

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee

To cite this version:

Dae Ho Jin, Jae Won Lee. Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasiconstant curvature. Communications in Mathematics, 2019, Volume 27 (2019), Issue 1 (1), pp.1 - 12. $10.2478/cm-2019-0001$. hal-03664964

HAL Id: hal-03664964 <https://hal.science/hal-03664964v1>

Submitted on 11 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0](http://creativecommons.org/licenses/by-nc-nd/4.0/) [International License](http://creativecommons.org/licenses/by-nc-nd/4.0/)

Communications in Mathematics 27 (2019) 1–12 DOI: 10.2478/cm-2019-0001 c 2019 D.H. Jin, J.W. Lee This is an open access article licensed under the CC BY-NC-ND 3.0

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee

Abstract. We study lightlike hypersurfaces M of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature subject to the condition that the characteristic vector field ζ of \overline{M} is tangent to M. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of \overline{M} such that

(1) the screen distribution $S(TM)$ is totally umbilical or

 (2) *M* is screen conformal.

1 Introduction

In the classical theory of Riemannian geometry, Chen-Yano [2] introduced the notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian manifold $(\overline{M}, \overline{g})$ endowed with a curvature tensor \overline{R} satisfying

$$
\begin{aligned} \bar{R}(\bar{X}, \bar{Y})\bar{Z} &= f_1 \big\{ \bar{g}(\bar{Y}, \bar{Z})\bar{X} - \bar{g}(\bar{X}, \bar{Z})\bar{Y} \big\} \\ &+ f_2 \big\{ \theta(\bar{Y})\theta(\bar{Z})\bar{X} - \theta(\bar{X})\theta(\bar{Z})\bar{Y} + \bar{g}(\bar{Y}, \bar{Z})\theta(\bar{X})\zeta - \bar{g}(\bar{X}, \bar{Z})\theta(\bar{Y})\zeta \big\}, \end{aligned} \tag{1}
$$

where f_1 and f_2 are smooth functions which are called the *curvature functions*, ζ is a vector field which is called the *characteristic vector field* of \overline{M} , and θ is a 1-form associated with ζ by $\theta(X) = \overline{q}(X, \zeta)$. In the followings, we denote by $\overline{X}, \overline{Y}$ and \overline{Z} the smooth vector fields on M. If $f_2 = 0$, then M is reduced to a space of constant curvature.

2010 MSC: 53C25, 53C40, 53C50

Key words: Totally umbilical, Screen conformal, quasi-constant curvature

Affiliation:

Dae Ho Jin – Department of Mathematics Dongguk University Kyongju 780-714, Korea

E-mail: jindh@dongguk.ac.kr

Jae Won Lee (Corresponding author) – Department of Mathematics Education and RINS, Gyeongsang National University of Education, Jinju 52828, Republic of Korea

E-mail: leejaew@gnu.ac.kr

^{*} Corresponding author

In this paper, we study lightlike hypersurfaces M of an indefinite Kaehler manifold M of quasi-constant curvature subject such that ζ is tangent to M. After then, under the condition that ζ is tangent to M, we investigate lightlike hypersurfaces M of M such that

- (1) the screen distribution $S(TM)$ of M is totally umbilical in M or
- (2) M is screen conformal.

2 Preliminaries

Let (M, g) be a lightlike hypersurface, with a screen distribution $S(TM)$, of a semi-Riemannian manifold M. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E. Also denote by $(8)_i$ the *i*-th equation of (8) . We use same notations for any others. We follow Duggal-Bejancu [3] for notations and structure equations used in this article. It is well known that

$$
TM = TM^{\perp} \oplus_{\text{orth}} S(TM),
$$

where \oplus_{orth} denotes the orthogonal direct sum. For any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique lightlike vector bundle $tr(TM)$ of rank 1 in the orthogonal complement $S(TM)^{\perp}$ of $S(TM)$ in \overline{M} satisfying

$$
\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = 0, \quad \forall X \in \Gamma(S(TM)).
$$

Then the tangent bundle $T\overline{M}$ of \overline{M} is decomposed as follow

$$
T\overline{M} = TM \oplus \text{tr}(TM) = \{TM^{\perp} \oplus \text{tr}(TM)\} \oplus_{\text{orth}} S(TM).
$$

We call $tr(TM)$ and N the transversal vector bundle and the null transversal vector field of M with respect to $S(TM)$, respectively.

