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On the notion of Jacobi fields in constrained calculus
of variations

Enrico Massa, Enrico Pagani

Abstract. In variational calculus, the minimality of a given functional un-
der arbitrary deformations with fixed end-points is established through an
analysis of the so called second variation. In this paper, the argument
is examined in the context of constrained variational calculus, assuming
piecewise differentiable extremals, commonly referred to as extremaloids.
The approach relies on the existence of a fully covariant representation of
the second variation of the action functional, based on a family of local
gauge transformations of the original Lagrangian and on a set of scalar
attributes of the extremaloid, called the corners’ strengths [16]. In dis-
cussing the positivity of the second variation, a relevant role is played by
the Jacobi fields, defined as infinitesimal generators of 1-parameter groups
of diffeomorphisms preserving the extremaloids. Along a piecewise differen-
tiable extremal, these fields are generally discontinuous across the corners.
A thorough analysis of this point is presented. An alternative character-
ization of the Jacobi fields as solutions of a suitable accessory variational
problem is established.

Introduction
The study of extremals with corners dates back to the works of Weierstrass and
Erdmann [8]. Since then, many Authors made their own contribution to the sub-
ject. Among others, we cite Caratheodory [2], [3], [4], Dresden [5], [6], [7], Bolza [1],
Hadamard [12], Rider [22], Graves [10], [11], Reid [21] and, more recently, Milyutin,
Osmolovskii and Lempio [17], [18], [19].

In three recent papers [14], [15], [16], a geometrical setup for the study of the
subject is thoroughly worked out. In [14], the role of the Pontryagin equations [20],
[9] and of the Erdmann-Weierstrass corner conditions [8], [13], [23] as necessary
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and sufficient conditions for a continuous, piecewise differentiable curve to be an
extremal of the action functional is analysed.

The resulting framework is employed in [15] in order to discuss the problem
of minimality for differentiable extremals. A tensorial algorithm is set up through
an adaptation technique, consisting in a systematic replacement of the original
Lagrangian by a gauge-equivalent one, fulfilling the property of being critical along
the extremal in study.

In [16], the analysis is extended to piecewise differentiable extremals, here called
extremaloids. It is shown that a global adaptation procedure is generally unavail-
able, due to the presence of a set of scalars, called the corners’ strengths, whose non
vanishing precludes the existence of a differentiable gauge transformation yielding
a Lagrangian critical along the whole extremaloid. The construction of a tensorial
algorithm is nonetheless possible, resorting to a family of local gauge transforma-
tions, one for each differentiable arc. In this way, all significant ideas involved
in the study of the second variation (matrix Riccati equation, Jacobi fields, focal
points) find their place in the piecewise differentiable context.

In this paper we resume and complete the theory of Jacobi fields along an
extremaloid developed in [16], henceforth called broken Jacobi fields. We show
that, in addition to the standard definition as infinitesimal deformations preserv-
ing extremaloids, they are equally well characterized as solutions of an accessory
variational problem, with action functional given by the second variation of the
original functional, viewed as a quadratic form over the vector space of admis-
sible infinitesimal deformations. The result, entirely straightforward in the case
of differentiable extremals [15], presents here some non-trivial aspects, mainly in
connection with the management of the jumps of the Jacobi fields at the corners.

The presentation is organized as follows: Sections 1 and 2 summarize the results
of [14], [16] more closely related to the present developments.

In Section 3, the definition of the Jacobi fields along an extremaloid is re-
viewed. The accessory variational problem, meant as the study of the extremals
of the second-variation within the class of admissible deformations, is then for-
mulated. The resulting Pontryagin equations are compared with the Jacobi ones.
A discussion of the behaviour of the solutions at the corners is presented.

1 Brief overview of foregoing results
All the definitions, conventions and results described in [14], [15], [16] will be freely
used throughout. For convenience of the reader, we review here some basic ideas,
laying particular emphasis on those related to piecewise differentiability.

1.1 Preliminaries
(i) Let Vn+1

t−→ R denote a (n + 1)-dimensional fiber bundle over the real line,
referred to local fibred coordinates t, q1, . . . , qn and called the event space. The
notation q0 will be occasionally adopted in place of t, with Greek indices running
from 0 to n and Latin ones running from 1 to n.

The first jet-space j1(Vn+1)
π−→ Vn+1, referred to local coordinates t, qi, q̇i,

is called the velocity space. Given any section γ : R → Vn+1, the corresponding
jet-extension is denoted by j1(γ) : R→ j1(Vn+1).
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The presence of non-holonomic constraints is accounted for by an embedded
submanifold of the first jet-bundle j1(Vn+1), fibred over Vn+1 and referred to local

fibred coordinates t, q1, . . . , qn, z1, . . . , zr. The imbedding A i−→ j1(Vn+1) is locally
expressed as

q̇i = ψi(t, q1, . . . , qn, z1, . . . , zr) , i = 1, . . . , n. (1)

A section γ : R → Vn+1 is called admissible if and only there exists a section
γ̂ : R → A, called the lift of γ, locally described as qi = qi(t), zA = zA(t) and
satisfying i · γ̂ = j1(γ). Under the stated assumptions, the section γ̂ is itself called
admissible. In coordinates, the admissibility condition reads

dqi

dt
= ψi

(
t, q1(t), . . . , qn(t), z1(t), . . . , zr(t)

)
. (2)

Given an admissible γ, we denote by γ̇ its tangent vector, locally represented as

γ̇ :=
dqµ

dt

(
∂

∂qµ

)
γ

=

(
∂

∂t

)
γ

+ ψi|γ̂

(
∂

∂qi

)
γ

. (3)

(ii) A noteworthy differential operator mapping the Grassmann algebra over Vn+1

into the Grassmann algebra over A is the symbolic time derivative d
dt , uniquely

defined by the properties (see [14] and references therein)

df

dt
=
∂f

∂t
+ ψk

∂f

∂qk
:= ḟ ,

d

dt

(
df
)

= dḟ ∀f ∈ F (Vn+1), (4a)

d

dt

(
ω ∧ η

)
=
dω

dt
∧ η + ω ∧ dη

dt
∀ω, η ∈ G(Vn+1). (4b)

Given any admissible section γ, the value of the restriction dω
dt

∣∣
γ̂

is easily seen
to depend only on the value of the restriction ω|γ . It makes therefore perfectly
good sense to define the symbolic time derivative of an exterior r-form along γ,
meant as an r-form along γ̂. In particular, for r = 1, we have the expression

d

dt

(
ν0(t)dt|γ + νi(t)dq

i
|γ
)

=
dν0
dt

dt|γ̂ +
dνi
dt

dqi|γ̂ + νidψ
i
|γ̂ . (5)

(iii) Let V (Vn+1)
π−→ Vn+1 and V ∗(Vn+1)

π−→ Vn+1 respectively denote the ver-
tical bundle relative to the fibration Vn+1 → R and the associated dual bundle,
isomorphic to the quotient of the cotangent bundle T ∗(Vn+1) by the equivalence
relation

σ ∼ σ′ ⇐⇒

{
π(σ) = π(σ′)

σ − σ′ ∝ dt|π(σ) .
(6)

The elements of V ∗(Vn+1) are called the virtual 1-forms over Vn+1.
Every local coordinate system t, qi in Vn+1 induces fibred coordinates t, qi, pi

in V ∗(Vn+1), with pi(λ̂) :=
〈
λ̂,
(
∂
∂qi

)
π(λ)

〉
∀λ̂ ∈ V ∗(Vn+1).
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For any g ∈ F (Vn+1), the linear functional on V (Vn+1) determined by the
differential dg is denoted by δg and is called the virtual differential of g.

