
HAL Id: hal-03664958
https://hal.science/hal-03664958v1

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Approach of q-Derivative Operators to Terminating
q-Series Formulae

Xiaoyuan Wang, Wenchang Chu

To cite this version:
Xiaoyuan Wang, Wenchang Chu. Approach of q-Derivative Operators to Terminating q-Series Formu-
lae. Communications in Mathematics, 2018, Volume 26 (2018), Issue 2 (2), pp.99 - 111. �10.2478/cm-
2018-0007�. �hal-03664958�

https://hal.science/hal-03664958v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Communications in Mathematics 26 (2018) 99–111
Copyright c© 2018 The University of Ostrava
DOI: 10.2478/cm-2018-0007

99

Approach of q-Derivative Operators to Terminating
q-Series Formulae

Xiaoyuan Wang, Wenchang Chu

Abstract. The q-derivative operator approach is illustrated by reviewing
several typical summation formulae of terminating basic hypergeometric
series.

1 Introduction and Motivation
The q-derivative operator is a useful tool for proving q-series identities (cf. Car-
litz [10], Chu [16], [18] and Liu [28]). It is defined by

Dxf(x) :=
f(x)− f(qx)

x
and Dnf = D(Dn−1)f for n = 2, 3, . . .

with the convention that D0
xf(x) = f(x) for the identity operator. One can show,

by means of the induction principle, the following explicit formula

Dnxf(x) = x−n
n∑
k=0

qk
(q−n; q)k
(q; q)k

f(qkx), (1)

where the q-shifted factorial of x is given by (x; q)0 ≡ 1 and

(x; q)n =

n−1∏
k=0

(1− xqk) for n = 1, 2, . . . ,
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with product and quotient forms being abbreviated, respectively, to

[a, b, . . . , c; q]n = (a; q)n (b; q)n · · · (c; q)n ,[
a, b, . . . , c
A, B, . . . , C

∣∣∣∣q]
n

=
(a; q)n (b; q)n · · · (c; q)n
(A; q)n (B; q)n · · · (C; q)n

.

According to (1), we can verify, by means of the q-binomial theorem and the q-Chu-
-Vandermonde formula, that for a monic polynomial Pm(x) of degree m ≤ n, the
following evaluation formulae for higher q-derivatives hold:

DnxPm(x) = χ(m = n)(q; q)n, (2)

Dn Pm(x)

1− λx
=
λn(q; q)n
(λ; q)n+1

Pm(1/λ), (3)

where χ denotes the logical function with χ(true) = 1 and χ(false) = 0 otherwise.
The objective of this paper is to review several typical summation formulae of

terminating basic hypergeometric series by means of the q-derivative operator. The
approach will consist of the following three steps:

• First, for a given a q-series identity, identifying a parameter x as a variable
and expressing the q-sum in terms of the higher q-derivatives displayed in
(1).

• Then, evaluating the q-sum for particular values of x with the help of q-deriva-
tive properties (2) and/or (3).

• Finally, confirming the q-series identity via the fundamental theorem of alge-
bra, i.e., “two polynomials of degrees ≤ n are identical if they agree at n+ 1
distinct points”.

Throughout the paper, the basic hypergeometric series (cf. Bailey [5] and Gasper-
Rahman [23]) is defined by

1+`φ`

[
a0, a1, . . . , a`

b1, . . . , b`

∣∣∣∣q; z] = ∞∑
n=0

zn
[
a0, a1, . . . , a`
q, b1, . . . , b`

∣∣∣∣q]
n

,

which becomes terminating if one of the numerator parameters {ai}0≤i≤` results
in q−m with m being a nonnegative integer.

2 The q-Pfaff-Saalschütz theorem
As a warm-up, we start with the following fundamental formula; see [5, Chapter 8]
and [31, §3.3].

Theorem 1 (The q-Pfaff-Saalschütz theorem).

