N
N

N

HAL

open science

StateWebCharts: A Formal Description Technique
Dedicated to Navigation Modelling of Web Applications

Marco Winckler, Philippe Palanque

» To cite this version:

Marco Winckler, Philippe Palanque. StateWebCharts: A Formal Description Technique Dedicated
to Navigation Modelling of Web Applications. 10th International Workshop on Interactive Sys-
tems. Design, Specification, and Verification (DSV-IS 2003), Jun 2003, Funchal, Portugal. pp.61-76,
10.1007/978-3-540-39929-2_ 5 . hal-03664737

HAL Id: hal-03664737
https://hal.science/hal-03664737

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03664737
https://hal.archives-ouvertes.fr

StateWebCharts: A Formal Description Technique
Dedicated to Navigation Modelling of Web Applications

Marco Winckler & Philippe Palanque

LIIHS — IRIT, University of Toulouse 111
118, route de Narbonne
31062 Toulouse Cedex 4 France
{winckler, palanque}@irit.fr

Abstract. This paper presents StateWebCharts (SWC), a formal description
technique based on statecharts for describing navigation on web applications.
This notation extends the classical statecharts notation by adding more
necessary concepts such as an appropriate semantics for states and transitions in
a Web context, including notions like dialog initiative control and client and
server activities. As well as statecharts do, this formal description technique
features a graphical representation thus making it easier to use for web
designers and formal enough to allow to rigorously reason about properties of
navigation models. In order to show the applicability of the notation, we show,
in the paper, its use on two real-size web applications.

1. Introduction

"Web applications'" is a widely-used and fuzzy term for web sites including
informational-centric sites, e-commerce sites, portal sites, etc. Despite the apparent
facility to create web pages (HTML pages) the successful development of large web
applications is a complex activity that requires appropriate methods and tools [13].
This inherent complexity is not only due to the huge number of pages that must be
managed or the diversity of technologies employed (JavaScript, Java, Active-X, etc)
but also to dynamic aspects such as on-the-fly page generation. In addition, web
applications require regular maintenance in order to update pages content, to follow a
particular business workflow, to include new features for supporting new task and/or
users, and so on.

To deal with such complex development of web applications, modelling support is
essential to provide an abstract view of the application. Modelling can help designers
during design phases by defining formally the requirements, providing multi-level of
details as well as providing support for testing prior implementation. Support from
modelling can also be obtained in later phases via, for instance, support for
verification prior to implementation [1].

! Some authors [3, 6] call web applications only data intensive application which presents
dynamic content generation and the term websites is applied only for applications based on
static content. This distinction is not relevant in this paper and thus, these terms are used as
synonyms here.

Statecharts [8, 10] and statecharts-like notations have already been widely used for
modelling various aspects of web applications. For instance, they have been
previously used for navigation modelling of hypertext/hypermedia applications [14,
18, 20], web applications [12] and even WIMP interfaces [10]. This previous work
shows some limitations in the expressive power of statecharts for handling specific
and critical aspects of web applications' modelling. For instance, it is not possible,
using statecharts, to represent who (the user or the system) is at the source of an event
to be received by the application. Even previous works that focused on navigation
modelling for web applications, such as [14], do not clearly explain how statecharts
can be effectively used to model other web applications features such as dynamic
content generation.

For that reason, we have extended statecharts to the StateWebCharts notation
(SWCQ) that provides dedicated constructs for modelling specificities of states and
transitions in web applications. Our aim is to provide a visual notation easy-to-apply
for web designers and formal enough to be subject of automatic verification, thus
supporting designer’s activity throughout the design process. Most elements included
in SWC notation aim at providing explicit feedback about the interaction between
users and the system.

As for now, SWC is mainly used to describe the navigation between documents
rather than interaction between objects. We distinguish navigation (communication
links between information units) from interaction (e.g. manipulation of interface
widgets such as scrollbars, and windows interactors). SWC is powerful enough for
handling these two aspects, but such concerns are beyond the scope of this paper.

