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Weak Solutions for Nonlinear Parabolic Equations
with Variable Exponents

Lingeshwaran Shangerganesh, Arumugam Gurusamy, Krishnan Balachandran

Abstract. In this work, we study the existence and uniqueness of weak solu-
tions of fourth-order degenerate parabolic equation with variable exponent
using the difference and variation methods.

1 Introduction
The study of differential equations involving variable exponent conditions is a new
and interesting topic in recent years. The interest in studying such problems is
stimulated by their applications in elastic mechanics, fluid dynamics, nonlinear
elasticity, electrorheological fluids etc. In particular, parabolic equations involv-
ing the p(x)-Laplacian appeared in the field of image restoration in [15], [19] and
electrorheological fluids which are characterized by their ability to change the me-
chanical properties under the influence of the exterior electromagnetic field in [24].
Further, porous medium type equation with variable exponents is also studied
in [4]. These physical problems are facilitated by the development of Lebesgue and
Sobolev spaces with variable exponent. Recently, parabolic and elliptic equations
which involves variable exponents has studied well in the literature, for example,
see [1], [6], [7], [8], [5], [18], [19], [29] and also the references there in.

This paper is devoted to study the existence and uniqueness of weak solutions
of the following fourth-order parabolic equation with variable exponents:

∂u
∂t + div

(
|∇∆u|p(x)−2∇∆u

)
= f − div g, (x, t) ∈ Q,

u|Γ = ∆u|Γ = 0,

u(x, 0) = u0(x), x ∈ Ω,

 (1)

where we denote the cylinder Q ≡ Ω × (0, T ], the lateral surface Γ ≡ ∂Ω × (0, T ]
and p : Ω→ (1,∞) is a continuous function (called the variable exponent) and Ω is
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a bounded open domain of RN with smooth boundary ∂Ω and T is a given positive
number. Based on the physical consideration, as usual (1) is supplemented with
the natural boundary conditions and the initial value condition. We assume that

u0 ∈ H1
0 (Ω), f ∈ Lp

′(x)(0, T ;L(p∗(x))′(Ω)), g ∈ (Lp
′(x)(Q))N . (2)

When N = 1 and p(x) = p(constant), (1) is a generalized thin film equation,
see [20], which has been extensively studied recently. Xu and Zhou [25] obtained
the existence and uniqueness of weak solutions for such a kind of generalized thin
film equation. Also when p(x) = 2, (1) is known as the Cahn-Hilliard equation
(see [12]) which occurs in science and engineering. Indeed this equation also forms
a base for the methods used to improve the sharpness of vague images in image
analysis. Calderon and Kwembe [13] used the Cahn-Hilliard equation to model the
long range effect of insects dispersal. Recently King [20] derived the homogeneous
equation of type (1) for the case when p > 1 which is relevant to capillary driven
flows of thin films of power-law fluids, where u(x, t) denotes the height from the
surface of the oil to the surface of the solid. Zhang and Zhou [28] established the
existence, uniqueness and long-time behavior of weak solutions for fourth-order
degenerate parabolic equation with variable exponents of nonlinearity. The expo-
nent p is related to the rheological properties of the liquid: p = 2 corresponds to
a Newtonian liquid, whereas p 6= 2 emerges when considering “power-law” liquids.
When p > 2, the liquid is said to be shear-thinning. Xu and Zhou [26] studied the
stability and regularity of weak solutions for a generalized thin film equation for
the corresponding homogeneous equation of type (1) with p as a constant. In this
connection, Bhuveneshwari et al. [10] established the existence of weak solutions
for p-Laplacian equation. Bertsch et al. [9] proved the existence of weak solutions
for a class of fourth-order degenerate equation. Moreover the existence, uniqueness
and qualitative properties of solutions of (1) which are related to constant case
have been studied in [2], [3], [20], [22], [23], [25] and references therein. Bowen et
al. [11] investigated similiarity solutions of the thin film equation. As far as we
know, there are few papers concerned with the fourth-order nonlinear parabolic
equation involving multiple anisotropic exponents. It is not a trivial generalization
of similar problems studied in the constant case. The main difficulties in studying
the problem are caused by the complicated nonlinearities of homogeneous equation
of type (1) and the lack of a maximum principle for fourth-order equations. Due
to the degeneracy, problem (1) does not admit classical solutions in general.

The paper is organized as follows: In section 2, we introduce some basic results
regarding the variable exponent spaces and notations. In section 3, we introduce the
suitable time-independent equation of original parabolic equation and are proving
that there exists a weak solution for time-independent equation. Further, using
this result, we establish the existence of solutions of original equation. Finally, in
section 4, we prove that the solutions obtained are unique.

2 Preliminaries
In this section, we recall some basic definitions, inequalities and the properties of
the generalized Lebesgue and Sobolev spaces with variable exponents. However,
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for more detailed theory and the proofs of the following results, one can refer [16],
[28].

2.1 Variable Exponent Spaces

Set
C+(Ω) =

{
p ∈ C(Ω); min

x∈Ω
p(x) > 1

}
.