3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣∣q; q] = [c/a, c/bc, c/ab

∣∣∣∣q]
n

= an
[
c/a, q1−nb/c
c, q1−nab/c

∣∣∣∣q]
n

. (4)
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Proof. Multiplying across this equation by (q1−nab/c; q)n, we see that both sides
are polynomials of degree n in b. To prove the identity, it suffices to show that the
equality holds for n+1 distinct values of b. First it is trivial to see that both sides
are equal to 1 for b = 1. Then for b = qm−1c with 1 ≤ m ≤ n, the right member
equals zero. The corresponding left member can be written as the q-binomial sum

3φ2

[
q−n, a, qm−1c

c, qm−na

∣∣∣∣q; q] = n∑
k=0

qk
(q−n; q)k
(q; q)k

(qm−n+ka; q)n−m(qkc; q)m−1
(qm−na; q)n−m(c; q)m−1

.

In view of (1) and (2), the last sum vanishes for 1 ≤ m ≤ n because it results in
a multiple of the nth q-derivative of the polynomial (cx; q)m−1(qm−nax; q)n−m of
degree n−1 in x. Therefore we have validated the equality for n+1 distinct values
of b and completed proof of (4). �

3 The q-Watson Formula
In this section we give a proof of an identity that was first found by Andrews [2,
Theorem 1] in 1976 as a terminating q-series analogue of the Watson formula; see
also Gasper-Rahman [23, II-17].

Theorem 2. Let b = q−δ−2n with δ = 0 or 1 and n ∈ N0. Then the following
terminating series identity holds:

4φ3

[
a, b,

√
c, −

√
c

c,
√
qab, −

√
qab

∣∣∣∣q; q] = (1− δ)
[
q, qc/a
q/a, qc

∣∣∣∣q2]
n

. (5)

For different proofs, see Chu [19, Corollary 7] and Verma-Jain [32, Eq. 1.1].

Proof. Multiplying across the equality (5) by (qc; q2)n, we can rewrite the resulting
equation equivalently as

δ+2n∑
k=0

(q−δ−2n; q)k
(q; q)k

(a; q)k(c; q
2)k(qc; q

2)n
(c; q)k(q1−δ−2na; q2)k

qk = (1− δ) (q; q
2)n(qc/a; q

2)n
(q/a; q2)n

. (6)

According to the relation

(c; q2)k(qc; q
2)n

(c; q)k
=


(qc; q2)n(c; q)2k
(qc; q2)k(c; q)k

, k ≤ n;

(c; q2)k(c; q)2n
(c; q2)n(c; q)k

, k > n;

both sides of (6) are polynomials of degree ≤ n in c. In order to prove (5), it
suffices to show that the equality holds for n+ 1 distinct values of c.

Let S(c) be the 4φ3-series displayed in (5). Then for c = q1−δ−2ma with 1 ≤
m ≤ n, the right member equals zero. The corresponding left member can be
restated as the following sum:

S(q1−δ−2ma) =
δ+2n∑
k=0

(q−δ−2n; q)k
(q; q)k

(a; q)k(q
1−δ−2ma; q2)k

(q1−δ−2ma; q)k(q1−δ−2na; q2)k
qk

=

δ+2n∑
k=0

(q−δ−2n; q)k
(q; q)k

(q1−δ−2m+ka; q)δ−1+2m(q1−δ−2n+2ka; q2)n−m
(q1−δ−2ma; q)δ−1+2m(q1−δ−2na; q2)n−m

qk.



102 Xiaoyuan Wang, Wenchang Chu

In view of (1) and (2), the last sum vanishes for 1− δ ≤ m ≤ n because it results
in a multiple of the (δ + 2n)th q-derivatives of the polynomial

(q1−δ−2max; q)δ−1+2m(q1−δ−2nax2; q2)n−m

of degree δ − 1 + 2n in x. Therefore, (5) is confirmed when δ = 1 because it holds
for n+ 1 distinct values of c ∈ {q−2ma}0≤m≤n.

