗)

x(h(t))
− x(t)

x(h(t))
.

In view of (45) and Lemma 2, for the ε considered, there exists a t′ε ≥ tε such that

∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds <

1

λ0 − ε
−D(α)+ε (46)

for t ≥ t′ε.
Dividing (1) by x(t) and integrating from h(t) to t∗, we find∫ t∗

h(t)

p (s)
x(τ (s))

x(s)
ds = −

∫ t∗

h(t)

x′(s)

x(s)
ds ,
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and using (43), we find

∫ t∗

h(t)

p(s)
x(h(s))

x(s)
exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

≤ −
∫ t∗

h(t)

x′(s)

x(s)
ds . (47)

By (23), for s ≥ h(t) ≥ t′ε, we have x(h(s))/x(s) > λ0 − ε, so from (47) we get

(λ0 − ε)
∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

< −
∫ t∗

h(t)

x′(s)

x(s)
ds .

Hence, for all sufficiently large t we have

∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

< − 1

λ0 − ε

∫ t∗

h(t)

x′(s)

x(s)
ds =

1

λ0 − ε
ln
x(h(t))

x(t∗)
=

ln (λ0 − ε)
λ0 − ε

,

i.e.,∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds <

ln (λ0 − ε)
λ0 − ε

. (48)

Adding (46) and (48), and then taking the limit as t→∞, we have

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds

≤ 1 + ln(λ0 − ε)
λ0 − ε

−D(α) + ε .

Since ε may be taken arbitrarily small, this inequality contradicts (42).
The proof of the theorem is complete. �

Next, let us proceed to an oscillation condition involving lim inf.

Theorem 5. Assume that h(t) is defined by (9) and for some ` ∈ N

lim inf
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds >

1

e
, (49)

where g` is defined by (25). Then all solutions of (1) are oscillatory.
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Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory
solution x(t) of (1). Since −x(t) is also a solution of (1), we can confine our
discussion only to the case where the solution x(t) is eventually positive. Then
there exists a t1 > t0 such that x(t) and x (τ(t)) > 0 for all t ≥ t1. Thus, from (1)
we have

x′(t) = −p(t)x (τ(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.
We note that we may obtain (35) as in the proof of Theorem 1. Dividing (1) by
x(t) and integrating from h(t) to t we have

ln

(
x(h(t))

x(t)

)
=

∫ t

h(t)

p(s)
x (τ(s))

x (s)
ds ,

from which, in view of τ(s) ≤ h(s) and by (35), we obtain

ln

(
x(h(t))

x(t)

)
≥
∫ t

h(t)

p(s)
x(h(s))

x (s)
exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds .

Taking into account that x is nonincreasing and h(s) < s, the last inequality leads
to

ln

(
x(h(t))

x(t)

)
≥
∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds . (50)

From (49), it follows that there exists a constant c > 0 such that for a sufficiently
large t holds∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds ≥ c > 1

e
.

Choose c′ such that c > c′ > 1/e. For every ε > 0 such that c− ε > c′ we have∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≥ c− ε > c′ >

1

e
. (51)

Combining inequalities (50) and (51), we obtain

ln

(
x(h(t))

x(t)

)
≥ c′ ,

or
x(h(t))

x(t)
≥ ec

′
≥ ec′ > 1 ,

which implies
x(h(t)) ≥ (ec′)x(t) .
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Repeating the above procedure, it follows by induction that for any positive integer
k,

x(h(t))

x(t)
≥ (ec′)k, for sufficiently large t.

Since ec′ > 1, there is k ∈ N satisfying k > 2 (ln 2− ln c′) / (1 + ln c′) such that for
t sufficiently large

x(h(t))

x(t)
≥ (ec′)k >

(
2

c′

)2

. (52)

Taking the integral on [h(t), t], which is not less than c′, we split the interval into
two parts where integrals are not less than c′/2, let tm ∈ (h(t), t) be the splitting
point: ∫ tm

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≥ c′

2
,

∫ t

tm

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ≥ c′

2
.