For any p ∈ C+(Ω), we define p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x). We define the

Lebesgue space with variable exponent Lp(·)(Ω) as the set of all measurable func-
tions u : Ω→ R such that

∫
Ω
|u|p(x) dx <∞ endowed with the norm

|u|p(·) = inf

{
λ > 0;

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}

called the Luxemburg norm. The space Lp(·) with the above norm is a separable
and reflexive Banach space. The dual space of Lp(·)(Ω) is isometric to Lp

′(·)(Ω)
where 1

p(x) + 1
p′(x) = 1 and p′(x) is the conjugate of p(x).

The variable exponent p : Ω → [1,∞) can be extended upto QT by setting
p(t, x) := p(x) for all (t, x) ∈ QT ; we may also consider the generalized Lebesgue
space Lp(·)(QT ) as the set of all measurable functions u : QT → R such that∫
QT
|u(x, t)|p(x) dx dt <∞, endowed with the norm

|u|p(·) = inf

{
λ > 0;

∫
QT

∣∣∣∣u(x, t)

λ

∣∣∣∣p(x)

dxdt ≤ 1

}
,

which also has the same properties as those of Lp(·)(Ω). For any positive integer k,
the variable exponent Sobolev space is given by

W k,p(·) =
{
u ∈ Lp(·)(Ω);Dαu ∈ Lp(·)(Ω)

}
,

endowed with the norm ‖u‖Wk,p(·) =
∑
|α|≤k

|Dαu|Lp(·) .

The exponent p(x) is log-Hölder continuous function, that is, |p(x) − p(y)| ≤
c

− log(x−y) for all x, y ∈ Ω with |x− y| < 1
2 with some constant c. Then the smooth

functions are dense in variable exponent Sobolev spaces and the spaces W 1,p(·)
0 (Ω)

are the completion of the C∞0 (Ω) with respect to the norm ‖ · ‖W 1,p(·)(Ω). For more
details, see [29].

Lemma 1. 1) The space Lp(·) is a separable, uniform convex Banach space and
its conjugate space is Lp

′(·)(Ω) where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(·)(Ω)

and v ∈ Lp′(·)(Ω), we have∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p−)′

)
‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x).
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2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω. Then there exists a continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω) whose norm does not exceed |Ω|+ 1.

Lemma 2. If we denote P(u) =
∫

Ω
|u|p(x) dx, for every u ∈ Lp(·)(Ω), then

min
{
‖u‖p−p(x), ‖u‖

p+
p(x)

}
≤ P(u) ≤ max{‖u‖p−p(x), ‖u‖

p+
p(x)}.

Lemma 3. 1) W k,p(·)(Ω) is a separable and reflexive Banach space.

2) For u ∈ W
1,p(·)
0 (Ω) with p ∈ C+(Ω) satisfying log-Hölder continuity, the

inequality, ‖u‖Lp(·)(Ω) ≤ c‖∇u‖Lp(·)(Ω) holds, where the positive constant c
depends on p and Ω.

3) For u ∈ W 1,p(·)
0 (Ω) with p ∈ C+(Ω), 1 ≤ p− ≤ p+ ≤ N, the Sobolev imbed-

ding W 1,p(·)(Ω) ↪→ Lr(·)(Ω) holds for any measurable function r : Ω→ [1,∞)

such that ess lim
x∈Ω

(
Np(x)
1−p(x) − r(x)

)
≥ 0.

3 Existence of Weak Solutions
In this section, first we define the weak solutions of the degenerate parabolic prob-
lem (1). Further we introduce suitable time-independent equation of (1) and using
the existence of solutions of time-independent equation, we establish the existence
of weak solutions of the original parabolic equation (1).

Definition 1. [28] A function u is called a weak solution of the fourth-order parabolic
equation (1) if the following conditions hold true, that is,

(i) u ∈ C
(
[0, T ];L2(Ω)

)
∩ L∞

(
0, T ;H1

0 (Ω)
)
∩ Lp−

(
0, T ;W 2,p(x)(Ω)

)
with ∆u ∈ Lp−

(
0, T ;W

1,p(x)
0 (Ω)

)
and ∇∆u ∈

(
Lp(x)(Q)

)N
,

(ii) For any ϕ ∈ C1(Q) with ϕ(·, T ) = 0, we have

−
∫

Ω

u0(x)ϕ(x, 0) dx−
∫ T

0

∫
Ω

[
uφt + |∇∆u|p(x)−2∇∆u · ∇ϕ

]
dx dτ

=

∫ T

0

∫
Ω

fϕdx dτ +

∫ T

0

∫
Ω

g · ∇ϕdxdτ. (3)

Remark 1. Let u be a weak solution of (1). If p(x) satisfies the log-Hölder conti-
nuity condition, then u ∈ W 1,p(x)(Ω) ∩ H1

0 (Ω) ⊂ W 1,p(x)(Ω) ∩W 1,1
0 (Ω) and thus

u ∈W 1,p(x)(Ω) = W
1,p(x)
0 (Ω). By using the approximation technique, we have, for

each t ∈ [0, T ] and every ϕ ∈ C1(Q),∫
Ω

uϕdx|t0 −
∫ t

0

∫
Ω

[
uϕt + |∇∆u|p(x)−2∇∆u · ∇ϕ

]
dx dτ

=

∫ t

0

∫
Ω

fϕdxdτ +

∫ t

0

∫
Ω

g · ∇ϕdxdτ. (4)
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Remark 2. Since C∞0 (Ω) is dense in W 1,p(x)(Ω) due to the log-Hölder continuity
condition, we can choose ∆u as a test function in (3) and (4). Indeed we may use
the Steklov averages

[v]h(x, t) = 1
h

∫ t+h
t

v(x, τ) dτ,

[f ]h(x, t) = 1
h

∫ t+h
t

f(x, τ) dτ,

[g]h(x, t) = 1
h

∫ t+h
t

g(x, τ) dτ.

