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Convolution of second order linear recursive
sequences II.

Tamás Szakács

Abstract. We continue the investigation of convolutions of second order
linear recursive sequences (see the first part in [1]). In this paper, we fo-
cus on the case when the characteristic polynomials of the sequences have
common root.

1 Introduction
The second order linear recursive sequence {Gn}∞n=0 is defined by the recursion

Gn = AGn−1 +BGn−2 (n ≥ 2),

where the initial terms G0, G1 and the weights A,B are fixed real numbers with
|G0| + |G1| 6= 0 and AB 6= 0. Sometimes the following notation Gn(G0, G1, A,B)
is used, too. The polynomial

p(x) = x2 −Ax−B (1)

is known as the characteristic polynomial of the sequence {Gn}∞n=0. If its discrim-
inant D = A2 + 4B 6= 0 then the Binet formula of {Gn}∞n=0 is

Gn =
G1 − βG0

α− β
αn − G1 − αG0

α− β
βn,

where α, β are the distinct roots of p(x).
If G0 = 0 and G1 = 1 then {Gn}∞n=0 is known as Lucas sequence {Rn}∞n=0 with

its Binet formula

Rn =
αn − βn

α− β
, (2)
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Name Gn(G0, G1, A,B) Characteristic polynomial Gen. function

Fibonacci Fn(0, 1, 1, 1) p(x) = x2 − x− 1 g(x) = x
1−x−x2

Pell Pn(0, 1, 2, 1 p(x) = x2 − 2x− 1 g(x) = x
1−2x−x2

Jacobsthal Jn(0, 1, 1, 2) p(x) = x2 − x− 2 g(x) = x
1−x−2x2

Mersenne Mn(0, 1, 3,−2) p(x) = x2 − 3x+ 2 g(x) = x
1−3x+2x2

Lucas Ln(2, 1, 1, 1) p(x) = x2 − x− 1 g(x) = 2−x
1−x−x2

P-Lucas pn(2, 2, 2, 1) p(x) = x2 − 2x− 1 g(x) = 2−2x
1−2x−x2

J-Lucas jn(2, 1, 1, 2) p(x) = x2 − x− 2 g(x) = 2−x
1−x−2x2

M-Lucas mn(2, 3, 3,−2) p(x) = x2 − 3x+ 2 g(x) = 2−3x
1−3x+2x2

Table 1: Some famous sequences

while if G0 = 2 and G1 = A then the sequence is known as associated Lucas
sequence {Vn}∞n=0 with its Binet formula

Vn = αn + βn. (3)

It is known that the generating function of {Gn}∞n=0 is

g(x) =
G0 + (G1 −AG0)x

1−Ax−Bx2
. (4)

There are some well-known sequences, such as Fibonacci, Pell, Jacobsthal, Mer-
senne, and their associate sequences. The following table contains the initial terms,
characteristic polynomials and generating functions of these sequences.

In this paper, we consider the sequence {c(n)}∞n=0 given by the convolution of
two second order linear recursive sequences {Gn}∞n=0 and {Hn}∞n=0:

c(n) =

n∑
k=0

GkHn−k,

where {Gn}∞n=0 and {Hn}∞n=0 are Lucas or associated Lucas sequences (see (2) and
(3)) and the characteristic polynomials of the sequences have common root. We
mention that in [1], we have considered that case when the characteristic polyno-
mials have no common root. The applied methods for proofs require the separation
of the two cases when the characteristic polynomials have or do not have common
root. We open the door for generalization in case of arbitrary second or k-order
linear recursive sequences.

