A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code Flavien Quijoux, Alice Nicolaï, Damien Ricard, Ikram Chairi, Ioannis Bargiotas, Alain Yelnik, Laurent Oudre, François Bertin-Hugault, Pierre-Paul Vidal, Julien Audiffren, et al. ## ▶ To cite this version: Flavien Quijoux, Alice Nicolaï, Damien Ricard, Ikram Chairi, Ioannis Bargiotas, et al.. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiological Reports, 2021, 9 (22), pp.e15067. 10.14814/phy2.15067. hal-03664681v2 ## HAL Id: hal-03664681 https://hal.science/hal-03664681v2 Submitted on 14 Aug 2022 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## A Review of Center of Pressure (COP) Variables to Quantify Standing Balance in Elderly People: Algorithms and Open Access Code Flavien Quijoux^{1,2}, Alice Nicolaï¹, Ikram Chairi^{1,3}, Ioannis Bargiotas¹, Damien Ricard^{1,4,5}, Alain Yelnik^{1,6}, Laurent Oudre¹, François Bertin-Hugault², Pierre Paul Vidal^{7,1}, Nicolas Vayatis¹, Stéphane Buffat⁸, and Julien Audiffren⁹ ¹Centre Borelli UMR 9010/Université Paris-Saclay, ENS Paris-Saclay, CNRS, SSA, Inserm, Université de Paris, Paris, France ²ORPEA Group, Puteaux, France ³Groupe MSDA, Université Mohammed VI Polytechnique, Benguerir, Maroc ⁴Service de Neurologie de l'Hôpital d'Instruction des Armées de Percy, SSA, Clamart, France ⁵Ecole du Val-de-Grâce, Ecole de Santé des Armées, Paris, France ⁶PRM Department, GH Lariboisière F. Widal, AP-HP, Université de Paris, UMR 8257, Paris, France ⁷Institute of Information and Control, Hangzhou Dianzi University, Zhejiang, 310018, China ⁸Laboratoire d'accidentologie de biomécanique et du comportement des conducteurs, GIE Psa Renault Groupes, Nanterre, France ⁹Department of Neuroscience, University of Fribourg, Fribourg, Switzerland 21 Abstract Postural control is often quantified by recording the trajectory of the center of pressure (COP) – also called stabilogram – during human quiet standing. This quantification has many important applications, such as the early detection of balance degradation to prevent falls, a crucial task whose relevance increases with the ageing of the population. Due to the complexity of the quantification process, the analyses of sway patterns have been performed empirically using a number of variables, such as ellipse confidence area or mean velocity. This study reviews and compares a wide range of state-of-the-art variables that are used to assess the risk of fall in elderly from a stabilogram. When appropriate, we discuss the hypothesis and mathematical assumptions that underlie these variables, and we propose a reproducible method to compute each of them. Additionally, we provide a statistical description of their behavior on two datasets recorded in two elderly populations and with different protocols, to hint at typical values of these variables. First, the balance of 133 elderly individuals, including 32 fallers, was measured on a relatively inexpensive, portable force platform (Wii Balance Board, Nintendo) with a 25-seconds open-eyes protocol. Secondly, the recordings of 76 elderly individuals, from an open access database commonly used to test static balance analyses, were used to compute the values of the variables on 60-seconds, eyes-open recordings with a research laboratory standard force platform. ## Keywords 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 31 32 33 34 35 36 38 Postural Control, Quiet Standing, Center of Pressure, Elderly. #### Correspondence Flavien Quijoux, E-mail: f.quijoux@orpea.fr Location: 12 Rue Jean Jaurès, 92800 Puteaux, France. Medical Direction, ORPEA #### 42 Funding Information This study was partly funded by the ANRT under a public-private CIFRE contract with ORPEA SA, grant number 2016/0437, by the ANR (French National Research Agency) grant Quantico (Quantification of normal and pathological human behavior), the French National Centre for Space Studies (CNES) and Engie Lab CRIGEN. ## 1 Introduction 48 51 52 55 56 57 59 61 62 63 67 70 71 72 77 78 79 81 82 84 85 86 87 89 90 92 93 The assessment of balance disorders is a common practice in geriatric care, as the problem of falls in the elderly is so serious in maintaining good health. As a major public health problem, falls are the leading cause of accidental death in the elderly, leading to serious psychomotor consequences and accelerating institutionalization [WHO, 2008]. Health authorities recommend a standardised risk assessment for falls in the elderly that includes identification of risk factors and assessment of motor control. The latter is often carried out through functional clinical tests requiring the performance of one or more exercises while an operator assesses the feasibility of the task for the participant [Beauchet et al., 2011]. Limitations of functional tests relate to the ability to distinguish the systems disturbed in relation to imbalance (vestibular, visual, proprioceptive, motor, etc.), the provision of quantified and objective values, as well as a capacity to discriminate between fallers that is both more effective than a history of past falls and sufficiently sensitive to the evolution of balance capacities in the short and medium term [Mancini and Horak, 2010, da Costa et al., 2012, Balasubramanian, 2015], especially in extended care settings where the risk of fall is higher. To address the lack of reliable clinical tests in the evaluation of balance and posture disorders, posturography aims at developing quantifiable analyses of postural control [Baloh et al., 1998b], mainly through the analysis of the trajectory of the center of pressure (COP). The COP trajectory