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On xn + yn = n!zn

Susil Kumar Jena

Abstract. In p. 219 of R.K. Guy’s Unsolved Problems in Number Theory,
3rd edn., Springer, New York, 2004, we are asked to prove that the Dio-
phantine equation xn + yn = n!zn has no integer solutions with n ∈ N+

and n > 2. But, contrary to this expectation, we show that for n = 3, this
equation has infinitely many primitive integer solutions, i.e. the solutions
satisfying the condition gcd(x, y, z) = 1.

1 Introduction
In [4], Ribet showed that the equation xn + yn = 2zn has no solutions for n > 2
apart from the trivial x = y = z. Elkies [1] has also examined ‘twists’ of the Fermat
equation, x3 + y3 = nz3. In [2], Erdős and Obláh showed that xp ± yp = n! has no
solution with p > 2. In p. 219 of [3], we are asked to prove that xn+yn = n!zn has
no integer solutions with n ∈ N+ and n > 2. But, contrary to this anticipation, we
prove the following Theorem.

Theorem 1. The Diophantine equation

xn + yn = n!zn (1)

has infinitely many primitive integer solutions when n = 3, i.e. the solutions satis-
fying the condition gcd(x, y, z) = 1.

In fact, we show a technique to generate these solutions and give four numerical
results. For other values of n ≥ 4, we do not know if (1) has solutions in integers.
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2 Diophantine equation x3 + y3 = 3!z3

The following Lemma will be used to prove Theorem 1.

Lemma 1. For any given a, b, c ∈ Z \ {0} the Diophantine equation

aA3 + bB3 = cC3 (2)

has infinitely many primitive integer solutions (Ai, Bi, Ci)i≥0, i.e. the solutions
satisfying the condition gcd(aAi, bBi, cCi) = 1 if (A0, B0, C0) is a solution of this
equation such that gcd(aA0, bB0, cC0) = 1.

Proof. The well known identity

m(m+ 2n)3 − n(2m+ n)3 = (m+ n)(m− n)3, (3)

which is true for any real values of m and n can be easily verified by direct expansion
of its LHS and RHS terms. In (3), if we choose m and n to be coprime, i.e.,
gcd(m,n) = 1, then it is easy to show that

gcd(m, (m+ n)) = gcd(m, (m− n)) = gcd
(
(m+ 2n), (m+ n)

)
= gcd

(
(m+ 2n), (m− n)

)
= gcd(n, (m+ n)) = gcd(n, (m− n))

= gcd
(
(2m+ n), (m+ n)

)
= gcd

(
(2m+ n), (m− n)

)
= 1.

Hence, with coprime integers m and n, the three terms: m(m+ 2n)3, n(2m+ n)3

and (m+ n)(m− n)3 of (3) are pairwise coprime.
Since (A0, B0, C0) is a primitive solution of (2), we get

aA3
0 + bB3

0 = cC3
0 . (4)

Taking m = aA3
0, n = bB3

0 in (3) and using (4), we have

a
(
A0(aA

3
0 + 2bB3

0)
)3

+ b
(
−B0(2aA

3
0 + bB3

0)
)3

= c
(
C0(aA

3
0 − bB3

0)
)3
. (5)

Since the three terms of (4) are pairwise coprime, the three terms of resulting
equation (5), after substitution in (3), will also be pairwise coprime.

Comparing (5) with (2), we see that an initial primitive integer solution (A0,
B0, C0) of (2) will lead to the next primitive integer solution:

(A1, B1, C1) =
(
A0(aA

3
0 + 2bB3

0),−B0(2aA
3
0 + bB3

0), C0(aA
3
0 − bB3

0)
)
. (6)

As (A1, B1, C1) is a primitive solution of (2), we get

aA3
1 + bB3

1 = cC3
1 . (7)

Taking m = aA3
1, n = bB3

1 in (3) and using (7), we have

a
(
A1(aA

3
1 + 2bB3

1)
)3

+ b
(
−B1(2aA

3
1 + bB3

1)
)3

= c
(
C1(aA

3
1 − bB3

1)
)3
. (8)



