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On generalized derivations of partially ordered sets

Ahmed Y. Abdelwanis, Abdelkarim Boua

Abstract. Let P be a poset and d be a derivation on P . In this research,
the notion of generalized d-derivation on partially ordered sets is presented
and studied. Several characterization theorems on generalized d-derivations
are introduced. The properties of the fixed points based on the generalized
d-derivations are examined. The properties of ideals and operations related
with generalized d-derivations are studied.

1 Introduction
The notion of derivation, extracted from the analytic theory, helps to study in
detail the structure and property in an algebraic systems. It is possible to be
applied to every algebraic structure endowed with two binary operations. Initially,
work on derivation concentrate on rings, near-rings and also on prime rings.

Derivation is an important area of research in the theory of algebraic structure
in pure mathematics. The theory of derivations of algebraic structures appeared
from the process of developing of Galois theory and the theory of invariants. Several
researches have been work on derivations on different algebras and ordered sets.
The notion of derivation is related with the notion of generalized derivation few
years ago. There are many articles that talk about generalized derivations on rings
and rings close (for example see the following references [5] and [6]). Also many
papers have talked about derivations, generalized derivations over lattices as [1],
[2], [8], [10], [11], [12].

In [13] the notion of derivations on partially ordered sets is introduced and
studied. Several characterization theorems on derivations are presented.
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In this work, we present the notion of generalized d-derivation and study the
related properties of generalized d-derivation on partially ordered sets. Also, we
give a few notations for the rest of the part.

In the following, (P,≤) denotes a partially ordered set (poset). We additionally
utilize the shorthand P to indicate a poset. For y ∈ P , we write

↓ y = {p ∈ P : p ≤ y}

and
↑ y = {p ∈ P : y ≤ p} .

For B ⊆ P , we denote

l(B) = {p ∈ P : p ≤ b for all b ∈ B}

the lower cone of B and

u(B) = {p ∈ P : b ≤ p for all b ∈ B}

the upper cone of A dually. It is quickly clear that both are antitone and their
compositions l(u()) and u(l()) are monotone. Also from [3] we have l(u(l())) = l(),
u(l(u())) = u(). If B = {b1, b2, ..., bn} is a finite subset, then we write l(B) =
l(b1, b2, ..., bn) and u(B) = u(b1, b2, ..., bn) simply. Also, for A ⊆ P and B ⊆ P , we
will denote l(A,B) for l(A ∪B) and u(A,B) for u(A ∪B). For A ⊆ P , we write

↓A = {p ∈ P : p ≤ a for some a ∈ A} .

The paper is sorted out as takes after. In Section 3, we present the notion of
generalized d-derivations of partially ordered sets and concentrate their essential
properties. In Section 4, we examine the fixed sets in light of the generalized d-
derivation. In Section 5, we examine the properties of ideals and the operations
related with the generalized d-derivation.

2 Some preliminaries
In this section we recall some definitions which are useful in the next sections.

Definition 1 ([9]). Let P be a poset and α : P → P a function. α is called meet-
translation on P , if for all x, y ∈ P , α(l(x, y)) = l(α(x), y).

Definition 2 ([7]). Let P be a poset and α : P → P a function. α is called lower
homomorphism on P , if for all x, y ∈ P , u(α(l(x, y))) = u(l(α(x), α(y))).

Definition 3 ([4]). Let P be a poset, B ⊆ P and a ∈ P , a is an upper bound if
b ≤ a for all b ∈ B. A subset A of P is directed if it is nonempty and every finite
subset of A has an upper bound in A. (From non emptiness, it is sufficient to
assume every pair of elements in A has an upper bound in A.) Also we say B is a
lower set if B = ↓B. A subset J of P is called an ideal if it is directed lower set.

Definition 4 ([13]). Let P be a poset and d : P → P be a function. We call d a
derivation on P , if it satisfies the following conditions:
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(i) d
(
l(x, y)

)
= l

(
u
(
l(d(x), y), l(x, d(y))

))
for all x, y ∈ P ;

(ii) l
(
d(u(x, y))

)
= l

(
u(d(x), d(y))

)
for all x, y ∈ P .