is recorded using force platforms, which track the point of application of the ground reaction forces resultant under the feet. The resulting signal, called stabilogram, is frequently analysed using either its one dimensional variations in the mediolateral (ML) or anteroposterior (AP) direction, or its two-dimensional trajectory [Duarte and Zatsiorsky, 2011, de Sá Ferreira and Baracat, 2014]. The COP signal is then described using a number of variables, which are used to evaluate the risk of fall. This approach has produced interesting results in the assessment of the risk of falling, in subjects with a balance degradation due to neurological impairment [Ojala et al., 1989, Vališ et al., 2012] or physiological aging [Colledge et al., 1994, Perrin et al., 1997, Baloh et al., 1998b, Camicioli et al., 1997]. In quiet standing, the COP is considered to reflect in part the motor mechanisms that ensure balance, precisely the maintenance of the projection of the center of mass (COM) inside the base-of-support [Hof et al., 2005]. There is a correlation between the displacement of the COP at the limits of stability and the incidence of falls, underlining the interest of exploring dynamic balance in determining the risk of falling [Johansson et al., 2019]. In addition, time-to-boundaries analysis has revealed significant spatio-temporal instabilities during voluntary excursion by leaning in all direction on force platform in elderly people compare to younger subjects [van Wegen et al., 2002]. Nevertheless, a simple test to quantify resting balance on a firm and stable surface is thought to already provide relevant information for the analysis of fall risk [Lord and Clark, 1996, Bauer et al., 2016b]. Thus, static posturography on a force platform could be a convenient tool for assessing the risk of falling, particularly for the oldest people for whom psychomotor disorders are known to exist and greatly limit the possibility of conducting functional tests that compromise their already precarious balance. The quantification of balance using a force platform is now commonly used [Pizzigalli et al., 2014]. Despite the relevance of exploring balance through quantified and explainable COP variables for the clinicians, their computation suffers from significant drawbacks. First, studies may present different definitions of the same variable, or may not give a precise definition. For example, several variables rely on the calculation of peaks in particular signals obtained from the COP, however the method used for calculating these peaks is not explicitly defined, evoking notions of maximum values [Doyle et al., 2005] or high values between two "valleys" [Baratto et al., 2002] without any clear indication of a threshold in time or amplitude, and no clear algorithmic procedure. Moreover, the vocabulary used to introduce the variables sometimes varies from one study to another, making the identification of variables difficult, especially given that the equations used to calculate them are rarely provided. Secondly, the definitions of many of the COP variables rely on mathematical assumptions that are in general not clearly stated or verified (such as uniform resampling, see e.g. [Audiffren and Contal, 2016]). This lack of clarity can lead to contradictory conclusions between studies for the same variables [Delignières et al., 2011]. Finally, even when clear computation procedures have been presented in 99 100 101 102 103 106 107 108 110 114 115 117 118 121 122 123 125 126 127 128 129 131 132 135 136 137 139 143 144 the literature, some of them include several algorithmic steps which may not be convenient to code in the context of clinical practice [Collins and De Luca, 1993, Chiari et
al., 2000], highlighting the need of developing open-access codes to compute the variables. The aforementioned drawbacks make it particularly delicate to compare the results of different studies and generalize their finding. The number of available variables in the literature is also challenging. Indeed, in a previous systematic review [Quijoux et al., 2020], we identified more than fifty variables derived from the trajectory of the COP recorded in quiet stance to discriminate elderly fallers from non-fallers. A large number of these posturographic variables can be calculated along the AP or ML directions and in the two-dimensional signal which further increases the quantity of variables that can be considered, leading to statistical problems related to data dimensionality. Moreover, since the semiological understanding of posture disorders is relatively limited, no consensus has been reached regarding the grouping of these variables under large physiological classes that could alleviate this problem – as may have been the case with gait [Mansour et al., 2017, Vienne et al., 2017]. The objective of this review is to propose a compendium of definitions of the COP variables that are the most frequently found in the literature to compare elderly fallers from elderly non-fallers, based on a systematic review [Quijoux et al., 2020]. The lack of standardised methods and analysis procedures has been proposed to explain discrepancies of results with similar analysis [Kirchner et al., 2012]. Accordingly, we aim to facilitate the comparison between studies through a review of the scientific literature as well as the computation and the presentation of the values for the selected variables. method of variable selection is presented below. In accordance with our selection process (see Section 2.1 and 2.2), we did not include in this review several postural control