Let ∇ be the Levi-Civita connection of M and P the projection morphism of TM on $S(TM)$. In the sequel, denote by X, Y, Z and W the smooth vector fields on M, unless otherwise specified. The local Gauss and Weingartan formulae for M and $S(TM)$ are given respectively by

$$
\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N,\tag{2}
$$

$$
\bar{\nabla}_X N = -A_N X + \tau(X)N,\tag{3}
$$

$$
\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,
$$
\n(4)

$$
\nabla_X \xi = -A_{\xi}^* X - \tau(X)\xi,\tag{5}
$$

where ∇ and ∇^* are the liner connections on TM and $S(TM)$, respectively, B and C are the local second fundamental forms on TM and $S(TM)$, respectively, A_N and A_{ξ}^* are the shape operators and τ is a 1-form on TM .

Since $\overline{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. As $B(X, Y) =$ $\overline{q}(\nabla_X Y, \xi)$, B is independent of the choice of $S(TM)$ and

$$
B(X,\xi) = 0.\t\t(6)
$$

The induced connection ∇ of M is not metric and satisfies

$$
(\nabla_X g)(Y,Z) = B(X,Y)\eta(Z) + B(X,Z)\eta(Y),\tag{7}
$$

where η is a 1-form such that $\eta(X) = \overline{g}(X, N)$. But ∇^* is metric. The above local second fundamental forms are related to their shape operators by

$$
B(X,Y) = g(A_{\xi}^{*}X,Y), \qquad \bar{g}(A_{\xi}^{*}X,N) = 0, \qquad (8)
$$

$$
C(X, PY) = g(A_N X, PY), \qquad \qquad \bar{g}(A_N X, N) = 0. \tag{9}
$$

From (8), A_{ξ}^{*} is $S(TM)$ -valued and self-adjoint on TM such that

$$
A_{\xi}^* \xi = 0. \tag{10}
$$

Denote by \bar{R} , R and R^* the curvature tensors of the connections $\bar{\nabla}$, ∇ and ∇^* , respectively. Using (2) – (5) , we obtain the Gauss-Codazzi equations:

$$
\bar{R}(X,Y)Z = R(X,Y)Z + B(X,Z)A_NY - B(Y,Z)A_NX \n+ \{ (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) \}N, \quad (11)
$$

$$
\bar{R}(X,Y)N = -\nabla_X(A_NY) + \nabla_Y(A_NX) + A_N[X,Y] + \tau(X)A_NY - \tau(Y)A_NX + \{B(Y, A_NX) - B(X, A_NY) + 2d\tau(X,Y)\}N,
$$
(12)

$$
R(X,Y)PZ = R^*(X,Y)PZ + C(X,PZ)A_{\xi}^*Y - C(Y,PZ)A_{\xi}^*X + \{ (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) + \tau(Y)C(X,PZ) - \tau(X)C(Y,PZ) \} \xi, \quad (13)
$$

$$
R(X,Y)\xi = -\nabla_X^*(A_{\xi}^*Y) + \nabla_Y^*(A_{\xi}^*X) + A_{\xi}^*[X,Y] - \tau(X)A_{\xi}^*Y + \tau(Y)A_{\xi}^*X + \{C(Y,A_{\xi}^*X) - C(X,A_{\xi}^*Y) - 2d\tau(X,Y)\}\xi.
$$
 (14)

In the case $R = 0$, we say that M is flat. The Ricci tensor, denoted by $\overline{\text{Ric}}$, of \overline{M} is defined by

$$
\overline{\rm Ric}(\bar{X}, \bar{Y}) = \text{trace}\{\bar{Z} \to \bar{R}(\bar{X}, \bar{Z})\bar{Y}\}.
$$

Let dim $\overline{M} = n + 2$. Locally, \overline{Ric} is given by

$$
\overline{\rm Ric}(\bar{X}, \bar{Y}) = \sum_{i=1}^{n+2} \epsilon_i \bar{g} (\bar{R}(E_i, \bar{X}) \bar{Y}, E_i),
$$

where $\{E_1, \ldots, E_{n+2}\}$ is an orthonormal basis of $T\overline{M}$.

Let $R^{(0,2)}$ denote the induced tensor of type $(0, 2)$ on M given by

$$
R^{(0,2)}(X,Y) = \text{trace}\{Z \to R(X,Z)Y\}.
$$
 (15)

Due to $[4]$, using (8) , (9) and the Gauss equation (11) , we get

$$
R^{(0,2)}(X,Y) = \overline{\text{Ric}}(X,Y) + B(X,Y) \text{ tr } A_N - g(A_N X, A_{\xi}^* Y) - \overline{g}(\overline{R}(\xi, Y)X, N). \tag{16}
$$