When δ = 0 and m = 0, reformulating the last sum and then evaluating it
by (3),

2n∑
k=0

qk
(q−2n; q)k
(q; q)k

(q1−2n+2ka; q2)n
(q1−2na; q2)n

1− a
1− qka

= a2n
(q1−2n/a; q2)n
(q1−2na; q2)n

(q; q)2n
(qa; q)2n

=

[
q, q2

q/a, q2a

∣∣∣∣q2]
n

which coincides with the right member of (5) under the conditions δ = 0 and
c = qa. Hence, we have validated (5) also when δ = 0 for n + 1 distinct values of
c ∈ {q1−2ma}0≤m≤n. This completes the proof of the theorem. �

4 Two Balanced 4φ3-Series
Unlike the q-Pfaff-Saalschütz theorem, there exist two summation formulae of bal-
anced 4φ3-series with one less free parameter. They are, in fact, the q-analogues
of the particular case b = 2 of the following well-known Hagen-Rothe convolution
identity (cf. Chu [20] and Gould [25]):

n∑
k=0

a

a+ bk

(
a+ bk

k

)(
c− bk
n− k

)
=

(
a+ c

n

)
.

The first one is due to Al-Salam and Verma [1]; see also Andrews [4, Eq. 7.6],
Chu [11, Eq. 5.3b] and [30, Eq. 17.7.12].

Theorem 3.

4φ3

[
q−2n, a, qa, q2nb2

b, qb, q2a2

∣∣∣∣q2; q2] = an
[
−q, b/a
−qa, b

∣∣∣∣q]
n

. (7)

Proof. Multiplying both sides of (7) by (−qa; q)n and observing that

(a; q)2k(−qa; q)n
(q2a2; q2)k

=
(a; q)2k(−qk+1a; q)n−k

(qa; q)k
,

we infer that the resulting equation is a polynomial identity of degree n in a. In
order to prove (7), we need only to validate it for n+ 1 distinct values of a. First
of all, (7) is obviously valid for a = 1. Then denote by S(a) the 4φ3-series in (7).
For a = qm−1b with 1 ≤ m ≤ n, the right member of (7) is equal to zero. The
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corresponding left member can be reformulated as

S(qm−1b) =
n∑
k=0

(q−2n; q2)k
(q2; q2)k

(qm−1b; q)2k
(b; q)2k

(q2nb2; q2)k
(q2mb2; q2)k

q2k

=

n∑
k=0

(q−2n; q2)k
(q2; q2)k

(q2kb; q)m−1
(b; q)m−1

(q2m+2kb2; q2)n−m
(q2mb2; q2)n−m

q2k,

which vanishes because in base q2, it results in the nth q-derivative of the polyno-
mial (bx; q)m−1(q2mb2x; q2)n−m of degree n− 1. This confirms (7). �

The second balanced 4φ3-series identity is due to Andrews [3, Eq. 4.3] &
[4, Eq. 7.7]; see also Gessel-Stanton [24, Eq. 4.22], Chu [12, Eq. 4.3d] and [30,
Eq. 17.7.13].

Theorem 4 (Variant of Theorem 3).

4φ3

[
q−2n, a, qa, q2n−2b2

b, qb, a2

∣∣∣∣q2; q2] = an
[
−q, b/a
−a, b

∣∣∣∣q]
n

1− qn−1b
1− q2n−1b

.

In exactly the same manner, this identity can be proved after the equation having
been multiplied by (−a; q)n across.

5 Four Terminating Well-Poised Series
This section will be devoted to four terminating well-poised series identities of
Dixon’s type. The first one is essentially due to Jackson [26, Eq. 2]. See Bailey [6,
Eq. 2], Bressoud [8, Eq. 2]), Carlitz [9, Eq. 1.2], Chu [21], Verma-Joshi [33, Eq. 3.10]
for different proofs, and Bailey [7, Eqs. 2.2 and 1.2], Chu [17], Verma-Jain [32,
Eq. 5.5] for the nonterminating form.