models and variables [Hernandez et al., 2015, Hur et al., 2012, Sakanaka et al., 2016, Reed et al., 2020], that were not used in the clinical examination of elderly people at risk of falling. Additionally, and to help the identification and comprehension of the variables, we also propose a new classification that reflects the aspects of the COP trajectories they are designed to capture: positional, dynamic, frequency and stochastic variables. We hope that by providing this compendium, future works may compare and aggregate more easily their results. Furthermore, and to help the use of these variables, we propose a descriptive analysis of their behaviour on two databases of COP trajectories recorded in elderly people. We provide the average values and standard deviation of each variable on both datasets, in order to provide a baseline for typical values or order of magnitudes that can be expected for these variables in an elderly population. Note that these datasets present a large variability of medical profiles, and have been collected with different protocols and equipments, thus hinting at the general scope of the indexed variables. The contribution of these two datasets is to present values from the same calculation methods, but for different experimental conditions, which we hope will provide a means of comparison for future users of these algorithms. ## 2 Method ## 2.1 Literature review A systematic review of the literature was originally conducted to identify articles that addressed the discrimination of older people at risk of falling. Randomized control trials (RCT), non-randomized control trials, and observational studies were all eligible for inclusion. Articles analyzing the balance through COP recordings during quiet standing with both feet on the ground and evaluating the risk of falling by the number of falls during a period of time (retrospectively or prospectively) were selected. Five databases (PubMed, Cochrane CENTRAL, EMBASE, and ScienceDirect) were used as sources for published articles. The search was performed for all articles published (without date restriction) until July 1, 2019. In addition, a search of "grey" literature [Conn et al., 2003] was performed which included items like reports, theses and studies that were found online using Google Scholar, ClinicalTrials.gov sources, Google, theses.fr, HAL, ResearchGates and ethos.bl.uk. All reference lists from included studies were reviewed for additional relevant studies. The papers had to be written in a language understood by the authors (i.e. English, French, Italian, Spanish or German). The choice was made to include a wide range of study types and not to limit the study to RCT in order to have a broad view of the COP analysis methods used to differentiate between fallers and non fallers of 60 years and older. The keywords were selected following the P.I.C.O framework to produce research equations such as "[OLDER ADULTS] + [QUIET STANDING] + FALL* + DIFFERENC*" (the exhaustive list is published in the protocol). The following MeSH terms were also used: "Accidental Falls/prevention & control", "Ac- 152 153 155 161 162 163 165 166 168 169 171 172 175 177 178 180 181 183 184 185 186 188 189 190 cidental Falls/statistics & numerical data*", "Aged", "Postural Balance/physiology*", "Posture/physiology*", "Predictive Value of Tests" and "Regression Analysis". The general design was in accordance with PRISMA and MOOSE guidelines. We refer the reader to PROSPERO database (CRD42018098671) and the published protocol [Quijoux et al., 2019] for more details. Studies, and the variables extracted from them, were included if the research involved a comparison of older people with and without a history of falls (retrospective studies) or longitudinal follow-ups of these elderly people with regular measurement of the number of falls (prospective studies). Analyses of COP trajectories should be clearly stated, as well as the protocol for recording balance, excluding recordings of dynamic balance with instructions such as bending forward, repositioning after destabilisation or standing on one foot. It is of practical interest for balance analysis to distinguish between older people on the basis of their number of falls. Many studies have shown differences between healthy and young subjects compared to the elderly [Condron et al., 2002, Pizzigalli et al., 2014, King et al., 2016], but from a clinical point of view it seems more relevant to focus on the studies comparing individuals of the same age group. #### 2.2 Selection of COP variables The variables presented in this work were selected as follows. Based on [Quijoux et al., 2020] – a recent systematic review of the COP characteristics that were used to identify fall risk in elderly – and the aforementioned criterion, we identified 27 articles presenting results using measurements derived from the COP trajectory. Among the variables introduced in those articles, we selected all those that satisfied the following inclusion criteria: - Must be used in at least two different articles - Must be tested to distinguish older people at risk of falling from a control group, even if the variable is not discriminating - Must be sufficiently described, with enough details, to be reproducible. This includes formal mathematical definition such as equations, or explanations of computation methods. It should be noted that for some variables included in this study, the description in previous works was only partial. In this case, additional hypotheses were made to permit the computation of the feature, and these assumptions