(53)

Integrating (1) from h(t) to tm, using (35) and the fact that x(tm) > 0, we obtain

x(h(t)) > x(h(tm))

∫ tm

h(t)

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ,

which, in view of the first inequality in (53), implies

x(h(t)) >
c′

2
x(h(tm)) . (54)

Similarly, integrating (1) from tm to t, using (35) and the fact that x(t) > 0, we
have

x(tm) > x(h(t))

∫ t

tm

p(s) exp

(∫ h(s)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ, ε) dξ

)
du

)
ds ,

which, in view of the second inequality in (53), implies

x(tm) >
c′

2
x(h(t)) . (55)

Combining the inequalities (54) and (55), we obtain

x(h(tm)) <
2

c′
x(h(t)) <

(
2

c′

)2

x(tm) ,

which contradicts (52).
The proof of the theorem is complete. �
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3.2 ADEs

Oscillation conditions analogous to those obtained for the delay equation (1) can
be derived for the (dual) advanced differential equation (2) by following similar
arguments with the ones employed for obtaining Theorems 1, 2, 3, 4, 5. The
corresponding theorems are stated below while their proofs are omitted, as they
are quite similar to those for Theorems 1, 2, 3, 4, 5.

Theorem 6. Assume that ρ(t) is defined by (18) and for some ` ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds > 1 , (56)

where

r`(t)

= q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(∫ σ(s)

t

q(u) exp

(∫ σ(u)

u

r`−1(ξ) dξ

)
du

)
ds

]
, (57)

with

r0(t) = q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(
λ0

∫ σ(s)

t

q(u) du

)
ds

]

and λ0 is the smaller root of the transcendental equation λ = eβλ. Then all
solutions of (2) are oscillatory.

Theorem 7. Assume that ρ(t) is defined by (18) and β ∈ (0, 1/e]. If for some ` ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds

> 1−D(β) , (58)

where r` is defined by (57) and D(β) by (4), then all solutions of (2) are oscillatory.

Theorem 8. Assume that ρ(t) is defined by (18) and β ∈ (0, 1/e]. If for some ` ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

t

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds

>
1

D(β)
− 1 , (59)

where r` is defined by (57) and D(β) by (4), then all solutions of (2) are oscillatory.
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Theorem 9. Assume that ρ(t) is defined by (18), D(β) by (4) and β ∈ (0, 1/e]. If
for some ` ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds

>
1 + lnλ0

λ0
−D(β) , (60)

where r` is defined by (57) and λ0 is the smaller root of the transcendental equation
λ = eβλ, then all solutions of (2) are oscillatory.

Theorem 10. Assume that ρ(t) is defined by (18) and for some ` ∈ N

lim inf
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds >

1

e
, (61)

where r` is defined by (57). Then all solutions of (2) are oscillatory.

4 Examples and comments
The examples below illustrate the significance of our results and indicate high level
of improvement in the oscillation criteria. The calculations were made by the use
of MATLAB software.

Example 1 (taken and adapted from [6]). Consider the DDE

x′(t) +
229

2000
x(τ(t)) = 0 , t ≥ 0, (62)

with (see Fig. 1, (a))

τ(t) =



t− 1, if t ∈ [8k, 8k + 2] ,

−4t+ 40k + 9, if t ∈ [8k + 2, 8k + 3] ,

5t− 32k − 18, if t ∈ [8k + 3, 8k + 4] ,

−4t+ 40k + 18, if t ∈ [8k + 4, 8k + 5] ,

5t− 32k − 27, if t ∈ [8k + 5, 8k + 6] ,

−2t+ 24k + 15, if t ∈ [8k + 6, 8k + 7] ,

6t− 40k − 41, if t ∈ [8k + 7, 8k + 8] ,

where k ∈ N0 and N0 is the set of nonnegative integers.
By (9), we see (Fig. 1, (b)) that

h(t) =



t− 1, if t ∈ [8k, 8k + 2] ,

8k + 1, if t ∈ [8k + 2, 8k + 19/5] ,

5t− 32k − 18, if t ∈ [8k + 19/5, 8k + 4] ,

8k + 2, if t ∈ [8k + 4, 8k + 29/5] ,

5t− 32k − 27, if t ∈ [8k + 29/5, 8k + 6] ,

8k + 3, if t ∈ [8k + 6, 8k + 44/6] ,

6t− 40k − 41, if t ∈ [8k + 44/6, 8k + 8] .
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Figure 1: The graphs of τ(t) and h(t)