Using the transversal part of (12) and the first Bianchi's identity, we obtain

$$
R^{(0,2)}(X,Y) - R^{(0,2)}(Y,X) = 2d\tau(X,Y).
$$

This shows that $R^{(0,2)}$ is not symmetric. A tensor field $R^{(0,2)}$ of M, given by (15), is called the induced Ricci tensor, denoted by Ric, of M if it is symmetric. In this case, M is said to be Ricci flat if $Ric = 0$. M is called an Einstein manifold if there exist a smooth function κ such that

$$
\text{Ric} = \kappa g. \tag{17}
$$

Let $\nabla^{\perp}_X N = \pi_1(\bar\nabla}_X N)$, where π_1 is the projection morphism of $T\bar M$ on ${\rm tr}(TM)$. Then $\overline{\nabla}^{\perp}$ is a linear connection on the transversal vector bundle $\text{tr}(TM)$ of M. We say that $\overline{\nabla}^{\perp}$ is the *transversal connection* of M. We define the curvature tensor R^{\perp} on $tr(TM)$ by

$$
R^{\perp}(X,Y)N = \nabla_X^{\perp}\nabla_Y^{\perp}N - \nabla_Y^{\perp}\nabla_X^{\perp}N - \nabla_{[X,Y]}^{\perp}N.
$$

The transversal connection ∇^{\perp} of M is said to be flat [5] if $R^{\perp} = 0$.

We quote the following result due to Jin [5].

Theorem 1. Let M be a lightlike hypersurface of a semi-Riemannian manifold \overline{M} . The following assertions are equivalent:

- (1) The transversal connection of M is flat, i.e., $R^{\perp} = 0$.
- (2) The 1-form τ is closed, i.e., $d\tau = 0$, on any neighborhood $\mathcal{U} \subset M$.
- (3) The Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Remark 1. Due to [3, Section 4.2–4.3], we shown the following results:

- (1) $d\tau$ is independent to the choice of the section $\xi \in \Gamma(TM^{\perp})$, that is, suppose τ and $\bar{\tau}$ are 1-forms with respect to the sections ξ and ξ, respectively, then $d\tau = d\bar{\tau}.$
- (2) If $d\tau = 0$, then we can take a 1-form τ such that $\tau = 0$.

3 Quasi-constant curvature

Let $M = (M, J, \bar{q})$ be a real 2m-dimensional indefinite Kaeler manifold, where \bar{q} is a semi-Riemannian metric of index $q = 2v, 0 < v < m$, and J is an almost complex metric structure on \overline{M} satisfying

$$
J^{2} = -I, \t \bar{g}(J\bar{X}, J\bar{Y}) = \bar{g}(\bar{X}, \bar{Y}), \t (\bar{\nabla}_{\bar{X}}J)\bar{Y} = 0.
$$
 (18)

Let (M, g) be a lightlike hypersurface of an indefinite Kaeler manifold \overline{M} , where g is a degenerate metric on M induced by \bar{g} . Due to [3, Section 6.2], we show that $J(TM^{\perp}) \oplus J(\text{tr}(TM))$ is a subbundle of $S(TM)$ of rank 2. There exist two non--degenerate almost complex distributions D_o and D on M with respect to J, i.e., $J(D_o) = D_o$ and $J(D) = D$, such that

$$
S(TM) = \left\{ J(TM^{\perp}) \oplus J(\text{tr}(TM)) \right\} \oplus_{\text{orth}} D_o,
$$

$$
D = \left\{ TM^{\perp} \oplus_{\text{orth}} J(TM^{\perp}) \right\} \oplus_{\text{orth}} D_o.
$$

In this case, TM is decomposed as follow

$$
TM = D \oplus J(\text{tr}(TM)).\tag{19}
$$

Consider lightlike vector fields U and V , and their 1-forms u and v such that

$$
U = -JN
$$
, $V = -J\xi$, $u(X) = g(X, V)$, $v(X) = g(X, U)$. (20)

Denote by S the projection morphism of TM on D with respect to (19) . Then, for any vector field X on M , JX is expressed as follow

$$
JX = FX + u(X)N,
$$
\n(21)

where F is a tensor field of type $(1, 1)$ globally defined on M by $F = J \circ S$. Applying $\bar{\nabla}_X$ to $(20)_{1,2}$ and using $(2)-(5)$ and $(18)-(21)$, we have

$$
B(X, U) = C(X, V),\tag{22}
$$

$$
\nabla_X U = F(A_N X) + \tau(X)U,\tag{23}
$$

$$
\nabla_X V = F(A_{\xi}^* X) - \tau(X) V.
$$
\n(24)

From now and in the sequel, let \overline{M} be an indefinite Kaeler manifold of a quasi--constant curvature. We shall assume that the characteristic vector field ζ of M is tangent to M and let $\alpha = \theta(N)$.