The vector bundles V (Vn+1) and V ∗(Vn+1) generate a tensor algebra, whose
elements are called the virtual tensors over Vn+1.

The fibred product C(A) := A ×Vn+1
V ∗(Vn+1), referred to local coordinates

t, qi, zA, pi, is called the contact bundle. By construction, C(A) is a vector bundle
over A, canonically isomorphic to the subbundle of the cotangent space T ∗(A)
locally spanned by the contact 1-forms ωi = dqi − ψidt.

(iv) Given any admissible section γ, we denote by V (γ)
t−→ R the bundle of vertical

vectors along γ, by A(γ̂)
t−→ R the totality of vectors along γ̂ annihilating the

1-form dt and by V (γ̂) ⊂ A(γ̂) the totality of vertical vectors relative to the fibration
A(γ̂)

π−→ V (γ). All spaces are referred to fibred coordinates, respectively denoted
by t, ui, t, ui, vA and t, vA, symbolically defined as ui = 〈dqi, ·〉, vA = 〈dzA, ·〉.

The restriction of V ∗(Vn+1) to the curve γ determines a vector bundle

V ∗(γ)
t−→ R, dual to the vertical bundle V (γ). The elements of V ∗(Vn+1) are

called the virtual 1-forms along γ. The elements of the tensor algebra generated
by V (γ) and V ∗(γ) are called the virtual tensors along γ.

Preserving the notation δ for the virtual differential, every virtual tensor field
w along γ is locally represented as w = wij···(t)

(
∂
∂qi

)
γ
⊗ δqj |γ ⊗ · · · .

(v) In the forthcoming discussion we shall consider not only sections in the ordinary
sense but also piecewise differentiable evolutions, defined on closed intervals. In
this connection, we recall the following definitions [14]:

• an admissible closed arc
(
γ, [m,n]

)
in Vn+1 is the restriction to a closed

interval [m,n] of an admissible section γ : (m′, n′) → Vn+1 defined on some
open interval (m′, n′) ⊃ [m,n];

• a piecewise differentiable evolution of the system in the interval [t0, t1] is a
finite collection(

γ, [t0, t1]
)

:=
{(
γ(s), [as−1, as]

)
, s = 1, . . . , N, t0 = a0 < · · · < aN = t1

}
of admissible closed arcs satisfying the matching conditions

γ(s)(as) = γ(s+1)(as) , ∀s = 1, . . . , N − 1 . (7)

On account of Eq. (7), the image γ(t) is well-defined and continuous for all
t0 6 t 6 t1. The points xs := γ(as), s = 1, . . . , N − 1, are called the corners of γ.
The tangent vector to the arc γ(s) is denoted by γ̇(s).

In like manner, the lift of an admissible closed arc
(
γ, [m,n]

)
is the restriction to

[m,n] of the lift γ̂ : (m′, n′)→ A, while the lift γ̂ of a piecewise differentiable evolu-
tion

{(
γ(s), [as−1, as]

)}
is the family of lifts γ̂(s), each restricted to the correspond-

ing closed interval [as−1, as]. The image γ̂(t) is well-defined for t 6= a1, . . . , aN−1,
thus allowing to regard γ̂ : [t0, t1]→ A as a (generally discontinuous) section of the
velocity space.
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1.2 Deformations
The geometric setup associated with the representation of deformations in the
presence of constraints is regarded as known [14], [15]. For the purposes of the
present work, a few technical aspects are briefly reviewed.

(i) An admissible deformation of an admissible closed arc
(
γ, [m,n]

)
is a 1-param-

eter family
(
γξ, [m(ξ), n(ξ)]

)
, |ξ| < ε, of admissible closed arcs depending differen-

tiably on ξ and satisfying the condition(
γ0, [m(0), n(0)]

)
=
(
γ, [m,n]

)
.

An admissible deformation of a piecewise differentiable evolution
(
γ, [t0, t1]

)
is

likewise a collection
{(
γ
(s)
ξ , [as−1(ξ), as(ξ)]

)}
of admissible deformations of each

single arc, satisfying the matching conditions

γ
(s)
ξ (as(ξ)) = γ

(s+1)
ξ (as(ξ)) ∀|ξ| < ε, s = 1, . . . , N − 1 . (8)

Each lift γ̂(s)ξ , restricted to the interval [as−1(ξ), as(ξ)], is easily recognized to

provide a deformation for the lift γ̂(s) : [as−1, as]→ A.
In what follows, we shall only consider deformations leaving the interval [t0, t1]

fixed, namely those satisfying the conditions a0(ξ) = t0, aN (ξ) = t1; no restriction
is posed on the functions as(ξ), s = 1, . . . , N − 1.

For each s, the curve cs(ξ) := γ
(s)
ξ (as(ξ)) = γ

(s+1)
ξ (as(ξ)) is called the orbit of

the corner xs under the given deformation.
In local coordinates, setting qi(γ(s)ξ (t)) = ϕi(s)(ξ, t), the matching conditions (8)

read
ϕi(s)(ξ, as(ξ)) = ϕi(s+1)(ξ, as(ξ)), (9)

while the representation of the orbit cs(ξ) takes the form

cs(ξ) : t = as(ξ) , qi = ϕi(s)(ξ, as(ξ)) (10)

with cs(0) = xs.

(ii) An admissible infinitesimal deformation of a closed arc
(
γ, [m,n]

)
is a triple

(α,X, β), where X is the restriction to [m,n] of an admissible infinitesimal defor-
mation of the arc γ : (m′, n′)→ Vn+1, while α, β are the derivatives

α =
dm

dξ

∣∣∣∣
ξ=0

, β =
dn

dξ

∣∣∣∣
ξ=0

.

Likewise, an admissible infinitesimal deformation of a piecewise differentiable
evolution

(
γ, [t0, t1]

)
is a collection

{
· · ·αs−1, X(s), αs · · ·

}
of admissible infinitesi-

mal deformations of each single closed arc, with αs = das
dξ

∣∣
ξ=0

(in particular, with
α0 = αN = 0 whenever the interval [t0, t1] is held fixed).
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The admissibility of each X(s) requires the existence of a corresponding lift

X̂(s) = Xi
(s)

(
∂
∂qi

)
γ̂(s) +XA

(s)

(
∂
∂zA

)
γ̂(s) satisfying the variational equation

dXi
(s)

dt
=

(
∂ψi

∂qk

)
γ̂(s)

Xk
(s) +

(
∂ψi

∂zA

)
γ̂(s)

XA
(s) . (11)

Eqs. (9) imply the jump relations[
Xi
]
xs

=: Xi
(s+1)(as)−X

i
(s)(as) = −αs

[
ψi
]
xs

(12)

as well as the representation

W(s) := cs∗

(
d

dξ

)
ξ=0

= αs

(
∂

∂t

)
xs

+
(
αsψ

i +Xi
)
xs

(
∂

∂qi

)
xs

(13)

for the tangent vector to the orbit of the corner xs at ξ = 0.