This paper aims at presenting SWC notation in detail and at showing how this
notation can be used for modelling navigation in Web applications. Next section
(section 2) presents a formal definition of statecharts. This formal definition is used as
a basis for the introduction of the extensions at the core of SWC (section 3). Section 4
presents an exhaustive list of the various key elements of web navigation and for each
of these elements how SWC can be used for modelling them. In section 5, this paper
brings a detailed discussion about the related work on navigation modelling including
statecharts-like notation as well as other approaches for navigation modelling.
Conclusion and future work are presented in section 6.

2. The Statecharts Notation

Statecharts [8, 9] is a visual formalism that extends state diagrams for modelling
complex/reactive systems. Statecharts can be defined as a set of the states, transitions,
events, conditions and variables and their inter-relations. There are numerous
extensions to Statecharts to support different modelling needs and with different
semantics [9]. Hereafter we introduce the basics of statecharts that are relevant for
this paper.

A formal definition of statecharts (also called state machine) is [8]:

S is defined as the set of states;

p : S — 25 is the map function that associates each state to its sub-states, where
p(s)=0 means s is a basic state with no children inside;

v : S —> {AND / XORY} is the function that defines whether s € S is a composed AND
/ XOR state or not

H is the set of history symbols

v : H — S is the function that match history symbols to states®

8 :'S — 25 is the default function that defines the initial states in S

@ is the set of final state symbols

V is the set of variables

C is the set of conditions

E is the set of events

A is the set of actions, where each action is a term of a language £, which defines the
allowed operations in a SWC machine

L =E x C x A is the set of labels on transitions

Tc25x L x25Y"Y® js the set of transitions represented by a source state (2%), a
label (L) and a target state (2° ")

States are graphically represented by rounded rectangles and transitions are
represented by unidirectional arrows going out from a source state to a target state
(see Figure 1). Transitions are usually represented by arrows that are labelled by the
expression event/condition:action (see figure 1a). Optionally, the label could be just a
generic identification (¢/, as in Figure 1b). Guard conditions and actions are optional.
If the guard condition is not given it is assumed to be true. When actions are not
given, control is given to the arrival state. Parameters can be passed-on from a state to
another. Only events are explicitly required on transitions.

$1 event/condition :action | S2 “ t1 “

a) b)

Figure 1. Graphical representation of states and transitions

By opposition with state diagrams that are “flat” and inherently sequential in
nature, statecharts propose three basic structuring mechanisms: hierarchy of states,
orthogonality and broadcasting communication. The first two ones, that are critical for
web applications navigation modelling, are presented more in detail hereafter.

2 The difference between History states types (shallow and deep history) and end-states is not
relevant for this paper.

2.1. Hierarchy

The hierarchy is represented by composition of nested states (XOR-states) thus
allowing an efficient use of transition arrows. XOR-states can have exclusively one
active sub-state at a time. Figures 2a, 2b and 2c are equivalent representations
e On Figure 2b, states A/ and A2 are nested into the XOR-state 4. All transitions
going out from a composite state are propagated to sub-states;
e Figure 2c hides details for the XOR-state 4. This is a useful abstraction
mechanism in statecharts.

A\ 4

ki
E

c)

Figure 2. Hierarchy of states in statecharts with XOR-states.

2.2. Orthogonality

Orthogonality is the decomposition of composite states into concurrent regions
representing independent modules in a system. Each concurrent region in an AND-
state is delimited by a dashed row. Figure 3 shows 3 concurrent states: D, C and A.
Like a XOR-state, each concurrent region can have at most one active state at a time.

A
G NG e

Z
D

C

m

Figure 3. Concurrent states in statecharts with AND-states.

Like a state diagram, a statecharts model starts in an initial state represented by an
arrow with a black circle at its starting end (see figure 4). It is also possible to define
the initial state in a XOR-state, as shown by figure 4a (state Al). In figure 4a, the
execution starts by state B. If transition p is activated, the system enters the state Al
(the initial state in the composite state 4). Figure 4b uses a history state, which is

represented by an H inside a circle. The history state sets the active state to the most
recent state in the set (47 or 42).