Theorem 2. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. Then the curvature functions f_1 and f_2 , given by (1), are satisfied

$$
f_1 = 0,
$$
 $f_2\theta(V) = 0,$ $\alpha f_2 = 0.$

Proof. Comparing the tangent and transversal components of the two forms (1) and (11) of the curvature tensor \bar{R} of \bar{M} , we get

$$
R(X,Y)Z = B(Y,Z)A_NX - B(X,Z)A_NY + f_1\{\bar{g}(Y,Z)X - \bar{g}(X,Z)Y\}
$$

$$
+ f_2\Big\{ \Big[\theta(Y)X - \theta(X)Y\Big]\theta(Z) + \Big[g(Y,Z)\theta(X) - g(X,Z)\theta(Y)\Big]\zeta \Big\},\tag{25}
$$

$$
(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) = 0. \tag{26}
$$

Taking the product with N to (11) and using $(9)_2$ and (13), we get

$$
(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ)
$$

= $f_1\{\eta(X)g(Y, PZ) - \eta(Y)g(X, PZ)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ)$
+ $\alpha f_2\{\theta(X)g(Y, PZ) - \theta(Y)g(X, PZ)\}.$ (27)

Applying ∇_Y to (22) and using (8), (9) and (22)–(24), we have

$$
(\nabla_X B)(Y,U) = (\nabla_X C)(Y,V) - 2\tau(X)C(Y,V)
$$

$$
- g(A_{\xi}^* X, F(A_N Y)) - g(A_{\xi}^* Y, F(A_N X)).
$$

Substituting this equation into (26) with $Z = U$, we get

$$
(\nabla_X C)(Y, V) - (\nabla_Y C)(X, V) - \tau(X)C(Y, V) + \tau(Y)C(X, V) = 0.
$$

Comparing this equation and (27) such that $PZ = V$, we obtain

$$
f_1\{\eta(X)u(Y) - \eta(Y)u(X)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(V) + f_2\alpha\{\theta(X)u(Y) - \theta(Y)u(X)\} = 0.
$$
 (28)

Replacing Y by ξ to this equation and using the fact that $\theta(\xi) = 0$, we have

$$
f_1u(X) + f_2\theta(X)\theta(V) = 0.
$$

Taking $X = V$ and $X = U$ to this equation by turns, we get

$$
f_2\theta(V) = 0, \qquad f_1 + f_2\theta(U)\theta(V) = 0.
$$

From these two equations, we get $f_1 = 0$. Taking $Y = \zeta$ to (28) and using $f_1 = 0$ and $f_2\theta(V) = 0$, we have $\alpha f_2u(X) = 0$. It follows that $\alpha f_2 = 0$.

4 Totally umbilical screen distribution

Definition 1. A screen distribution $S(TM)$ is said to be totally umbilical [3], [6] in M if there exists a smooth function γ such that $A_N X = \gamma P X$, i.e.,

$$
C(X, PY) = \gamma g(X, Y). \tag{29}
$$

In case $\gamma = 0$, we say that $S(TM)$ is totally geodesic in M.

Theorem 3. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. If $S(TM)$ is totally umbilical, then

- (1) $S(TM)$ is totally geodesic and parallel distribution,
- (2) $f_1 = f_2 = 0$, i.e., M is flat, and M is also flat,
- (3) the transversal connection of M is flat, and

(4) M is locally a product manifold $\mathcal{C}_{\xi} \times M^*$, where \mathcal{C}_{ξ} is a null geodesic tangent to TM^{\perp} , and M^* is a semi-Euclidean leaf of $S(TM)$.

Proof. Applying ∇_X to $C(Y, PZ) = \gamma g(Y, PZ)$ and using (7), we have

$$
(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y).
$$

Substituting this and (29) into (27) such that $f_1 = f_2 \alpha = 0$, we obtain

$$
\{X\gamma - \gamma\tau(X)\}g(Y, PZ) - \{Y\gamma - \gamma\tau(Y)\}g(X, PZ) + \gamma\{B(X, PZ)\eta(Y) - B(Y, PZ)\eta(X)\} = f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ).
$$

Replacing Y by ξ to this and using (6) and the fact that $\theta(\xi) = 0$, we get

$$
\gamma B(X,Y) = \left\{ \xi \gamma - \gamma \tau(\xi) \right\} g(X,Y) - f_2 \theta(X)\theta(Y). \tag{30}
$$

Taking $Y = U$ to this equation and using (20), (22) and (29), we have

$$
\gamma^2 u(X) = \{\xi\gamma - \gamma\tau(\xi)\}v(X) - f_2\theta(X)\theta(U).
$$

Replacing X by V to this and using the fact that $f_2\theta(V) = 0$, we obtain

$$
\xi \gamma - \gamma \tau(\xi) = 0, \qquad \gamma^2 u(X) = -f_2 \theta(X)\theta(U). \tag{31}
$$

Assume that $f_2 \neq 0$. Taking $X = \zeta$ to $(31)_2$, we have

$$
\gamma^2 \theta(V) = -f_2 \theta(U).
$$

Taking the product with f_2 to this and using $f_2\theta(V) = 0$, we get $f_2\theta(U) = 0$. Using this, from $(31)_2$, we see that $\gamma = 0$. Taking $X = Y = \zeta$ to (30) , we have $f_2 = 0$. It is a contradiction. Thus $f_2 = 0$. We obtain $\gamma = 0$ by $(31)_2$.