Theorem 5. For δ = 0 or 1 and n ∈ N0, there holds the terminating series identity:

3φ2

[
q−2n, b, d

q1−2n/b, q1−2n/d

∣∣∣∣q; q1+δ−n/bd]
= qn(δ−1)

[
b, d
q, bd

∣∣∣∣q]
n

[
q, bd
b, d

∣∣∣∣q]
2n

. (8)

Proof. Multiplying across (8) by (qnb; q)n, we may rewrite the resulting equation
equivalently as

2n∑
k=0

(q−2n; q)k
(q; q)k

(b; q)k(q
nb; q)n(d; q)k

(q1−2n/b; q)k(q1−2n/d; q)k

(q1+δ−n
bd

)k
=

(qn+1; q)n(q
nbd; q)n

qn(1−δ)(qnd; q)n
. (9)

Observing the relation

(b; q)k(q
nb; q)n

bk(q1−2n/b; q)k
= (−1)kq2nk−(

k+1
2 ) (b; q)k(q

nb; q)n
(q2n−kb; q)k

= (−1)kq2nk−(
k+1
2 ) (b; q)k(b; q)2n−k

(b; q)n
,
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we assert that (9) is a polynomial identity of degree n in b. In order to prove (8),
it suffices to show that the equality holds for n+ 1 distinct values of b.

Let S(b) be the 3φ2-series displayed in (8). Then for b = qm−2n/d with 1 ≤
m ≤ n, the right member equals zero. The corresponding left member can be
written as the expression

S(qm−2n/d) =
2n∑
k=0

(q−2n; q)k
(q; q)k

[
d, qm−2n/d

q1−md, q1−2n/d

∣∣∣∣q]
k

qk(1+δ−m+n)

=

2n∑
k=0

(q−2n; q)k
(q; q)k

[
q1+k−md, q1+k−2n/d
q1−md, q1−2n/d

∣∣∣∣q]
m−1

qk(1+δ−m+n).

In view of (1) and (2), the last sum vanishes for 1 ≤ m ≤ n because it results in a
multiple of the (2n)th q-derivative of the polynomial

(q1−mxd; q)m−1(q
1−2nx/d; q)m−1x

δ−m+n

of degree δ − 2 +m+ n < 2n in x.
When m = 0, the last sum can be reformulated by partial fractions and then

evaluated by (3) as

2n∑
k=0

qk
(q−2n; q)k
(q; q)k

(1− d)(1− q−2n/d)
(1− qkd)(1− qk−2n/d)

qk(δ+n)

=
(1− d)(1− q−2n/d)

1− q2nd2
2n∑
k=0

qk
(q−2n; q)k
(q; q)k

{
qk(δ+n)

1− qk−2n/d
− qk(δ+n)+2nd2

1− qkd

}
=

(1− d)(1− q−2n/d)
1− q2nd2

{
(q; q)2n(q

2nd)δ−n

(q−2n/d; q)2n+1
− (q; q)2nq

2ndn−δ+2

(d; q)2n+1

}
.

The above expression can be easily simplified to

(qδ−1d)n
(q; q)2n
(d; q)2n

1− d
1− qnd

,

which agrees with the right member of (8) specified by b = q−2n/d. Therefore
for n + 1 distinct values of b ∈ {qm−2n/d}0≤m≤n, we have validated (8), which
completes the proof. �

The next formula serves as a counterpart of (8) whose nonterminating version
was found by Bailey [7, Eq. 2.3]. For different proofs, the reader may refer to
Carlitz [9, Eq. 2.12], Chu [17], Chu-Wang [21] and Verma-Joshi [33, Eq. 3.13].

Theorem 6. For δ = 0 or 1 and n ∈ N0, there holds the terminating series identity:

3φ2

[
q−1−2n, b, d

q−2n/b, q−2n/d

∣∣∣∣q; q2δ−n/bd]
=
{
1− q(2n+1)(2δ−1)

}[
qb, qd
q, qbd

∣∣∣∣q]
n

[
q, qbd
qb, qd

∣∣∣∣q]
2n

. (10)
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Proof. Multiplying across (10) by (qn+1b; q)n, we may rewrite the resulting equa-
tion equivalently as

2n+1∑
k=0

(q−1−2n; q)k
(q; q)k

(b; q)k(q
n+1b; q)n(d; q)k

(q−2n/b; q)k(q−2n/d; q)k

(q2δ−n
bd

)k
=
(
1− q(2n+1)(2δ−1)

) (qn+1; q)n(q
n+1bd; q)n

(qn+1d; q)n
. (11)

Observing that

(b; q)k(q
n+1b; q)n

bk(q−2n/b; q)k
= (−1)kq2nk−(

k
2) (b; q)k(q

n+1b; q)n
(q1+2n−kb; q)k

= (−1)kq2nk−(
k
2) (b; q)k(b; q)1+2n−k

(b; q)n+1
,

we assert that both sides of (11) are polynomials of degree n in b. In order to prove
(10), it suffices to show that the equality holds for n+ 1 distinct values of b.