1.3 Infinitesimal controls

(i) Given an admissible differentiable section γ : R→ Vn+1, an infinitesimal control
along γ is a linear section h : V (γ) → A(γ̂), described in fibred coordinates as
vA = hi

A(t)ui. The image h(V (γ)) defines a distribution along γ̂, locally spanned
by the vector fields

∂̃i := h

[(
∂

∂qi

)
γ

]
=

(
∂

∂qi

)
γ̂

+ hi
A

(
∂

∂zA

)
γ̂

, (14)

called the horizontal distribution associated with h.

Every X̂ = Xi(t)
(
∂
∂qi

)
γ̂

+ XA(t)
(

∂
∂zA

)
γ̂
∈ A(γ̂) may be uniquely decomposed

into the sum of a horizontal vector PH(X̂) and a vertical vector PV (X̂), respectively
defined by the equations

PH(X̂) := h
(
π∗(X̂)

)
= Xi∂̃i ,

PV (X̂) := X̂ − PH(X̂) =
(
XA −Xihi

A
)( ∂

∂zA

)
γ̂

=: UA
(

∂

∂zA

)
γ̂

.

A section X : R → V (γ) is said to be h-transported along γ if the composite
map h ·X : R → A(γ̂) is an admissible infinitesimal deformation of γ̂. In view of
Eqs. (11), (14), the h-transported sections form an n-dimensional vector space Vh,
isomorphic to the standard fibre of V (γ). Every infinitesimal control provides
therefore a trivialization of the vector bundle V (γ) → R, summarized into the
identification V (γ) ' R × Vh. By duality, this entails the analogous identification
V ∗(γ) ' R× Vh∗.
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(ii) The notion of h-transport induces a derivation D
Dt of the virtual tensor algebra

along γ, called the absolute time derivative. Introducing the temporal connection
coefficients τki := −∂̃k

(
ψi
)
, we have the representation

D

Dt

[
Zij···(t)

(
∂

∂qi

)
γ

⊗ δqj |γ ⊗ · · ·
]

:=
DZij···
Dt

(
∂

∂qi

)
γ

⊗ δqj |γ ⊗ · · · ,

with
DZij···
Dt

=
dZij···
dt

+ τk
iZkj··· − τjkZik··· + · · · . (15a)

Matters get simplified referring both bundles V (γ), V ∗(γ) to h-transported dual
bases e(a) = e(a)

i
(
∂
∂qi

)
γ
, e(a) = e(a)iδq

i
|γ .

Setting Z = Z̃ab···e(a) ⊗ e(b) ⊗ · · · , Eq. (15a) takes then the form

DZ

Dt
=
dZ̃ab···
dt

e(a) ⊗ e(b) ⊗ · · · , (15b)

i.e. it reduces to the ordinary derivative of the components.

Given any admissible infinitesimal deformation X = Xi
(
∂
∂xi

)
γ

of γ lifting to a

deformation X̂ of γ̂ and denoting by U = UA
(

∂
∂zA

)
γ̂

the vertical projection of X̂,
the variational equation (11) and the lift process may be cast into the form

DXi

Dt
= UA

(
∂ψi

∂zA

)
γ̂

, (16a)

X̂ = h(X) + U. (16b)

(iii) Assigning an infinitesimal control h(s) along each arc γ(s) of a piecewise dif-
ferentiable admissible evolution

(
γ, [t0, t1]

)
and arguing as above, we conclude that

every admissible infinitesimal deformation
{
· · ·αs−1, X(s), αs · · ·

}
of γ is deter-

mined, up to initial data, by the coefficients α1, . . . , αN−1 and by N vertical vector
fields U(s) = UA(s)

(
∂
∂zA

)
γ̂(s) through the covariant variational equation

DXi
(s)

Dt
= UA(s)

(
∂ψi

∂zA

)
γ̂(s)

, s = 1, . . . , N , (17a)

completed with the jump relations (12). Each lift X̂(s) is then given by

X̂(s) = h(s)
(
X(s)

)
+ U(s) . (17b)

(iv) Given a piecewise differentiable admissible evolution
(
γ, [t0, t1]

)
and a fam-

ily h = {h(s)} of infinitesimal controls, we glue h(s)-transport along each arc(
γ(s), [as−1, as]

)
and continuity at the corners into a global h-transport law along γ.

Once again, the resulting algorithm provides a trivialization of the vector bundle
V (γ) into the cartesian product [t0, t1]× Vh, with Vh ' V (γ)|t ∀t ∈ [t0, t1].
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Given any infinitesimal deformation
{
· · ·αs−1, X(s), αs · · ·

}
, we merge all sec-

tions X(s) into a piecewise differentiable map X : [t0, t1] → Vh, with jump discon-
tinuities at t = as expressed by Eq. (12).

The vertical projections U(s) = PV (X̂(s)) are similarly merged into a single
object U , henceforth (improperly) called a vertical vector field along γ̂.

In this way Eqs. (17) becomes formally identical to Eqs. (16). In particular, in
h-transported bases, the determination of the components X̃a in terms of UA and
of the scalars αs relies on the equations

dX̃a

dt
= UAe(a)i

(
∂ψi

∂zA

)
γ̂

∀t 6= as , (18a)

completed with the jump conditions

[X̃a]xs = −αse(a)i(as)[ψi]xs s = 1, . . . , N − 1 . (18b)

1.4 Extremaloids
The first step in the solution of the fixed-endpoints variational problem based on
the functional

I[γ] :=

∫
γ̂

L (t, q1, . . . , qn, z1, . . . , zr) dt , L ∈ F (A) (19)

is the analysis of its first variation. The argument has been worked out in [14].
The main results are reported below.

(i) Given an admissible piecewise differentiable section γ : [t0, t1] → Vn+1, let V
and W respectively denote the infinite-dimensional vector space formed by the
totality of vertical vector fields U =

{
U(s), s = 1, . . . , N

}
along γ̂ and the direct

sum V ⊕ RN−1. Also, let h =
(
h(1), . . . , h(N)

)
denote a collection of (arbitrarily

chosen) infinitesimal controls along the arcs of γ.
By Eqs. (18), every admissible infinitesimal deformation X of γ is determined,

up to initial data, by an element (U,
∼
α) := (U,α1, . . . , αN−1) ∈W.

In h-transported bases, for any t ∈ (ar−1, ar], r = 1, . . . , N , the resulting ex-
pression reads

X(t) =

(
X̃a(t0) +

∫ t

t0

UAe(a)i

(
∂ψi

∂zA

)
γ̂

dt−
r−1∑
s=1

αse
(a)

i(as)[ψ
i(γ̂)]xs

)
e(a)(t) .

In particular, denoting by Υ: W→ Vh linear map defined by the equation

Υ(U,
∼
α) :=

(∫ t1

t0

UAe(a)i

(
∂ψi

∂zA

)
γ̂

dt−
N−1∑
s=1

αse
(a)

i(as)[ψ
i(γ̂)]xs

)
e(a) , (20)

the admissible infinitesimal deformations vanishing at the endpoints of γ are in
1-1 correspondence with the elements of the subspace ker(Υ) ⊂W.
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Several important properties of the evolution γ (ordinariness, normality, local
normality) are related to the nature of the map (20). A detailed account may be
found in [14] and references therein. For the purposes of the present analysis we
report here two basic results.

