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A Study on ¢-recurrence T-curvature tensor in
(k, p)-contact metric manifolds

Gurupadavva Ingalahalli, C.S. Bagewadi

Abstract. In this paper we study ¢-recurrence T-curvature tensor in
(k, p)-contact metric manifolds.

1 Introduction

In [11], S. Tanno introduced the notion of k-nullity distribution of a contact metric
manifold as a distribution such that the characteristic vector field £ of the contact
metric manifold belongs to the distribution. The contact metric manifold with &
belonging to the k-nullity distribution is called N (k)-contact metric manifold and
such a manifold is also studied by various authors. Generalizing this notion in 1995,
D.E. Blair, T. Koufogiorgos and B.J. Papantoniou [2] introduced the notion of a
contact metric manifold with & belonging to the (k, u)-nullity distribution, where
k and p are real constants. In particular, if ¢ = 0 then the notion of (k, u)-nullity
distribution reduces to the notion of k-nullity distribution.

In [13], M.M. Tripathi and et al. introduced the 7-curvature tensor which con-
sists of known curvatures like conformal, concircular, projective, M-projective,
Wi-curvature tensor (i = 0,...,9) and W;-curvature tensor (j = 0,1). Further,
in [14] and [15] M.M. Tripathi and et al. studied 7-curvature tensor in K-contact,
Sasakian and semi-Riemannian manifolds. Later in [6] the authors studied some
properties of T-curvature tensor and they obtained some interesting results.

2010 MSC: 53C15, 53C25, 53D15.
Key words: Contact metric manifold, curvature tensor, Ricci tensor, Ricci operator.
Affiliation:
Gurupadavva Ingalahalli — Department of Mathematics, Kuvempu University,
Shankaraghatta, 577 451, Shimoga, Karnataka, India.
E-mail: gurupadavva@gmail.com
C.S. Bagewadi — Department of Mathematics, Kuvempu University,
Shankaraghatta, 577 451, Shimoga, Karnataka, India.
E-mail: prof_bagewadi@yahoo.co.in



2 Gurupadavva Ingalahalli, C.S. Bagewadi

The notion of local symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. In the context of contact
geometry the notion of ¢-symmetry is introduced and studied by E. Boeckx, P.
Buecken and L. Vanhecke [3] with several examples. As a weaker version of local
symmetry, T. Takahashi [12] introduced the notion of locally ¢-symmetry on a
Sasakian manifold. Generalizing the notion of ¢-symmetry De et al. [5] introduced
the notion of ¢-recurrent Sasakian manifold. In [4], the authors studied ¢-recurrent
N (k)-contact metric manifolds. Motivated by all these work in this paper we study
the ¢-recurrent 7-curvature tensor in (k, p)-contact metric manifold.

2 Preliminaries

A (2n + 1)-dimensional differential manifold M is said to have an almost contact
structure (¢, &, n) if it carries a tensor field ¢ of type (1,1), a vector field £ and
1-form 7 satisfying

Let g be a compatible Riemannian metric with almost contact structure (¢, &, n)
such that,

9(0X,9Y) = g(X,Y) — n(X)n(Y), (2)

where X,Y are vector fields defined on M. Then the structure (¢,&,7n,g9) on M is
said to have an almost contact metric structure and the manifold M equipped with
this structure is called an almost contact metric manifold.

An almost contact metric structure (¢, &, 7, g) becomes a contact metric struc-
ture if

dn(X,Y) = g(X, ¢Y),
for all vector fields X,Y on M.

Given a contact metric manifold M (¢, £, 7, g), we define a (1,1) tensor field A
by h = %,8(;5, where £ denotes the Lie differentiation. Then h is symmetric and
satisfies h¢p = —ph. Also we have tr(h) = tr(¢h) = 0 and h§ = 0. Moreover, if V
denotes the Riemannian connection on M, then the following relation holds:

Vxé = —6X — ohX. (4)
In contact metric manifold M (¢, &, n, g), the (k, pu)-nullity distribution is
p— Ny(k, p) = {Z € T,M : R(X,Y)Z = k[g(V, Z)X — g(X, Z)Y]
+ulg(Y, 2)hX - g(X, 2)hY]}, (5)

for all vector fields X,Y € T,M and k, ;v are real numbers and R is the curva-
ture tensor. Hence, if the characteristic vector field £ belongs to the (k, u)-nullity
distribution, then we have