2 Results
At first, we consider the convolution of those sequences where the characteristic
polynomials have exactly one common root, after that, we deal with the case when
the characteristic polynomials have two common roots, that is, the characteristic
polynomials are the same ones. After each theorem, we give the exact forms for
the sequences contained in Table 1. In the following, we will use the notations:

b = (A1 −A2)β +B1 −B2,

d = (A2 −A1)δ +B2 −B1,
(5)
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where bd 6= 0, p(x) = x2 −A1x−B1 and q(x) = x2 −A2x−B2 are the character-
istic polynomials of Gn(G0, G1, A1, B1) and Hn(H0, H1, A2, B2), respectively. We
suppose that p(α) = q(α) = 0, p(β) = 0, q(β) 6= 0, while q(δ) = 0, p(δ) 6= 0, that
is, β and δ are distinct roots, while α is the common root.

2.1 The characteristic polynomials have exactly one common root
In the following theorem, we deal with the convolution of two different Lucas
sequences, that is, when the initial terms are 0, 1.

Theorem 1. The convolution of Gn(0, 1, A1, B1) and Hn(0, 1, A2, B2) is

c(n) =

n∑
k=0

GkHn−k =
αn(n+ 1) + αn B1+B2−2α2

(α−β)(α−δ) − β
n+1 α−δ

b − δ
n+1 α−β

d

(α− β)(α− δ)
.

Corollary 1. Using Theorem 1 the convolution of Jacobsthal and Mersenne num-
bers is:

c(n) =

n∑
k=0

JkMn−k =
2n+ (2n− 3)Mn − Jn

6
.

In the following theorem, we deal with the convolution of a Lucas sequence and
an associated Lucas sequence, that is, when the initial terms are 0, 1 and 2, A2.

Theorem 2. The convolution of Gn(0, 1, A1, B1) and Hn(2, A2, A2, B2) is

c(n) =

n∑
k=0

GkHn−k

=
αn(n+ 1)(2α−A2) + αn B1−B2

α−β − β
n+1 (α−δ)(2β−A2)

b − δn+1 (α−β)(2δ−A2)
d

(α− β)(α− δ)
.

Corollary 2. Using Theorem 2 the convolution of Jacobsthal and M-Lucas numbers
is:

c(n) =

n∑
k=0

Jkmn−k =
2n+ (2n+ 3)Mn + 5Jn

6
.

Corollary 3. Using Theorem 2 the convolution of Mersenne and J-Lucas numbers
is:

c(n) =
n∑
k=0

Mkjn−k =
2n+ (2n− 1)Mn + Jn

2
.

In the following theorem, we deal with the convolution of two different associ-
ated Lucas sequences, that is, when the initial terms are 2, A1 and 2, A2.

Theorem 3. The convolution of Gn(2, A1, A1, B1) and Hn(2, A2, A2, B2) is

c(n) =

n∑
k=0

GkHn−k = αn(n+ 1) + αn
B1 +B2 + 2α2

(α− β)(α− δ)

− βn+1 2β −A2

(α− β)(A1 −A2)
+ δn+1 2δ −A1

(α− δ)(A1 −A2)
.
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Corollary 4. Using Theorem 3 the convolution of J-Lucas and M-Lucas numbers
is:

c(n) =

n∑
k=0

jkmn−k =
n+ 1 + (n+ 2)Mn+1 + 5Jn+1

2
.

2.2 The characteristic polynomials have two common roots
That is, p(x) = q(x) and so p(α) = q(α) = 0, p(β) = q(β) = 0. In the following
theorem, we deal with the convolution of a Lucas sequence with itself, that is, the
initial terms are 0, 1. Zhang in [5] has generalized this type of problem, now we
give different formulas.

Theorem 4. The convolution of Rn(0, 1, A1, B1) with itself is

c(n) =

n∑
k=0

RkRn−k =
1

(α− β)2
(
(n+ 1)Vn − 2Rn+1

)
,

where Vn is the associate sequence of Rn.

Corollary 5. Using Theorem 4 the convolution of Fibonacci numbers with themself:

c(n) =

n∑
k=0

FkFn−k =
1

5

(
(n+ 1)Ln − 2Fn+1

)
.

Remark 1. The formula given by Zhang in [5] was the following.∑
a+b=n

FaFb =
1

5

(
(n− 1)Fn + 2nFn−1

)
, n ≥ 1.

