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Variational principles and symmetries on fibered
multisymplectic manifolds

Jordi Gaset, Pedro D. Prieto-Martínez, Narciso Román-Roy

Abstract. The standard techniques of variational calculus are geometri-
cally stated in the ambient of fiber bundles endowed with a (pre)multi-
symplectic structure. Then, for the corresponding variational equations,
conserved quantities (or, what is equivalent, conservation laws), symme-
tries, Cartan (Noether) symmetries, gauge symmetries and different ver-
sions of Noether’s theorem are studied in this ambient. In this way, this
constitutes a general geometric framework for all these topics that includes,
as special cases, first and higher order field theories and (non-autonomous)
mechanics.

1 Introduction
As it is well known, the most of field equations of first and higher-order classical
field theories and mechanics are locally variational; that is, they can be obtained
starting from a variational principle. The phase spaces for all these theories have a
similar geometric structure: they are fiber bundles κ : M→ M over an orientable
manifold M (of dimension equal to 1 for mechanical systems, and greater than 1 for
field theories), which are endowed with a multisymplectic or a pre-multisymplectic
form (depending on the regularity of the theory).

The aim of this review work is to state a generic geometric framework which
allows us to include these variational principles for all these kinds of theories in
a single formulation (this is done in Section 2, after establishing some previous
geometric and mathematical background). The variational equations, which are
stated using multivector fields, include the Euler-Lagrange as well as the Hamilton
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equations. Then, we use this unified framework to study different kinds of symme-
tries for these equations, their conserved quantities (i.e., conservation laws), and
giving general versions of Noether’s theorem (in Section 3).

From this framework we can recover, as particular cases, the variational prin-
ciples and several topics on the theory of symmetries and conserved quantities for
classical field theories and (non-autonomous) mechanics of first and higher order,
both in the Lagrangian and Hamiltonian formulations. In particular, let π : E →M
be a fiber bundle. Then, IfM≡ Jkπ (the kth-order jet bundle of π), and Ω ≡ ΩL
(the Poincaré-Cartan form associated to a Lagrangian density L), we recover the
classical Hamilton variational Principle and results on symmetries, conservation
laws and Noether’s theorem for classical Lagrangian field theories of first order
(if k = 1) and higher-order (if k > 1) [1], [4], [7], [9], [12], [13], [14], [15], [16],
[18], [19], [20], [23], [25]. Taking the suitable multimomentum bundles as M,
and the associated Hamiltonian counterparts of ΩL, we recover the corresponding
Hamilton-Jacobi variational Principle and symmetries for the Hamiltonian formal-
ism of first and higher-order field theories [2], [7], [11], [8], [17]. Finally, if in the
above situations we takeM = R, we obtain the analogous results for the Lagrangian
and Hamiltonian formalisms of first and higher-order non-autonomous mechanics
[3], [6], [21], [22], [24].

All the manifolds are real, second countable and C∞. The maps and the struc-
tures are C∞. Sum over repeated indices is understood.

2 Variational principle for multisymplectic systems
2.1 Multivector fields
(See [10] for details). Let M be a n-dimensional differentiable manifold.

Definition 1. Sections of ΛmTM are called m-multivector fields in M; that is,
they are the contravariant skew-symmetric tensors of order m in M. The set of
m-multivector fields in M is denoted as Xm(M).

For every X ∈ Xm(M) and p ∈M, there exists a neighbourhood Up ⊂M and
X1, . . . , Xr ∈ X(Up) such that

X|Up =
∑

1≤i1<...<im≤r

f i1...imXi1 ∧ . . . ∧Xim ,

with f i1...im ∈ C∞(Up), m 6 r 6 dimM.
The classical operations with vector fields in differentiable manifolds can be

extended to multivector fields.

Definition 2. Let Ω ∈ Ωk(M) be a differentiable k-form inM and let X ∈ Xm(M);
the contraction between X and Ω is defined as

i(X)Ω |Up
:=

∑
1≤i1<...<im≤r

f i1...imi(X1 ∧ . . . ∧Xm)Ω

=
∑

1≤i1<...<im≤r

f i1...imi(X1) . . . i(Xm)Ω
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if k ≥ m, and equal to zero if k < m. For 1 ≤ j ≤ k − 1, the k-form Ω is
j-nondegenerate if, for every p ∈ E and X ∈ Xj(M), we have that

i(Xp)Ωp = 0⇔ Xp = 0 .

The Lie derivative with respect to X is defined as the graded bracket

[d, i(X)] = di(X)− (−1)mi(X)d := L(X)

and it is an operation of degree m− 1.
If Y ∈ Xi(M) and X ∈ Xj(M), another operation of degree i + j − 2 is

the Schouten-Nijenhuis bracket of X,Y, which is the bilinear assignment Y,X 7→
[Y,X], where [Y,X] is a (i+ j − 1)-multivector field obtained as the graded com-
mutator of L(Y) and L(X);that is,

L([Y,X]) := [L(Y),L(X)] = L(Y)L(X)− (−1)i+jL(X)L(Y) .