Proposition 1. An evolution γ : [t0, t1] → Vn+1 is normal if and only if there ex-
ists no non-zero continuous virtual 1-form λ̂ : [t0, t1] → V ∗(γ)Vn+1 satisfying the
homogeneous system

λi

(
∂ψi

∂zA

)
γ̂

= 0 ,

λi(as)[ψ
i(γ̂)]xs = 0 , s = 1, . . . , N − 1.

It is locally normal if the same property holds on any subinterval I ⊂ [t0, t1].

Proposition 2. Given an admissible evolution γ, let ℘(γ) denote the totality of
piecewise differentiable virtual 1-forms ρ̂ = pi(t)δq

i
|γ along γ satisfying the equa-

tions

dpi
dt

+
∂ψk

∂qi
pk =

∂L

∂qi
, (21a)

pi
∂ψi

∂zA
=
∂L

∂zA
(21b)

as well as the matching conditions[
pi
]
as

=
[
piψ

i
|γ̂ −L|γ̂

]
as

= 0 , s = 1, . . . , N − 1 . (21c)

Then:

a) the condition ℘(γ) 6= ∅ is sufficient for γ to be an extremaloid for the func-
tional (19);

b) if γ is a normal evolution, the condition ℘(γ) 6= ∅ is also necessary for γ to
be an extremaloid.

Eqs. (21a), (21b), completed with the admissibility conditions (2), are the well
known Pontryagin equations; Eqs. (21c) reproduce the content of the Erdmann-
-Weierstrass corner conditions.

For future reference we observe that the whole set of equations is invariant
under arbitrary transformations of the form

L → L + Ṡ , pi(t)→ pi(t) +

(
∂S

∂qi

)
γ(t)

, (22)

S(t, q1, . . . , qn) being any differentiable function over Vn+1, and Ṡ = ∂S
∂t + ∂S

∂qiψ
i

denoting its symbolic time derivative [14].
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An alternative derivation of Eqs. (21) is obtained working in the environment
C(A) and introducing the Pontryagin Hamiltonian

H (t, qi, pi, z
A) := piψ

i(t, qi, zA)−L (t, qi, zA) . (23)

Every ordinary extremaloid is then the projection of a (generally discontinuous)
curve γ̃ : qi = qi(t), pi = pi(t), z

A = zA(t) satisfying the equations

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
,

∂H

∂zA
= 0 (24a)

as well as the matching conditions[
qi|γ̃
]
as

=
[
pi|γ̃

]
as

=
[
H |γ̃

]
as

= 0 . (24b)

In particular, when γ is normal, there exists a unique such γ̃.
A further enhancement of Proposition 2 comes from the use of the symbolic

time derivative (5). Resuming the notation γ̇ for the tangent vector to γ, we have
the following

Proposition 3. The class ℘(γ) defined in Proposition 2 is in 1-1 correspondence
with the family of continuous 1-forms ρ = p0dt|γ + pidq

i
|γ along γ satisfying the

conditions 〈
ρ, γ̇
〉

= L|γ̂ ,
dρ

dt
= dL|γ̂ . (25)

The correspondence ρ → ρ̂ is given by the quotient map ρ̂ = [ρ] associated with
the equivalence relation (6).

Remark 1. On account of Eqs. (3), (23), the first equation (25) may be cast into
the form

p0(t) = L|γ̂(t) − pi(t)ψi|γ̂(t) = −H |γ̃(t) , (26)

relating the component p0(t) to the value of the Pontryagin Hamiltonian along the
curve γ̃. This fact is reflected into the second relation (25): in addition to restoring
the content of Eqs. (21a), (21b), the latter provides in fact the evolution equation

dp0
dt

=

(
∂L

∂t

)
γ̂

− pi
(
∂ψi

∂t

)
γ̂

= −
(
∂H

∂t

)
γ̂

, (27)

expressing the non-holonomic counterpart of the transport law for the Hamiltonian.

Remark 2. According to Propositions 1, 2, along any normal extremaloid, the
1-form ρ is uniquely determined by the knowledge of the Lagrangian. Any gauge
transformation (22) modifies ρ according to the prescription

ρ→ ρ− dS|γ =

[
p0(t)−

(
∂S

∂t

)
γ

]
dt|γ +

[
pi(t)−

(
∂S

∂qi

)
γ

]
dqi|γ . (28)



On the notion of Jacobi fields in constrained calculus of variations 101

2 The second variation
2.1 Adapted Lagrangians

(i) In order to create a tensorial setup for the study of the second variation of the
action functional along a normal extremaloid γ =

{(
γ(s), [as−1, as]

)}
, the gauge

structure of the theory has to be exploited, so as to make each point γ̂(s)(t),
t ∈ (as−1, as) into a critical point of the Lagrangian. Referring to [16] for the
details, we report here the main ideas involved in the procedure.

Given the extremaloid γ, let ρ = {ρ(s)} denote the unique 1-form along γ
satisfying the requests of Proposition 3. The correspondence t→

(
γ(t), ρ(t)

)
defines

then a continuous, piecewise differentiable curve ς : [t0, ti] → T ∗(Vn+1), consisting

of N contiguous arcs ς(s) : qi = qi(s)(t), p0 = p
(s)
0 (t), pi = p

(s)
i (t).

Discontinuities of the tangent vector ς̇(t), with jumps ς̇(s+1)(as)− ς̇(s)(as), may
occur at t = as, s = 1, . . . , N − 1.

By means of the symplectic structure of T ∗(Vn+1), to each pair ς̇(s)(as),
ς̇(s+1)(as) we associate the symplectic product A(s) :=

(
ς̇(s)(as), ς̇

(s+1)(as)
)
. We

call A(s) it the strength of the corner xs. A straightforward calculation provides
the evaluation

A(s) = γ̇µ(s+1)(as)

(
dp

(s)
µ

dt

)
as

− γ̇µ(s)(as)
(
dp

(s+1)
µ

dt

)
as

. (29)

On account of Eq. (28), it is easily seen that the representation (29) is in-
variant under arbitrary gauge transformations of the form (22). For a normal
extremaloid, the strengths A(1), . . . , A(N−1) express therefore a set of intrinsic at-
tributes, uniquely determined by the action functional. When at least one strength
A(s) is nonzero, no differentiable gauge transformation can therefore exist, yielding
a Lagrangian L ′ = L − Ṡ critical along the whole of γ: one can, of course, resort
to N distinct transformations

L (t, qi, zA)→ L ′(s)(t, q
i, zA) := L (t, qi, zA)− Ṡ(s) , (30)

each one yielding a Lagrangian L ′(s) critical along the arc γ̂(s).

A “smart” choice of the transformations (30) relies on the following result,
established in [16] and reported here without proof

Theorem 1. There exists (at least) one family of differentiable functions S(s) ∈
F (Us), s = 1, . . . , N such that:

(i) the relation

dS(s)
|γ(s) = ρ(s) (31)

holds along each arc γ(s);
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(ii) at each corner xs, the difference S(s) := S(s+1) − S(s) ∈ F (Us) ∩F (Us+1)
satisfies the conditions

S(s)(xs) =

(
∂S(s)

∂qµ

)
xs

= 0 , µ = 0, . . . , n , (32a)(
∂2S(s)

∂qµ∂qν

)
xs

= −A(s)δ
0
µδ

0
ν . (32b)

Any family {S(s)} of functions satisfying Eqs. (31), (32a), (32b) is said to be
adapted to the curve γ. The same terminology applies to the local Lagrangians
L ′(s) ∈ F (Us) obtained from the original one through the local gauge transforma-

tions L ′(s) = L − Ṡ(s). In view of Eqs. (4a), (25), (31), each adapted Lagrangian
satisfies the relations(

L ′(s)
)
γ̂(s) =

(
L − Ṡ(s)

)
γ̂(s) =

(
L
)
γ̂(s) −

〈
ρ, γ̇
〉

= 0 , (33a)(
dL ′(s)

)
γ̂(s) =

(
dL

)
γ̂(s) −

d

dt

(
dS(s)

)
γ(s) =

(
dL

)
γ̂(s) −

dρ(s)

dt
= 0 , (33b)

ensuring the tensorial behavior of the Hessian of L ′(s) at each point γ̂(s)(t).