 (5)

of the function v(x, t) to replace the corresponding function and then pass to the
limits. Therefore we obtain from (4) an energy type estimate

1

2
‖∇u(t)‖2L2(Ω) +

∫ t

0

∫
Ω

|∇∆u|p(x) dxdτ

=
1

2
‖∇u0‖2L2(Ω) + C‖f‖p

′(x)

Lp′(x)(0,T ;Lp(∗)′ (x)(Ω))
+ C‖g‖p

′(x)

Lp′(x)(Q)
(6)

Lemma 4. Suppose that p(x) > 1. Then, for every v ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω),

‖v‖W 2,p(x) ≤ C|∆v|p(x). (7)

where positive constant C > 0 depends only on p,N,Ω.

Proof. Using the definition of the space W 2,p(x), Lemma 3 and the theorem in [27],
we get

‖v‖W 2,p(x)(Ω) ≤ C
(
|∇v|p(x) + |∆v|p(x)

)
, (8)

where C > 0 is a constant. To prove the desired result of the lemma, we want to
show that

‖v‖W 1,p(x)(Ω) ≤ C|∆v|p(x). (9)

Suppose we assume that (9) is not true, then there exists a sequence {vn}∞n=1 in

the space W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) such that

‖vn‖W 1,p(x)(Ω) > n|∆vn|p(x). (10)

Without loss of generality, we assume that ‖vn‖W 1,p(x)(Ω) = 1. Then it follows
from (8) and (10), ‖vn‖W 2,p(x)(Ω) ≤ C, |∆vn|p(x) ≤ 1

n . Now consider a subsequence

(still denoted by {vn}∞n=1) and a function v ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) such that

vn ⇀ v weakly in W 2,p(x)(Ω), which implies that vn → v strongly in W
1,p(x)
0 (Ω).

Therefore we get
‖v‖W 1,p(x)(Ω) = 1. (11)

On the other hand, by the weak convergence of second derivative of vn, we get,

|∆v|p(x) ≤ lim inf
n→∞

|∆vn|p(x) = 0,

which implies that ∆v = 0. Since v ∈W 1,p(x)
0 (Ω), we conclude that v = 0 a.e. in Ω

which contradicts (11). This completes proof of the theorem. �
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Now let n be a positive integer and h = T
n . Then consider the following time-

discrete problem of (1)

uk−uk−1

h +∇ · (|∇∆uk|p(x)−2∇∆uk)

= [f ]h((k − 1)h)− div [g]h((k − 1)h) in Ω,

uk = ∆uk = 0, k = 1, 2, . . . , n on ∂Ω.

 (12)

where [f ]h, [g]h are respectively as defined in (5). Clearly, from the definition,

[f ]h(·) ∈ L(p∗(x))′(Ω) and [g]h(·) ∈
(
Lp
′(x)(Ω)

)N
where p∗ is the Sobolev conjugate

exponent of p given by

p∗ =


Np
N−p if p < N,

q if p = N, q ∈ (N,+∞),

+∞ if p > N.

(13)

Before we prove the existence of weak solutions of (12), first we establish the
existence of weak solutions of the following elliptic problem, that is, the case k = 1
in (12),

u−u0

h + div
(
|∇∆u|p(x)−2∇∆u

)
= [f ]h(0)− div [g]h(0), in Ω,

u = ∆u = 0, k = 1 on ∂Ω.

}
(14)

Now we consider the space

W =
{
u ∈ H1

0 (Ω) ∩W 2,p(x)(Ω)
∣∣ ∆u ∈W 1,p(x)

0 (Ω)
}

with the norm ‖u‖W = ‖u‖H1
0 (Ω) + ‖u‖W 2,p(x)(Ω) + ‖∆u‖

W
1,p(x)
0 (Ω)

. It is easy to

verify that W is a Banach space.

Definition 2. A function u ∈ W is called a weak solution of the problem (14), if,

for any ϕ ∈ C1(Ω) ∩W 1,p(x)
0 (Ω), we have∫

Ω

u− u0

h
ϕdx−

∫
Ω

(
|∇∆u|p(x)−2∇∆u

)
· ∇ϕdx

=

∫
Ω

[f ]h(0)ϕdx−
∫

Ω

div [g]h(0)ϕdx. (15)

Theorem 1. Under the assumptions of u0 ∈ H1
0 (Ω), f ∈ Lp

′(
0, T ;L(p∗(x))′

)
and

g ∈
(
Lp
′(x)(Q)

)N
, there exists at least one weak solution for (14).

Proof. Consider the variational problem,

min {J(u) | u ∈W}

where the functional J is defined by

J(u) =
1

2h

∫
Ω

|∇u|2 dx+

∫
Ω

1

p(x)
|∇∆u|p(x) dx

−
∫

Ω

[f ]h(0)∆udx−
∫

Ω

[g]h(0) · ∇∆udx, (16)
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where f ∈ Lp′
(
0, T ;L(p∗(x))′(Ω)

)
, g ∈

(
Lp
′(x)(Q)

)N
are known functions.