The following properties hold: for X, Y and Z, multivector fields of degrees
i, j, k, respectively, we have that:

1. [X,Y] = −(−1)(i+1)(j+1)[Y,X].

2. [X,Y ∧ Z] = [X,Y] ∧ Z + (−1)(i+1)jY ∧ [X,Z].

3. (−1)(i+1)(k+1)[X, [Y,Z]] + (−1)(j+1)(i+1)[Y, [Z,X]]
+(−1)(k+1)(j+1)[Z, [X,Y]] = 0.

4. For every X ∈ X(M), i([X,Y])Ω = L(X)i(Y)Ω− i(Y)L(X)Ω.

Definition 3. An m-multivector field X ∈ Xm(M) is said to be locally decom-
posable if, for every p ∈ M, there exists an open neighbourhood Up ⊂ M and
X1, . . . , Xm ∈ X(Up) such that X|Up

= X1 ∧ . . . ∧Xm.

An m-dimensional distribution D ⊂ TM is locally associated with a non-
vanishing m-multivector field X ∈ Xm(M) if there exists a connected open set
U ⊆ M such that X|U is a section of ΛmD|U . If X,X′ ∈ Xm(M) are non-
vanishing m-multivector fields locally associated with the same distribution D,
on the same set U , then there exists a non-vanishing function f ∈ C∞(U) such
that X′|U = fX|U . This defines an equivalence relation in the set of non-vanishing
m-multivector fields inM, whose equivalence classes are denoted by {X}U . There-
fore, there is a one-to-one correspondence between the set of m-dimensional ori-
entable distributions D in TM and the set of the equivalence classes {X}M of
non-vanishing, locally decomposable m-multivector fields in M. If X ∈ Xm(M)
is non-vanishing and locally decomposable, and U ⊆M, we denote by DU (X) (or
simply D(X), if U =M) the distribution associated with the class {X}U .

Definition 4. A non-vanishing, locally decomposable multivector field X ∈ Xm(M)
is integrable or involutive if its associated distribution DU (X) is integrable or in-
volutive.
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Obviously, if X ∈ Xm(M) is integrable or involutive, then so is every other in
its equivalence class {X}, and all of them have the same integral manifolds.

We are especially interested in the case where κ : M→M is a fiber bundle and
M is an m-dimensional orientable manifold with volume form η ∈ Ωm(M).

Definition 5. A multivector field X ∈ Xm(M) is κ-transverse if, for every β ∈
Ωm(M) with β(κ(y)) 6= 0, at every point y ∈ M, we have that (i(X)(κ∗β))y 6= 0.
If X ∈ Xm(M) is integrable, then it is κ-transverse if, and only if, its integral
manifolds are local sections of κ : M → M . In this case, if ψ : U ⊂ M → M is
a local section with ψ(x) = y and ψ(U) is the integral manifold of X at y, then
Ty(Imψ) = Dy(X) and ψ is said to be an integral section of X.

Furthermore, there exists a unique m-multivector field Yη : M → ΛmTM , such
that i(Yη)η = 1; then the canonical prolongation of a section ψ : U ⊂M →M to
ΛmTM is the section Λmψ : U ⊂ M → ΛmTM defined as Λmψ := ΛmTψ ◦Yη;
where ΛmTψ : ΛmTM → ΛmTM is the natural extension of ψ to the corresponding
multitangent bundles. Then, ψ is an integral section of X ∈ Xm(M) if, and only
if,

X ◦ ψ = Λmψ . (1)

2.2 (Pre)multisymplectic systems
Let κ : M → M be a fibred manifold which in what follows is assumed to be a
fibre bundle, where dim M = m ≥ 1 and dim M = n+m, and M is an orientable
manifold with volume form η ∈ Ωm(M). We denote ω = κ∗η. We write (U ;xµ, yj),
µ = 1, . . . ,m, j = 1, . . . , n, for local charts of coordinates in M adapted to the
fibred structure, and such that ω = dx1∧· · ·∧dxm ≡ dmx. We denote by XV (κ)(M)

the set of κ-vertical vector fields in M (which is locally generated by

{
∂

∂yj

}
).

Definition 6. A form Ω ∈ Ωm+1(M) (m ≥ 1) is a (pre)multisymplectic form if it
is closed and 1-nondegenerate, that is, if the map [Ω : TM→ ΛmT∗M, defined by
[Ω(x, v) = (x, i(v)Ωx), for every x ∈ M and v ∈ TxM, is injective. In this case,
the system described by the triad (F,Ω, ω) is called a multisymplectic system.
Otherwise, the form is said to be a premultisymplectic form, and the system is
premultisymplectic. Finally, a multisymplectic form is exact if there exist Θ ∈
Ωm(M) such that Ω = −dΘ.