are clearly stated in the paragraphs of this study dedicated to the sway variables concerned. #### 2.3 Corpus of the selected variables Each variable is presented with references to its computation in previous studies and the algorithm that enables its calculation. The variables are grouped in four families to ease the reading of this study, according to their reliance on different aspects of the COP trajectories: Positional variables Variables that describe characteristics of the dispersion of the trajectory or position of the feet, and do not require the knowledge of the dynamics of the signal. • Dynamic variables Variables based on the dynamic of the COP, requiring the knowledge of its local displacements. • Frequency variables Variables used to describe the Power Spectral Density of the COP trajectory. • Stochastic variables Variables derived from the models in which the COP is represented as a stochastic process. A more detailed description of each group is provided at the beginning of its respective part, in Section 3. It is important to note that these categories are not necessarily orthogonal, in the sense that features inside different groups could possibly be correlated. The classification inside distinct groups is nevertheless useful as these features rely on different models or mathematical concepts and therefore lead to interpretations of different nature. For instance, some stochastic features which are linked to diffusion phenomena could be positively correlated to positional features that also measure dispersion aspects of the signal, however in the first case the computation of the feature relies on a model of stochastic diffusion whereas in the second case the dynamic of the trajectory is not taken into account, leading to different interpretations. #### 195 **2.4 Data collection** 200 201 203 204 205 206 207 211 212 214 215 218 219 221 222 223 225 228 229 231 232 233 235 239 240 The clinical Research Ethics Committee approved the clinical study, registered at ANSM (ID RCB 2014-400222-45). **Participants** Elderly people with or without balance impairments were recruited during routine consultations in neurology departments (Val-de-Grace Hospital) and physical medicine and rehabilitation departments (Fernand Widal Hospital, Paris, France). 133 individuals were included, 32 of them with recent history of falls (fallers: at least 1 fall in the previous 6 months). The participants included in this study were aged at least 60 years
old. **Experimental procedure** During these consultations, and before the experiment, patients were asked about their history of falls in the last six months. Measurement of the COP displacement characteristics of the individuals were then performed using a Wii Balance Board (WBB) (Nintendo, Tokyo, Japan), an alternative to laboratory grade force platform that have received increased attention in the recent years for quantifying postural control [Park and Lee, 2014, Severini et al., 2017]. The use of the WBB is justified by its advantages in terms of convenience compared to laboratory force platforms. Its within-device and between-device reliability have been considered good and suitable for clinical settings [Clark et al., 2010], especially when preprocessing methods are applied to improve accuracy [Leach et al., 2014, Audiffren and Contal, 2016]. During the static balance recording, patients were invited to stand on the platform. Data was collected by a custom software on a Samsung tablet (Android operating system version 2.0, Samsung, Seoul, Korea), using Bluetooth L2CAP protocol. The balance test was performed twice with different conditions. First, the individuals stood in quiet stance, eyes open, looking straight ahead, arms at their sides and feet comfortably positioned within the space provided on the WBB. After 10 seconds in this position, the trajectory of the COP was recorded for 25 seconds, a duration that has been shown to be sufficient to quantify postural control with variables [Bargiotas et al., 2018]. Then the individuals were asked to close their eyes. After a further 10 seconds, the closed-eye recording was started for 25 seconds. Between the two phases, there was no rest period, except in case of vertigo expressed by the subject. For the calculation of the variables, only the open eyes record is kept (a single repetition). **Data Preprocessing** Data preprocessing and analysis software were written using Python (v3.7, Python Software Foundation, OR, USA). The signals collected from the force platform were resampled at 25 Hz using SWARII [Audiffren and Contal, 2016], as the WBB is known to produce data at non uniform frequency. Then, resulting force platform data were processed with a fourth-order, zero-lag, low-pass Butterworth filter with a 10 Hz cutoff frequency, in accordance to [Hernandez et al., 2015]. Finally, due to the variability of foot positioning on the force platform, we chose to center the COP trajectories with respect to their arithmetic mean in our definitions and analysis, in line with most of previous studies [Prieto et al., 1996, Qiu and Xiong, 2015]. Public data set of human balance Due to the lack of consensus on the methods of recording and analysing posturographic signals, a public data set was made available to allow comparison and testing of analysis methods [Santos and Duarte, 2016a]. The data set was constructed by a single experimenter at the Laboratory of Biomechanics and Motor Control at the Federal University of ABC, Brazil. Only the COP displacements of participants aged 60 and over, from this public data set, were used to calculate the variables presented above. The data in this set are resting balance recordings on a force platform (OPT400600-1000; AMTI, Watertown, MA, USA), for 60s, at a sampling rate of 100 Hz. We use the averaged value on the three recordings made for each participant. To be consistent with our recording protocol, only data from the firm-surface, open-eye recordings were used. Participants were asked to remain as steady as possible with their arms at their sides and to look at a target in front of them. The position of the feet was standardised as follows "with an angle of 20 degrees between them and their heels were kept 10 cm apart". The forceplate data were preprocessed through a 10 Hz 4th order zero lag low-pass Butterworth filter. More details are available in the original publication [Santos and Duarte, 2016b]. 