Let S(b) be the 3φ2-series displayed in (10). Then for b = q−m−n/d with
1 ≤ m ≤ n, the right member equals zero. The corresponding left member can be
written as the expression

S(q−m−n/d) =
2n+1∑
k=0

(q−1−2n; q)k
(q; q)k

[
d, q−m−n/d

qm−nd, q−2n/d

∣∣∣∣q]
k

qk(2δ+m)

=

2n+1∑
k=0

(q−1−2n; q)k
(q; q)k

[
qk+m−nd, qk−2n/d
qm−nd, q−2n/d

∣∣∣∣q]
n−m

qk(2δ+m).

In view of (1) and (2), the last sum vanishes for 1 ≤ m ≤ n because it is a multiple
of the (2n+ 1)th q-derivative of the polynomial

(qm−nxd; q)n−m(q−2nx/d; q)n−mx
2δ−1+m

of degree 2n+ 2δ −m− 1 < 2n+ 1 in x.
When m = n + 1, we can rewrite the last sum by partial fractions and then

evaluate it by (3) as

2n+1∑
k=0

qk
(q−1−2n; q)k

(q; q)k

(1− d)(1− q−1−2n/d)
(1− qkd)(1− qk−1−2n/d)

qk(2δ+n)

=
(1− d)(1− q−2n−1/d)

1− q1+2nd2

×
2n+1∑
k=0

qk
(q−1−2n; q)k

(q; q)k

{
qk(2δ+n)

1− qk−1−2n/d
− qk(2δ+n)+1+2nd2

1− qkd

}
=

(1− d)(1− q−1−2n/d)
1− q1+2nd2

×
{
(q; q)2n+1(q

1+2nd)2δ−1−n

(q−1−2n/d; q)2n+2
− (q; q)2n+1q

1+2nd3+n−2δ

(d; q)2n+2

}
.
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The above expression can be further simplified to

dn
(q; q)2n
(d; q)2n

1− d
1− q1+2nd

{
1− q(2n+1)(2δ−1)

}
,

which agrees with the right member of (10) specified by b = q−1−2n/d. Therefore
for n+ 1 distinct values of b ∈ {qm−2n/d}1≤m≤n+1, we have validated (10), which
completes the proof. �

There is also the following more general well-poised 5φ4-series identity discov-
ered by Jackson [26, Eq. 1], that different proofs can be found in Bailey [7, Eq. 3.1],
Bressoud [8, Eq. 1], Chu [14, §2] and Verma-Joshi [33, Eq. 3.8].

Theorem 7. For δ = 0 or 1 and n ∈ N0, there holds the terminating series identity:

5φ4

[
q−2n, b, c, d, q1−3n/bcd

q1−2n/b, q1−2n/c, q1−2n/d, qnbcd

∣∣∣∣q; q1+δ]
= qn(δ−1)

[
b, c, d, bcd
q, bc, bd, cd

∣∣∣∣q]
n

[
q, bc, bd, cd
b, c, d, bcd

∣∣∣∣q]
2n

. (12)

Proof. Multiplying across (12) by (qnb; q)n(q
nbcd; q)n, we may rewrite the resulting

equation equivalently as

2n∑
k=0

(q−2n; q)k
(q; q)k

[b, c, d, q1−3n/bcd; q]k(q
nb; q)n(q

nbcd; q)n
[q1−2n/b, q1−2n/c, q1−2n/d, qnbcd; q]k

qk(1+δ)

= qn(δ−1)
(qn+1; q)n(q

nbc; q)n(q
nbd; q)n(q

ncd; q)n
(qnc; q)n(qnd; q)n

. (13)

According to the relation

(b; q)k(q
nb; q)n

(q1−2n/b; q)k

(q1−3n/bcd; q)k(q
nbcd; q)n

(qnbcd; q)k

=
(q−n
cd

)k (b; q)k(qnb; q)n
(q2n−kb; q)k

(q3n−kbcd; q)k(q
nbcd; q)n

(qnbcd; q)k

=
(q−n
cd

)k (b; q)k(b; q)2n−k
(b; q)n

(bcd; q)2n(bcd; q)3n
(bcd; q)n+k(bcd; q)3n−k

,

both sides of (13) become polynomials of degree 2n in b. In order to prove (12), it
suffices to show that the equality holds for 2n+ 1 distinct values of b.