From now on, we will assume this last condition (this does not represent a loss
of generality since, by Poincaré Lemma, every closed form is locally exact).

Furthermore, if m ≥ 2, we assume that the following condition holds:

i(Z1)i(Z2)i(Z3)Ω = 0 , for every Z1, Z2, Z3 ∈ XV(κ)(M) ,

which is justified because this is the situation in the Lagrangian and Hamiltonian
formalism of field theories. This condition means that, in a chart of adapted
coordinates, we have that

Ω|U = dFµj ∧ dyj ∧ dm−1xµ + dE ∧ dmx , (2)

where dm−1xµ = i

(
∂

∂xµ

)
dmx, and Fµj (xν , yi), E(xν , yi) ∈ C∞(U).
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2.3 Generalized variational principle and field equations
Let Γ(κ) be the set of sections of κ. Consider the following functional (where the
convergence of the integral is assumed)

F : Γ(κ)→ R

ψ 7→
∫
M

ψ∗Θ

Definition 7 (Generalized Variational Principle). The generalized variational
problem for the (pre)multisymplectic system (M,Ω, ω) is the search for the critical
(local) sections of the functional F with respect to the variations of ψ given by
ψs = σs ◦ ψ, where {σs} is a local one-parameter group of any compact-supported
κ-vertical vector field Z in M; that is,

d

ds

∣∣∣∣
s=0

∫
M

ψ∗sΘ = 0 .

Theorem 1. The following assertions on a section ψ ∈ Γ(κ) are equivalent:

1. ψ is a solution to the generalized variational problem.

2. ψ is a section solution to the equation

ψ∗i(Y )Ω = 0 , for every Y ∈ X(M) . (3)

3. ψ is a section solution to the equation

i(Λmψ)(Ω ◦ ψ) = 0 . (4)

4. ψ is an integral section of a m-multivector field contained in a class of κ-
-transverse and integrable (and hence locally decomposable) m-multivector
fields, {X} ⊂ Xm(M), satisfying the equation

i(X)Ω = 0 . (5)

Proof. (The proof follows the patterns in [8] and [14]).
(1 ⇐⇒ 2) Let Z ∈ XV (κ)(M) be a compact-supported vector field, and U ⊂

M an open set such that ∂U is a (m−1)-dimensional manifold and κ(supp(Z)) ⊂ U .
Then

d

ds

∣∣∣∣
s=0

∫
M

ψ∗sΘ =
d

ds

∣∣∣∣
s=0

∫
U

ψ∗sΘ =
d

ds

∣∣∣∣
s=0

∫
U

ψ∗σ∗sΘ

=

∫
U

ψ∗
(

lim
t→0

σ∗sΘ−Θ

t

)
=

∫
U

ψ∗L(Z)Θ

=

∫
U

ψ∗(i(Z)dΘ + di(Z)Θ) =

∫
U

ψ∗(−i(Z)Ω + di(Z)Θ)

= −
∫
U

ψ∗i(Z)Ω +

∫
U

d(ψ∗i(Z)Θ)

= −
∫
U

ψ∗i(Z)Ω +

∫
∂U

ψ∗i(Z)Θ = −
∫
U

ψ∗i(Z)Ω ,
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as a consequence of Stoke’s theorem and the assumptions made on the supports of
the vertical vector fields. Thus, we conclude

d

ds

∣∣∣∣
s=0

∫
M

ψ∗sΘ = 0 ⇐⇒ ψ∗i(Z)Ω = 0 ,

for every compact-supported Z ∈ XV (κ)(M). However, since the compact-supported
vector fields generate locally the C∞(M)-module of vector fields in M, it follows
that the last equality holds for every κ-vertical vector field Z in M. Now, recall
that for every point p ∈ Imψ, we have a canonical splitting of the tangent space of
M at p in a κ-vertical subspace and a κ-horizontal subspace,

TpM = Vp(κ)⊕ Tp(Imψ) .

Then, if Y ∈ X(M) we have

Yp = (Yp − Tp(ψ ◦ κ)(Yp)) + Tp(ψ ◦ κ)(Yp) ≡ Y Vp + Y ψp ,

with Y Vp ∈ Vp(κ) and Y ψp ∈ Tp(Imψ). Therefore

ψ∗i(Y )Ω = ψ∗i(Y V )Ω + ψ∗i(Y ψ)Ω = ψ∗i(Y ψ)Ω ,

since ψ∗i(Y V )Ω = 0, by the conclusion in the above paragraph. Now, as Y ψp ∈
Tp(Imψ) for every p ∈ Imψ, then the vector field Y ψ is tangent to Imψ, and hence
there exists a vector field X ∈ X(M) such that X is ψ-related with Y ψ; that is,
ψ∗X = Y ψ

∣∣
Imψ

. Then ψ∗i(Y ψ)Ω = i(X)ψ∗Ω. However, as dim Imψ = dimM =

m and Ω is an (m + 1)-form, we obtain that ψ∗Ω = 0 and hence ψ∗i(Y ψ)Ω = 0.
Therefore, we conclude that the equation (3) holds.