It is easy to see that

α = lim inf
t→∞

∫ t

τ(t)

p(s) ds = lim inf
k→∞

∫ 8k+2

8k+1

229

2000
ds = 0.1145

and therefore, the smaller root of e0.1145λ = λ is λ0 = 1.13935.
Observe that the function Fj : R0 → R+ defined as

F`(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds

attains its maximum at t = 8k + 44/6, k ∈ N0, for every ` ∈ N. Specifically

F1(t = 8k + 44/6) =

∫ 8k+44/6

8k+3

p(s) exp

(∫ 8k+3

τ(s)

p(u) exp

(∫ u

τ(u)

g1(ξ) dξ

)
du

)
ds

with

g1(ξ) = p(ξ)

[
1 +

∫ ξ

τ(ξ)

p(v) exp

(∫ ξ

τ(v)

p(w) exp

(∫ w

τ(w)

g0(z) dz

)
dw

)
dv

]
and

g0(z) = p(z)

[
1 +

∫ z

τ(z)

p(ω) exp

(
λ0

∫ z

τ(ω)

p(ϕ) dϕ

)
dω

]
.

By using an algorithm on MATLAB software, we obtain

F1(t = 8k + 44/6) ' 1.023
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and therefore
lim sup
t→∞

F1(t) ' 1.023 > 1 .

That is, condition (24) of Theorem 1 is satisfied for ` = 1, and therefore all solutions
of 62 are oscillatory.

Observe, however, that

LD = lim sup
k→∞

∫ 8k+44/6

8k+3

229

2000
ds ' 0.4962 < 1 ,

α = 0.1145 <
1

e

and

0.4962 <
1 + lnλ0

λ0
−D(α) ' 0.9848.

Noting that the function Φj defined by

Φj(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

h(s)

p(u)ψj(u) du

)
ds , (j ≥ 2) ,

attains its maximum at t = 8k + 44/6, k ∈ N0 for every j ≥ 2. Specifically,

Φ2(t = 8k + 44/6) =

∫ 8k+44/6

8k+3

p(s) exp

(∫ 8k+3

h(s)

p(s)ψ2(u) du

)
ds

=

∫ 8k+44/6

8k+3

229

2000
exp

(∫ 8k+3

h(s)

229

2000
exp

(∫ u

τ(u)

229

2000
· 0 dw

)
du

)
ds

=
229

2000
·

[∫ 8k+19/5

8k+3

exp

(
229

2000

∫ 8k+3

8k+1

du

)
ds

+

∫ 8k+4

8k+19/5

exp

(
229

2000

∫ 8k+3

5s−32k−18
du

)
ds

+

∫ 8k+29/5

8k+4

exp

(
229

2000

∫ 8k+3

8k+2

du

)
ds

+

∫ 8k+6

8k+29/5

exp

(
229

2000

∫ 8k+3

5s−32k−27
du

)
ds

+

∫ 8k+44/6

8k+6

exp

(
229

2000

∫ 8k+3

8k+3

du

)
ds

]
' 0.5504 .

Thus
lim sup
t→∞

Φ2(t) ' 0.5504 < 1−D(α) ' 0.9925 .
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Also

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) du

)
ds

= lim sup
k→∞

∫ 8k+44/6

8k+3

229

2000
exp

(∫ 8k+3

τ(s)

229

2000
du

)
ds

=
229

2000
lim sup
k→∞

[∫ 8k+4

8k+3

exp

(
229

2000

∫ 8k+3

5s−32k−18
du

)
ds

+

∫ 8k+5

8k+4

exp

(
229

2000

∫ 8k+3

−4s+40k+18

du

)
ds

+

∫ 8k+6

8k+5

exp

(
229

2000

∫ 8k+3

5s−32k−27
du

)
ds

+

∫ 8k+7

8k+6

exp

(
229

2000

∫ 8k+3

−2s+24k+15

du

)
ds

+

∫ 8k+44/6

8k+7

exp

(
229

2000

∫ 8k+3

6s−40k−41
du

)
ds

]
' 0.6622 < 1 ,

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p1(u) du

)
ds ' 0.7459 < 1

and

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

R1(ξ) dξ

)
du

)
ds ' 0.9305 < 1 .