247 253 254 255 257 263 Sample Characteristics 133 people recorded with the Wii Balance Board were included in this study. The demographics characteristics of participants are shown in Table 1. The mean age in this sample is high but corresponds to the populations presented by other authors [Aufauvre et al., 2005, Bauer et al., 2016a, Maki et al., 1994, Muir et al., 2013, Ramdani et al., 2013, Bigelow and Berme, 2011, Borg and Laxåback, 2010, Hewson et al., 2010]. The incidence of the number of falls among people over 80 years of age was measured at nearly 6 falls per year (5,930 for women and 5,467 for men in 2009) [Korhonen et al., 2012], which is consistent with the number of falls over the last 6 months in this study. In addition, the elderly participants characteristics of the public data base are presented in Table 1. We can note that the proportion of fallers in the two groups is close to 25%, although the average ages, the retrospective period during which falls are investigated and the average number of falls are different. | | WBB dataset | Public dataset | |-------------------------------|--------------------|---------------------| | Total | 133 | 76 | | Men | 72 | 16 | | Women | 61 | 60 | | Age | $78.7 (\pm 6.7)$ | $71.3 (\pm 6.5)$ | | BMI | $24.4 (\pm 4.1)$ | $25.5 (\pm 2.9)$ | | Fallers | 32 (6 last months) | 19 (12 last months) | | Number of falls (for fallers) | $2.3 (\pm 2.4)$ | $3.8 (\pm 11.7)$ | Table 1: Characteristics of study participants ### 2.5 Descriptive analysis **Variables distributions** In order to provide indicative values for the variables presented, we report the means and standard deviations for both populations, for each of the COP variables during eyes-open recordings. Fallers and non-fallers are aggregated for each database since the objective is not to discriminate between subpopulations of the samples according to their fall risk or pathologies. Note that we chose not to include in our analysis two aforementioned variables, MEAN VALUE and VFY, in line with previous studies concerns about the considerable measurement errors that these features are prone to [Duarte and Freitas, 2010] – a problem that is compounded here as our study was multi-centric, which inherently increased the probability of small variations between the participant feet position. ### 2.6 Open-access code A code enabling the calculation of all the COP variables that are presented is available at https://github.com/Jythen/code_descriptors_postural_control. ## 3 Results #### 3.1 General notations In the following, we assume that the recorded COP trajectory contains N data points, sampled at constant frequency F_s . $T = N/F_s$ denotes the total duration of the signal in seconds. For each $1 \le n \le N$, ML_n (respectively AP_n) denotes the coordinate of the COP position at time n/F_s on the ML axis, from left to right, (respectively the AP axis, from backward to forward). Then for each $1 \le n \le N$, $$X_n = ML_n - \frac{1}{N} \sum_{i=1}^{N} ML_i$$ and $$Y_n = AP_n - \frac{1}{N} \sum_{i=1}^{N} AP_i$$ represent the coordinates of the centered trajectories on the ML axis and AP axis, respectively. We also introduce the Radius signal $(R_n)_{1 \le n \le N}$ as the euclidean distance of the centered COP to the origin: for each $$1 \le n \le N$$, $$R_n = \sqrt{X_n^2 + Y_n^2}.$$ Finally, we define the covariance between the AP and ML variations of the COP as $$cov = \frac{1}{N} \sum_{n=1}^{N} X_n Y_n$$ | Symbol | Name | Formula | Units | Section | |----------------------------|---------------------------------------|--|----------------------------------|---------| | Т | Total duration of the signal | - | S | | | N | Number of points of the signal | - | - | | | F_s | Sampling Frequency | N/T | Hz | | | ML_n | Medio-Lateral (ML) Coordinates | - | cm | | | AP_n | Antero-Posterior (AP) Coordinates | - | cm | | | X_n | Centered ML Coordinates | $\mathit{ML}_n - \frac{1}{N} \sum_{i=1} \mathit{ML}_i$ | cm | | | Y_n | Centered AP Coordinates | $AP_n - \frac{1}{N} \sum_{i=1} AP_i$ | cm | 3.1 | | R_n | Radius | $\sqrt{X_n^2 + Y_n^2}$ | cm | 5.1 | | COV | Covariance AP ML | $\frac{1}{N}\sum_{n}X_{n}Y_{n}$ | ${\rm cm}^2$ | | | SD_n | Sway Density | see Def. 1 | S | | | z_ℓ | Zero Crossing | see Def. 3 | - | | | p_ℓ | Peaks | see Def. 4 and 2 | - | 3.3 | | V_n^x | ML Velocity | see Computing velocity and Notation | ${\rm cm.s^{-1}}$ | 5.5 | | V_n^y | AP Velocity | see Computing velocity and Notation | ${\rm cm.s^{-1}}$ | | | V_n | Velocity norm | $\sqrt{(V_n^x)^2 + (V_n^y)^2}$ | ${\rm cm.s^{-1}}$ | | | Γ_k^S | PSD of S for frequency kF_s/N | - | $\mathrm{cm}^2.\mathrm{Hz}^{-1}$ | 3.4 | | M_ℓ^S | $\ell\text{-th Spectral Moment of }S$ | $\sum_k f_k^\ell \Gamma_k^S$ | ${\rm cm}^2.