Now we establish that J(u) has a minimizer u1(x) in W . Therefore the func-
tion u1 is a weak solution of the corresponding Euler-Lagrange equation of J(u)
which is (14) in the case k = 1.

Using Lemma 1 with Hölder’s and Young’s inequalities, we have∣∣∣∣ ∫
Ω

[f ]h(0)∆udx

∣∣∣∣ ≤ (∫
Ω

|[f ]h(0)|(p
∗(x))′ dx

) 1
(p∗(x))′

(∫
Ω

|∆u|p
∗(x) dx

) 1
p∗(x)

≤ ‖[f ]h(0)‖L(p∗(x))′ (Ω)‖∆u‖Lp∗(x)(Ω)

≤ ‖[f ]h(0)‖L(p∗(x))′ (Ω)C‖∇∆u‖Lp(x)(Ω)

≤ ε‖∇∆u‖p(x)

Lp(x)(Ω)
+ C(ε)‖[f ]h(0)‖p

′(x)

L(p∗(x))′ (Ω)
. (17)

where C is a small positive constant. Similarly we get∣∣∣∣ ∫
Ω

[g]h(0)∇∆udx

∣∣∣∣ ≤ ε‖∇∆u‖p(x)

Lp(x)(Ω)
+ C(ε)‖[g]h(0)‖p

′(x)

Lp′(x)(Ω)
, (18)

where C is a small positive constant. For sufficiently small ε, we get

J(u) ≥ 1

2h

∫
Ω

|∇u|2 dx+

∫
Ω

1

p(x)
|∇∆u|p(x) dx+ ε‖∇∆u‖p(x)

Lp(x)(Ω)

+ C(ε)‖[f ]h(0)‖p
′(x)

L(p∗(x))′ (Ω)
+ ε‖∇∆u‖p(x)

Lp(x)(Ω)
+ C(ε)‖[g]h(0)‖p

′(x)

Lp′(x)(Ω)

≥ 1

2h

∫
Ω

|∇u|2 dx+

∫
Ω

1

p(x)
|∇∆u|p(x) dx

+ 2ε‖∇∆u‖p(x)

Lp(x)(Ω)
+ C(ε)‖[f ]h(0)‖p

′(x)

L(p∗(x))′ (Ω)
+ C(ε)‖[g]h(0)‖p

′(x)

Lp′(x)(Ω)

≥ 1

2h

∫
Ω

|∇u|2 dx+

∫
Ω

min

{
1

p+
, 2ε

}
|∇∆u|min{p(x),p} dx

+ C(ε)‖[f ]h(0)‖p
′(x)

L(p∗(x))′ (Ω)
+ C(ε)‖[g]h(0)‖p

′(x)

Lp′(x)(Ω)
. (19)

Recalling u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) and Lemma 3, we have

‖u‖W 2,p(x)(Ω) ≤ C‖∆u‖p(x). (20)

Since ∆u ∈W 1,p(x)
0 (Ω), we get

|∆u|p(x) ≤ C|∇∆u|p(x). (21)

Therefore

‖u‖W ≤ ‖u‖H1
0 (Ω) + C|∆u|p(x) + ‖∆u‖

W
1,p(x)
0 (Ω)

≤ ‖u‖H1
0 (Ω) + C|∇∆u|p(x) + ‖∆u‖

W
1,p(x)
0 (Ω)

≤ ‖u‖H1
0 (Ω) + C|∇∆u|p(x) + C|∇∆u|p(x)

≤ C
[
‖u‖H1

0 (Ω) + |∇∆u|p(x)

]
. (22)
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Hence (22) assures that J(u)→ +∞, if ‖u‖W → +∞. On the other hand, J(u) is
clearly weakly lower semi continuous on W . So it follows from the critical point
theory, see [14], there exists u1 ∈W such that

J(u1) = inf
w∈W

J(w).

Therefore, from the above equation, we conclude that the function u1 is a weak
solution of the corresponding Euler-Lagrange equation of J(u). �

Theorem 2. Under assumptions of u0 ∈ H1
0 (Ω), f ∈ Lp

′(
0, T ;L(p∗(x))′

)
, g ∈(

Lp
′(x)(Q)

)N
and p(x) ∈ C+(Ω), p(x) satisfies the log-Hölder continuity condi-

tion, the initial-boundary value problem (1) admits a unique weak solution.

Proof. Construct a suitable approximation solution sequence {uh} for the parabolic
problem (1). For k = 1, from the above theorem, there exists a weak solution
u1 ∈W . Continuing the same procedures, one find weak solutions uk ∈W of (12),
k = 2, . . . , n. It follows that, for every η ∈W ,

− 1

h

∫
Ω

∇(uk − uk−1) · ∇η dx−
∫

Ω

(|∇∆uk|p(x)−2∇∆uk) · ∇∆η dx

=

∫
Ω

[f ]h((k − 1)h)∆η dx+

∫
Ω

[g]h((k − 1)h) · ∇∆η dx. (23)

Take η = uk as a test function in (23) and using Young’s inequality, we get

1

2
‖∇uk‖2L2(Ω) + h

∫
Ω

|∇∆uk|p(x) dx ≤ 1

2
‖∇uk−1‖2L2(Ω)

+ Ch‖[f ]h((k − 1)h)‖p
′(x)

L(p∗(x))′ (Ω)
+ Ch‖[g]h((k − 1)h)‖p

′(x)