First, for b = 1 in (12), the 5φ4-series becomes 1 + qn(2δ−1) because only the
two extreme terms survive. This coincides with the corresponding right member.

Let S(b) be the 5φ4-series displayed in (12). Then for b = qm−2n/c with 1 ≤
m ≤ n, the right member equals zero. The corresponding left member can be
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written as the expression

S(qm−2n/c) =
2n∑
k=0

(q−2n; q)k
(q; q)k

[
c, d, qm−2n/c, q1−m−n/d

q1−mc, qm−nd, q1−2n/c, q1−2n/d

∣∣∣∣q]
k

qk(1+δ)

=

2n∑
k=0

(q−2n; q)k
(q; q)k

[
q1+k−mc, q1+k−2n/c
q1−mc, q1−2n/c

∣∣∣∣q]
m−1

×
[
qk+m−nd, q1+k−2n/d
qm−nd, q1−2n/d

∣∣∣∣q]
n−m

qk+kδ.

In view of (1) and (2), the last sum vanishes for 1 ≤ m ≤ n because it results in a
multiple of the (2n)th q-derivative of the following polynomial

xδ[q1−mxc, q1−2nx/c; q]m−1[q
m−nxd, q1−2nx/d; q]n−m

of degree δ − 2 + 2n < 2n in x.
Because (12) is symmetric with respect to c and d, it holds also for b = qm−2n/d

with 1 ≤ m ≤ n. Therefore for 2n+ 1 distinct values of

b ∈ {1} ∪ {qm−2n/c}1≤m≤n ∪ {qm−2n/d}1≤m≤n,

we have validated (12), which completes the proof. �

Finally, we record the following counterpart of (12) due to Bailey [7, Eq. 3.2]
for which the reader can find different proofs in Carlitz [9, Eq. 3.4], Chu [14, §2]
and Verma-Joshi [33, Eq. 3.12].

Theorem 8. For δ = 0 or 1 and n ∈ N0, there holds the terminating series identity:

5φ4

[
q−1−2n, b, c, d, q−1−3n/bcd

q−2n/b, q−2n/c, q−2n/d, q1+nbcd

∣∣∣∣q; q1+2δ

]
= (−q1+2n)δ−1(q; q)2n+1

[
qb, qc, qd, qbcd
q, qbc, qbd, qcd

∣∣∣∣q]
n

[
qbc, qbd, qcd

qb, qc, qd, qbcd

∣∣∣∣q]
2n

. (14)

Proof. Multiplying across (14) by (qn+1b; q)n(q
n+1bcd; q)n, we may rewrite the

resulting equation equivalently as

2n∑
k=0

(q−1−2n; q)k
(q; q)k

[b, c, d, q−1−3n/bcd; q]k(q
n+1b; q)n(q

n+1bcd; q)n
[q−2n/b, q−2n/c, q−2n/d, q1+nbcd; q]k

qk(1+2δ)

= (−q1+2n)δ−1
(qn+1; q)n+1(q

n+1bc; q)n(q
n+1bd; q)n(q

n+1cd; q)n
(qn+1c; q)n(qn+1d; q)n

. (15)

Observing that

(b; q)k(q
n+1b; q)n

(q−2n/b; q)k

(q−1−3n/bcd; q)k(q
n+1bcd; q)n

(qn+1bcd; q)k

=
(q−n−1

cd

)k (b; q)k(qn+1b; q)n
(q2n+1−kb; q)k

(q2+3n−kbcd; q)k(q
n+1bcd; q)n

(qn+1bcd; q)k

=
(q−n−1

cd

)k (b; q)k(b; q)1+2n−k

(b; q)n+1

(bcd; q)2n+1(bcd; q)3n+2

(bcd; q)n+k+1(bcd; q)3n+2−k
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we assert that both sides of (15) are polynomials of degree 2n in b. In order to
prove (14), it suffices to show that the equality holds for 2n+1 distinct values of b.