Lemma 1 ([13]). Let d be a derivation on P . Then the following hold:

(i) dx ≤ x.

(ii) If x ≤ y, then dx ≤ dy.

(iii) If I is an ideal of P , then dI ⊆ I.

(iv) If P has the least element 0, then d0 = 0.

3 The generalized d-derivations of posets
Definition 5. Let P be a poset, d : P → P be a derivation and F : P → P be a
function. We call F a generalized d-derivation on P , if it satisfies the following
conditions:

(i) F
(
l(x, y)

)
= l

(
u
(
l(F (x), y), l(x, d(y))

))
for all x, y ∈ P ;

(ii) l
(
F (u(x, y))

)
= l

(
u
(
F (x), F (y)

))
for all x, y ∈ P .

From the Remark 1 of [13], we can obtain the following remark:

Remark 1. Suppose P = (P,≤,∧,∨) is a lattice. It is easy to prove that if F is a
generalized d-derivation on (P,≤), then F is a generalized d-derivation on lattice
(P,∧,∨).

Remark 2. Clearly if P is any poset, then every derivation d on P is a generalized
d-derivation on P .

Now we give an example of a generalized d-derivation F on a poset P which is
not a derivation on P .

Example 1. Let the poset (P,≤) = ([0, ∞),≤). Define the functions F, d : [0, ∞)→
[0, ∞) by d(x) = 0, F (x) = 1

2x. Then d is a derivation and F is a generalized
d-derivation on P which is not a derivation on P .

Note that, in the following P is a poset and d : P → P is a derivation.

Proposition 1. Let F be a generalized d-derivation on P . Then the following hold:

(i) If x ≤ y, then F (x) ≤ F (y);

(ii) d(x) ≤ F (x) for all x ∈ P ;

(iii) F (x) ≤ x for all x ∈ P ;

(iv) If I is an ideal of P , then F (I) ⊆ I;
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(v) If P has the least element 0, then F (0) = 0.

Proof. (i) Assume that x ≤ y, then

l
(
F (u(x, y))

)
= l

(
F (u(y))

)
= l

(
u(F (x), F (y))

)
.

But F (x) ∈ l
(
u(F (x), F (y))

)
, so F (x) ∈ l(F (u(y))). Hence F (x) ≤ F (y).

(ii) Let x ∈ P by Lemma 1, we get d(x) ≤ x and

l(d(x)) = l(x, d(x)) = l
(
u(l(x, d(x)))

)
.

Using l(u(l(x, d(x)))) ⊆ l(u(l(F (x), x), l(x, d(x)))) and

l
(
u
(
l(F (x), x), l(x, d(x))

))
= F

(
l(x, x)

)
= F (l(x))

and also the fact that F (l(x)) ⊆ l(F (x)), we obtain d(x) ∈ l(F (x)) which
forces that d(x) ≤ F (x).

(iii) Since F is a generalized d-derivation on P , using (ii) we have

F (l(x, x)) = l(u(l(F (x), x), l(x, d(x)))) = l(u(l(F (x), x), l(d(x))))

= l(u(l(F (x), x))) = l(F (x), x).

Since
F (l(x)) = F (l(x, x)) = l(F (x), x)

and F (x) ∈ F (l(x)), we obtain F (x) ∈ l(F (x), x). Hence F (x) ≤ x.

(iv) Assume that I is an ideal of P . Let x ∈ F (I), then there exists y ∈ I such
that F (y) = x. Using (iii), we get F (y) ≤ y and so x ≤ y, but I is an ideal
of P . Hence x ∈ I. So we proved d(I) ⊆ I. (v) Let P has the least element
0 then, by (iii), we get 0 ≤ F (0) ≤ 0. Hence F (0) = 0.

�

Note that, if we put F = d in the Proposition 1, we obtain Lemma 1.

Lemma 2. Let F be a generalized d-derivation on P . Then the following hold:

(i) if F (l(x)) = l(y), then F (x) = y.

(ii) if F (u(x)) = u(y), then F (x) = y.