- (1) As $\gamma = 0$, $S(TM)$ is totally geodesic. Therefore, $S(TM)$ is a parallel distribution by (4) and the fact that $C = 0$.
- (2) As $f_1 = f_2 = 0$, \overline{M} is flat. As $f_1 = f_2 = A_N = 0$, from (27), we see that $R = 0$. Thus M is also flat.
- (3) As $R = 0$, from (15), M is Ricci flat and $d\tau = 0$ by Theorem 2.1. Thus the transversal connection of M is flat.
- (4) From (5) and (10), we see that TM^{\perp} is an auto-parallel distribution. As $S(TM)$ is a parallel distribution and $TM = TM^{\perp} \oplus S(TM)$, by the decomposition theorem [7], M is locally a product manifold $\mathcal{C}_{\xi} \times M^*$, where \mathcal{C}_{ξ} is a null geodesic tangent to TM^{\perp} and M^* is a leaf of $S(TM)$. As $R=0$ and $C = 0$, from (13) we see that $R^* = 0$. Thus M^* is semi-Euclidean.

Denote by $\mathcal{G} = J(T M^{\perp}) \oplus_{\text{orth}} D_o$. Then \mathcal{G} is a complementary vector subbundle to $J(\text{tr}(TM))$ in $S(TM)$ and we have the decomposition:

$$
S(TM) = J(\text{tr}(TM)) \oplus \mathcal{G}.
$$

Theorem 4. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M of quasi-constant curvature such that ζ is tangent to M. If $S(TM)$ is totally umbilical, then M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_U \times M^{\sharp}$, where \mathcal{C}_{ξ} and \mathcal{C}_U are null geodesics tangent to TM^{\perp} and $J(\text{tr}(TM))$ respectively and M^{\sharp} is a semi-Euclidean leaf of G.

Proof. By Theorem 4.1, we show that $d\tau = 0$ and $A_N = C = 0$. As $d\tau = 0$, we can take $\tau = 0$ by Remark 2.2, without loss generality. As $C = 0$, from (22) we see that $B(X, U) = 0$. Also, since $A_N = 0$, from (23) we have

$$
\nabla_X U = 0. \tag{32}
$$

Thus $J(\text{tr}(TM))$ is a parallel distribution on M. From (5) and (10), TM^{\perp} is also a parallel distribution on M . Using (32) , we derive

$$
g(\nabla_X Y, U) = 0, \quad g(\nabla_X V, U) = 0, \quad \forall X \in \Gamma(\mathcal{G}), \forall Y \in \Gamma(D_o).
$$

Thus G is also a parallel distribution. By the decomposition theorem [7], M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_U \times M^{\sharp}$, where \mathcal{C}_{ξ} and \mathcal{C}_U are null geodesics tangent to TM^{\perp} and $J(\text{tr}(TM))$ respectively and M^{\sharp} is a leaf of \mathcal{G} . Let π_2 be the projection morphism of $S(TM)$ on \mathcal{G} . Then $\pi_2 \circ R^*$ is the curvature tensor of G. As $R = 0$ and $C = 0$, we have $R^* = 0$. Therefore, $\pi_2 \circ R^* = 0$ and M^{\sharp} is a semi-Euclidean space.

5 Screen conformal lightlike hypersurfaces

Definition 2. A lightlike hypersurface M is called screen conformal [1], [4] if there exists a non-vanishing smooth function φ such that $A_N = \varphi A_{\xi}^*$, i.e.,

$$
C(X, PY) = \varphi B(X, Y).
$$

If φ is a non-zero constant, then we say that M is screen homothetic.

Remark 2. If M is screen conformal, then, using (1) and the fact $f_1 = 0$,

$$
\bar{g}(R(\xi, X)Y, N) = f_2 \theta(X)\theta(Y)
$$

and

$$
\overline{\text{Ric}}(X, Y) = f_2\{g(X, Y) + n\theta(X)\theta(Y)\}.
$$

Thus the form (16) of the Ricci type tensor $R^{(0,2)}$ is reduced to

$$
R^{(0,2)}(X,Y) = f_2\{g(X,Y) + (n-1)\theta(X)\theta(Y)\} + B(X,Y) \text{ tr } A_N - \varphi g(A_{\xi}^* X, A_{\xi}^* Y). \tag{33}
$$

Thus $R^{(0,2)}$ is symmetric. Thus $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. As $d\tau = 0$, we can take $\tau = 0$ by Remark 2.2.