{\rm Hz}^{\ell-1}$ | 3.4 | | $\mathrm{MSD}^S(\Delta t)$ | Mean Square Deplacement of S | $\frac{\sum_{n} (S_{n+F_s\Delta t} - S_n)^2}{N - F_s\Delta t}$ | cm^2 | 3.5 | Table 2: General notations and signal transformations used in the definition of the features. For each quantity, we report the symbol used in this manuscript, the name of the symbol, the formula, the units, as well as the section where the feature is defined. Note that S is a placeholder symbol that can be replaced by both X (ML coordinates) and Y (AP coordinates). #### 3.2 Positional variables 267 269 270 Variables are classified in this category if they depend on the COP positions and do not require the knowledge of its local displacements. Therefore these descriptors can capture characteristics of the dispersion of the trajectory or a favoured position for the point of support of the feet, and do not embed dynamic aspects of the signal, as they ignore the temporal nature of the data. Mean Value The mean position, computed as the arithmetic average of the COP trajectory before centering, has been considered by [Aufauvre et al., 2005, Stel et al., 2003,
Brauer et al., 2000, Maki et al., 1994], for the ML and AP coordinates. Importantly, previous works have disagreed with the use of this variable [Duarte and Freitas, 2010], given the variability in the placement of the feet on the force platform. 275 MEAN ML $$\frac{1}{N}\sum_{n=1}^{N}ML_n$$ 276 MEAN AP $$\frac{1}{N} \sum_{n=1}^{N} AP_n$$ | Feature | Full Name | Formula | Units | |---------------------|-------------------------------|---|--------------| | MEAN ML | Mean ML Coordinate | $ rac{1}{\mathrm{N}}\sum_{n}\mathit{ML}_{n}$ | cm | | MEAN DIST. ML | Mean Distance ML | $ rac{1}{\mathrm{N}}\sum_{n} X_{n} $ | cm | | MEAN DIST. | Mean Distance | $\frac{1}{N}\sum_{n} R_{n} $ | cm | | MAX ML | Maximal Distance ML | $\max_n X_n $ | cm | | MAX RADIUS | Maximal Distance | $\max_n R_n $ | cm | | RMS ML | Root Mean Square ML | $\sqrt{\frac{1}{N}\sum_{n}X_{n}^{2}}$ $\sqrt{\frac{1}{N}\sum_{n}R_{n}^{2}}$ | cm | | RMS RADIUS | Root Mean Square Radius | $\sqrt{\frac{1}{N}\sum_n R_n^2}$ | cm | | RANGE ML | Amplitude ML | $\max_{n,m} X_n - X_m $ | cm | | RANGE ML-AP | Amplitude ML-AP | $\max_{1 \le n \le m \le N} \sqrt{(X_n - X_m)^2 + (Y_n - Y_m)^2}$ | cm | | RANGE RATIO | Ratio of amplitudes | RANGE AP | - | | PLANAR DEV. | Planar Deviation | $\sqrt{\text{RMS ML}^2 + \text{RMS AP}^2}$ | cm | | COEF. SWAY DIR. | Coefficient of Sway Direction | $\frac{\text{COV}}{\text{RMS ML} \times \text{RMS AP}}$ | - | | 95 % conf. area | 95% Confidence Ellipse Area | see Def. | ${\rm cm}^2$ | | PRINCIPAL SWAY DIR. | Principal Sway Direction | $\arccos\left(\frac{ v_2 }{\sqrt{v_1^2 + v_2^2}}\right) \times \frac{180}{\pi}$ | ٥ | Table 3: Summary of the definition of the positional features. All the listed ML features can also be computed for the AP axis. For units, cm stands for centimeter, ° for degree (angle), and — for unitless. *Mean Distance* This feature represents the mean distance of the COP from the center of the trajectory [Prieto et al., 1996, Maranesi et al., 2016, Qiu and Xiong, 2015], which we estimate as the empirical average of the signal. Therefore, we define the mean distance using the centered signal, see the paragraph General notations. According to the authors, this descriptor could be related to the stability of the postural system. Age differences were found with higher values in the ML direction, especially in older women compared to younger participants or men [Kim et al., 2010]. This variable also showed sensitivity to the size of the support base as it was found to decrease monotonically, especially in the ML direction, as the distance between the feet increased [Kim et al., 2014a]. Regarding falls, [Maranesi et al., 2016] have not either found significant differences for this feature between elderly fallers and non-fallers in both ML and AP directions. 286 MEAN DIST. ML $$\frac{1}{N}\sum_{n=1}^{N}|X_n|$$ 287 MEAN DIST. AP $$\frac{1}{N}\sum_{n=1}^{N}|Y_n|$$ 288 MEAN DIST. $$\frac{1}{N}\sum_{n=1}^{N}R_n$$ 278 280 281 284 285 Maximal Distance This feature has been defined as the maximal distance of the COP from the centroid [Muir et al., 2013], which we interpret as the center of the trajectory. Similarly to the Mean Distance, we define this feature as the maximum of the centered signal. This descriptor has been shown to be significantly greater in elderly fallers than in non fallers [Muir et al., 2013]. 293 MAX ML $$\max_{1 \le n \le N} |X_n|$$ 294 MAX AP $\max_{1 \le n \le N} |Y_n|$ 295 MAX RADIUS $\max_{1 \le n \le N} R_n$ 301 302 Root-Mean-Square (RMS) The RMS is calculated on the centered trajectory. In the ML and AP axis it corresponds to the standard deviation of the trajectory and on the two dimensional signal it is the square root of the arithmetic mean of the squared radius [Prieto et al., 1996]. Previous works have found changes associated with ageing in this feature direction [Maki et al., 1994], particularly in the ML direction [Piirtola and Era, 2006, Swanenburg et al., 2010]. [Bargiotas et al., 2018] also used successfully the RMS on the ML axis for their classification model between elderly fallers and elderly non-fallers. However, [Laughton et al., 2003] found significant differences between elderly non-fallers and young participants for the AP standard deviation but not in the ML direction. 