It can be easily verifyed that the two formulas are the same ones using some well
known identities between the Fibonacci and Lucas numbers: 2Fn+1 = Fn+Ln and
Ln = Fn−1 + Fn+1. S. Vajda in [6] on page 183 gave the same formula for the
convolution of Fibonacci numbers like us in Corollary 5.

In the following theorem, we deal with the convolution of a Lucas sequence and
its associated sequence, that is, the initial terms are 0, 1 and 2, A1.

Theorem 5. The convolution of Rn(0, 1, A1, B1) and Vn(2, A1, A1, B1) is

c(n) =

n∑
k=0

RkVn−k = (n+ 1)Rn.

Corollary 6. Using Theorem 5 the convolution of Fibonacci and Lucas numbers is:

c(n) =

n∑
k=0

FkLn−k = (n+ 1)Fn.

Remark 2. The OEIS [3] contains the above sequence with id A099920.
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Corollary 7. Using Theorem 5 the convolution of Pell and P-Lucas numbers is:

c(n) =

n∑
k=0

Pkpn−k = (n+ 1)Pn.

Corollary 8. Using Theorem 5 the convolution of Jacobsthal and J-Lucas numbers
is:

c(n) =

n∑
k=0

Jkjn−k = (n+ 1)Jn.

Corollary 9. Using Theorem 5 the convolution of Mersenne and M-Lucas numbers
is:

c(n) =

n∑
k=0

Mkmn−k = (n+ 1)Mn.

Remark 3. The OEIS [3] contains the above sequence with id A058877.

In the following theorem, we deal with the convolution of an associated Lucas
sequence with itself, that is, the initial terms are 2, A1.

Theorem 6. The convolution of Vn(2, A1, A1, B1) with itself is

c(n) =

n∑
k=0

VkVn−k = (n+ 1)Vn + 2Rn+1,

where Vn is the associate sequence of Rn.

Corollary 10. Using Theorem 6 the convolution of Lucas numbers with themself
is:

c(n) =

n∑
k=0

LkLn−k = (n+ 1)Ln + 2Fn+1.

Remark 4. In the paper of Zhang and He [4] Corollary 1 contains another formula
for the convolution of Lucas numbers with themself:∑

a+b=n

LaLb =
1

5

(
2Ln+1 + (5n+ 9)Ln

)
.

It can be easily verifyed that the two formulas are the same ones using some well
known identities between the Fibonacci and Lucas numbers: Ln+2 + Ln = 5Fn+1

and Ln+2 = Ln+1 +Ln. S. Vajda in [6] on page 183 gave the same formula for the
convolution of Lucas numbers like us in Corollary 10. The OEIS [3] contains this
sequence with id A099924.



142 Tamás Szakács

3 Proofs
In the following proofs, we use the method of partial-fraction decomposition, the
generating functions of second order linear recursive sequences and the idea used
by Griffiths and Bramham in [2], that is c(n) is the coefficient of xn in

g(x)h(x) =

∞∑
n=0

Gnx
n ·

∞∑
n=0

Hnx
n =

∞∑
n=0

c(n)xn,

where g(x), h(x) are the generating functions of sequences {Gn}∞n=0 and {Hn}∞n=0,
respectively. Furthermore the following well-known identity will be used through-
out the proofs.

1

1− αx
=

∞∑
n=0

(αx)n, (0 < |αx| < 1). (6)

We will use the identity

1

(1− αx)2
=

∞∑
n=0

(n+ 1)(αx)n, (0 < |αx| < 1). (7)

too, which can be verified in the following way:

1

(1− αx)2
=

(
1

α(1− αx)

)′
=

(
1

α

∞∑
n=0

(αx)n

)′

=
1

α

∞∑
n=1

nαnxn−1 =
1

α

∞∑
n=0

(n+ 1)αn+1xn =

∞∑
n=0

(n+ 1)(αx)n.