R(X,Y)E = k[n(Y)X —n(X)Y] + u[n(Y)hX — n(X)hY]. (6)
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Thus a contact metric manifold satisfying (6) is called a (k, u)-contact metric
manifold. In particular, if 4 = 0, then the notion of (k,u)-nullity distribution
reduces to the notion of k-nullity distribution introduced by S. Tanno [11]. In a
(k, n)-contact metric manifold the following relations hold [2], [9]:

h? = (k—1)¢?, k<1, (7
(Vx@)Y = g(X +hX,Y)§ —n(Y)[X + hX],
(Vxh)Y = [(1 - k)g(X,9Y) + g(X, hoY)]€

+ (V) [h(¢X + ohX)] — pun(X)phY,
R(&,X)Y = k[g(X,Y)§ = n(Y)X] + u[g(hX,Y)E = n(Y)hX],
N(R(X,Y)Z) = k[g(Y, Z)n(X) — g(X, Z)n(Y)]
ulg(hY, Z)n(X) — g(hX, Z)n(Y)],
S(X,€) = 2nkn(X), (8)
S(X,Y) = [2(n—1) —np]g(X,Y) + [2(n — 1) + p] g(hX.Y)
+ [2(1 = n) + n(2k + )] n(X)n(Y), n>1, (9)
=[2(n—1) —nu|X + [2(n — 1) + p|hX
+ [2(1 = n) + n(2k + p)|n(X)E, n>1, (10)
r:2n[2nf2+kfnu},
S(pX,Y) = S(X,Y) — 2nkn(X)n(Y) — 2(2n — 2+ pn)g(hX,Y), (11)

where S is the Ricci tensor of type (0, 2), @ is the Ricci operator, that is, S(X,Y) =
9(QX,Y) and r is the scalar curvature of the manifold. From (3), it follows that

(Vxn)Y =g(X +hX,¢Y).
Definition 1. A (k, u)-contact metric manifold M is said to be locally ¢-symmetric
if
?*((VwR)(X,Y)Z) =0,

for all vector fields X,Y, Z, W orthogonal to £. This notion was introduced by T
Takahashi [12] for Sasakian manifolds.

A field that is at every point and for every direction proportional to its covari-
ant differential is called recurrent. Based on this concept we define the following
definition:

Definition 2. A (k, u)-contact metric manifold M is said to be ¢-recurrent if and
only if there exists a non zero 1-form A such that

¢2 ((VWR)(X’ Y)Z) = A(W)R(Xv Y)Za

for all arbitrary vector fields X, Y, Z, W which are not necessarily orthogonal to
£

If the 1-form A vanishes identically, then the manifold is said to be a locally
¢-symmetric manifold.
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Definition 3. A (k, p1)-contact metric manifold M is said to be ¢-7-recurrent if and
only if there exists a non zero 1-form A such that

¢2 ((VWT)(Xv Y)Z) = A(W)T(X’ Y)Za

for all arbitrary vector fields X, Y, Z, W which are not necessarily orthogonal to &.

The 7-curvature tensor [13] is given by

(X,Y)Z = aoR(X,Y)Z + a1S(Y, 2)X + azS(X, Z)Y + a5S(X,Y)Z
+asg(Y, Z)QX + as9(X, 2)QY +asg(X,Y)QZ (12)
+ an‘[g(K Z)X - Q(X, Z)Y]7

where ao,...,a7 are all constants on M. For different values of ag,...,a7 the
T-curvature tensor reduces to the curvature tensor R, quasi-conformal curvature
tensor, conformal curvature tensor, conharmonic curvature tensor, concircular cur-
vature tensor, pseudo-projective curvature tensor, projective curvature tensor, M-
projective curvature tensor, W;-curvature tensors (i = 0,...,9), W/-curvature
tensors (j =0,1).