Proposition 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. If M is screen conformal, then the curvature function f_2 is satisfied $f_2\theta(U) = 0$.

Proof. Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$
(\nabla_X C)(Y,PZ) = (X\varphi)B(Y,PZ) + \varphi(\nabla_X B)(Y,PZ).
$$

Substituting this equation into (26) and using (25), we obtain

$$
(X\varphi)B(Y, PZ) - (Y\varphi)B(X, PZ) = f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ). \tag{34}
$$

Taking $Y = \xi$ to (34) and using (6) and the fact that $\theta(\xi) = 0$, we get

$$
(\xi \varphi) B(X, Y) = f_2 \theta(X) \theta(Y). \tag{35}
$$

Replacing Y by V to (35) and using the fact that $f_2\theta(V) = 0$, we have

$$
(\xi \varphi)B(X,V) = 0.
$$

Taking $Y = U$ to (35) and using the fact $B(X, U) = C(X, V) = \varphi B(X, V)$, we obtain $f_2\theta(X)\theta(U) = 0$. Replacing X by ζ , we have $f_2\theta(U) = 0$.

Corollary 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. If M is screen homothetic, then $f_1 = f_2 = 0$, i.e., M is flat.

Proof. As M is screen homothetic, we get $\xi \varphi = 0$. Taking $X = Y = \zeta$ to (35) such that $\xi \varphi = 0$, we obtain $f_2 = 0$. As $f_1 = f_2 = 0$, \overline{M} is flat.

As $\{U, V\}$ is a null basis of $J(TM^{\perp}) \oplus J(\text{tr}(TM))$, let

$$
\mu = U - \varphi V, \qquad \nu = U + \varphi V,
$$

then $\{\mu, \nu\}$ is an orthogonal basis of $J(TM^{\perp}) \oplus J(\text{tr}(TM))$ and satisfies

$$
B(X, \mu) = 0, \qquad A_{\xi}^* \mu = 0,
$$
\n(36)

due to (22). Thus μ is an eigenvector field of A_{ξ}^{*} on $S(TM)$ corresponding to the eigenvalue 0. As $f_2\theta(V) = 0$ and $f_2\theta(U) = 0$, we also have

$$
f_2\theta(\mu) = 0, \qquad f_2\theta(\nu) = 0. \tag{37}
$$

Let $\mathcal{H}' = \text{Span}\{\mu\}$. Then $\mathcal{H} = D_0 \oplus_{\text{orth}} \text{Span}\{\nu\}$ is a complementary vector subbundle to \mathcal{H}' in $S(TM)$ and we have the following decomposition

$$
S(TM) = \mathcal{H}' \oplus_{\text{orth}} \mathcal{H}.
$$
 (38)

Theorem 5. Let M be a screen homothetic lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. Then M is locally a product manifold $C_{\xi} \times C_{\mu} \times M^{\natural}$, where C_{ξ} and C_{μ} are null and non-null geodesics tangent to TM^{\perp} and \mathcal{H}' , respectively and M^{\natural} is a leaf of a non-degenerate distribution H.

Proof. In general, from (23) , (24) and the fact that F is linear, we have

$$
\nabla_X \mu = -(X\varphi)V.
$$

Therefore, if M is screen homothetic, then we have

$$
\nabla_X \mu = 0. \tag{39}
$$

This implies that \mathcal{H}' is a parallel distribution on M. From (5) and (10), TM^{\perp} is also a parallel distribution on M . Using (39) , we derive

$$
g(\nabla_X Y, \mu) = g(\overline{\nabla}_X Y, \mu) = -g(Y, \nabla_X \mu) = 0,
$$

$$
g(\nabla_X \nu, \mu) = -g(\nu, \nabla_X \mu) = X\varphi = 0,
$$

for $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(D_0)$. Thus H is also a parallel distribution. By the decomposition theorem of de Rham [7], M is locally a product manifold $\mathcal{C}_\xi \times \mathcal{C}_\mu \times M^\natural,$ where \mathcal{C}_{ξ} and \mathcal{C}_{μ} are null and non-null geodesics tangent to TM^{\perp} and \mathcal{H}' respectively and M^{\natural} is a leaf of \mathcal{H} .

 \Box

Theorem 6. Let M be an Einstein lightlike hypersurface of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. If M is screen conformal, then the function κ , given by (17), satisfies $\kappa = f_2$. If M is screen homothetic, then it is Ricci flat, i.e., $\kappa = 0$.