Every family L ′ := {L ′(s), s = 1, . . . , N} of adapted Lagrangians determines
therefore a (generally discontinuous) symmetric covariant tensor field along γ̂,
henceforth denoted by

(
d2L ′

)
γ̂

and called the Hessian of L ′.

In particular, if X̂ = Xi
(
∂
∂qi

)
γ̂

+XA
(

∂
∂zA

)
γ̂
, Ŷ = Y i

(
∂
∂qi

)
γ̂

+Y A
(

∂
∂zA

)
γ̂

is any
pair of vectors in A(γ̂), we write

〈(
d2L ′

)
γ̂
, X̂ ⊗ Ŷ

〉
:=

(
∂2L ′

∂qi∂qj

)
γ̂(t)

XiY j+

+

(
∂2L ′

∂qi∂zA

)
γ̂(t)

(
XiY A + Y iXA

)
+

(
∂2L ′

∂zA∂zB

)
γ̂(t)

XAY B , (34)

with the understanding that, along any arc γ̂(s), the symbol L ′ is meant as a
shorthand for L ′(s).

Following the standard usage, the matrix
(

∂2L ′

∂zA∂zB

)
γ̂

is denoted by GAB . As

pointed out in [15], if γ is a locally normal extremaloid lifting to a (generally
discontinuous) section γ̃ : [t0, t1]→ C(A), we have the identification

GAB(t) =

(
∂2H

∂zA∂zB

)
γ̃(t)

,

H denoting the Pontryagin Hamiltonian (23). The matrix GAB is therefore an
intrinsic object, independent of the adaptation process. A normal extremaloid is
called regular if and only if GAB is everywhere non singular.
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Another important consequence of Theorem 1 is the fact that, on account of
Eqs. (32a), at each corner xs the Hessian

(
∂2S(s)

∂qµ∂qν

)
xs

is a tensor. We denote it by[
d2S

]
xs

. In coordinates, Eq. (32b) provides the representation

[
d2S

]
xs

= −A(s)dt⊗ dt . (35)

(iii) Under the regularity assumption detG
(s)
AB 6= 0, the Hessian

(
d2L ′(s)

)
γ̂

deter-

mines an infinitesimal control along each arc γ(s), uniquely defined by the condition〈(
d2L ′(s)

)
γ̂(s) , h

(s)(X)⊗ Y
〉

= 0 ∀X ∈ V (γ(s)), Y ∈ V (γ̂(s)) . (36a)

In view of Eqs. (17b), (34), the requirement (36a) is locally expressed by the
relations〈(

d2L ′(s)
)
γ̂(s) , ∂̃i ⊗

(
∂

∂zA

)
γ̂(s)

〉
=

(
∂2L ′(s)
∂qi∂zA

)
γ̂(s)

+G
(s)
AB h

(s)
i
B = 0 . (36b)

Under the assumption detG
(s)
AB 6= 0, these may be solved for the unknowns

h
(s)
i
B , yielding the expressions

h
(s)
i
A = −GAB(s)

(
∂2L ′(s)
∂qi∂zB

)
γ̂(s)

,

whence also

∂̃i := h(s)
(
∂

∂qi

)
γ(s)

=

(
∂

∂qi

)
γ̂(s)

−GAB(s)

(
∂2L ′(s)
∂qi∂zB

)
γ̂(s)

(
∂

∂zA

)
γ̂(s)

, (37)

with G
(s)
ABG

BC
(s) = δCA .

The absolute time derivative along γ(s) induced by h(s) is denoted by
(
D
Dt

)
γ(s) .

On account of Eq. (37), the corresponding temporal connection coefficients read

τ
(s)
i

j = −
(
∂̃iψ

j
)
γ̂(s)

= −
(
∂ψj

∂qi

)
γ̂(s)

+GAB(s)

(
∂ψj

∂zA

)
γ̂(s)

(
∂2L ′(s)
∂qi∂zB

)
γ̂(s)

. (38)

2.2 The second variation of the action functional

Let γ be a locally normal extremaloid, γξ =
{(
γ
(s)
ξ , [as−1(ξ), as(ξ)]

)}
a deformation

of γ with fixed endpoints, andX the resulting infinitesimal deformation, with jumps
[Xi]xs related to the scalars αs = das

dξ

∣∣
ξ=0

by Eq. (12).
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Given a family of functions S(s) adapted to γ, for any s = 1, . . . , N − 1 we
denote by S(s)(cs(ξ)) the restriction of the difference S(s) := S(s+1) − S(s) to the
orbit of the corner xs. On account of Eqs. (33) we have then the equality∫

γ̂ξ

L dt−
∫
γ̂

L dt =

N∑
s=1

{∫
γ̂
(s)
ξ

(
L ′(s) + Ṡ(s)

)
dt−

∫
γ̂(s)

(
Ṡ(s)

)
dt

}
=

=

N∑
s=1

∫
γ̂
(s)
ξ

L ′(s) dt−
N−1∑
s=1

(
S(s+1) − S(s)

)
cs(ξ)

=

=

N∑
s=1

∫ as(ξ)

as−1(ξ)

L ′(s)
(
γ̂
(s)
ξ (t)

)
dt−

N−1∑
s=1

S(s)(cs(ξ)) . (39)

Studying the second variation of the action functional is therefore equivalent to
analysing the behaviour of the second derivative of the right-hand term of Eq. (39)
in a neighborhood of ξ = 0. To this end, we restore the notation X̂ for the
lift of the field X and W(s) for the tangent vector to the orbit cs(ξ) at ξ = 0.
A straightforward calculation then yields the evaluation

d2

dξ2

∫ as(ξ)

as−1(ξ)

L ′(s)
(
γ̂
(s)
ξ (t)

)
dt

∣∣∣∣
ξ=0

=

∫ as

as−1

[
d2

dξ2
L ′(s)

(
γ̂
(s)
ξ (t)

)]
ξ=0

dt

=

∫ as

as−1

〈(
d2L ′(s)

)
γ̂(s) , X̂(s) ⊗ X̂(s)

〉
dt .

In a similar way, by the very definition of the Hessian, Eqs. (32b), (33a), (33b),
(35) and the definition of S(s)(cs(ξ)) entail the relation

d2S(s)(cs(ξ))

dξ2

∣∣∣∣
ξ=0

=
〈[
d2S

]
xs
,W(s) ⊗W(s)

〉
= −A(s)α

2
s .