3 ¢-7-recurrent (k, p)-contact metric manifold

In this section, we define ¢-7-recurrent (k, p1)-contact metric manifold
P*(Vwr)(X,Y)Z) = AW)7(X,Y)Z, (13)
for all vector fields X,Y, Z, W. By using (9) and (10) in (12), we get

T(X,Y)Z = agR(X,Y)Z + ar[ag(Y, Z)X + Bg(hY, Z) X + yn(Y)n(Z)X]
+ azlag(X, 2)Y + Bg(hX, Z2)Y +yn(X)n(Z)Y]

+a3lag(X,Y)Z + Bg(hX,Y)Z +yn(X)n(Y)Z]
+ asg(Y, Z) [aX + BhX + yn(X)¢] (14)
+as9(X, Z)[aY + BRY +yn(Y)E]
+acg(X,Y)[aZ + BhZ + yn(Z)E]
+arr[g(Y, Z)X — g(X,2)Y],

where o = [2(n — 1) —npy], 8= [2(n — 1) + p] and v = [2(1 — n) + n(2k + w)].
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Differentiating (14) with respect to W, we obtain
(V) (X,Y)Z = ag(VwR)(X,Y)Z
+ a1 |Bg((Vwh)Y, )X + 5 {(Vwm)Yn(2)X + (Vwn) Zn(Y) X }]
+ a2 [Bg(Vwh) X, 2)Y +2{(Vwn) Xn(2)Y + (Twn)Zn(X)Y } |
+ a3 | Bg(Twh) X, Y)Z +{ (Vwm) Xn(Y) Z + (Vwn)Yn(X)Z} |
)

+ asg(Y, 2) [BTwh) X +1{ (Vum) (X)§ +n(X)Vwe}]

+ asg(X, 2) [BVwh)Y +1{(Vwn) (V) +n(Y)Vwé} |
+ asg(X.Y) [BVwh)Z +H{ (Vwn)(2)§ +n(2)Vwe} |
+ a7 (Vwr)g(Y, Z2)X — g(X, Z)Y].
(15)
By virtue of (1), (13), we have
~(Vwn)(X,Y)Z +n((VwT)(X,Y)Z2)é = AW)T(X,Y)Z. (16)

By taking an inner product with U, we obtain

Let {e; : i = 1,2,...,2n 4+ 1,} be an orthonormal basis of the tangent space
at any point of the manifold. Putting X = U = e; in (17) and taking summation
over 1, we get,

—9(Vwr)(ei, Y)Z, &) + n(VwT) (e, Y)Z)g(€,e5) = AW)g(r(e;, Y)Z, e;). (18)
By using (15) in (18), we obtain
— ao(VwS)(Y, 2) — [2na1 + as + as] 8] [(1 = K)g(W, 6Y) + g(W, hoY)]n(2)
+ (Y )g(h(6W + 6hWV), Z2) = un(W)g(¢hY, Z) } +2{g(W + hW. Y )n(2)
( )} = (a5 +a6) [B{[(1 = k)g(W, 62) + g(W, ho Z)]n(¥)
+1(Z)g(h(W + 6hW),Y) = um(W)g(9hZ,Y) } ++{ g(W + hW, 6Z)n(Y)
2)g(W + hW, ¢Y)H ar (Vwr)2ng(Y, Z)] + aon((Vw R) (&, V) Z)
Ba(h(6W + 6hW), Z)n(Y) +4g(W + hW, ¢Z)n(Y)]
(h(@W + hW), Y )n(Z) +vg(W + hW, 6Y )n(Z))]
(1= k)g(W, 0Y) + g(W, oY ) }n(Z) + y(Z)g(W + hW, ¢Y')]
(1= k)g(W,0Z) + g(W,h¢ Z)}n(Y) + yn(Y )g(W + hW, ¢Z)]
+ar(Vwn)[g(Y, 2) — n(Y)n(2)]

= A(W)[as + 2naqlrg(Y, Z) + A(W)[ao + (2n+ 1)as + a2 + a3 + as + ag| S(Y, Z).
(19)

A
Y
+
+

e v
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Putting Z = ¢ in (19) and on simplification, we get

—ao(VwS)(Y,€) — (2nar + az + ag) [B{(1 = k)g(W, ¢Y) + g(W, h¢Y) }
+79(W + bW, ¢Y )| = 2naz(Vwr)n(Y) (20)
= AW)n(Y)[lao + (2n + 1)ay + a2 + a3 + as + ag]2nk + [as + 2naz]r].
We know that
(VwS)(Y,§) = Vi S(Y.€) — S(VwY, &) — S(Y, Vw ). (21)
By using (4), (8) in (21), we obtain
(VwS)(Y,€) = S(Y,oW) + S(Y, ohW) — 2nkg(Y, W) — 2nkg(Y, phW).  (22)