Proof. Since M is Einstein manifold, (33) is reduced to

$$
g(A_{\xi}^{*}X, A_{\xi}^{*}Y) - \ell g(A_{\xi}^{*}X, Y) - \varphi^{-1}\{(\kappa - f_2)g(X, Y) - f_2(n-1)\theta(X)\theta(Y)\} = 0, (40)
$$

where $\ell = \text{tr } A_{\xi}^*$ is the trace of A_{ξ}^* . Put $X = Y = \mu$ in (40) and using (36)₂ and $(37)_1$, we have $\kappa = f_2$. If M is screen homothetic, then M is Ricci flat as $f_2 = 0$ by Corollary 5.3. \Box

Theorem 7. Let M be a screen homothetic Einstein lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that $q = 2$ and ζ is tangent to M. Then M is locally a product manifold

$$
M = \mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural} \quad \text{or} \quad M = \mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times \mathcal{C}_{\ell} \times M^{\sharp},
$$

where \mathcal{C}_{ξ} , \mathcal{C}_{μ} and \mathcal{C}_{ℓ} are null geodesic, timelike geodesic and spacelike geodesic respectively, and M^{\dagger} and M^{\dagger} are Euclidean spaces.

Proof. In this proof, we set $\mu = \frac{1}{\sqrt{2\epsilon\varphi}}\{U - \varphi V\}$ where $\epsilon = \text{sgn}\varphi$. Then μ is a unit timelike eigenvector of A_{ξ}^{*} corresponding to the eigenvalue 0 by (36) and H is a parallel Riemannian distribution by Theorem 5.4 due to $q = 2$. Since $g(A_{\xi}^{*}X, N) = 0$ and $g(A_{\xi}^{*}X, \mu) = 0$, A_{ξ}^{*} is *H*-valued real self-adjoint operator. Thus A_{ξ}^{*} have $(n-1)$ real orthonormal eigenvectors in H and is diagonalizable. Consider a frame field of eigenvectors $\{\mu, e_1, \ldots, e_{n-1}\}$ of A_{ξ}^* on $S(TM)$ such that $\{e_1,\ldots,e_{n-1}\}\$ is an orthonormal frame field of $\mathcal H$. Then $A_{\xi}^{*}e_i = \lambda_i e_i$ $(1 \leq i \leq n-1)$. Put $X = Y = e_i$ in (40) such that $\kappa = f_2 = 0$, we show that each eigenvalue λ_i of A_{ξ}^* is a solution of

$$
x(x - \ell) = 0.\t\t(41)
$$

The equation (41) has at most two distinct real solutions 0 and ℓ on \mathcal{U} . Assume that there exists $p \in \{1, \ldots, n-1\}$ such that $\lambda_1 = \cdots = \lambda_p = 0$ and $\lambda_{p+1} = \cdots =$ $\lambda_{n-1} = \ell$, by renumbering if necessary. Then we have

$$
\ell = \operatorname{tr} A_{\xi}^* = (n - p - 1)\ell.
$$

If $\ell = 0$, then $A_{\xi}^* = 0$ and also $A_N = 0$. Thus M and $S(TM)$ are totally geodesic. From (11) and (13), we have $R^*(X,Y)Z = \overline{R}(X,Y)Z = 0$ for all $X, Y, Z \in \Gamma(S(TM))$. Thus M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural}$, where \mathcal{C}_{ξ} and \mathcal{C}_{μ} are null and timelike geodesic tangent to TM^{\perp} and \mathcal{H}' respectively and M^{\natural} is a leaf of H, where the leaf $M^{*}(=\mathcal{C}_{\mu}\times M^{\natural})$ of $S(TM)$ is a Minkowski space. Since $\nabla_X \mu = 0$ and

$$
g(\nabla_X^* Y, \mu) = -g(Y, \nabla_X^* \mu) = -g(Y, \nabla_X \mu) = 0,
$$

for all $X, Y, Z \in \Gamma(S(TM))$, we have $\nabla_X^* Y \in \Gamma(\mathcal{H})$ and $R^*(X, Y)Z \in \Gamma(\mathcal{H})$. This imply $\nabla_X^* Y = Q(\nabla_X^* Y)$, i.e., M^{\natural} is totally geodesic and $Q(R^*(X, Y)Z) =$ $R^*(X,Y)Z = 0$, where Q is a projection morphism of $S(TM)$ on H with respect to (38). Thus M^{\natural} is a Euclidean space.