(AT
a

Figure 4. Initial states, history states and final states in statecharts.

Transition ¢ in both Figure 4a and Figure 4b is going from state B to a final state
which is represented by a black dot inside a circle. Final states mean that the
execution is completed. When the enclosing state is on the top state, then it means that
the entire state machine has completed.

The operational semantics for statecharts is given by a sequence of steps. At each
step the state machine evaluates a single transition and may assume a new state
configuration (the set of currently active states). When an event happens, the system
transmits it to the transition associated to the triggered event. Then, the corresponding
guard condition is evaluated, and if it is true the statemachine sets the target state as
active.

An optional activity can be added to the transition label, indicating which activity
will take place when the transition happens. The triggered activity can in turn be
received by the system as another event to trigger other transitions creating
compounding transitions. The broadcasting mechanism in statecharts is represented
by events that are associated to more than one transition. In that case, when an event
happens, all transitions associated to the triggered event are evaluated and executed if
the guarding conditions are true. In classical statecharts, activities and events are
considered to be instantaneous (they take no time to perform).

3. StateWebCharts Formal Description

In SWC, states are abstractions of containers for objects (graphic or executable
objects). For web applications such containers are usually HTML pages. States in
SWC are represented according their function in the modelling. In a similar way, a
SWC transition explicitly represents the agent activating it. The basis of SWC
modelling is a state machine, as described in previous section, plus the following
elements:

P is the set of containers storing information content that will be exhibited as a whole
in a web application (generally web pages). P is defined by the set (0, k) where

o is the set of objects (text, sound, image, etc) it contains and k is the set of
anchors in the set. The set P include an empty container.

Q: S - P, is the map function that associates each state to a container

M : k — E, is map function that associates a anchor to an event in the state machine

X : S - AC is the mapping function that associates a state to its activities

AC is the set of optional actions associated to a state. AC=AC ey U ACyqp U ACyis,
where V ac € A, ACyy is the action executed when entering a state, ACy, is
the main action executed by it, AC; is the action executed before the state is
left.

Y = {static/transient/dynamic/external} is the set of sub-types for a basic state

@ : S — Y is the function that maps a sub-type to a basic state in the state machine
VseS.p(s)=0, 2,3y e Y, (s)=y

W = {user/system/completion} is the set of events sub-types where each event type
indicates an agent triggering the event in the system

E = Wyser U Wigstem 'V Weompletion 15 the redefined set of event in a system

A container P is considered as a compound document according to W3C DOM3
definition, which may contain objects (text, images, etc) as well as other documents.

By the function @ - S — Y we make each basic state s € S assume an appropriate
sub-type static, transient, dynamic or external. Each sub-type describes a special
function performed by the state in the SWC state machine. Figure 4 shows the graphic
representation of these sub-types.

a) Static ~ b) Transient state ¢) Dynamic state d) External state
Figure 5. Basic state sub-types in SWC notation.

Static states (figure 5a) are the most basic structures to represent information in
SWC. A static state refers to a container with a static set of objects; once in a static
state the same set of objects is always presented. However, the objects it contains are
not necessarily static by themselves; they could have dynamic behaviour as we
usually find, for example, in applets, JavaScript or animated images. Static is the
default type for States.

Transient states (figure 5b) describe a non-deterministic behaviour in the state
machine. Transient states are not part of the original statecharts notation, but they are
needed when a single transition cannot determine the next state of the state machine
(see figure 8 for an example). The formal definition for a transient state says that only
completion or system events are accepted as outgoing transitions. Frequently they
refer to server-side parts of web applications, such as CGI* and Java Servelts

3 http://www.w3.0org/DOM/
4 CGI - Common Gateway Interface

programs. Transient states only process instructions and they do not have a visual
representation towards users.