That is, none of the conditions (6), (7), (8), (10) (for j = 2), (11), (13) (for j = 1)
and (15) (for ` = 1) is satisfied.

Also, the condition (37) of Theorem 6 [6] is not satisfied since the value is:
' 0.8892 < 1.

Hence, the improvement of condition (3.3) to the condition (37) of Theorem 6 [6]
is very satisfactory, approximately (1.023− 0.8892)/0.8892 ' 15.05%.

Comments 1. It is worth noting that the improvement of condition (24) to the cor-
responding condition (6) is significant, approximately (1.023 − 0.4962)/0.4962 '
106.2%, if we compare the values on the left-side of these conditions. Also, the
improvement compared to conditions (10), (11), (13) and (15) is very satisfac-
tory, around (1.023− 0.5504)/0.5504 ' 85.86%, (1.023− 0.6622)/0.6622 ' 54.49%,
(1.023−0.7459)/0.7459 ' 37.15% and (1.023−0.9305)/0.9305 ' 10%, respectively.
In addition, observe that conditions (10), (13) and (15) do not lead to oscillation for
first iteration. On the contrary, condition (24) is satisfied from the first iteration.
This means that our condition is better and much faster than (10), (13) and (15).
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Example 2. Consider the DDE

x′(t) +
141

500
x(τ(t)) = 0, t ≥ 0, (63)

with (see Fig. 2, blue line)

τ(t) = t− 1.5 + sin (2t) , t ≥ 0.

By (9), we see (Fig. 2, red line) that

ty =

)(th

)(tt

)()( tht ºt

	

Figure 2: The graphs of τ(t) and h(t)

h(t) =

{
t− 1.5 + sin (2t) , if t ∈ [0, π/3] ∪

⋃∞
k=0 [2.6938 + kπ, (k + 1)π + π/3] ,

2π−9+3
√
3

6 + kπ if t ∈
⋃∞
k=0 [kπ + π/3, 2.6938 + kπ] .

It is easy to see that

α = lim inf
t→∞

∫ t

τ(t)

p(s)ds = lim inf
k→∞

∫ π/4+kπ

π/4+kπ−0.5

141

500
ds ' 0.141 <

1

e

and therefore, the smaller root of e0.141λ = λ is λ0 = 1.18123.
Also

lim sup
t→∞

∫ t

h(t)

p(s)ds = lim sup
k→∞

∫ 2.6938+kπ

2π−9+3
√

3
6 +kπ

141

500
ds ' 0.6431 < 1 .

That is, conditions (6) and (7) are not satisfied.
Observe, however, that the function F` : R0 → R+ defined as

F`(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u) exp

(∫ u

τ(u)

g`(ξ) dξ

)
du

)
ds
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attains its maximum at t = 2.6938 + kπ, k ∈ N0, for every ` ∈ N. Specifically, by
using an algorithm on MATLAB software, we obtain

lim sup
t→∞

F1(t) ' 0.9956 > 1−D(α) ' 0.9883 .

That is, condition (37) of Theorem 2 is satisfied for ` = 1, and therefore all solutions
of (63) oscillate.

Example 3. Consider the ADE

x′(t)− 121

1000
x(σ(t)) = 0 , t ≥ 0, (64)

where (see Fig. 3, a)

σ(t) =



6t− 35k − 4, if t ∈ [7k + 1, 7k + 2] ,

−2t+ 21k + 12, if t ∈ [7k + 2, 7k + 3] ,

5t− 28k − 9, if t ∈ [7k + 3, 7k + 4] ,

−3t+ 28k + 23, if t ∈ [7k + 4, 7k + 5] ,

7k + 8, if t ∈ [7k + 5, 7k + 6] ,

t+ 2, if t ∈ [7k + 6, 7k + 7] ,

7k + 9, if t ∈ [7k + 7, 7k + 8] .