If $\ell \neq 0$, then $p = n - 2$. Consider the following two distributions on H;

$$
\Gamma(E_0) = \{ X \in \Gamma(\mathcal{H}) | A_{\xi}^* X = 0 \},
$$

\n
$$
\Gamma(E_{\ell}) = \{ X \in \Gamma(\mathcal{H}) | A_{\xi}^* X = \ell X \}.
$$

Then we know that the distributions E_0 and E_ℓ are mutually orthogonal non--degenerate subbundle of H, of rank $(n-2)$ and 1 respectively, satisfy $\mathcal{H} = E_0 \oplus_{\text{orth}} E_\ell$. From (40), we get $A_{\xi}^*(A_{\xi}^* - \ell Q) = 0$. Using this equation, we have

Im
$$
A_{\xi}^* \subset \Gamma(E_{\ell})
$$
 and Im $(A_{\xi}^* - \ell Q) \subset \Gamma(E_0)$.

For any $X, Y \in \Gamma(E_0)$ and $Z \in \Gamma(\mathcal{H})$, we get

$$
(\nabla_X B)(Y,Z) = -g(A_{\xi}^* \nabla_X Y, Z).
$$

Using this and the fact that

$$
(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z),
$$

we have $g(A_{\xi}^*[X, Y], Z) = 0$. If we take $Z \in \Gamma(E_{\ell})$, since $\text{Im } A_{\xi}^* \subset \Gamma(E_{\ell})$ and E_{ℓ} is non-degenerate, we have $A_{\xi}^{*}[X, Y] = 0$. Thus $[X, Y] \in \Gamma(E_0)$ and E_0 is integrable. From (11) and (13) , we have

$$
R^*(X,Y)Z = \bar{R}(X,Y)Z = 0
$$

for all $X, Y, Z \in \Gamma(E_0)$.

Since $g(\nabla_X^* Y, \mu) = 0$ and $g(\nabla_X^* Y, e_{n-1}) = -g(Y, \nabla_X e_{n-1}) = 0$ for all $X, Y \in$ $\Gamma(E_0)$ because $\nabla_X W \in \Gamma(E_\ell)$ for $X \in \Gamma(E_0)$ and $W \in \Gamma(E_\ell)$. In fact, from (26) such that $\tau = 0$, we get

$$
g\Big(\big\{(A_{\xi}^* - \ell Q)\nabla_X W - A_{\xi}^*\nabla_W X\big\}, Z\Big) = 0,
$$

for all $X \in \Gamma(E_0), W \in \Gamma(E_\ell)$ and $Z \in \Gamma(\mathcal{H})$. Using the fact that \mathcal{H} is nondegenerate distribution, we have

$$
(A_{\xi}^* - \ell Q)\nabla_X W = A_{\xi}^* \nabla_W X.
$$

Since the left term of this equation is in $\Gamma(E_0)$ and the right term is in $\Gamma(E_\ell)$ and $E_0 \cap E_\ell = \{0\}$, we have

$$
(A_{\xi}^* - \ell Q)\nabla_X W = 0
$$
 and $A_{\xi}^* \nabla_W X = 0$.

These imply that $\nabla_X W \in \Gamma(E_\ell)$. Thus $\nabla_X^* Y = \pi_3 \nabla_X^* Y$ for all $X, Y \in \Gamma(E_0)$, where π_3 is the projection morphism of $S(TM)$ on E_0 and $\pi_3\nabla^*$ is the induced connection on E_0 . These imply that the leaf M^{\sharp} of E_0 is totally geodesic. Thus E_0 is a parallel distribution and M is locally a product manifold $\mathcal{C}_\xi \times M^*(=\mathcal{C}_\mu \times \mathcal{C}_\ell \times M^\sharp),$ where \mathcal{C}_{ℓ} is a spacelike curve and M^{\sharp} is an $(n-2)$ -dimensional Riemannian manifold satisfies $A_{\xi}^* = 0$. As

$$
g(R^*(X, Y)Z, \mu) = 0
$$
 and $g(R^*(X, Y)Z, e_{n-1}) = 0$

for all $X, Y, Z \in \Gamma(E_0)$, we have

$$
R^*(X,Y)Z = \pi_3 R^*(X,Y)Z \in \Gamma(E_0)
$$

and the curvature tensor $\pi_3 R^*$ of E_0 is flat. Thus M^{\sharp} is a Euclidean space. \Box

References

- [1] C. Atindogbe, K.L. Duggal: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math. 11 (4) (2004) 421–442.
- [2] B.Y. Chen, K. Yano: Hypersurfaces of a conformally flat space. Tensor (NS) 26 (1972) 318–322.
- [3] K.L. Duggal, A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht (1996).
- [4] K.L. Duggal, D.H. Jin: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys. 60 (2010) 1881–1889.
- [5] D.H. Jin: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math. 41 (4) (2010) 569–581.
- [6] D.H. Jin: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc. 25 (3) (2010) 443–450.
- [7] G. de Rham: Sur la réductibilité d'un espace de Riemannian. Comm. Math. Helv. 26 (1952) 328–344.

Received: 26 July, 2017 Accepted for publication: 22 March, 2019 Communicated by: Haizhong Li