Dynamic states (figure 5c) represent content that is dynamically generated at
runtime. Usually they are the result of a transient state processing. The associated
container of a dynamic state is empty. The semantics for this state is that in the
modelling phase designers are not able to determine which content (transitions and
objects) will be made available at run time. However, designers can include static
objects and transitions inside dynamic states; in such case transitions are represented,
but designer must keep in mind that missing transitions might appear at run time and
change the navigation behaviour.

External states (figure 5d) represent information that is accessible through
relationships (transitions) but are not part of the current design. For example, consider
two states A and B. While creating a transition from A to B, the content of B is not
accessible and cannot be modified. Thus B is considered external to the current
design. Usually they represent connections to external sites. External states avoid
representing transitions with no target state, however all activities (whatever it is
entry, do, exit) in external states are null.

Events are classified in SWC notation according to the agent triggering them:
user (e.g. a mouse click), system (e.g. a method invocation that affects the activity in
a state) or completion (e.g. execute the next activity). A completion event is a
fictional event that is associated to transitions without triggers, e.g. change the system
state after a timestamp. Fictional completion events allow us to give the same
representation for all transitions in SWC machines. This classification of event
sources is propagated to the representation of transitions. Transitions whose event is
triggered by a user are graphically drawn as continuous arrows (figure 6a.) while
transitions triggered by system or completion events are drawn as dashed arrows

(figure 6b).

a) b)
Figure 6. Graphical representation of SWC transitions.

Even though figure 6 only shows transitions ids, we can promptly identify who
owns the control on the activation of a transition, whether the system (transition ¢2) or
a user (transition ¢/). In order to be able to use the SWC models to perform usability
evaluation, the fact that a transition is related to a user event or not is critical. Thus,
SWC puts in a single graphic representation those transitions (completion and system
transitions) that are not triggered by the users. If explicit representation is required for
distinguishing between completion and system events, a full label for transition (as
presented by figure 1a) such as t2=completion/true:actionl.

4. Web Navigation Modelling with SWC

Web applications have some similarities with hypermedia and hypertext systems such
as the occurrence of multimedia content, linking information units, etc., but many
other features are specific to the web environment such as the mandatory use of
browser, client/server architecture, and so on. This section describes the most
important features related to navigation design for web applications and their
corresponding representation with SWC notation, when it is applicable.

4.1. Browser Effects

Web applications can only be accessed through dedicated client applications called
web browsers. Browsers interpret every single page sent back by the web server
before to display it according proprietary (browser vendors’) directives for
technology, client-side system platform (e.g. PC Windows, Palm, etc) and additional
preferences for display set by users. In addition, from a user interface perspective, the
browser itself proposes functions (e.g., cut, copy, save) that could compete with the
ones proposed by the application. Recent works [7, 17] have analysed the non-
uniform implementation of functions such as history mechanisms (back button and
history list, for instance) of web browsers. The worst is that most users rely on such
mechanisms to navigation because web applications provide poor navigation [5].

As several browsers with different capabilities are available, it is almost impossible
for the designer of the web application to know precisely the software environment of
the user. Moreover, it impossible to predict when users will make use of back of the
application, so, it is not an advisable strategy to represent browser controls (such as
back button and other history mechanisms) as part of application design. Such
controls are considered as interaction mechanisms such as scroll bars and windows
selection that are not represented by SWC notation.

4.2. Link Types Support

When analysing how pages are related to each other on web applications we can
observe three different types of links: a) internal-pages links, b) inter-pages links and
c) external links. Internal-pages links related different parts of a same web page,
which can be very helpful for long documents. These links present the same semantic
behaviour of scroll bars on windows browser, so at first sight we can consider
irrelevant to include the specification of such elements into navigation design. If
required, internal-links can be easily represented with SWC by decomposing the page
in a composite state and create links between the sub-parts of the document as
presented by figure 7a. As we can see in figure 7a is a spaghetti-link interconnection
between all sections of a same document.

Inter-page links is the most classical example; it means a simple connection of two
pages belonging to the same web site. We can see in figure 7b how two pages can be
connected by an inter-page link with passage of a parameter that indicates the
subsection in the document to be displayed. Figure 7b is a preferable representation

for the same problem described above (internal-pages) because it increases the
legibility of diagrams.