Substituting (22) in (20), we get

— ao{ S(Y, W) + S(Y, 6hW) — 2nkg(Y, 6W) — 2nkg(Y, 6hWV)}
— (2nay + a3 + ag) [B{(1 — K)g(W, 6Y) + g(W, he¥ )} + (W + hW, 61 )]
—2na7;(Vwr)n(Y)
= AW)n(Y)[lao + (2n + 1)ay + a2 + a3 + as + ag]2nk + [ag + 2nar]r].
(23)
Replacing Y by ¢Y in (23) and simplifying, we have
—aoS(Y,W) —aoS(Y,hW) + [2a0f + 2nkag + (2na; + az + ag)(8 + 7)] g(hW,Y)
+ [an:ao + (2nay + a2){B(1 — k) + v} + agy — (2a¢ + ag)B(k — 1)}g(VV7 Y)
+ [(2a0 + ag)B(k — 1) — (2nar + a2){B(1 - k) + 7} — asy]n(W)n(Y) = 0.
(24)
Replacing W by hW in (24) and by virtue of (7), (9) and on simplification, we get
—agS(Y,hW) 4+ ap(k — 1)S(Y, W)
+ (k — 1)[2a08 + (2nas + az + ag) (B +7)|n(W)n(Y)
+ [anao + (2nay + a2){B(1 — k) + v} + agy — (2a¢ + ag)B(k — 1)]g(hVV7 Y)
— (k= 1)[2a08 + 2nkao + (2nay + az + ag) (B +7)|g(W,Y) = 0.

(25)
Subtracting (24) and (25) and by virtue of (9), we obtain
E G
g(Y,hW) = f!](K W)+ fﬁ(y)U(W>7 (26)
where
E = [ag(B — 2nk) + (2na; + as + ag)7]
F =[ag(268 — a) + B(2nay + az)]
and

G =v(—ap + 2na; + as + ag).
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By substituting (26) in (24), we get

NE P GN
S(Y,W) = LLOF + ao} gy, W) + [Fao + 2}] n(Y )n(W),
where
N = [[2nk —a+2fag + (2na; + az + ag) (B + ’y)],
P = [2nkag — B(k — 1)[ao + 2na; + a2 + ag] +¥[2na1 + az + ag)]
and

Q = [B(k — D[ao + 2nay + a2 + ag) — ¥[2na; + az + ag)] .
Hence, we state the following:

Theorem 1. A ¢-7-recurrent (k, j1)-contact metric manifold is an n-Einstein man-
ifold with ay # 0.

4 n-t-Ricci-recurrent (k, p)-contact metric manifold

Definition 4. A (k, p1)-contact metric manifold M is said to be n-7-Ricci-recurrent
if it satisfies the condition

(Vx5:)(9Y,9Z) = A(X)S-(¢Y,9Z), (27)
for all vector fields X, Y, Z on M
From (12), we have
S (Y,Z) = [ag+ (2n+1)a; +az +as+as +ag|S(Y, Z) 4+ rlas + 2naz]g(Y, Z). (28)
Replacing Y = ¢Y and Z = ¢Z in (28), we obtain
S (@Y, 0Z) = [ao + (2n + 1)ay + a2 + az + as + ag]S(¢Y, ¢2)

29
+ [oa -+ 2narlrg(6Y, 62). 2

Differentiating (29) with respect to X, we get
(VxS:)(9Y,0Z) = [ag + (2n + 1)a1 + a2 + a3 + a5 + ae](Vx 5)(4Y, ¢Z) (30)

+ [asa + 2na7|(Vxr)g(8Y, ¢2).
By using (30) and (29) in (27), we have
L(VxS)(¢Y,0Z) + M(Vxr)g(¢Y,¢Z) = A(X){LS(¢Y, ¢Z) + Mrg(¢Y, ¢Z)},

(31)
where L = [ag + (2n + 1)a; + a2 + a3 + a5 + ag] and M = [ayq + 2nar].
Now, differentiating (11), we have
(VxS)(9Y,9Z) = (VxS)(Y, Z) = 2nk[-n(Z)g(Y, pX) = n(Z)g(Y, hX)
—n(Y)g(Z,6X) = (Y )g(Z, phX)]
—2[2n — 2+ ] [(1 = k)g(X, ¢Y)n(2) (32)