Summing up, we reach the final, plainly covariant expression

d2I[γξ]

dξ2

∣∣∣∣
ξ=0

=

N∑
s=1

∫ as

as−1

〈(
d2L ′(s)

)
γ̂(s) , X̂(s) ⊗ X̂(s)

〉
dt+

N−1∑
s=1

A(s)α
2
s . (40)

In particular, whenever γ(s) is regular, introducing the horizontal basis (37)
associated with the Hessian

(
d2L ′(s)

)
γ̂(s) and expressing X̂(s) in components as

X̂(s) = Xi
(s)∂̃i + UA(s)

(
∂
∂zA

)
γ̂(s) , Eq. (36b) provides the identification〈(

d2L ′(s)
)
γ̂(s) , X̂(s) ⊗ X̂(s)

〉
= N

(s)
kr X

k
(s)X

r
(s) +G

(s)
ABU

A
(s)U

B
(s) , (41)

with

N
(s)
ij :=

〈(
d2L ′(s)

)
γ̂(s) , ∂̃i ⊗ ∂̃j

〉
=

[
∂2L ′(s)
∂qi∂qj

−GAB(s)

∂2L ′(s)
∂qi∂zA

∂2L ′(s)
∂qj∂zB

]
γ̂(s)

. (42)
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3 Jacobi fields
3.1 Broken Jacobi fields
(i) Given a regular, locally normal extremaloid γ of the action functional I[γ],
we define a broken Jacobi field X along γ as the infinitesimal deformation tan-
gent to the orbits of a finite deformation γξ consisting of a 1-parameter family of
extremaloids of I[γ]. No condition is placed on the behavior of X at the end-
points of γ. For each ξ, we denote by ρξ = p0(ξ, t)dt|γξ + pi(ξ, t)dq

i
|γξ the (unique)

continuous, piecewise differentiable 1-form along γξ satisfying the requirements of
Proposition 3.

In order to set up a tensorial algorithm, we replace the original Lagrangian L
by an adapted family L ′ := {L ′(s), s = 1, . . . , N} of gauge equivalent ones, and

denote by ρ′ξ = p′0(ξ, t)dt|γξ + p′i(ξ, t)dq
i
|γξ the (generally discontinuous) 1-form

along γξ defined by the condition

ρ′ξ(t) := ρξ(t)− dS
(s)
|γ(s)
ξ (t)

∀t ∈ [as−1(ξ), as(ξ)] .

Whenever necessary, we denote by ρ′(s)ξ = p
′(s)
0 dt|γ(s)

ξ

+p
′(s)
i dqi|γ(s)

ξ

the restriction

of the 1-form ρ′ξ to the arc γ(s)ξ . In this way, on account of Eq. (4a), Eqs. (25) read〈
ρ
′(s)
ξ , γ̇ξ

〉
= L ′(s)|γ̂ξ ,

d

dt
ρ
′(s)
ξ =

(
dL ′(s)

)
γ̂ξ
, s = 1, . . . , N ,

while the continuity of ρξ along γξ is expressed by the conditions(
ρ
′(s+1)
ξ − ρ′(s)ξ

)
as(ξ)

+ dS(s)
|cs(ξ) = 0 s = 1, . . . , N − 1 .

In the overall, adopting the representation qi = ϕi(ξ, t), zA = ζA(ξ, t) for the
lift γ̂ξ, we have thus a family of 2n+ r + 1 functions satisfying the inner relation

p′0(ξ, t) = L ′|γ̂ξ − p
′
k(ξ, t)ψk|γ̂ξ , (43)

the Pontryagin equations

∂ϕi

∂t
= ψi(t, ϕi, ζA) , (44a)

∂p′i
∂t

+

(
∂ψk

∂qi

)
γ̂ξ

p′k =

(
∂L ′

∂qi

)
γ̂ξ

, (44b)

p′i

(
∂ψi

∂zA

)
γ̂ξ

=

(
∂L ′

∂zA

)
γ̂ξ

, (44c)

the Jacobi equation
∂p′0
∂t

+

(
∂ψk

∂t

)
γ̂ξ

p′k =

(
∂L ′

∂t

)
γ̂ξ

(45)

and the matching conditions(
ϕi(s+1) − ϕ

i
(s)

)
(ξ,as(ξ))

= 0 ,
(
p′(s+1)
µ − p′(s)µ

)
(ξ,as(ξ))

= −
(
∂S(s)

∂qµ

)
cs(ξ)

. (46)
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Due to the normality of γ, Eqs. (44b), (44c) entail the relation p′i(0, t) = 0. On
account of Eqs. (33a), (43), the latter implies also p′0(0, t) = 0, thus ensuring the

tensorial behaviour of the derivatives
∂p′µ
∂ξ

∣∣
ξ=0

.

(ii) After these preliminaries, the analysis of the Jacobi fields splits into two parts.
To start with, we deal with the differentiable aspects of the problem, along the same
lines outlined in [15]. To this end we focus on a single arc γ(s), derive Eqs. (43),
(44), (45) with respect to ξ and evaluate everything at ξ = 0.

In this way, setting Xi = ∂ϕi

∂ξ

∣∣
ξ=0

, XA = ∂ζA

∂ξ

∣∣
ξ=0

, λα =
∂p′α
∂ξ

∣∣
ξ=0

and recalling
Eqs. (33a), (33b), we obtain the system

λ0 + λiψ
i
|γ̂ = 0 , (47)

dXi

dt
=

(
∂ψi

∂qk

)
γ̂

Xk +

(
∂ψi

∂zA

)
γ̂

XA , (48a)

dλi
dt

+ λk

(
∂ψk

∂qi

)
γ̂

=

(
∂2L ′

∂qi∂qk

)
γ̂

Xk +

(
∂2L ′

∂qi∂zA

)
γ̂

XA , (48b)

λk

(
∂ψk

∂zA

)
γ̂

=

(
∂2L ′

∂zA∂qk

)
γ̂

Xk +GABX
B , (48c)

dλ0
dt

+ λk

(
∂ψk

∂t

)
γ̂

=

(
∂2L ′

∂t∂qk

)
γ̂

Xk +

(
∂2L ′

∂t∂zA

)
γ̂

XA , (49)

with GAB =
(

∂2L ′

∂zA∂zB

)
γ̂
.

As already pointed out, the functions λµ(t) form the components of a 1-form λ

along γ. The functions λi(t) are therefore the components of a virtual 1-form λ̂
along γ, identical to the image of λ under the quotient map associated with the
equivalence relation (6).

Because of the regularity assumption detGAB 6= 0, Eqs. (48) may be cast
into Hamiltonian form. This is easily accomplished by means of the infinitesimal
control h(s) : V (γ(s))→ A(γ̂(s)) induced by the Lagrangian L ′(s) along the arc γ̂(s),
as described at the end of Sec. 2.1.

To this end, we split each field X̂(s) = Xi
(
∂
∂qi

)
γ̂(s) +XA

(
∂
∂zA

)
γ̂(s) into the sum

Xi∂̃i + UA
(

∂
∂zA

)
γ̂(s) of a horizontal and a vertical part, with

UA(s) = XA
(s) −X

i
(s)h

(s)
i
A = XA

(s) +GAB(s)

(
∂2L ′(s)
∂qi∂zB

)
γ̂(s)

Xi
(s) . (50)
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Eq. (48c) takes then the form

λ
(s)
k

(
∂ψk

∂zA

)
γ̂(s)

= G
(s)
ABU

B
(s) =⇒ UA(s) = GAB(s) λ

(s)
k

(
∂ψk

∂zB

)
γ̂(s)

, (51)

showing that each field X̂ is fully determined by the knowledge of Xi
(s), λ

(s)
i (t).