External links are links connecting the web application with foreign web sites or
non-relevant parts of the web application for the current design. Even though its name
makes a reference to a link, this concept is treated as a state because it is not possible
to represent targetless transitions in SWC, even though the transition makes
references to an external site.

~

/‘s2
Entire page S2.1

eader
S2.2 '
Section 1
\ S2.3
Section 2
l s2.n
\ Section n

S1 : S2
t1 (section #), Entire page

a)

S1
Web S2

application External site

Y, !

Figure 7. Links types: a) internal-page, b) inter-page and c) external.

4.3. System-Driven Navigation (The Use of Transient States)

In many cases, the combination of event plus condition determines the next state.
However, it not true for all cases. Consider the case of user authentication in figure 8.
In this example, the event press button (to send user name and password) in transition
t1 does not count to determine whether user will get access to the system or not. But it
is the result processing of the transient state S2. Notice transitions ¢2 and /3 going out
from S2 presenting system events.

S2
Checking user
and password

S3

Welcome to
the application

S1

User
identification

t1: press button/

A

~ S4
t4 (timestamp 5 5)~ ~

Error: unknown
user or pwd

Figure 8. Example of a simple user authentication .

In most cases, the user will send additional information filling in forms or
following parameterized links to a server-side application (represented by a transient
state) that will execute some processing and then send back user the appropriate
answer.

4.4. Dynamic Content Generation

A particular feature of web application is the dynamic generation of pages on an
application by server-side applications. Dynamic pages does not exist on the web
server and that is why the function Q : S — p (see section 3) maps an empty set to
dynamic states. Dynamic states represent such unpredictable content for the page but
it does not exclude the possibility to represent required transitions for the design.

tl [parameters]

S1
Request
form

S2
Searching
on database

—————
183 -7
Query result 4=

)

Figure 9. Query search.

Figure 9 shows a classical example of dynamic content generation as result of a
database query. Notice that the dynamic state S3 has a user transition that allows user
return to the request form (state S7). It important to note that, at run time, the page
resulting by the database searching can include links that are not represented in the
modelling and may alter the navigation on the web application.

4.5. Frames

Frames are elements that split the browser’s windows into two or more concurrent
visual areas were each region can load and display a different document. Frames were
introduced as a standard in HTML 4.05. Links in a frame region can alter the
exhibition of documents in another frame region. Frames are modelled in SWC with
AND-states where each orthogonal region represents an individual frame, as shown in
figure 10. When entering the state 4, two concurrent regions are activated 4" and 4"’
which pass the control to their initial states B and C, respectively. When the transition
12 is fired, the configuration in region 4 "’ changes arbitrarily to states D, the region 4’
maintains its configuration.

e

tn | C

\:_tZ D
N :]

Figure 10. Concurrent visual area representations (frames).

3 http://www.w3.0org/TR/1998/REC-html40-19980424/

4.6. Modularization

The number of pages on most web applications increases very quickly and the
representation of documents and links became a problem in flat-notation such as
automata [4]. In addition, large projects must be cut in small part and splat among the
member of development team. The modularization is also required to deal with the
complexity during the development. SWC takes benefits from the multi-level
hierarchy from classical statecharts to better manage large web applications. Figure
11 presents a partial modelling for the web site The Cave of Lascaux®.

\/

Animation t11 (33.2’)

(5.3.2” \

y
3.1(s3.4] .