Lp′(x)(Ω)
. (24)

From the above, we get

‖∇uk‖2L2(Ω) ≤ ‖∇u0‖2L2(Ω) + Ch

k−1∑
i=0

‖[f ]h(ih)‖p
′(x)

L(p∗(x))′ (Ω)

+ Ch

k−1∑
i=0

‖[g]h(ih)‖p
′(x)

Lp′(x)(Ω)
, (25)

where

h

k−1∑
i=0

‖[f ]h(ih)‖p
′

L(p∗(x))′ (Ω)
≤
k−1∑
i=0

∫ ih+h

ih

‖f(τ)‖p
′(x)

L(p∗(x))′ (Ω)
dτ

=

∫ kh

0

‖f(τ)‖p
′(x)

L(p∗(x))′ (Ω)
dτ,

h

k−1∑
i=0

‖[g]h(ih)‖p
′(x)

Lp′(x)(Ω)
≤
k−1∑
i=0

∫ ih+h

ih

‖g(τ)‖p
′(x)

Lp′(x)(Ω)
dτ

=

∫ kh

0

‖g(τ)‖p
′(x)

Lp′(x)(Ω)
dτ.
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For every h = T
n , we define

uh(x, t) =



u0(x), t = 0,

u1(x), 0 < t ≤ h,
· · · , · · · ,
uj(x), (j − 1)h < t ≤ jh,
· · · , · · · ,
un(x), (n− 1)h < t ≤ nh = T.

(26)

For each t ∈ (0, T ], there exists some k ∈ {1, 2, . . . , n} such that t ∈ ((k − 1)h, kh].
Now by (25), we have

‖∇uh(t)‖2L2(Ω) ≤ ‖∇u0‖2L2(Ω) + C

∫ kh

0

‖f(τ)‖p
′(x)

L(p∗(x))′ (Ω)
dτ

+ C

∫ kh

0

‖g(τ)‖p
′

Lp′(x)(Ω)
dτ

≤ ‖∇u0‖2L2(Ω) + C

∫ T

0

‖f(τ)‖p
′(x)

L(p∗(x))′ (Ω)
dτ

+ C

∫ T

0

‖g(τ)‖p
′(x)

Lp′(x)(Ω)
dτ.

Hence the above inequality shows that

‖∇uh‖2L∞(0,T ;L2(Ω)) ≤ C, (27)

where C > 0 is a constant. Summing up the inequalities in (24), we obtain

n∑
k=1

1

2
‖∇uk‖2L2(Ω) + h

n∑
k=1

∫
Ω

|∇∆uk|p(x) dx

≤ 1

2

n∑
k=1

‖∇uk−1‖2L2(Ω) + Ch

n∑
k=1

‖[f ]h((k − 1)h)‖p
′(x)

L(p∗(x))′ (Ω)

+ Ch

n∑
k=1

‖[g]h((k − 1)h)‖p
′(x)

Lp′(x)(Ω)

≤ 1

2
‖∇u0‖2L2(Ω) + · · ·+ 1

2
‖∇un−1‖2L2(Ω)

+ C

∫ T

0

‖f(τ)‖p
′(x)

L(p∗(x))′ (Ω)
dτ

+ C

∫ T

0

‖g(τ)‖p
′(x)

Lp′(x)(Ω)
dτ. (28)
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From the above inequality, we get∫ T

0

∫
Ω

|∇∆uh|p(x) dxdt = h

n∑
k=1

∫
Ω

|∇∆uk|p(x) dx

≤ ‖∇u0‖2L2(Ω) + C

∫ T

0

‖f(τ)‖p
′

L(p∗(x))′ (Ω)
dτ

+ C

∫ T

0

‖g(τ)‖p
′

Lp′(x)(Ω)
dτ

≤ C,

where C > 0 is a constant. By Lemma 2 we have∫ T

0

min
{
|∇∆uh|p+p(x), |∇∆uh|p−p(x)

}
dt ≤

∫ T

0

∫
Ω

|∇∆uh|p(x) dxdt ≤ C.

Thus we conclude that

∇∆uh ∈ (Lp(x)(Q))N and ‖∇∆uh‖Lp− (0,T ;Lp(x)(Ω)) ≤ C. (29)

Employing the same technique as in the proof of (22), we obtain

‖uh‖L∞(0,T ;H1
0 (Ω)) + ‖uh‖Lp− (0,T ;W 2,p(x)(Ω)) + ‖∆uh‖Lp(0,T ;W

1,p(x)
0 (Ω))

≤ C. (30)

Therefore, from (29) and (30), there exists a subsequence uh (which also denoted
by uh) such that

uh ⇀ u, weakly∗ in L∞(0, T ;H1
0 (Ω)),

uh ⇀ u, weakly in Lp−(0, T ;W 2,p(x)(Ω)),

∇∆uh ⇀ ∇∆u, weakly in (Lp(x)(Q))N ,

|∇∆uh|p(x)−2∇∆uh ⇀ ζ, weakly in L(p′)−(0, T ;Lp
′(x)(Ω)),

which follows (see [17]) that

‖u‖L∞(0,T ;H1
0 (Ω)) + ‖u‖Lp− (0,T ;W 2,p(x)(Ω)) + ‖∆u‖

Lp− (0,T ;W
1,p(x)
0 (Ω))

≤ C.