Setting

M ij
(s) = GAB(s)

(
∂ψi

∂zA

)
γ̂(s)

(
∂ψj

∂zB

)
γ̂(s)

(52)

and recalling the expression for the absolute time derivative induced by the control
h(s), from Eqs. (42), (48a), (48b), (51) we derive the following system of differential

equations for the unknowns Xi
(s)(t), λ

(s)
i (t):(

DXi
(s)

Dt

)
γ(s)

= GAB(s)

(
∂ψi

∂zA

)
γ̂(s)

(
∂ψj

∂zB

)
γ̂(s)

λ
(s)
j = M ij

(s)λ
(s)
j , (53a)(

Dλ
(s)
i

Dt

)
γ(s)

=

[(
∂2L ′(s)
∂qi∂qj

)
γ̂(s)

−GAB(s)

(
∂2L ′(s)
∂qi∂zA

)
γ̂(s)

(
∂2L ′(s)
∂qj∂zB

)
γ̂(s)

]
Xj

(s)

= N
(s)
ij X

j
(s) . (53b)

The remaining equations fit naturally into the scheme: Eq. (47) determines λ0
in terms of λi, while Eq. (49) follows identically from Eqs. (47), (48) and from the
vanishing of dL ′(s) along γ̂.

For each s = 1, . . . , N , the whole information is therefore carried by a vec-
tor field X(s) = Xi

(s)

(
∂
∂qi

)
γ(s) and a virtual 1-form λ̂(s) = λ

(s)
i δqi|γ(s) satisfying

Eqs. (53). We call them a Jacobi pair along γ(s).

Straightforward consequences of Eqs. (51), (53) are the assertions:

• the simultaneous vanishing of X(s) and λ̂(s) at a point t∗ ∈ [as−1, as] entails

the vanishing of X(s)(t) and λ̂(s)(t) all over γ(s);

• the vanishing of X̂(s) along the whole of γ̂(s) yields the relations(
Dλ

(s)
i

Dt

)
γ(s)

= 0 , λ
(s)
i (t)

∂ψi

∂zA

∣∣∣∣
γ̂(s)

= 0 ,

which, together with the local normality of γ(s), ensure the vanishing of λ(s)

all over γ(s).

(iii) To complete the picture, we have still to consider the implications of the
matching conditions (46). From these, deriving with respect to ξ, evaluating ev-

erything at ξ = 0 and taking Eqs. (13), (32b) as well as the identities p′(s)µ (0, t) =

p
′(s+1)
µ (0, t) = 0 into account, we get the jump relations[

Xi
]
xs

= −αs
[
ψi
]
xs
, (54)
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identical to Eq. (12), and

[
λµ
]
xs

+

(
�
���

��∂p
′(s+1)
µ

∂t

∣∣∣∣
ξ=0

−
�
�
�
��∂p

′(s)
µ

∂t

∣∣∣∣
ξ=0

)
αs = −W (J)

s

(
∂S(s)

∂qµ

)
= A(s)αsδ

0
µ .

In view of Eq. (47), the latter breaks up into the pair of conditions[
λi
]
xs

= 0 , λi(as)
[
ψi
]
xs

= −A(s)αs (55)

which, in turn, can be merged into the single expression[
λi(dq

i − ψidt)
]
xs

= A(s)αs dt|xs .

Whenever A(s) 6= 0, Eqs. (54), (55) can be uniquely solved for the unknowns

[Xi]xs , [λi]xs , αs, thereby determining the jumps of the fields X, λ̂ as well as the
tangent vector to the orbit of the corner xs.

The circumstance A(s) = 0 constitutes, on the contrary, a criticality of the
algorithm: in this case, the second equation (55) does no longer determine the
value of αs, but becomes a constraint for the components λi(as). The fulfilment
of the latter at the first corner xs in which the condition A(s) = 0 occurs entails a
restriction on the values Xi(t0), λi(t0): there exist, therefore, Jacobi fields in the
interval [t0, as] which cannot be prolonged beyond xs.

On the other hand, when the initial values are consistent with the constraint,
the coefficient αs may be arbitrarily chosen, thus giving rise to infinite possible
prolongations of the fields from γ(s) to γ(s+1). For example, nothing can prevent
a Jacobi pair null within the interval [t0, as] from “waking up” at the corner xs,

jumping to λ(s+1)
i (as) = 0, Xi

(s+1)(as) = −αs
[
ψi
]
xs

, αs being any real number.

In any case, independently of the values of A(s), any pair of fields (X(t), λ̂(t))
satisfying Eqs. (53) and the jump conditions (54), (55) are said to form a broken
Jacobi pair along γ.

3.2 The accessory variational problem
A further insight into the content of the Jacobi equations is gained regarding the
second variation (40) as an action functional over the space of admissible infinites-
imal deformations. This gives rise to a new variational problem, henceforth called
the accessory problem, whose solutions are precisely the Jacobi fields along γ̂.
This statement, well known in the differentiable context (see e.g. [15] and refer-
ences therein), will now be extended to an arbitrary, locally normal extremaloid
γ =

{(
γ(s), [as−1, as]

)}
.

To this end, resuming the notation of Section 1, we consider the vector bundles
V (γ) → R, with coordinates t, ui, and A(γ̂) → V (γ), with coordinates t, ui, vA.
To these we add the dual bundle V ∗(γ), referred to dual coordinates t, πi, the
jet-bundle j1(V (γ)) → V (γ), referred to jet coordinates t, ui, u̇i and the vertical
subbundle V (γ̂) ⊂ A(γ̂), meant as the kernel of the projection A(γ̂) → V (γ), and
referred to coordinates t, vA.
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We adopt V (γ) as our “accessory” event space, and regard A(γ̂) as a piecewise
continuous linear subbundle of j1(V (γ)), consisting of N disjoint open subsets
Σs := A(γ̂(s)), described in coordinates as

u̇i =

(
∂ψi

∂qk

)
γ̂(s)

uk +

(
∂ψi

∂zA

)
γ̂(s)

vA := ψ̃i(s)(t, u
i, vA) , as−1 < t < as . (56a)

For simplicity, we summarize all previous expressions into a single symbolic equa-
tion

u̇i = ψ̃i(t, ui, vA) . (56b)

Notice that, as it stands, Eq. (56b) is not defined for t = a1, . . . , aN−1. For
each such value of t, we assign instead the vector

[ψ]xs := γ̇(s+1)(as)− γ̇(s)(as) = [ψi]xs
(
∂
∂qi

)
xs
∈ V (Vn+1) ,

expressing the jump of the tangent vector to γ at the corner xs = γ(as).
A piecewise continuous section X : [t0, t1] → V (γ) is called admissible if and

only if

• the restriction of X to each open interval (as−1, as), s = 1, . . . , N may be
prolonged to a differentiable section X(s) : (bs−1, bs) → V (γ), defined on an
open interval (bs−1, bs) ⊃ [as−1, as];

• each section X(s) : (bs−1, bs) → V (γ) admits a lift X̂(s) : (bs−1, bs) → A(γ̂)

satisfying the condition i · X̂(s) = j1(X(s));

• at each t = a1, . . . , aN−1, the jump [X]as := X(s+1)(as)−X(s)(as) is propor-
tional to the vector [ψ]xs , i.e. it admits a representation of the form

[X]as = −αs[ψ]xs , αs ∈ R . (57)

With the stated conventions, the admissible sections X : [t0, t1] → V (γ) are
readily seen to coincide with the admissible deformations of the extremaloid γ.