S3

Discover

P Time &
space

> ()

Home: v 1940 the b
main menu discoverv

13.3(S3.6

Virtual

visit

34(537 2.8
\)i\)
\ IIZ/ K closina J j

a) Global view b) S3 details

Menu
Discover

10 :
t [33.3)

S2

T AT] X X

Figure 11. Hierarchical view for the Web Site ‘The Cave of Lascaux’

Figure 11a present the global view for the application, which contains 9 states,
some of them are composite whose details are not represented in higher level. For
example, S3 is a composite state whose details are shown in figure 11b. In such
approach, composite states represent classes of pages which share the same structure.
Sub-states inherit relationships from their parents. For example, in Figure la, the
transitions (29 and ¢/0) going from state S3-Discover to states S2-Home-main menu
and S4-Learn, respectively, are shared by all S3 sub-states (S3.7, §3.2, S3.2°, S3.2",
S3.3, 83.4, §3.5, §3.6 and S3.7). The states at the left are instances of classes of pages
that have their own navigation. For reasons of space only state S3 is detailed in this
modelling, even though the S3 some of its sub-states (S3.4, 3.5, $3.6 and S3.7) are at
their turn suitable to be decomposed in modules.

¢ http://www.culture.fr/culture/arcnat/lascaux/en/

4.7. Dialog Control Modelling

Modelling dialog control means to identify who (system or user) causes events
changing the interface. As before mentioned in section 3, SWC explicitly represents
system interaction (by system and completion events) and user control (by user
events). A typical example of system event is timed transitions used to redirect Web
pages. In the figure 12, users start at the state S/, which contains two associated
transitions: e2 and e3. The transition e2 represents a system event that, once activate,
will change system state to S2 five seconds [5s] after users have been entered in S/.
Users can also cause a transition by selecting a link associated to user event e3.

t1 (mouse click / true : load S2)

S2

New page

foncdivantad)

S1
Old page

~ < _ t(completion/ if timestamp >35 s:load S2) ~ _ 2

-~ R

Figure 12. User x System dialog control.

4.8. Client-side and Server-side Execution

On its origins Web applications were built over a client/server architecture where the
server-side is responsible for all processing leaving to the client-side (the web
browser) just the display of the content information. The advent of new technologies
such as JavaScript, Java and Active-X, for example, put on the client more interactive
than just display functions. We define client-side execution as any processing
changing the state of the application without communication with a web server.
Server-side execution, at its turn, is defined as any instruction processed on a web
server following a client’s request.

Transient states and system/completion transitions in SWC are suitable to describe
executable states and system initiative on web applications but they say nothing about
where (on the client- or server-sides) it occurs. SWC do not impose a particular
architecture for the design and a modelling can be quite easily implemented using as
thin-client architecture (no processing in the client-side) or a robust-client (full client-
side functionality). However, at this time we have not included a description about
how to model objects in a container, so we could consider that transient states are
always on the server-side.

5. Discussion and Related Work

Research work in navigation modelling has a long history in hypertext and
multimedia domain [16, 20 and 22]. Web applications are directly originated from

this research field and much of the web technology related to construction of web
pages find its main contributions in hypertext and hypermedia research work.

State-based notations such as Petri nets [16] and Statecharts [14, 18, 20] have
been explored to represented navigation for hypertext systems. However, when trying
to represent web applications they do not model dynamic content generation, web
link-types support (external states, for examples), client and server-side execution,
and other aspects related to web domain. Besides, some of them [16, 20] do not make
explicit the separation between interaction and navigation aspects in the models while
this is a critical aspect for web application.

More recent work devoted to web applications, propose efficient solutions to
describe navigation and architecture in a single representation, as it has been done by
Connallen [3] with UML stereotypes and Fraternalli with WebML [2]. These
approaches mainly target data-intensive applications and propose even prototyping
environments to increase productivity. The main inconvenient is that navigation is
described at a very coarse grain (for instance navigation between classes of
documents) and it almost impossible to represent detailed navigation on instances of
these classes or documents. The same problem appears in KOCH [11]. Other
approaches such as UML stereotypes as in [3] and WebML [2] may reduce refrain
creativity at design time as they impose the underlying technology and as they do not
provide efficient abstraction views of the application under developement.

Other studies such as those presented in [4 and 12] take into account all the
navigation aspects of web applications (that have been presented in section 4). They
are able to represent dynamic content generation and provide efficient support to link-
types. However, they do not allow for explicating who (between the user and the
system) is triggering events.