304 RMS ML $$\sqrt{\frac{1}{N} \sum_{n=1}^{N} X_{n}^{2}}$$ 305 RMS AP $$\sqrt{\frac{1}{N} \sum_{n=1}^{N} Y_{n}^{2}}$$ 306 RMS RADIUS $$\sqrt{\frac{1}{N} \sum_{n=1}^{N} R_{n}^{2}}$$ Range (Amplitude) The range, also called amplitude, of the COP path, has been widely used in the literature [Aufauvre et al., 2005, Bauer et al., 2010, 2016a, Maranesi et al., 2016, Ramdani et al., 2013, Howcroft et al., 2015, 2017, Laughton et al., 2003]. In [Prieto et al., 1996] the authors define the range as the maximal distance over two points of the stabilogram. Along one particular axis, this is mathematically equivalent to the distance between the maximum and the minimum position of the signal. Previous works have shown contradictory results regarding the predictive power of this variable for the assessment of fall risks, but it has been shown that the RANGE in the ML direction differs between fallers and non-fallers based on a meta-analysis of data from elderly participants with a history of falls, in a previous systematic review [Quijoux et al., 2020]. 315 RANGE ML $$\max_{1\leq n\leq m\leq N}|X_n-X_m|$$ 316 RANGE AP $$\max_{1\leq n\leq m\leq N}|Y_n-Y_m|$$ 317 RANGE AP-ML $$\max_{1\leq n\leq m\leq N}\sqrt{(X_n-X_m)^2+(Y_n-Y_m)^2}$$ Ratio of Amplitudes (Quotient of Both Directions) The ratio of the COP dynamics in ML and AP direction has been frequently studied in regards to the balance strategy involved to maintain erect posture in elderly people. [Błaszczyk et al., 2014] computed the directional index as the ratio of the AP or ML path lengths divided by the total COP length. In [Bauer et al., 2016a], the quotient of both directions is defined as the ratio of mediolateral amplitude over the anteroposterior amplitude, and this measure is shown to be significantly different between fallers and non-fallers during eyes closed recordings [Bauer et al., 2010]. RANGE RATIO $$\frac{RANGE-ML}{RANGE-AP}$$ Planar Deviation The planar deviation was defined by [Raymakers et al., 2005] as the square root of the sum of the variances of displacements in ML and AP directions. While it has been argued that this variable may be less discriminant than the range or the mean velocity [Raymakers et al., 2005] and has shown a small relative reliability, with an intraclass correlation coefficient (ICC) of 0.5, in eyes open condition, and a poor absolute reliability [Qiu and Xiong, 2015], the planar deviation has been used in multiple previous works to quantify human stability [Xiong and Karim, 2013, Ilett et al., 2016]. PLANAR DEV. $$\sqrt{\text{RMS ML}^2 + \text{RMS AP}^2}$$ Coefficient of Sway Direction [Bauer et al., 2016a] has defined the coefficient of sway direction as the ratio of the covariance between AP and ML directions over the marginal standard deviations, i.e. as the coefficient of correlation between the ML and AP trajectories. This descriptor has been shown to be significantly associated with falls [Bauer et al., 2016a] in community dwelling older adults. 336 COEF. SWAY DIR. $$\frac{\text{COV}}{\text{RMS ML} \times \text{RMS AP}}$$ 347 350 351 353 356 357 359 360 36 365 Figure 1: Illustration of the calculation of the 95% confidence ellipse. The feature is equal to the area of the ellipse. 95% Confidence Ellipse Area (Sway Area) The confidence ellipse area (or sway area) is not always computed with the same definition and method in stabilometry studies [Schubert and Kirchner, 2014] Two main definitions area used. One of the definitions used is related to the mathematical definition of an confidence ellipse area, which is the area of the ellipse that contains the true mean of the signal with a high probability, and the other is related to the mathematical definition of a prediction ellipse area, which is the area of the ellipse that would contain a future observation with high probability [Schubert and Kirchner, 2014]. One major drawback with the first definition and that it depends strongly on sample size. In this review, we propose to use the prediction ellipse area definition, which show marginal variations with change in sample size [Schubert and Kirchner, 2014]. An increase of this feature value among elderly people has been associated with a significantly higher risk of fall [Merlo et al., 2012]. The feature is derived from using the central limit theorem [Schubert and Kirchner, 2014, Prieto et al., 1996, Duarte and Freitas, 2010], which requires the assumption that the serie samples are independent and identically distributed. Let $F_{0.95,2,n-2}$ denote the 0.95-quantile of the Fisher distribution with 2 and n-2 degrees of freedom. Note that the unbiaised versions of the covariance matrix could also be used [Schubert and Kirchner, 2014]. The feature can be approximated by the following formula 2 95 % Conf. Area $$2\pi imes \frac{({\rm N}-1)({\rm N}+1)}{({\rm N}-2){\rm N}} imes {\rm F}_{0.95,2,{\rm N}-2} imes \sqrt{{\rm rms\ mL}^2 imes {\rm rms\ ap}^2 - {\rm cov}^2}$$ An illustration of the calculation of this feature is shown in Figure 1. **Principal Sway Direction** [Oliveira et al., 1996] introduced the principal sway direction as a tool to represent the relative contribution of the ML and AP components to the oscillations of the COP. The computation of the sway direction is based on a Principal Component Analysis (PCA) which derives the direction of maximum dispersion of the COP trajectory. The principal direction is defined as the angle, between 0° and 90° , between the AP axis and the direction of the main eigenvector produced by the PCA. [Rocchi et al., 2004] has claimed that this variable provides a significant additional