On xn + yn = n!zn 13

So,

(A2, B2, C2) =
(
A1(aA

3
1 + 2bB3

1),−B1(2aA
3
1 + bB3

1), C1(aA
3
1 − bB3

1)
)
. (9)

Since the three terms of (7) are pairwise coprime, the three terms of resulting
equation (8), after substitution in (3), will also be pairwise coprime. Thus, any
primitive integer solution (Ai, Bi, Ci) of (2) is related to its next primitive integer
solution (Ai+1, Bi+1, Ci+1) as

(Ai+1, Bi+1, Ci+1) =
(
Ai(aA

3
i + 2bB3

i ),−Bi(2aA
3
i + bB3

i ), Ci(aA
3
i − bB3

i )
)
. (10)

Thus, by iteration, (2) can have infinitely many primitive integer solutions, once a
primitive integer solution of this equation is known. �

Proof. (Theorem 1) By putting n = 3 in (1), we get

x3 + y3 = 3!z3. (11)

Taking a = b = 1, c = 3! and replacing (A,B,C) by (x, y, z), the equation (2)
transforms into equation (11). Now, to show that (11) has infinitely many primitive
integer solutions, the first step is to find three integers x0, y0, z0 ∈ Z\{0} such that

x3
0 + y30 = 3!z30 , (12)

and gcd(x0, y0, 3!z0) = 1.
For any real values of p and q the identity

(3p+ q)3 + (3p− q)3 = 3!p(9p2 + 3q2) (13)

can be easily proved to be true.
Putting p = 9 and q = 10 in (13), we get

373 + 173 = 3!× 213. (14)

Comparing (14) with (12), we get

x0, y0, z0 = 37, 17, 21; (15)

and

gcd(x0, y0, 3!z0) = gcd(37, 17, 3!21) = 1. (16)

Now, (11) has an initial solution given by (15) and this solution is primitive because
of the condition (16). To find the solutions of (11) explicitly, take a = b = 1, and
replace (Ai, Bi, Ci) by (xi, yi, zi) in (6), (9) and (10). Thus,

(x1, y1, z1) =
(
x0(x

3
0 + 2y30),−y0(2x3

0 + y30), z0(x
3
0 − y30)

)
. (17)

(x2, y2, z2) =
(
x1(x

3
1 + 2y31),−y1(2x3

1 + y31), z1(x
3
1 − y31)

)
. (18)

(xi+1, yi+1, zi+1) =
(
xi(x

3
i + 2y3i ),−yi(2x3

i + y3i ), zi(x
3
i − y3i )

)
. (19)

Hence, in accordance with Lemma 1, (11) has infinitely many primitive integer
solutions. �
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3 Some solutions of x3 + y3 = 3!z3

Using (15), (17), (18) and (19), the first four primitive integer solutions of x3+y3 =
3!z3 are calculated starting with (x0, y0, z0) = (37, 17, 21), and they are given in the
Table 1. Since all of x3, y3 and z3 are calculated to be ‘negative’, we took all of them
to be ‘positive’, because both (x3, y3, z3) and (−x3,−y3,−z3) are the solutions of
the given equation. In Table 1, interchange xi ↔ yi for solutions starting with
(y0, x0, z0) = (37, 17, 21).

i xi(yi) yi(xi) zi

0 37 17 21
1 2237723 −1805723 960540
2 −1276454530530789 2983517129811443 1641849890114429

553459441 3945011441 4337512360
3 6779598051038214 7922205726625496 4360668418820711

2472326399266506 0819025292611212 1709500245932408
1838773573375138 1617686087939438 5167366543342937
7073793470619938 2456658060516086 4773448186461962
6093375292356829 2111364183033645 7938530544150686
7473185577965857 0448115419524772 1017701946929489
67361 568639 111120

Table 1: First four solutions of x3 + y3 = 3!z3
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