Table 1 presents a summary of several notation dedicated to navigation modelling
coming from different domains such as Wimp interfaces, hypertext/multimedia
systems and web applications. We compare how these notations are able to deal with
web design concerns such as those described in section 4. Each aspect is rated
according to the following values:

e N (no) means that the notation does not support the modelling of such aspect

or if it is possible, no information is available on how to cope with it;

e C (cumbersome) i.e. the notation provides some support for modelling this

aspect but some limitations exist;

e P (primitive) the aspect is fully supported and fully documented in the

approach (it can be seen as a primitive of the notation).

6. Conclusions and Future Work

In this paper we have presented a statechart-based formalism, StateWebCharts
(SWC), which is able to deal with navigation design of web applications. SWC is a
technological-independent notation whose main intention is to enable designer to
model all the specific features required for modelling navigation of web applications.
One of the contributions of the SWC notation proposed here is that it makes
explicit in the models the points where users interact with the application with respect
to those where the system drives and controls the navigation. Moreover, all elements

Table 1. Comparative study of several notations for modelling navigation.

Methods/Notations
WIMP Hypertext/Multimedia | Web applications
interfaces | systems
S
N,
— 2 —
= g = §le¢
£ g 2 | 5 o | B
= g 5|2 g7
S ; g8 sl
2 = | 2 | = g | 2 s | &
] =4 2 - o = © = 2 i
sl sl 2l5 a8 s]5 |8
. = < it = = 5] (9]
Web Design sl le|S|e|B|E|S|® |2 %]z
|2 ls|s|z2|5]lg|=2|2|38]|s5|¢%8
Features 2151 1§12 81213515 313
Interaction Modelling P P P P P P P N N N N C
Navigation modelling C C P P P P P P P P P P
(Web) Link-types support N (o3 Cc Cc Cc Cc P P P N P P
System-driven navigation N (o3 N N N N N N P P P P
Dynamic content generation N N N N N P C P P P P P
Frames N N N P P Cc P N N N P P
Modularization P P C P P P C P P P P P
Dialog control modelling N N N N N N N N N N N P
Client-side execution N N N N N N N N P P N Cc
Server-side execution N N N N N N N N P P N C

Legend: N no information is provided, C cumbersome, P primitive.

in SWC have a clear semantic with a corresponding visual representation, which is
supposed to increase the legibility of the models. SWC supports client-side execution
and server-side execution with some limitations as explained in section 4.8. However,
this is an intended limitation as solving this problem (for instance by including
architectural information within the notation) would bind models to
implementation/architectural concerns too early on the design process. In the same
way, SWC is not the best solution for representing interaction on objects inside states.
Here again, the focus of SWC is more on the early design phases where low level
interaction modelling is premature. Besides, several notations deal very efficiently
with these aspects and our goal is more to integrate SWC with such approaches rather
than making it suitable for all purposes.

Relationships between SWC models and other models that has to be built during
the development process of web applications has already been studied and can be
found in [23]. For instance this paper presents how conformance between task models
and SWC can be checked. This is another advantage of using formal description
techniques for navigation modelling.

As for future work, we intend to use SWC model as a key component of the
evaluation phase. Indeed, this phase is really critical for web application development
as they are by nature hard to test and evaluate. The idea is to exploit the models to
pilot and drive (possibly remote) evaluations by providing users with structural
information about navigation and continuously monitoring coverage of the tests.

Acknowledgments

This work has been partially supported by Capes/Cofecub SpiderWeb project. First
author is also sponsored by CNPq (Brazilian Council for Research and Development).

References

1. Campos, J. C., Harrison, M. D. (1997) Formally Verifying Interactive Systems: A Review.
In Harrison, M.D.&Torres, J.C.(eds.), DSVIS'97, 109-124 pp, Springer.

2. Ceri, S.; Fraternali, P. & Bongio, A. Language (WebML): a modelling language for
designing Web sites. In Proc. 9th WWW Conference, Amsterdam, May 2000.