First, for b = 1 in (14), the corresponding 5φ4-series reduces to 1−q(2n+1)(2δ−1)

because only the two extreme terms survive. It is trivial to check that the right
member has the same value in this case.

Let S(b) be the 5φ4-series displayed in (14). Then for b = q−m−n/c with
1 ≤ m ≤ n, the right member equals zero. The corresponding left member can be
written as the expression

S(q−m−n/c) =
2n+1∑
k=0

(q−1−2n; q)k
(q; q)k

[
c, d, q−m−n/c, qm−2n−1/d

qm−nc, q1−md, q−2n/c, q−2n/d

∣∣∣∣q]
k

qk+2kδ

=

2n+1∑
k=0

(q−1−2n; q)k
(q; q)k

[
qk+m−nc, qk−2n/c
qm−nc, q−2n/c

∣∣∣∣q]
n−m

×
[
q1+k−md, qk−2n/d
q1−md, q−2n/d

∣∣∣∣q]
m−1

qk+2kδ.

In view of (1) and (2), the last sum vanishes for 1 ≤ m ≤ n because it results in a
multiple of the (2n+ 1)th q-derivative of the polynomial

x2δ[qm−nxc, q−2nx/c; q]n−m[q1−mxd, q−2nx/d; q]m−1

of degree 2δ − 2 + 2n < 2n+ 1 in x.
Analogously, (14) is valid also for b = q−m−n/d with 1 ≤ m ≤ n for its symme-

try with respect to c and d. In conclusion, we have shown (14) for 2n+ 1 distinct
values of b ∈ {1} ∪ {q−m−n/c}1≤m≤n ∪ {q−m−n/d}1≤m≤n, which completes the
proof. �

6 Gasper’s q-Karlsson-Minton Formula
Finally, we examine the q-analogue of Gasper [22] (see also Chu [13]) for a classi-
cal hypergeometric sum due to Minton [29] and subsequently extended by Karls-
son [27].

Theorem 9. For nonnegative integers mi and n with n ≥
∑`
i=1mi, we have

`+2φ`+1

[
q−n, λ, {qmiai}`i=1

qλ, {ai}`i=1

∣∣∣∣q; q] = λn
(q; q)n
(qλ; q)n

∏̀
i=1

(ai/λ; q)mi

(ai; q)mi

. (16)

Its nonterminating form and extensions can be found in Gasper [22] and Chu [13],
[15]. However, we believe that the proof given here is the simplest.

Proof. According to the relation

(qmiai; q)k
(ai; q)k

=
(qkai; q)mi

(ai; q)mi
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we may express (16) equivalently as the equality

n∑
k=0

qk
(q−n; q)k
(q; q)k

∏`
i=1(q

kai; q)mi

1− qkλ
= λn

(q; q)n
(λ; q)n+1

∏̀
i=1

(ai/λ; q)mi
. (17)

Writing the last sum in terms of q-derivatives (1) and then evaluating it, by (3), as

Dn
∏`
i=1(aix; q)mi

1− λx

∣∣∣
x=1

= λn
(q; q)n

(λ; q)n+1

∏̀
i=1

(ai/λ; q)mi
,

we confirm (17) and so Gasper’s summation formula (16). �

7 Concluding comments
It should be pointed out that the approach presented in this paper works only
for some q-series identities. For example, we have failed to verify the following
q-Whipple formula due to Andrews [2, Theorem 2] (cf. Chu [19, Corollary 10] and
Verma-Jain [32, Eq. 1.2]):

4φ3

[
q−n, q1+n,

√
c, −
√
c

−q, e, qc/e

∣∣∣∣q; q] = q(
n+1
2 ) (q

−ne; q2)n(q
1−nc/e; q2)n

(e; q)n(qc/e; q)n
,

even though this will evidently become a polynomial identity of degree n in c if
multiplying it by the factorial (qc/e; q)n.
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