Proof of Theorem 1. The generating functions of the sequences Gn(0, 1, A1, B1)
and Hn(0, 1, A2, B2) follow from (4),

g(x) =
x

1−A1x−B1x2
=

x

(1− αx)(1− βx)

and
h(x) =

x

1−A2x−B2x2
=

x

(1− αx)(1− δx)
,

where α, β and α, δ are the roots of the characteristic polynomial of {Gn}∞n=0 and
{Hn}∞n=0, respectively. The generating functions can be written as (by the method
of partial-fraction decomposition)

g(x) =
1

α− β

(
1

1− αx
− 1

1− βx

)
and

h(x) =
1

α− δ

(
1

1− αx
− 1

1− δx

)
.
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From this it follows that

g(x)h(x)(α− β)(α− δ)

=

(
1

1− αx
− 1

1− βx

)(
1

1− αx
− 1

1− δx

)
=

1

(1− αx)2
− 1

(1− αx)(1− δx)
− 1

(1− βx)(1− αx)
+

1

(1− βx)(1− δx)

=
1

(1− αx)2
−

α
α−δ

1− αx
+

δ
α−δ

1− δx
−

β
β−α

1− βx
+

α
β−α

1− αx
+

β
β−δ

1− βx
−

δ
β−δ

1− δx

=
1

(1− αx)2
+

B1+B2−2α2

(α−δ)(α−β)

1− αx
−

β(α−δ)
(A1−A2)β+B1−B2

1− βx
−

δ(α−β)
(A2−A1)δ+B2−B1

1− δx
.

Now using (6), (7) and the idea that c(n) is the coefficient of xn in g(x)h(x), we
get

c(n) =
αn(n+ 1) + αn B1+B2−2α2

(α−β)(α−δ) − β
n+1 α−δ

b − δ
n+1 α−β

d

(α− β)(α− δ)
.

�

The corollaries can be reached from Table 1 if we use the values of A1, B1, A2, B2

and the Binet formula (2), e.g., the proof of Corollary 1:

Proof of Corollary 1. In this special case the sequences are Gn = Jn(0, 1, 1, 2) and
Hn =Mn(0, 1, 3,−2) and we have

α = 2, β = −1, α = 2, δ = 1.

By (5), we get that

b = 6,

d = −2.

Applying Theorem 1 and (2), we get the result by a simple calculation. �

Proof of Theorem 2. The generating functions of the sequences Gn(0, 1, A1, B1)
and Hn(2, A2, A2, B2) follow from (4),

g(x) =
x

1−A1x−B1x2
=

x

(1− αx)(1− βx)

and

h(x) =
2−A2x

1−A2x−B2x2
=

2−A2x

(1− αx)(1− δx)
,

where α, β and α, δ are the roots of the characteristic polynomial of {Gn}∞n=0

and {Hn}∞n=0, respectively. The generating functions could be written as (by the
method of partial-fraction decomposition)

g(x) =
1

α− β

(
1

1− αx
− 1

1− βx

)
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and

h(x) =
1

α− δ

(
2α−A2

1− αx
− 2δ −A2

1− δx

)
.

From this it follows that

g(x)h(x)(α− β)(α− δ) =

=

(
1

1− αx
− 1

1− βx

)(
2α−A2

1− αx
− 2δ −A2

1− δx

)
=

2α−A2

(1− αx)2
− 2δ −A2

(1− αx)(1− δx)
− 2α−A2

(1− βx)(1− αx)
+

2δ −A2

(1− βx)(1− δx)

=
2α−A2

(1− αx)2
−

α(2δ−A2)
α−δ

1− αx
+

δ(2δ−A2)
α−δ

1− δx
−

β(2α−A2)
β−α

1− βx
+

α(2α−A2)
β−α

1− αx
+

β(2δ−A2)
β−δ

1− βx

−
δ(2δ−A2)
β−δ

1− δx

=
2α−A2

(1− αx)2
+

B1−B2

α−β

1− αx
−

β(α−δ)(2β−A2)
(A1−A2)β+B1−B2

1− βx
−

δ(α−β)(2δ−A2)
(A2−A1)δ+B2−B1

1− δx
.