+ 9(X hoY)n(2) +0(Y)g(h(¢X + ¢hX), Z)

— un(X)g(ohY, Z)]
+9(Y)S(X + hX, 6Z) +1(Z)S(8Y, X + hX).
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Substituting (32) in (31) and on simplification, we obtain

(VxS)(Y, Z) = —2nk[n(2)g(Y, ¢X) + n(Z)g(Y, ohX) + n(Y)g(Z, $X)
+0(Y)g(Z, $hX)] +2(2n — 2+ p][(1 = k)g(X, 6Y)n(Z)
+9(X, hoY)n(Z) + n(Y)g(h(¢X + ¢hX), Z) — pn(X)g(¢hY, Z)]
—n(Y)S(X + hX,$Z) — n(Z)S($Y, X + hX)

2 (Txr)a(oY. 02) + AX){S(Y. Z) — 20kn(Y In(2)

Mr
=202 =2+ plg(hY, Z) + ——9(0Y, 02)}.
(33)
Let {e;:i=1,2,...,2n+ 1} be an orthonormal frame field at any point of the
manifold. Then contracting Y and Z in (33), we have

dr(X) = A(X) [r - (Li”;C:MJ . (34)

Again, contracting over X and Z in (33), we get

(&r)M
L

%dr(Y) = [—an: tr(¢) + 2(2n — 2 + p) tr(hoh) — tr(Qe) — tr(Qho) + n(Y)

— {2n/€ + 7“24] AEn(Y) — %dr(Y) +S(Y,p) —2(2n — 2+ p)A(RY)

rM
—AY).
+ A
(35)
By using (34) in (35) and on simplification, we get

r nk(L+2M)
AY) [2 (L +2nM)

— tr(Q¢) — tr(Qh¢) —

} = [—271]{ tr(¢) + 2(2n — 2 + u) tr(hoh)

2nk(L + M + 2nM)
Traan 4@
+S(Y,p) —2(2n — 2+ wA(RY). (36)

Replacing Y = hY in (36) and by virtue of (9), we obtain

2(L + 2nM)

A(hY) = [(r —2a)(L +2nM) — 2nk(L + 2M)]

[B(k=D{AY)-AE)n(Y)}], (37)

where @ = [2(n — 1) — nu] and 8 = [2(n — 1) + u).
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Substituting (37) in (36), we have

r nk(L+2M) 48%(L +2nM)(k — 1)
AY) {2 T @ r2ad) [ —20)(L + 20d) — 20k(L 1 2M)J
= [2nktr(¢) + 2B tr(hdh) — tr(Q¢) — tr(Qhe)|n(Y)
482(L + 20 M) (k — 1) k(L + M + 2nM)
+ [[(r “2a)(L + 2nM) — 2nk(L + 2M)] (L + 2nbM)

Putting Y = ¢ in (38), we get

A(©) [; - (Lf’;ﬁM)] = [2nk tx(@) + 28 tr(hoh) — x(Q9) — tr(Qho)].  (39)

From (39) and (38), we have

_[r nk(L+2M) 48%(L +2nM)(k — 1)
Sp) = [2 Lzl T = 2a)(E + 2ndD) — 20k + 230 | Y
r nkL 48%(L +2nM)(k — 1)
+ {_2 T @200 [(r = 2a)(L + 20dM) — 20k(L + 201)]
2nk(L + M + 2nM)
L+ 2000) n(Y)n(p). "
From (40), we have
v [r_ k(@ +2M) 4B2(L + 2nM)(k — 1)
QY = [2 (L +2nM) " [(r—20)(L + 2nM) — 2nk(L 4 2M)]
r nkL 48%(L +2nM)(k — 1)
+ {_2 Tt 2nd) " [(r—2a)(L + 20M) — 2k(L + 20)] (41)
2nk(L + M + 2nM)
(L + 2nM) n(Y)e

Hence, we state the following;:

Theorem 2. If the Ricci tensor of a (k,u)-contact metric manifold is n-7-Ricci-
-recurrent then its Ricci tensor along the associated vector field of the 1-form is
given by (40) and the eigen value of the Ricci tensor with respect to the charac-
teristic vector ¢ is given by (41).
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