Taking into account the reasoning of the first paragraph, the converse is obvious
since the equation (3) holds for every Y ∈ X(M) and, in particular, for every
Z ∈ XV (κ)(M).

(2⇐⇒ 3) In a chart of adapted coordinates (U ;xµ, yj), for every Y ∈ X(M)
and for every ψ ∈ Γ(κ) and x ∈M , we have that

Y = fµ
∂

∂xµ
+ gj

∂

∂yj
, ψ(x) = (xµ, ψj(x))

and

Λmψ =

m∧
µ=1

(
∂

∂xµ
+
∂ψj

∂xµ
∂

∂yj

)
.

Therefore, taking (2) into account, a simple calculation shows that equations (3)
and (4) lead to the same expressions:

0 =
∂Fµj
∂xµ

∂ψj

∂xν
+
∂Fµj
∂yi

(
∂ψi

∂xν
∂ψj

∂xµ
+
∂ψi

∂xµ
∂ψj

∂xν

)
,

0 =
∂Fµj
∂xµ

+
∂Fµi
∂yj

∂ψi

∂xµ
−
∂Fµj
∂yi

∂ψi

∂xµ
+
∂E

∂yj
.
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(3 ⇐⇒ 4) If ψ : U ⊂ M → M is a solution to (4) then, for every x ∈ U there
exists a neigbourhood Ux ⊂ U of x such that ψ(Ux) ⊂ ψ(U). As ψ|Ux

is an
injective immersion (since ψ is a section and hence its image is an embedded sub-
manifold), the map Λm(ψ|Ux) defines a locally decomposable m-multivector field
Xx in ψ(Ux) ⊂ M , which is tangent to ψ(Ux) and has ψ|Ux

as an integral section
in Ux. Thus, as a consequence of (1), if equation (4) holds for ψ|Ux

, then (5) holds
for Xx, in Ux.

Conversely, if ψ is an integral section of an m-multivector field X in U ⊂ M ,
then (1) holds, and if (5) holds for X, then (4) holds for ψ, in U . �

Remark 1. The equation (5), with the κ-transverse condition, can be written

i(X)Ω = 0; i(X)ω 6= 0 . (6)

Then, it is usual to fix the κ-transverse condition by taking a representative in the
class {X} such that

i(X)ω = 1 .

As it is usual, kerm Ω := {X ∈ Xm(M) | i(X)Ω = 0}. We denote by kermω Ω ⊂
Xm(M) the set of m-multivector fields satisfying equations (6), but not being lo-
cally decomposable necessarily. Then kermω(ld) Ω ⊂ Xm(M) and kermω(I) Ω ⊂ Xm(M)
denote the sets of m-multivector fields satisfying equations (6) which are locally
decomposable and integrable, respectively. Obviously we have that

kermω(I) Ω ⊂ kermω(ld) Ω ⊂ kermω Ω ⊂ kerm Ω . (7)

Note: In general, if (M,Ω, ω) is a premultisymplectic system, then κ-transverse
and integrable m-multivector fields X ∈ Xm(M) which are solutions to (6) could
not exist. In the best of cases they exist only in some submanifold jS : S ↪→M [5].
In this case, in the sets of (7) and in the following sections, we have to consider
only multivector fields and vector fields which are tangent to S.

3 Symmetries and conservation laws for multisymplectic systems
3.1 Conserved quantities and conservation laws
Next we recover the idea of conservation law or conserved quantity, and state
Noether’s theorem for (pre)multisymplectic systems. In this sense, a part of our
discussion is a generalization of the results obtained for non-autonomous mechan-
ical systems and field theories (see [6], [7], [11], [24], and references therein).

Definition 8. A conserved quantity of a (pre)multisymplectic system (M,Ω, ω) is
a form ξ ∈ Ωm−1(M) such that L(X)ξ = 0, for every X ∈ kermω Ω.

Observe that, in this case, L(X)ξ = (−1)m+1i(X) dξ.

Proposition 1. If ξ ∈ Ωm−1(M) is a first integral of a (pre)multisymplectic system
(M,Ω, ω), and X ∈ kermω(I) Ω, then ξ is closed on the integral submanifolds of X;
that is, if jS : S ↪→M is an integral submanifold of X, then dj∗Sξ = 0.
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Proof. Let X1, . . . , Xm ∈ X(M) be independent vector fields tangent to the (m-
-dimensional) integral submanifold S. Then X = fX1 ∧ . . . ∧ Xm, for some f ∈
C∞(M). Therefore, as i(X) dξ = 0, we have

j∗S [dξ(X1, . . . , Xm)] = j∗Si(X1 ∧ . . . ∧Xm)dξ = 0 .