Next we prove that the function u is a weak solution of problem (1). For each
ϕ ∈ C1(Q) with ϕ(·, T ) = 0 and ϕ(x, t)|Γ = 0 and for every k ∈ {1, 2, . . . , n}, we
solve the equation −∆ηk(x) = ϕ(x, kh) to find a function ηk ∈ W and let it be a
test function in (23) to have

1

h

∫
Ω

(uk − uk−1)ϕ(x, kh) dx−
∫

Ω

|∇∆uk|p(x)−2∇∆uk · ∇ϕ(x, kh) dx

=

∫
Ω

[
[f ]h(x, (k − 1)h)ϕ(x, kh) dx+ [g]h(x, (k − 1)h) · ∇ϕ(x, kh)

]
dx.
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Summing up all the equalities and using the definition of uh(x, t), we have

h

n−1∑
k=1

∫
Ω

uh(x, kh)
ϕ(x, kh)− ϕ(x, (k + 1)h)

h
dx−

∫
Ω

u0(x)ϕ(x, h) dx

− h
n∑
k=1

∫
Ω

(|∇∆uh|p(x)−2∇∆uh)(x, kh) · ∇ϕ(x, kh) dx

= h

n∑
k=1

∫
Ω

[
[f ]h(x, (k − 1)h)ϕ(x, kh) + [g]h(x, (k − 1)h) · ∇ϕ(x, kh)

]
dx. (31)

From the above convergence results and ϕ ∈ C1(Q), we have

h

n∑
k=1

∫
Ω

(
|∇∆uh|p(x)−2∇∆uh

)
(x, kh) · ∇ϕ(x, kh) dx

=

∫ T

0

∫
Ω

(
|∇∆uh|p(x)−2∇∆uh

)
(x, τ) · ∇ϕ(x, τ) dxdτ

+

n∑
k=1

∫ kh

(k−1)h

∫
Ω

(
|∇∆uh|p(x)−2∇∆uh

)
(x, τ)(∇ϕ(x, kh)−∇ϕ(x, τ)) dx dτ

→
∫ T

0

∫
Ω

ζ · ∇ϕ(x, τ) dxdτ, as h→ 0.

Since

h

n∑
k=1

∫
Ω

[f ]h(x, (k − 1)h)ϕ(x, kh) dx =

n∑
k=1

∫ kh

(k−1)h

∫
Ω

f(x, τ)ϕ(x, kh) dxdτ

→
∫ T

0

∫
Ω

fϕdxdτ

and

h

n∑
k=1

∫
Ω

[g]h(x, (k−1)h) ·∇ϕ(x, kh) dx =

n∑
k=1

∫ kh

(k−1)h

∫
Ω

g(x, τ) ·∇ϕ(x, kh) dx dτ

→
∫ T

0

∫
Ω

g · ∇ϕdxdτ,

as h→ 0, we obtain from (31), we get, as h→ 0,

−
∫ T

0

∫
Ω

u
∂ϕ

∂t
dxdτ −

∫
Ω

u0(x)ϕ(x, 0) dx−
∫ T

0

∫
Ω

ζ · ∇ϕ(x, τ) dx dτ

=

∫ T

0

∫
Ω

(fϕ+ g · ∇ϕ) dx dτ (32)
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The above equation proves that ∂u
∂t ∈ L

(p′)−
(
0, T ;W−1,p′(x)(Ω)

)
. For some larger

integer s such that W−1,p′(x)(Ω) ⊂ H−s(Ω) we obtain

∂u

∂t
∈ L(p′)−

(
0, T ;H−s(Ω)

)
,

and it follows [30] that
u ∈ C

(
[0, T ];H−s(Ω)

)
.

For each ε > 0 and all t, t0 ∈ [0, T ], by (30), there exists a positive number δ > 0
such that

δ‖∇u(t)−∇u(t0)‖L2(Ω) ≤
ε

2
.

From the compact imbedding relation H1
0 (Ω) ↪→ L2(Ω) ↪→ H−s(Ω), we have, for

all t, t0 ∈ [0, T ],

‖u(t)− u(t0)‖L2(Ω) ≤ δ‖u(t)− u(t0)‖H1
0 (Ω) + C(δ)‖u(t)− u(t0)‖H−s(Ω)

≤ δ‖∇u(t)−∇u(t0)‖L2(Ω) + C(δ)‖u(t)− u(t0)‖H−s(Ω)

≤ ε

2
+ C(δ)‖u(t)− u(t0)‖H−s(Ω),

where the first inequality is guaranteed by Lemma 5.1 in Chapter 1 of [21]. Hence
we proved that

u ∈ C
(
[0, T ];L2(Ω)

)
.