Proof. (i) Assume that F (l(x)) = l(y). Since y ∈ l(y), we get y ∈ F (l(x)), there
exists z ∈ l(x) such that F (z) = y. But F (z) ≤ F (x), so y ≤ F (x). On the
other hand F (x) ∈ F (l(x)) = l(y), so F (x) ≤ y. Hence F (x) = y.

(ii) To avoid any repetitions, we use a similar demonstration to that in (i), we
find the result requested.

�
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Note that in the previous Lemma if we put F = d we obtain [13, Lemma 2.1].

Theorem 1. Let P be a poset, d : P → P be a derivation and F : P → P is a
function. Then F is a generalized d-derivation on P , if and only if the following
conditions hold

(i) F (l(x, y)) = l(F (x), y) = l(x, F (y)) for all x, y ∈ P ;

(ii) l(F (u(x, y))) = l(u(F (x), F (y))) for all x, y ∈ P .

Proof. We just need to demonstrate that the condition (i) in Definition 5 is equiv-
alent to the one (i) in this Theorem.

First assume the condition (i) in this theorem is satisfied and x, y ∈ P . So

F (l(x, y)) = l(F (x), y) = l(u(l(F (x), y))),

and using

l
(
u
(
l(F (x), y)

))
⊆ l

(
u
(
l(F (x), y), l(x, d(y))

))
,

then
F (l(x, y)) ⊆ l

(
u
(
l(F (x), y), l(x, d(y))

))
.

On the other hand by Proposition 1 (ii), we get

l
(
u
(
l(F (x), y), l(x, d(y))

))
⊆ l

(
u
(
l(F (x), y), l(x, F (y))

))
for all x, y ∈ P

and

l
(
u
(
l(F (x), y), l(x, F (y))

))
= l

(
u(l(F (x), y))

)
= l(F (x), y) = F (l(x, y)).

Thus
l
(
u
(
l(F (x), y), l(x, d(y))

))
⊆ F (l(x, y)) ,

finally the last two expressions give equality.
Second suppose F is a generalized d-derivation on P . Since

l(F (x), y) = l(u(l(F (x), y))) ,

l(u(l(F (x), y), l(x, d(y)))) = F (l(x, y))

and

l(u(l(F (x), y))) ⊆ l(u(l(F (x), y), l(x, d(y)))) ,

we get

l(F (x), y) ⊆ l(u(l(F (x), y), l(x, d(y)))) .

On the other hand, assume that z ∈ F (l(x, y)), then there exists v ∈ l(x, y) sat-
isfying F (v) = z. By Proposition 1 (i) and Proposition 1 (iii), we have F (v) ≤ F (x)
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and F (v) ≤ F (y) ≤ y. This shows that z = F (v) ∈ l(F (x), y). Thus F (l(x, y)) ⊆
l(F (x), y). Hence F (l(x, y)) = l(F (x), y).

Since F (l(x, y)) = l(F (x), y) so

F (l(y, x)) = l(F (y), x) = l(x, F (y)) .

But F (l(x, y)) = F (l(y, x)), then we get l(F (x), y) = l(x, F (y)). Hence

F (l(x, y)) = l(F (x), y) = l(x, F (y)) . �

If we put F = d in Theorem 1, we obtain [13, Theorem 2.2].

Corollary 1. Every generalized d-derivation on P is a meet-translation.

Proposition 2. Let F be a generalized d-derivation on P . Then

F (l(x, y)) = l(F (x), F (y))

for all x, y ∈ P .

Proof. Assume that t ∈ l(F (x), F (y)). Then t ≤ F (x) and t ≤ F (y). By Propo-
sition 1 (i), we get t ≤ y which implies that t ∈ l(F (x), y). By Theorem 1 (i),
we obtain l(F (x), F (y)) ⊆ F (l(x, y)). To show the second inclusion, suppose
t ∈ F (l(x, y)), so there exists z ∈ l(x, y) such that F (z) = t. Thus by Propo-
sition 1 (i), we get F (z) ≤ F (x), F (z) ≤ F (y). Thus t ∈ l(F (x), F (y)). Hence
F (l(x, y)) ⊆ l(F (x), F (y)). �

If we put F = d in Proposition 2, we obtain [13, Proposition 2.3].

Corollary 2. Every generalized d-derivation on P is a lower homomorphism.