Now using (6), (7) and the idea that c(n) is the coefficient of xn in g(x)h(x), we
get

c(n) =
αn(n+ 1)(2α−A2) + αn B1−B2

α−β − β
n+1 (α−δ)(2β−A2)

b − δn+1 (α−β)(2δ−A2)
d

(α− β)(α− δ)
.

�

The corollaries can be reached from Table 1 if we use the values of A1, B1, A2, B2

and the Binet formula (2), e.g., the proof of Corollary 2:

Proof of Corollary 2. In this special case the sequences are Gn = Jn(0, 1, 1, 2) and
Hn = mn(2, 3, 3,−2) and we have

α = 2, β = −1, α = 2, δ = 1.

By (5), we get that

b = 6,

d = −2.

Applying Theorem 2 and (2), the statement easily follows. �

Proof of Theorem 3. The generating functions of the sequences Gn(2, A1, A1, B1)
and Hn(2, A2, A2, B2) follow from (4)

g(x) =
2−A1x

1−A1x−B1x2
=

2−A1x

(1− αx)(1− βx)



Convolution of second order linear recursive sequences II. 145

and

h(x) =
2−A2x

1−A2x−B2x2
=

2−A2x

(1− αx)(1− δx)
,

where α, β and α, δ are the roots of the characteristic polynomial of {Gn}∞n=0

and {Hn}∞n=0, respectively. The generating functions could be written as (by the
method of partial-fraction decomposition)

g(x) =
1

α− β

(
2α−A1

1− αx
− 2β −A1

1− βx

)
and

h(x) =
1

α− δ

(
2α−A2

1− αx
− 2δ −A2

1− δx

)
.

From this it follows that

g(x)h(x)(α− β)(α− δ) =
(
2α−A1

1− αx
− 2β −A1

1− βx

)(
2α−A2

1− αx
− 2δ −A2

1− δx

)
=

(2α−A1)(2α−A2)

(1− αx)2
− (2α−A1)(2δ −A2)

(1− αx)(1− δx)

− (2β −A1)(2α−A2)

(1− βx)(1− αx)
+

(2β −A1)(2δ −A2)

(1− βx)(1− δx)

=
(2α−A1)(2α−A2)

(1− αx)2
−

α(2α−A1)(2δ−A2)
α−δ

1− αx
+

δ(2α−A1)(2δ−A2)
α−δ

1− δx

−
β(2β−A1)(2α−A2)

β−α

1− βx
+

α(2β−A1)(2α−A2)
β−α

1− αx
+

β(2β−A1)(2δ−A2)
β−δ

1− βx
−

δ(2β−A1)(2δ−A2)
β−δ

1− δx

=
(2α−A1)(2α−A2)

(1− αx)2
+
B1 +B2 + 2α2

1− αx

− β(α− δ)(2β −A2)

(1− βx)(A1 −A2)
+
δ(α− β)(2δ −A1)

(1− δx)(A1 −A2)
.

Now using (6), (7) and the idea that c(n) is the coefficient of xn in g(x)h(x), we
get

c(n) = αn(n+ 1) + αn
B1 +B2 + 2α2

(α− β)(α− δ)

− βn+1 2β −A2

(α− β)(A1 −A2)
+ δn+1 2δ −A1

(α− δ)(A1 −A2)
.

�

We give the proof of Corollary 4.

Proof of Corollary 4. In this special case the sequences are Gn = jn(2, 1, 1, 2) and
Hn = mn(2, 3, 3,−2) and

α = 2, β = −1, α = 2, δ = 1.

Applying Theorem 3 and (2), we get the result. �
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Proof of Theorem 4. By the help of generating function of Rn(0, 1, A1, B1) and the
method of partial-fraction decomposition, we get the following.