In order to set up a dynamical scheme, we now introduce a “Lagrangian” on
A(γ̂), meant as a family of differentiable functions L̂(s), each one defined on the

open domain Σs : as−1 < t < as, and merged into a single function L̂(t, ui, vA).
Once again, the function L̂ is undefined for t = a1, . . . , aN−1. For each such value
of t, we assign instead a function fs(αs), depending on the entity of the jump [X]as .

By means of L̂ and fs(as) we eventually construct the action functional

J [X] =

N∑
s=1

∫ as

as−1

L̂(s)

(
t,Xi

(s), X
A
(s)

)
dt+

N−1∑
s=1

fs(αs) , (58)

assigning to each admissible section X : [t0, t1]→ V (γ) an overall “cost”, embody-
ing possible contributions from the arcs of X and from the jumps.

To study the extremals of the functional (58), given an admissible section
X : [t0, t1] → V (γ), we consider an arbitrary infinitesimal deformation Xξ with
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fixed end points, and lift both X and Xξ to sections X̂, X̂ξ of A(γ̂). In coordi-
nates, on each open interval (as−1, as) we have the representations

X̂ : ui = Xi
(s)(t), v

A = XA
(s)(t) , X̂ξ : ui = Xi

(s)(t, ξ), v
A = XA

(s)(t, ξ)

with the functions Xi
(s), X

A
(s) satisfying the admissibility requirement

∂Xi
(s)

∂t
= ψ̃i(s)

(
t,Xi

(s)(t, ξ), X
A
(s)(t, ξ)

)
(59)

as well as jump conditions of the form [Xξ]as = −αs(ξ)[ψ]xs .

Setting U i(s) :=
(
∂Xi(s)
∂ξ

)
ξ=0

, V A(s) :=
(
∂XA(s)
∂ξ

)
ξ=0

, βs :=
(
dαs
dξ

)
ξ=0

and taking the

vectorial character of the fibres of V (γ) and the linearity of Eqs. (59) into account,
it is now an easy matter to verify that the infinitesimal deformation tangent to Xξ

is itself a section U : [t0, t1] → V (γ), vanishing at the endpoints and consisting of
N arcs U(s) satisfying the admissibility condition

dU i(s)

dt
=
∂ψ̃i(s)

∂uk
Uk(s) +

∂ψ̃i(s)

∂vA
V A(s) = ψ̃i(s)

(
t, U i(s), V

A
(s)

)
(60)

as well as the jump relations [U ]as = −βs[ψ]xs .

From this, arguing as in Section 1, we conclude that every infinitesimal defor-
mation of the section X is uniquely determined by the knowledge of the functions
V A(s)(t), s = 1, . . . , N and of the scalars βs, s = 1, . . . , N − 1.

After these preliminaries, given the section X and the deformation Xξ, let us
now consider the first variation of the action functional (58)

dJ
dξ

∣∣∣∣
ξ=0

=

N∑
s=1

∫ as

as−1

(
∂L̂(s)

∂ui
U i(s) +

∂L̂(s)

∂vA
V A(s)

)
dt+

N−1∑
s=1

f ′s(αs)βs . (61)

To evaluate the latter, we introduce an auxiliary virtual 1-form λ, namely a
continuous, piecewise differentiable section of the dual bundle V ∗(γ), described in

coordinates on each interval as−1 ≤ t ≤ as as πi = λ
(s)
i (t), and related to X by the

evolution equation

dλ
(s)
i

dt
+ λ

(s)
k

∂ψ̃k(s)

∂ui
=
∂L̂(s)

∂ui
(
t,Xi

(s), X
A
(s)

)
, s = 1, . . . , N, (62)

completed by the matching conditions λ(s+1)(as) = λ(s)(as) := λ(as).

In view of Eq. (62), taking Eqs. (57), (60) and the continuity of λ into account,
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the right-hand side of Eq. (61) may be written in the form

dJ
dξ

∣∣∣∣
ξ=0

=

N∑
s=1

∫ as

as−1

[
d

dt
λ
(s)
i U i(s) −

(
λ
(s)
i

∂ψ̃i(s)

∂vA
−
∂L̂(s)

∂vA

)
V A(s)

]
dt

+

N−1∑
s=1

f ′s(αs)βs

= −
N∑
s=1

∫ as

as−1

(
λ
(s)
i

∂ψ̃i(s)

∂vA
−
∂L̂(s)

∂vA

)
V A(s)dt

+

N−1∑
s=1

(
f ′s(αs) + λi(as)[ψ]xs

)
βs . (63)

Due to the independence of the quantities V A(s), βs, the vanishing of the first
variation (61) is equivalent to the validity of the equations

λ
(s)
i

∂ψ̃i(s)

∂vA
=
∂L̂(s)

∂vA
, s = 1, . . . , N , (64a)

f ′s(αs) = −λi(as)[ψ]xs , s = 1, . . . , N − 1 . (64b)

These, together with Eqs. (56a), (62), provide a set of 2n + r equations for the

unknowns Xi
(s), X

A
(s), λ

(s)
i , formally analogous to (a linearized counterpart of) the

Pontryagin equations (2), (21a), (21b), completed with the jump conditions (64b)
and with the continuity requirement [λ]as = 0.

Returning to the variational characterization of the broken Jacobi fields along
a locally normal extremaloid γ, we now observe that the expression (40) for the
second variation of the original action functional I[γ] is precisely of the form (58).
More specifically, if we consider the accessory functional

J [X] =
1

2

[ N∑
s=1

∫ as

as−1

〈(
d2L ′(s)

)
γ̂(s) , X̂(s) ⊗ X̂(s)

〉
dt+

N−1∑
s=1

A(s)α
2
s

]
, (65)

corresponding to the ansatz

L̂(s) =
1

2

[(
∂2L ′(s)
∂qi∂qj

)
γ̂(s)

uiuj + 2

(
∂2L ′(s)
∂qi∂zA

)
γ̂(s)

uivA +

(
∂2L ′(s)
∂zA∂zB

)
γ̂(s)

vAvB
]
,

fs(αs) :=
1

2
A(s)α

2
s .
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Eqs. (56a), (62), (64) yield the system

dXi
(s)

dt
=

(
∂ψi

∂qk

)
γ̂(s)

Xk
(s) +

(
∂ψi

∂zA

)
γ̂(s)

XA
(s) , (66a)

dλ
(s)
i

dt
+ λ

(s)
k

(
∂ψk

∂qi

)
γ̂(s)

=

(
∂2L ′(s)
∂qi∂qk

)
γ̂(s)

Xk
(s) +

(
∂2L ′(s)
∂qi∂zA

)
γ̂(s)

XA
(s) , (66b)

λ
(s)
i

(
∂ψi

∂zA

)
γ̂(s)

=

(
∂2L ′(s)
∂qi∂zA

)
γ̂(s)

Xi
(s) +

(
∂2L ′(s)
∂zA∂zB

)
γ̂(s)

XB
(s) , (66c)

A(s)αs = −λi(as)[ψi]xs . (66d)

Comparison with Eqs. (48a), (48b), (48c), (55) shows that the extremals of the
accessory variational problem based on the functional (65) are indeed the broken
Jacobi fields along γ.
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