�

Theorem 2. A form ξ ∈ Ωm−1(M) is a conserved quantity of a (pre)multisymplectic
system (M,Ω, ω) if, and only if, L(Z)ξ = 0, for every Z ∈ kerm Ω.

Proof. Let ξ be a conserved quantity. If X0 ∈ kermω Ω is a particular solution to
the equations (6) then

kermω Ω = {fX0 + kerm Ω ∩ kerm ω; f ∈ C∞(M)} .

Therefore, for every Z ∈ kerm Ω ∩ kerm ω, we have that Z = X1 − X2, with
X1,X2 ∈ kermω Ω such that i(X1)ω = i(X2)ω. Hence, if ξ is a conserved quantity,
we have that L(Z)ξ = 0. Furthermore, taking X0 ∈ kermω Ω with i(X0)ω = 1, for
every Z ∈ kerm Ω we can write Z = (Z− i(Z)ωX0) + i(Z)ωX0 and it follows that
Z− i(Z)ωX0 ∈ kerm Ω ∩ kerm ω; therefore L(Z− i(Z)ωX0)ξ = 0 and thus

L(Z)ξ = L(Z− i(Z)ωX0)ξ + L(i(Z)ωX0)ξ = (−1)m+1i(Z)ωi(X0)dξ = 0 ,

since di(X0)ξ = 0, because ξ ∈ Ωm−1(M).
The converse is immediate. �

Now, given ξ ∈ Ωm−1(M) and X ∈ Xm(M), for every integral submanifold
ψ : M → M of X, we can construct the form ψ∗ξ ∈ Ωm−1(M). Then, using the
volume form η ∈ Ωm(M), we can obtain a unique Xψ∗ξ ∈ X(M) such that

i(Xψ∗ξ)η = ψ∗ξ ,

(in the standard terminology, ψ∗ξ is the so-called form of flux associated with the
vector field Xψ∗ξ). Then:

Proposition 2. If divXψ∗ξ denotes the divergence of Xψ∗ξ, we have that

(divXψ∗ξ) η = dψ∗ξ .

Proof. In fact, dψ∗ξ = i(Xψ∗ξ)η = L(Xψ∗ξ)η = (divXψ∗ξ) η. �

As a consequence of Proposition 1, this result allows to associate a conservation
law in M to every conserved quantity in M. In fact:

Proposition 3. ξ ∈ Ωm−1(M) is a conserved quantity if, and only if, divXψ∗ξ = 0,
for every integral submanifold ψ : M →M of X. Therefore, by Stokes theorem, in
every bounded domain U ⊂M , we have∫

∂U

ψ∗ξ =

∫
U

(divXψ∗ξ) η =

∫
U

dψ∗ξ = 0 .

The form ψ∗ξ is called the current associated with the conserved quantity ξ.
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3.2 Symmetries
Definition 9. 1. A symmetry of a (pre)multisymplectic system (M,Ω, ω) is a

diffeomorphism Φ: M→M such that Φ∗(kerm Ω) ⊂ kerm Ω.

2. An infinitesimal symmetry of a (pre)multisymplectic system (M,Ω, ω) is a
vector field Y ∈ X(M) whose local flows are local symmetries; that is, if Ft
is a local flow of Y , then Ft∗(kerm Ω) ⊂ kerm Ω, in the corresponding open
sets.

Another characterization of infinitesimal symmetries is the following:

Theorem 3. Let (M,Ω, ω) be a (pre)multisymplectic system, Y ∈ X(M). Then
Y is an infinitesimal symmetry if, and only if,

[Y, kerm Ω] ⊂ kerm Ω .

Proof. As kerm Ω is locally finite-generated, we can take a local basis Z1, . . . ,Zr of
kerm Ω. Then, if [Y, kerm Ω] ⊂ kerm Ω, the assertion is equivalent to proving that,
if Ft is a local flow of Y , then [Y,Zi] = f ji Zj if, and only if, Ft∗Zi = gjiZj (for
every i = 1, . . . , r), where gji are functions defined on the corresponding open set,
also depending on t.

First, it is clear that, if Ft∗Zi = gjiZj , then [Y,Zi] = f ji Zj .
For the converse, suppose that [Y,Zi] = f ji Zj , and consider and extended local

basis to the whole Xm(M): {Z1, . . . ,Zr,Z
′
r+1, . . . ,Z

′
c}, where c is the dimension

of Xm(M). Remember that
d

dt

∣∣∣
t=s

Ft∗Zi = Fs∗[Y,Zi]. Hence, on the one hand we

obtain

Fs∗[Y,Zi] = Fs∗(f
j
i Zj) = (F−1

s )∗f ji Fs∗Zj

= (F−1
s )∗f ji (gkjZk) +

c∑
k=r+1

(F−1
s )∗f ji (gkjZ

′
k) ,

and on the other hand, we have that

d

dt

∣∣∣
t=s

Ft∗Zi =
d

dt

∣∣∣
t=s

gki Zk +

c∑
k=r+1

d

dt

∣∣∣
t=s

gki Z
′
k

=
dgki
dt

∣∣∣
t=s

Zk +

c∑
k=r+1

dgki
dt

∣∣∣
t=s

Z′k .