(g(x))2 =

(
x

1−A1x−B1x2

)2

=

(
x

(1− αx)(1− βx)

)2

=
1

(α− β)2

(
1

1− αx
− 1

1− βx

)2

=
1

(α− β)2

(
1

(1− αx)2
− 2

(1− αx)(1− βx)
+

1

(1− βx)2

)
=

1

(α− β)2

(
1

(1− αx)2
−

2α
α−β

1− αx
+

2β
α−β

1− βx
+

1

(1− βx)2

)
.

Now using (6), (7), (2), (3) and the idea that c(n) is the coefficient of xn in (g(x))2,
we get

c(n) =
1

(α− β)2

(
αn(n+ 1)− αn 2α

α− β
+ βn

2β

α− β
+ βn(n+ 1)

)
=

1

(α− β)2
(
(n+ 1)Vn − 2Rn+1

)
.

�

Proof of Theorem 5. By the help of the generating function of Rn(0, 1, A1, B1) and
Vn(2, A1, A1, B1), the method of partial-fraction decomposition and the Vieta’s
formula α+ β = A1, we get the following.

g(x)h(x) =
x

1−A1x−B1x2
· 2−A1x

1−A1x−B1x2

=
1

(α− β)2

(
1

1− αx
− 1

1− βx

)(
2α−A1

1− αx
− 2β −A1

1− βx

)
=

1

(α− β)2

(
2α−A1

(1− αx)2
− 2α−A1 + 2β −A1

(1− αx)(1− βx)
+

2β −A1

(1− βx)2

)
=

1

(α− β)2

(
α− β

(1− αx)2
− α− β

(1− βx)2

)
=

1

α− β

(
1

(1− αx)2
− 1

(1− βx)2

)
.

Now using (7), (2) and the idea that c(n) is the coefficient of xn in g(x)h(x), we
get

c(n) =
1

α− β

(
αn(n+ 1)− βn(n+ 1)

)
= (n+ 1)Rn.

�
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Proof of Theorem 6. By the help of the generating function of Vn(0, 1, A1, B1), the
method of partial-fraction decomposition and the Vieta’s formula α+ β = A1, we
get the following.

(h(x))2 =

(
2−A1x

1−A1x−B1x2

)2

=

(
2−A1x

(1− αx)(1− βx)

)2

=
1

(α− β)2

(
2α−A1

1− αx
− 2β −A1

1− βx

)2

=
1

(α− β)2

(
(α− β)2

(1− αx)2
− 2(α− β)(β − α)

(1− αx)(1− βx)
+

(β − α)2

(1− βx)2

)
=

1

(1− αx)2
+

2

(1− αx)(1− βx)
+

1

(1− βx)2

=
1

(1− αx)2
+

2α
α−β

1− αx
−

2β
α−β

1− βx
+

1

(1− βx)2
.

Now using (6), (7), (2), (3) and the idea that c(n) is the coefficient of xn in (h(x))2,
we get

c(n) = αn(n+ 1) + αn
2α

α− β
− βn 2β

α− β
+ βn(n+ 1) = (n+ 1)Vn − 2Rn+1.

�

All the Corollaries in Subsection 2.2 are special cases of the theorems and can
easily be proved by simple substitution using the sequences in Table 1. As an
example, we give the proof of Corollary 5.

Proof of Corollary 5. We substitute in this special case the following values

Rn = Fn(0, 1, 1, 1), α =
1 +
√
5

2
and β =

1−
√
5

2

into the formula of Theorem 4, where α and β are the roots of the characteristic
polynomial of the Fibonacci sequence. We get

c(n) =
1

(α− β)2
(
(n+ 1)Vn − 2Rn+1

)
=

1

5

(
(n+ 1)Ln − 2Fn+1

)
,

where Ln is the associate sequence of Fn. �

4 Concluding remarks
With this paper, we have completed the investigation of the convolution of two
second order linear recursive sequences. We have dealt the cases, when there are
no, one or two common root(s) of the characteristic polynomials of the sequences
and we used only Lucas and associated Lucas sequences.
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