3. Connallen, J. Building Web Applications with UML. Addison-Wesley, 1999.

4. Dimuro, G. P.; Costa, A. C. R. Towards an automata-based navigation model for the
specification of web sites. In...: Sth Workshop on Formal Methods, Gramado, 2002.
Electronic Notes in Theoretical Computer Science, Amsterdam, 2002.

5. Fleming, J. Web Navigation: Designing the User Experience. O’Reilly. 1998.

6. Fraternali, P. Tools and approaches for developing data-intensive Web applications: a
Survey. ACM Computing Surveys, 31(3), 227-263p. 1999.

7. Greenberg, S. and Cockburn, A. Getting back to back: Alternate behaviors for a web
browser’s back button. In Proceedings: 5th Annual Human Factors and the Web
Conference, Maryland, USA, 1999.

8. Harel, D. Statecharts: a visual formalism for computer system. Science of Computer
Programming, 8, N. 3:231-271 p., 1987.

9. Harel, D.; Naamad, A. The STATEMATE semantics of statecharts. ACM Trans. Software
Engineering Methodology, vol. 5, 4 (Oct. 1996), 293-333 pp.

10. Horrocks, 1. Constructing the User Interface with Statecharts. Addison-Wesley, Harlow.
1999, 253 p.

11. Koch, N.; Kraus, A. The expressive Power of UML-based Web Engineering. In ond
International Workshop on Web-oriented Software Technology (IWWOSTO02). D.
Schwabe, O. Pastor, G. Rossi, and L. Olsina (eds.), June 2002.

12. Leung, K., Hui, L., Yiu, S., Tang, R. Modelling Web Navigation by StateCharts. In
Proceedings: 24th Inter. Comp. Software and Applications Conf., 2000, Electronic Edition
(IEEE Computer Society DL).

13. Murugesan, S.; Deshpande, Y. (2001). Web Engineering: Managing Diversity and
Complexity of Web Applications Development. Berlin: Springer.

14. Oliveira, M.C.F. de; Turine, M. A. S.; Masiero, P.C. A Statechart-Based Model for
Modeling Hypermedia Applications. ACM TOIS. April 2001.

15. Schwabe, D.; Esmeraldo, L.; Rossi, G. & Lyardet, F. (2001) Engineering Web
Applications for Reuse. IEEE Multimedia, 8(1), 20-31.

16. Stotts, P. D.; Furuta, R. Petri-net-based hypertext: document structure with browsing
semantics. ACM Trans. on Inf. Syst. 7, 1 (Jan. 1989), Pages 3 - 29.

17. Tauscher, T and Greenberg, S. How people revisit web pages: Empirical findings and
implications for the design of history systems’, International Journal of Human Computer
Studies 47(1), 97-138. 1997.

18. Turine, M. A. S.; Oliveira, M. C. F.; Masieiro, P. C. A navigation-oriented hypertext
model based on statecharts. In Proceeding... 8" ACM Hypertext Conf. April, 1997,
Southampton United Kingdom. Pages 102 - 111.

19. Winckler, M.; Farenc, C.; Palanque, P. & Bastide, R. Designing Navigation for Web

Interfaces. IHM-HCI2001 Proceedings, Lille France, September 2001.

20.

21.

22.

23.

Zheng, Y.; Pong, M. C. 1992. Using statecharts to model hypertext. In Proceedings of the
ACM Conference Pankaj K. Gargypertxt (ECHT'92, Milan, Italy). ACM Press, New
York, NY, 242-250.

Silva, P. P. da, Paton, N. W. UMLi: The Unified Modelling Language for Interactive
Applications. In 3rd International Conference on the Unified Modeling Language
UML’2000. LNCS V.1939, 117-132 p., Springer, Oct. 2000.

Halasz, F., Schwartz, M. The Dexter hypertext reference model, Communications of the
ACM, v.37 n.2, p.30-39, Feb. 1994

Winckler, M.; Palanque, P.; Farenc, C.; Pimenta, M. Task-Based Assessment of Web
Navigation Design. In Proceedings: ACM TAMODIA'02, Bucharest, 2002.