4 The fixed points of generalized d-derivations
In this section P is a poset, d : P → P is a derivation and F is a generalized d-deriv-
ation on P . Denote FixF (P ) = {x ∈ P : F (x) = x} and F (P ) = {F (x) : x ∈ P}.

Theorem 2. Let F be a generalized d-derivation on P . Then

(i) F (x) ∈ FixF (P ), for all x ∈ P ,

(ii) FixF (P ) = F (P ).

Proof. (i) Let x ∈ P , from Proposition 1 (i) and Theorem 1 (i), we obtain

F (l(F (x))) = F (l(x, F (x))) = l(F (x), F (x)) = l(F (x))

and by Lemma 2 (i), we obtain F (F (x)) = F (x). Hence F (x) ∈ FixF (P ).

(ii) By (i), we have F (x) ∈ FixF (P ), for all x ∈ P , then F (P ) ⊆ FixF (P ). On the
other hand let x ∈ FixF (P ), so x = F (x) ∈ F (P ). Thus FixF (P ) ⊆ F (P ),
and hence FixF (P ) = F (P ).

�
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We must notice that if we put F = d in Theorem 2, we obtain [13, Theorem 3.1].

Proposition 3. Let F, T be generalized d-derivations on P . Then F = T if and
only if FixF (P ) = FixT (P ).

Proof. It is clear that if F = T , then FixF (P ) = FixT (P ). Conversely, let
FixF (P ) = FixT (P ), and x ∈ P . But by Theorem 2 (i) we get F (x) ∈ FixF (P ) =
FixT (P ), so T (F (x)) = F (x). Similarly, we also have F (T (x)) = T (x). So by
Proposition 1 (i), (iii) we obtain F (x) ≤ T (x) and T (x) ≤ F (x). Thus F (x) = T (x)
and hence F = T . �

Proposition 4. Let F be generalized d-derivation on P and P has a least element 0.
Then the following hold.

(i) 0 ∈ FixF (P ).

(ii) If x ∈ FixF (P ) and y ≤ x, then y ∈ FixF (P ).

(iii) If P is directed, then for any x, y ∈ FixF (P ), there exists z ∈ FixF (P )
satisfying x ≤ z, y ≤ z.

Proof. (i) Since F (0) = 0, then 0 ∈ FixF (P ).

(ii) Assume that x ∈ FixF (P ) and y ≤ x, then F (x) = x. By Theorem 1 (i), we
get

F (l(y)) = F (l(x, y)) = l(F (x), y) = l(x, y) = l(y).

Using Lemma 2 (i), we arrive at F (y) = y, and hence y ∈ FixF (P ).

(iii) Assume that P is directed then for any x, y ∈ P there exists v ∈ P such
that x ≤ v and y ≤ v. Since x, y ∈ FixF , then F (x) = x, d(y) = y. But
F (x) = x ≤ F (v) and F (y) = y ≤ F (v). Put z = F (v), hence by Theorem 2
(ii), we get z ∈ FixF (P ). �

If we Put F = d in the previous Proposition, we obtain [13, Proposition 3.3].

Corollary 3. If P is a directed poset with the least element 0, then FixF (P ) is an
ideal of P .

Theorem 3. Let F be a generalized d-derivation on P . Then for all x ∈ P ,

FixF (P ) ∩ l(x) = l(F (x)) .

Proof. Suppose that y ∈ FixF (P )∩l(x), then F (y) = y and y ≤ x. So F (y) ≤ F (x)
and we have y ≤ F (x). Thus y ∈ l(F (x)), and hence

FixF (P ) ∩ l(x) ⊆ l(F (x)) .

On the other hand we have F (x) ≤ x and F (x) ∈ FixF (P ). So

F (x) ∈ FixF (P ) ∩ l(x) .

Thus we get l(F (x)) ⊆ FixF (P ) ∩ l(x). Hence FixF (P ) ∩ l(x) = l(F (x)). �

If we Put F = d in Theorem 3, we obtain [13, Theorem 3.4].



76 A.Y. Abdelwanis, A. Boua

5 The ideals and operations related with generalized d-derivations
In this section, P is a poset with the least element 0 and d : P → P is a derivation.