Therefore, comparing these expressions, we conclude that
dgki
dt

= (F−1
t )∗f ji g

k
j , for

k = 1, . . . , c. This is a system of ordinary linear differential equations for the
functions gki . With the initial condition gki (0) = δki for k ≤ r and gki (0) = 0 for
k > r, has a unique solution, defined for every t on the domain of Ft. Then, taking
this solution, we have proved the existence of functions gji such that Ft∗Zi = gjiZj ,
and the result holds. �
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Bearing in mind the properties of multivector fields we obtain the basic prop-
erties:

• If Y1, Y2 ∈ X(M) are infinitesimal symmetries, then so is [Y1, Y2].

• If Y ∈ X(M) is an infinitesimal symmetry and Ω is a premultisymplectic
form, for every Z ∈ ker Ω, then Y + Z is also an infinitesimal symmetry.

The classical interpretation that a symmetry of a system of differential equations
transforms solutions into solutions is recovered from the following result:

Theorem 4. Let Φ ∈ Diff(M) be a symmetry of a (pre)multisymplectic system.

1. If X ∈ kerm Ω is an integrable multivector field, then Φ transforms integral
submanifolds of X into integral submanifolds of Φ∗X.

2. In particular, if Φ ∈ Diff(M) restricts to a diffeormorphism ϕ : M → M
(that is, ϕ ◦ κ = κ ◦ Φ), then, for every X ∈ kermω(I) Ω, Φ transforms integral
submanifolds of X into integral submanifolds of Φ∗X, and hence Φ∗X ∈
kermω(I) Ω.

Proof. 1. Let X1, . . . , Xm ∈ X(M) be vector fields locally expanding the involu-
tive distribution associated with X. Then Φ∗X1, . . . ,Φ∗Xm generate another
distribution which is also involutive, and, hence, is associated with a class of
locally decomposable multivector fields whose representative is just Φ∗X, by
construction. The assertion about the integral submanifolds is then immedi-
ate.

2. As Φ ∈ Diff(M) restricts to a diffeomorphism ϕ in M such that ϕ◦κ = κ◦Φ
then, for every ψ : M →M, integral section of X, we can define ψM : M →M
as Φ ◦ ψ = ψM ◦ ϕ, which is also a section of κ because

κ ◦ ψM = κ ◦ Φ ◦ ψ ◦ (ϕ)−1 = ϕ ◦ κ ◦ ψ ◦ (ϕ)−1 = ϕ ◦ (ϕ)−1 = IdM ,

since κ ◦ ψ = IdM . Then, by construction, ImψM = Φ(Imψ) is an integral
submanifold of Φ∗X, and as is a section of κ, it is κ-transverse. Hence
Φ∗X (which belongs to kerm Ω, by Theorem 3) is integrable (then locally
decomposable), and as its integral submanifolds are sections of κ, then Φ∗X
is κ-transverse, and thus Φ∗X ∈ kermω(I) Ω. �

From this result we obtain as an immediate corollary the following:

Theorem 5. Let Y ∈ X(M) be an infinitesimal symmetry of a (pre)multisymplectic
system (M,Ω, ω), and Ft a local flow of Y .

1. If X ∈ kerm Ω is an integrable multivector field, then Ft transforms integral
submanifolds of X into integral submanifolds of Ft∗X.
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2. In particular, if Y ∈ X(M) is κ-projectable (this means that there exists
Z ∈ X(M) such that the local flows of Z and Y are κ-related), then, for
every X ∈ kermω(I) Ω, Ft transforms integral submanifolds of X into integral
submanifolds of Ft∗X, and hence Ft∗X ∈ kermω(I) Ω.

Symmetries allows us to obtain new conserved quantities from another one:

Proposition 4. 1. If Φ ∈ Diff(M) is a symmetry and ξ ∈ Ωm−1(M) is a con-
served quantity of a (pre)multisymplectic system (M,Ω, ω), then Φ∗ξ is also
a conserved quantity.

2. If Y ∈ X(M), is an infinitesimal symmetry and ξ ∈ Ωm−1(M) is a conserved
quantity of a (pre)multisymplectic system (M,Ω, ω), then L(Y )ξ is also a
conserved quantity.