1

5

7

8

2

6

8

)(ts

t

ty = ty =

)(a )(b

4

)(tr

10

3

7

9

11

1

5

2

6

8

4

10

3

7

9

11

651 2 3 4 8 9 10 11 12 7

t
651 2 3 4 8 9 10 11 12

3/5 5/17

12

13

14

15

16

17

18

13 14 15 13 14 15

12

13

14

15

16

17

18

	

Figure 3: The graphs of σ(t) and ρ(t)
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By (18), we see (Fig. 3, b) that

ρ(t) =



6t− 35k − 4, if t ∈ [7k + 1, 7k + 5/3] ,

7k + 6, if t ∈ [7k + 5/3, 7k + 3] ,

5t− 28k − 9, if t ∈ [7k + 3, 7k + 17/5] ,

7k + 8, if t ∈ [7k + 17/5, 7k + 6] ,

t+ 2, if t ∈ [7k + 6, 7k + 7] ,

7k + 9, if t ∈ [7k + 7, 7k + 8] .

It is easy to see that

β = lim inf
t→∞

∫ σ(t)

t

q(s) ds = lim inf
k→∞

∫ 7k+2

7k+1

121

1000
ds = 0.121

and therefore, the smaller root of e0.121λ = λ is λ0 = 1.14918.
Observe that the function Fj : R0 → R+ defined as

F`(t) =

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) exp

(∫ σ(u)

u

r`(ξ) dξ

)
du

)
ds

attains its mamimum at t = 7k + 17/5, k ∈ N0, for every ` ∈ N. Specifically,

F1(t = 7k + 17/5) =

∫ 7k+8

7k+17/5

q(s) exp

(∫ σ(s)

7k+8

q(u) exp

(∫ σ(u)

u

r1(ξ) dξ

)
du

)
ds

with

r1(ξ) = q(ξ)

[
1 +

∫ σ(ξ)

ξ

q(v) exp

(∫ σ(v)

ξ

q(w) exp

(∫ σ(w)

w

r0(z) dz

)
dw

)
dv

]

and

r0(z) = q(z)

[
1 +

∫ σ(z)

z

q(ω) exp

(
λ0

∫ σ(ω)

z

q(ϕ) dϕ

)
dω

]
.

By using an algorithm on MATLAB software, we obtain

F1(t = 7k + 17/5) ' 1.0406

and therefore
lim sup
t→∞

F1(t) ' 1.0406 > 1 .

That is, condition (56) of Theorem 6 is satisfied for ` = 1, and therefore all solutions
of (64) are oscillatory.

Observe, however, that

lim sup
t→∞

∫ ρ(t)

t

q(s)ds = lim sup
k→∞

∫ 7k+8

7k+17/5

121

1000
ds ' 0.5566 < 1 ,
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β = 0.121 <
1

e
,

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) du

)
ds

= lim sup
k→∞

∫ 7k+8

7k+17/5

q(s) exp

(∫ σ(s)

7k+8

q(u) du

)
ds

=
121

1000
· lim sup
k→∞

{∫ 7k+4

7k+17/5

exp

(
121

1000

∫ 5s−28k−9

7k+8

du

)
ds

+

∫ 7k+5

7k+4

exp

(
121

1000

∫ −3s+28k+23

7k+8

du

)
ds

+

∫ 7k+6

7k+5

exp

(
121

1000

∫ 7k+8

7k+8

du

)
ds

+

∫ 7k+7

7k+6

exp

(
121

1000

∫ s+2

7k+8

du

)
ds

+

∫ 7k+8

7k+7

exp

(
121

1000

∫ 7k+9

7k+8

du

)
ds

}
' 0.6196 < 1 ,

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q1(u) du

)
ds ' 0.6483 < 1,

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u) exp

(∫ σ(u)

u

G`(ξ) dξ

)
du

)
ds ' 0.8778 < 1 .

That is, none of the conditions (16), (17), (19), (20) (for j = 1) and (21) (for ` = 1)
is satisfied.

Comments 2. It is worth noting that the improvement of condition (56) to the
corresponding condition (16) is significant, approximately 86.96%, if we compare
the values on the left-side of these conditions. Also, the improvement compared
to conditions (19), (20) and (21) is very satisfactory, around 67.95%, 60.05%, and
18.54%, respectively. In addition, observe that conditions (20) and (21) do not lead
to oscillation for first iteration. On the contrary, condition (56) is satisfied from
the first iteration. This means that our condition is better and much faster than
(20) and (21).
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