Theorem 4. Let F be a generalized d-derivation on P . Then

kerF = {x ∈ P : F (x) = 0}

is a nonempty lower set of P .

Proof. From Proposition 1 (v), we have F (0) = 0. So 0 ∈ kerF , and kerF 6= ∅.
Assume that x ∈ kerF , and y ≤ x then F (x) = 0. By Proposition 1 (i), we get
F (y) ≤ F (x) = 0. Thus F (y) = 0, and this shows that y ∈ kerF . �

We must notice that if we put F = d in Theorem 4 we obtain [13, Theorem 4.1].

Proposition 5. Let F be a generalized d-derivation on P , and I be an ideal of P .
Then F−1(I) is a nonempty lower set of P such that kerF ⊆ F−1(I).

Proof. Since F (0) = 0, we have 0 ∈ F−1(I) and then F−1(I) 6= ∅. Suppose
x ∈ F−1(I) and y ≤ x, then F (x) ∈ I. By Proposition 1 (i), F (y) ≤ F (x) ∈ I which
implies that F (y) ∈ I and this shows that y ∈ F−1(I). Hence F−1(I) is a nonempty
lower set of P . On the other hand, note that kerF = F−1({0}) ⊆ F−1(I). �

If we put F = d in Proposition 5, we obtain [13, Proposition 4.2].

Proposition 6. Let F be a generalized d-derivation on P and I, J be two ideals
of P . Then we have:

(i) if I ⊆ J , then F (I) ⊆ F (J),

(ii) F (I ∩ J) = F (I) ∩ F (J).

Proof. (i) Assume that x ∈ F (I), then there exist y ∈ I ⊆ J such that x = F (y).
Hence x ∈ F (J),and this shows that F (I) ⊆ F (J).

(ii) It is clear that F (I ∩J) ⊆ F (I)∩F (J). Let x ∈ F (I)∩F (J) then there exist
a ∈ I and b ∈ J satisfying F (a) = x, F (b) = x. By Theorem 1 (i), we get

F (l(a, F (b))) = l(F (a), F (b)) = l(x, x) = l(x).

But x ∈ l(x), so we have x ∈ F (l(a, F (b)). Thus there exists z ∈ l(a, F (b))
satisfying F (z) = x. Also z ≤ a, z ≤ F (b) ≤ b. This means z ∈ I ∩ J , and
hence x ∈ F (I ∩ J). Therefore F (I) ∩ F (J) ⊆ F (I ∩ J).

�

Notice that, if we put F = d in Proposition 6, we obtain Proposition 4.3 of [13].
We must notice that by the product dt of two functions d and t of a set P into

itself, we mean, as usual, the function dt is defined by dt(x) = d(t(x)).

Theorem 5. If F, T are generalized d-derivations on P , then F and T are commu-
tated.
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Proof. Assume that F, T are generalized d-derivations on P . So, for any x ∈ P ,

F (l(T (x))) = F (l(x, T (x))) = l(F (x), T (x))

and
T (l(F (x))) = T (l(x, F (x))) = l(T (x), F (x)).

Thus F
(
l(T (x))

)
= T

(
l(F (x))

)
. But

FT (x) = F (T (x)) ∈ F
(
l(T (x))

)
,

thus FT (x) ∈ T
(
l(F (x))

)
. Then there exists y ∈ l(F (x)) such that FT (x) = T (y).

By Proposition 1 (i), T (y) ≤ T (F (x)), and therefore FT (x) ≤ TF (x). Similarly,
we can prove that TF (x) ≤ FT (x). This means FT (x) = TF (x). �

Theorem 6. If F, T are generalized d-derivations on P , then F ≤ T if and only if
TF = F .

Proof. Let F, T are generalized d-derivations on P with F ≤ T . So, for any x ∈ P ,
we have F (x) ∈ FixF (P ) i.e. F (x) = F (F (x)) ≤ T (F (x)). Also by Proposi-
tion 1 (iii), we get TF (x) ≤ F (x). Thus TF (x) = F (x). This shows that TF = F .
Conversely, for any x ∈ P , F (x) = TF (x) ≤ T (x). This means F ≤ T . �
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