Proof. For every X ∈ kerm Ω, we have that:

1. As Φ∗X ∈ kerm Ω, we obtain:

L(X)(Φ∗ξ) = Φ∗L(Φ∗X)ξ = 0 .

2. As [X, Y ] ∈ kerm Ω, as a consequence of Theorem 2 we get

L(X)L(Y )ξ = L([X, Y ])ξ + L(Y )L(X)ξ = L([X, Y ])ξ = 0 .
�

3.3 Cartan symmetries. Noether’s theorem
Now we introduce the concept that generalizes the notion of Cartan (Noether)
symmetry for non-autonomous mechanical systems [6], [24].

Definition 10. 1. A Cartan symmetry of a (pre)multisymplectic system (M,Ω, ω)
is a diffeomorphism Φ: M→M such that, Φ∗Ω = Ω.

2. An infinitesimal Cartan symmetry of a (pre)multisymplectic system (M,Ω, ω)
is a vector field Y ∈ X(M) satisfying that L(Y )Ω = 0.

Remarks:

• It is immediate to prove that, if Y1, Y2 ∈ X(M) are infinitesimal Cartan
symmetries, then so is [Y1, Y2].

• The condition L(Y )Ω = 0 is equivalent to demanding that i(Y )Ω is a closed
m-form inM. Therefore, for every p ∈M, there exists an open neighborhood
Up 3 p, and ξY ∈ Ωm−1(Up), such that i(Y )Ω = dξY (on Up). Thus, an
infinitesimal Cartan symmetry of a (pre)multisymplectic system is just a
locally Hamiltonian vector field for the multisymplectic form Ω, and ξY is
the corresponding local Hamiltonian form, which is unique, up to a closed
(m− 1)-form.
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Proposition 5. 1. Every Cartan symmetry of a (pre)multisymplectic system
(M,Ω, ω) is a symmetry.

2. Every infinitesimal Cartan symmetry of a (pre)multisymplectic system
(M,Ω, ω) is an infinitesimal symmetry.

Proof. For every X ∈ kerm Ω, we have that:

1. If Φ ∈ Diff(M) is a Cartan symmetry then

Φ∗i(Φ∗X)Ω = i(X)(Φ∗Ω) = i(X)Ω = 0 ⇐⇒ i(Φ∗X)Ω = 0

⇐⇒ Φ∗X ∈ kerm Ω .

2. If Y ∈ X(M) is an infinitesimal Cartan symmetry, then

i([Y,X])Ω = L(Y )i(X)Ω− i(X)L(Y )Ω = 0⇐⇒ [Y,X] ⊂ kerm Ω .

(Also, if Y ∈ X(M) is an infinitesimal Cartan symmetry, by definition, its
local flows are local Cartan symmetries, then the result is a consequence of
the above item). �

Then, the classical Noether’s theorem can be generalized as follows:

Theorem 6 (Noether). If Y ∈ X(M) is an infinitesimal Cartan symmetry of a
(pre)multisymplectic system (M,Ω, ω), with i(Y )Ω = dξY . Then, for every X ∈
kermω Ω (and hence for every X ∈ kermω(I) Ω), we have that

L(X)ξY = 0 ;

that is, any Hamiltonian (m−1)-form ξY associated with Y is a conserved quantity
of (M,Ω, ω). (It is usually called a Noether current, in this context).

Proof. If Y ∈ X(M) is a Cartan symmetry then

L(X)ξY = di(X)ξY − (−1)mi(X)dξY = −(−1)mi(X)i(Y )Ω = −i(Y )i(X)Ω = 0 .

�

To our knowledge, given a conserved quantity of a (pre)multisymplectic system,
there is no a straightforward way of associating to it an infinitesimal Cartan sym-
metry Y since, given a (m− 1)-form ξ, the existence of a solution to the equation
i(Y )Ω = dξ is not assured (even in the case Ω being 1-nondegenerate). Hence, in
general, the converse Noether theorem cannot be stated for (pre)multisymplectic
systems.

Finally, as a particular case, we have:

Proposition 6. Let Y ∈ X(M) be an infinitesimal Cartan symmetry of an exact
(pre)multisymplectic system (M,Ω, ω) (with Ω = −dΘ). Therefore:
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1. L(Y )Θ is a closed form, hence, in an open set U ⊂ M, there exist ζY ∈
Ωm−1(U) such that L(Y )Θ = dζY .

2. If i(Y )Ω = dξY , in an open set U ⊂M, then

L(Y )Θ = d(i(Y )Θ− ξY ) = dζY (in U) ,

and hence ξY = i(Y )Θ− ζY (up to a closed (m− 1)-form).

As a particular case, if L(Y )Θ = 0, we can take ξY = i(Y )Θ, and Y is said
to be an exact infinitesimal Cartan symmetry.

Proof. 1. The first item is immediate since dL(Y )Θ = L(Y )dΘ = 0.