Finally we show that ζ = |∇∆u|p(x)−2∇∆u, a.e in Q to prove the existence of weak
solutions. Considering ∆u as a test function in (32), we have

‖∇u0‖2L2(Ω) − ‖∇u(T )‖2L2(Ω)

2
−
∫ T

0

∫
Ω

ζ · ∇∆udx dτ

=

∫ T

0

∫
Ω

[f∆u+ g · ∇∆u] dx dτ. (33)

Denote Au = |∇∆u|p(x)−2∇∆u and, by the monotonicity assumption of the oper-
ator, (

|ζ|p(x)−2ζ − |η|p(x)−2η
)
(ζ − η) ≥ 0,

for all ζ, η ∈ RN , we have∫
Ω

(
Auk −Av(τ)

)
·
(
∇∆uk −∇∆v(τ)

)
dx ≥ 0, (34)

for each k = 1, 2, . . . , n and every v ∈ Lp−
(
0, T ;W 2,p(x)(Ω)

)
with

∆v ∈ Lp−
(
0, T ;W

1,p(x)
0 (Ω)

)
. Considering uk as a test function in (23), we have

− 1

h

∫
Ω

∇(uk − uk−1) · ∇uk dx−
∫

Ω

Auk · ∇∆uk dx

=

∫
Ω

[f ]h((k − 1)h)∆uk dx+

∫
Ω

[g]h((k − 1)h) · ∇∆uk dx. (35)
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From (34), we obtain

− 1

h

∫
Ω

∇(uk−uk−1).∇uk dx−
∫

Ω

Auk ·∇∆v(τ) dx−
∫

Ω

Av ·(∇∆uk−∇∆v(τ) dx

−
∫

Ω

[f ]h((k − 1)h)∆uk dx−
∫

Ω

[g]h((k − 1)h) · ∇∆uk dx ≥ 0. (36)

Now, by Young’s inequality, we obtain

−
∫

Ω

∇(uk − uk−1) · ∇uk dx ≤
‖∇uk−1‖2L2(Ω) − ‖∇uk‖

2
L2(Ω)

2
. (37)

Integrating (35) over ((k − 1)h, kh) and using the above result, we get

‖∇uk−1‖2L2(Ω) − ‖∇uk‖
2
L2(Ω)

2
−
∫ kh

(k−1)h

∫
Ω

Auk · ∇∆v dx dτ

−
∫ kh

(k−1)h

∫
Ω

Av · (∇∆uk −∇∆v) dxdτ ≥ 0.

Summing up the above inequalities for k = 1, 2, . . . , n, we obtain

‖∇u0‖2L2(Ω) − ‖∇uh(T )‖2L2(Ω)

2
−
∫ T

0

∫
Ω

Auh.∇∆v dx dτ

−
∫ T

0

∫
Ω

Av · (∇∆uh −∇∆v)dx dτ −
∫ T

0

∫
Ω

(f∆uh − g · ∇∆uh) dxdτ ≥ 0.

Passing to limits as h→ 0, we get

‖∇u0‖2L2(Ω) − ‖∇u(T )‖2L2(Ω)

2
−
∫ T

0

∫
Ω

ζ · ∇∆v dxdτ

−
∫ T

0

∫
Ω

Av · (∇∆u−∇∆v) dxdτ −
∫ T

0

∫
Ω

(f∆u− g · ∇∆u) dxdτ ≥ 0. (38)

Combining (38) with (33), we have∫ T

0

∫
Ω

(ζ −Av) · (∇∆u−∇∆v) dxdτ ≥ 0 (39)

We choose v = u− λw for any λ > 0,∇∆w ∈ (Lp(x)(Q))N in the above inequality
to have ∫ T

0

∫
Ω

(ζ −A(u− λw)) · ∇∆w dxdτ ≥ 0.

Passing to limits as λ→ 0+ and, using Lebesgue’s dominated convergence theorem,
we obtain ∫ T

0

∫
Ω

(ζ −Au) · ψ dxdτ ≥ 0, ∀ψ ∈ (Lp(x)(Q))N .

Hence we conclude that ζ = Au, a.e. in Q. �



68 Lingeshwaran Shangerganesh, Arumugam Gurusamy, Krishnan Balachandran

4 Uniqueness of Weak Solutions
Theorem 3. The solutions of the given degenerate parabolic fourth-order equa-
tion (1) are unique.

Proof. Suppose there exist two weak solutions u and v of problem (1). Using
Remark 1, we have∫

Ω

(u− v)ϕdx|t0

−
∫ t

0

∫
Ω

[
(u− v)ϕt +

(
|∇∆u|p(x)−2∇∆u− |∇∆v|p(x)−2∇∆v

)
· ∇ϕ

]
dxds = 0.

Choosing ∆(u − v) as a test function in the above equality and using Remark 2,
we have, for every t ∈ (0, T ),∫

Ω

|∇u−∇v|2(t)

2
dx

+

∫ t

0

∫
Ω

[
|∇∆u|p(x)−2∇∆u− |∇∆v|p(x)−2∇∆v

]
· (∇∆u−∇∆v) dxds = 0. (40)

Since the two terms on the left-hand side are nonnegative, we have ∇u = ∇v a.e.
in Q, Since u− v = 0 on Γ, we conclude u− v = 0 a.e. in Q, which implies u = v
a.e. in Q. Thus we obtain the uniqueness of weak solutions. �

Acknowledgement
The authors wish to thanks the referees for useful comments and suggestion which
led to improvement in the quality of the paper. Further, the work of the first author
is supported by the DST-SERB Early Career Award File No. ECR/20l6/000624.

References
[1] B. Andreianov, M. Bendahmane, S. Ouaro: Structural stability for variable exponent

elliptic problems, I: The p(x)-Laplacian kind problems. Nonlinear Anal. 73 (2010) 2–24.

[2] L. Ansini, L. Giacomelli: Shear-thinning liquid films: macroscopic and asymptotic
behavior by quasi-self-similar solutions. Nonlinearity 15 (2002) 2147–2164.

[3] L. Ansini, L. Giacomelli: Doubly nonlinear thin-film equations in one space dimension.
Arch. Ration. Mech. Anal. 173 (2004) 89–131.

[4] S.N. Antontsev, S.I. Shmarev: A model porous medium equation with variable exponent
of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear
Anal. 60 (2005) 515–545.

[5] S. Antontsev, S. Shmarev: Elliptic equations with anisotropic nonlinearity and
nonstandard growth conditions. Handbook of Differential Equations: Stationary Partial
Differential Equations 3 (2006) 1–100.

[6] S. Antontsev, S. Shmarev: Parabolic equations with anisotropic nonstandard growth
conditions. Internat. Ser. Numer. Math. 154 (2006) 33–44.

[7] S. Antontsev, S. Shmarev: Blow-up of solutions to parabolic equations with nonstandard
growth conditions. J. Comput. Appl. Math. 234 (2010) 2633–2645.



Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents 69

[8] S. Antontsev, S. Shmarev: Vanishing solutions of anisotropic parabolic equations with
variable nonlinearity. J. Math. Anal. Appl. 361 (2010) 371–391.

[9] M. Bertsch, L. Giacomelli, G. Lorenzo, G. Karali: Thin-film equations with Partial
wetting energy: Existence of weak solutions. Physica D 209 (2005) 17–27.

[10] V. Bhuvaneswari, L. Shangerganesh, K. Balachandran: Weak solutions for p-Laplacian
equation. Adv. Nonlinear Anal. 1 (2012) 319–334.

[11] M. Bowen, J. Hulshof, J. R. King: Anomalous exponents and dipole solutions for the
thin film equation. SIAM J. Appl. Math. 62 (2001) 149–179.

[12] J. W. Cahn, J. E. Hilliard: Free energy of nonuniform system I. interfacial free energy.
J. Chem. Phys. 28 (1958) 258–367.

[13] C. P. Calderon, T. A. Kwembe: Dispersal models. Rev. Union Mat. Argentina 37 (1991)
212–229.

[14] K. Chang: Critical Point Theory and Its Applications. Shangai Sci. Tech. Press,
Shangai (1986).

[15] Y. Chen, S. Levine, M. Rao: Variable exponent, linear growth functionals in image
restoration. SIAM J. Appl. Math. 66 (2006) 1383–1406.

[16] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces With
Variable Exponents. Springer-Verlag, Heidelberg (2011).

[17] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations.
American Mathematical Society, Providence, RI (1990).

[18] W. Gao, Z. Guo: Existence and localization of weak solutions of nonlinear parabolic
equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl. 191 (2012)
551–562.

[19] Z. Guo, Q. Liu, J. Sun, B. Wu: Reaction-diffusion systems with p(x)-growth for image
denoising. Nonlinear Anal. RWA 12 (2011) 2904–2918.

[20] J. R. King: Two generalization of the thin film equation. Math. Comput. Modeling 34
(2001) 737–756.

[21] J. Lions: Quelques Methodes de Resolution des Problems aux Limites Non lineaire.
Dunod Editeur Gauthier Villars, Paris (1969).

[22] C. Liu: Some properties of solutions for the generalized thin film equation in one space
dimension. Boletin de la Asociacion Matematica venezolana 12 (2005) 43–52.

[23] C. Liu, J. Yin, H. Gao: On the generalized thin film equation. Chin. Ann. Math. 25
(2004) 347–358.

[24] M. Ruzicka: Electrorheological Fluids: Modeling and Mathematical Theory.
Springer-Verlag, Berlin (2000).

[25] M. Xu, S. Zhou: Existence and uniqueness of weak solutions for a generalized thin film
equation. Nonlinear Anal. 60 (2005) 755–774.

[26] M. Xu, S. Zhou: Stability and regularity of weak solutions for a generalized thin film
equation. J. Math. Anal. Appl. 337 (2008) 49–60.

[27] A. Zang, Y. Fu: Interpolation inequalities for derivatives in variable exponent
Lebesgue-Sobolev spaces. Nonlinear Anal. 69 (2008) 3629–3636.

[28] C. Zhang, S. Zhou: A fourth-order degenerate parabolic equation with variable
exponent. J. Part. Diff. Eq.(2009) 1–16.



70 Lingeshwaran Shangerganesh, Arumugam Gurusamy, Krishnan Balachandran

[29] C. Zhang, S. Zhou: Renormalized and entropy solutions for nonlinear parabolic
equations with variable exponents and L1 data. J. Differential Equations 248 (2010)
1376–1400.

[30] S. Zhou: A priori L∞-estimate and existence of weak solutions for some nonlinear
parabolic equations. Nonlinear Anal. 42 (2000) 887–904.

Author’s address:
Lingeshwaran Shangerganesh, Krishnan Balachandran, Department of Humanities
and Sciences, National Institute of Technology, Goa 403 401, India.

E-mail: shangerganesh a©nitgoa.ac.in, shangerganesh a©gmail.com
Arumugam Gurusamy, Department of Mathematics, Bharathiar University,
Coimbatore 641 046, India.

E-mail: guru.poy a©gmail.com, kb.math.bu a©gmail.com

Received: 30 January, 2017
Accepted for publication: 6 February, 2017
Communicated by: Olga Rossi