2. For the second item we have

L(Y )Θ = di(Y )Θ + i(Y )dΘ = di(Y )Θ− i(Y )Ω = d(i(Y )Θ− ξY ) .

Hence we can write ξY = i(Y )Θ− ζY (up to a closed (m− 1)-form). �

In the case that ker Ω := {Y ∈ X(M) | i(Y )Ω = 0} 6= {0}, these vector fields
are Cartan symmetries. Then:

Definition 11. Let (M,Ω, ω) be a premultisymplectic system such that the equa-
tions (6) have solutions onM. Then Y ∈ X(M) is a gauge symmetry of (M,Ω, ω)
if Y ∈ ker Ω ∩ XV (κ)(M).

3.4 Higher-order Cartan symmetries.
Generalized Noether’s theorem

Noether’s theorem associates conserved quantites to Cartan symmetries. But there
are symmetries which are not of Cartan type. Different attempts have been made
to extend Noether’s theorem in order to obtain the corresponding conservation
laws for these kinds of symmetries. Next we present a generalization of Theorem 6,
which is based in the approach of [24] for mechanical systems.

Definition 12. An infinitesimal Cartan symmetry of order n of a (pre) multisym-
plectic system (M,Ω, ω) is a vector field Y ∈ X(M) satisfying that:

1. Y is a symmetry of the (pre)multisymplectic system (M,Ω, ω).

2. Ln(Y )Ω = 0, but Lk(Y )Ω 6= 0, for k < n.

Cartan symmetries of order n > 1 are not necessarily Hamiltonian vector fields
for the (pre)multisymplectic form Ω. Nevertheless we have that:

Proposition 7. If Y ∈ X(M) is an infinitesimal Cartan symmetry of order n of a
(pre)multisymplectic system (M,Ω, ω), then the form Ln−1(Y )i(Y )Ω ∈ Ωm(M) is
closed.
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Proof. In fact, from the definition 12 we obtain

0 = Ln(Y )Ω = Ln−1(Y )L(Y )Ω = Ln−1(Y ) di(Y )Ω = dLn−1(Y )i(Y )Ω .

�

This condition is equivalent to demanding that, for every p ∈M, there exists an
open neighborhood Up 3 p, and ξY ∈ Ωm−1(Up), such that Ln−1(Y )i(Y )Ω = dξY
(on Up). Then, theorem 6 can be generalized as follows:

Theorem 7. If Y ∈ X(M) is an infinitesimal Cartan symmetry of order n of a
(pre)multisymplectic system (M,Ω, ω), with Ln−1(Y )i(Y )Ω = dξY . Then, for
every X ∈ kermω Ω (and hence for every X ∈ kermω(I) Ω), we have that

L(X)ξY = 0

that is, the (m− 1)-form ξY associated with Y is a conserved quantity.

Proof. If Y ∈ X(M) is an infinitesimal Cartan symmetry of order n then it is a
symmetry, and then [Y,X] = Z ∈ ker Ω. Therefore

L(X)ξY = (−1)m+1i(X)dξY = (−1)m+1i(X)Ln−1(Y )i(Y )Ω

= (−1)m+1i(X)L(Y )Ln−2(Y )i(Y )Ω

= (−1)m+1(L(Y )i(X)Ln−2(Y )i(Y )Ω− i([Y,X])Ln−2(Y )i(Y )Ω)

= (−1)m+1((L(Y )i(X)− i(Z))Ln−2(Y )i(Y )Ω) ,

and repeating the reasoning n− 2 times we arrive at the result

L(X)ξY = (−1)m+1((L(Y )i(X)− i(Z))n−1i(Y )Ω) = 0 ,

since i(X)i(Y )Ω = 0 and i(Z)i(Y )Ω = 0. �

Proposition 8. Let Y ∈ X(M) be an infinitesimal Cartan symmetry of order n of
an exact (pre)multisymplectic system (M,Ω, ω). Therefore:

1. Ln(Y )Θ is a closed form, hence, in an open set U ⊂ M, there exist ζY ∈
Ωm−1(U) such that Ln(Y )Θ = dζY .

2. If Ln−1(Y )i(Y )Ω = dξY , in an open set U ⊂M, then

Ln(Y )Θ = d(Ln−1(Y )i(Y )Θ− ξY ) = dζY (in U) .

Proof. 1. The first item is immediate since dLn(Y )Θ = Ln(Y ) dΘ = 0.

2. For the second item we have

Ln(Y )Θ = Ln−1(Y )L(Y )Θ = Ln−1(Y )(di(Y )Θ + i(Y ) dΘ)

= dLn−1(Y )i(Y )Θ + Ln−1(Y )i(Y ) dΘ

= dLn−1(Y )i(Y )Θ− dξY = d(Ln−1(Y )i(Y )Θ− ξY ) .

Hence we can write ξY = Ln−1(Y )i(Y )Θ− ζY . �
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