information regarding the COP dynamic, relatively to other features. Let $v = (v_1, v_2)$ denote the eigenvector associated with the highest variance produced by a PCA of the COP bi-dimensional signal $(X_n, Y_n)_{1 \le n \le N}$. Then the principal sway direction is defined as: 362 SWAY DIRECTION $$\arccos\left(\frac{|v_2|}{\sqrt{v_1^2+v_2^2}}\right) \times \frac{180}{\pi}$$ An illustration of the calculation of this feature is shown in Figure 2. ### 3.3 Dynamic variables These descriptors are based on the local displacements of the COP trajectory. Most of them revolve around the quantification of the velocity of the signal, and consequently, are sensitive to additive noise, such as electromagnetic noise, and variation of the sampling frequency (see e.g. [Press and Teukolsky, 1990, Schubert Figure 2: Illustration of the calculation of the principal sway direction. The feature is equal to the angle θ | Feature | Full Name | Formula | Units | |-----------------------|---------------------------------------|--|----------------------------------| | SWAY LENGTH ML | Sway Length ML | $\sum_{n} X_{n+1} - X_n $ | cm | | SWAY LENGTH | Total Sway Length | $\sum_{n} \sqrt{(X_{n+1} - X_n)^2 + (Y_{n+1} - Y_n)^2}$ | cm | | MEAN SPD ML | Average Velocity ML | SWAY LENGTH ML/T | ${\rm cm.s^{-1}}$ | | MEAN SPD | Average Velocity | SWAY LENGTH/T | $\mathrm{cm.s^{-1}}$ | | AREA PER SEC. | Sway Area per sec. | $\frac{1}{2T} \sum_{n} X_{n+1}Y_n - X_nY_{n+1} $ | cm ² .s ⁻¹ | | STD SPD ML. | Deviation Velocity ML | $\sqrt{\frac{1}{\mathbf{N}}\sum_n (\mathbf{V}_n^x - \overline{\mathbf{V}^x})^2}$ | cm.s ⁻¹ | | STD SPD. | Deviation Velocity | $\sqrt{ rac{1}{{ ext{N}}}\sum_n ({ ext{V}}_n - \overline{ ext{V}})^2}$ | ${\rm cm.s^{-1}}$ | | PHASE PLANE ML | ML Phase Plane Parameter | $\sqrt{\mathrm{rms}\ \mathrm{mL}^2 + \mathrm{std}\ \mathrm{spd}\ \mathrm{mL}^2}$ | * | | VFY | - | STD SPD ² /MEAN AP | cm.s ⁻² | | LFS | Length over Area | SWAY LENGTH 95% CONF. AREA | cm^{-1} | | FRACTAL DIM | Fractal Dimension | see Def. Fractal Dimension | - | | SET OF ZERO CROSS. ML | Set of Zero Crossings ML | $\mathcal{Z}^{\mathrm{V}^x}$ | - | | ZERO CROSS. ML | Number of Zero Crossings ML | $\#\mathcal{Z}^{\mathrm{V}^x}$ | - | | PEAK VEL. + ML | Mean Positive Peak of ML Vel. | see Def. | $\mathrm{cm.s^{-1}}$ | | PEAK VEL ML | Mean Negative Peak of ML Vel. | see Def. | $\mathrm{cm.s^{-1}}$ | | PEAK VEL. ML | Mean Peak of ML Velocity | $ rac{1}{K} \sum_{\ell} p_{\ell}^{V^x}$ | ${\rm cm.s^{-1}}$ | | PEAK SD | Mean Peak of Sway Density | $ rac{1}{ ext{K}} \sum_\ell p_\ell^{ ext{SD}}$ | S | | DIST. PEAK SD | Mean Spatial Dist. between S.D. Peaks | see Def. | cm | | MEAN FREQ. ML | Mean Frequency ml | $ rac{1}{4\sqrt{2}} imes rac{ ext{MEAN SPD ML}}{ ext{MEAN DIST ML}}$ | Hz | | MEAN FREQ. ML-AP | Mean Frequency | $ rac{1}{4\sqrt{2}} imes rac{ exttt{MEAN SPD}}{ exttt{MEAN DIST}}$ | Hz | Table 4: Summary of the definition of the dynamic features. All the listed ML features can also be computed for the AP axis. For units, cm stands for centimeter, s for seconds, Hz for Hertz, and - for unitless. *: this feature is obtained by summing non-homogeneous term, and therefore has no valid units. et al., 2012]). Another quantity of interest for dynamic variables is the Sway Density, which is designed to encode the local stability of the COP signal. This is quantified by measuring around each point the number of consecutive points which lie in a circle of a certain radius. This count is then divided by the sampling frequency. In this study we choose to use a radius of 3mm, as it has been shown that the choice of the radius is not critical and that a value between 3 and 5 mm is adequate for most applications [Jacono et al., 2004]. (a) Illustration of the computation of the sway density at time t. In this example, four consecutive points fall in the circle of radius 3mm, therefore the sway density at time t is equal to $4/\mathrm{F}_s$ (b) Example of filtered trajectory of the sway density over time. The black crosses indicate the position of peaks identified using Definition 2 Figure 3: Illustration of the sway density computation and the peaks computation **Definition 1** (Sway Density). The Sway Density at time $n\Delta_t$ is defined as $$SD_n = \frac{SD_n^{(+)} + SD_n^{(-)}}{F_s}$$ where 373 381 382 383 384 386 387 $$SD_n^{(+)} = \max \left\{ q \ge 0, \ \forall p \le q, \ \sqrt{(X_{n+p} - X_n)^2 + (Y_{n+p} - Y_n)^2} \le 3mm \right\}$$ $$SD_n^{(-)} = \max \left\{ q \ge 0, \ \forall p \le q, \ \sqrt{(X_{n-p} - X_n)^2 + (Y_{n-p} - Y_n)^2} \le 3mm \right\}$$ Definition 2 (Peaks of sway density). To compute the peaks of the sway density, the signal is first low-pass filtered at 2.5 Hz with a Butterworth filter of order 4 [Jacono et al., 2004]. Let \widetilde{SD}_n represent the sway density signal obtained after filtering. Then, the peaks of SD_n are defined as the local maximum of the filtered signal, i.e. they occur at the indices in $\{n_{p_1}^S, \ldots, n_{p_K}^S\}$ such that for all $k \in \{1, \ldots, K\}, 1 < n_{p_k}^S < N, \widetilde{SD}_{n_{p_k}^S} > \widetilde{SD}_{n_{p_k}^S-1}$ and $\widetilde{SD}_{n_{p_k}^S} > \widetilde{SD}_{n_{p_k}^S+1}$. 379 An example of peaks identified on a sway density signal is shown in Figure 3b. **Computing Velocity** The COP trajectory recorded using force platforms is by nature a noisy signal. To address this problem, common preprocessing methods, such as low pass filters, are used to remove the high frequency components of the noise. However, there is no consensus on the frequency threshold that separates body sway from sensor noise. For instance, values of 5, 10 and 20 Hz have been proposed by [Geurts et al., 1993, Hernandez et al., 2015, Huurnink et al., 2013]. This choice has a significant impact on the computation of the COP velocity, in particular when using discrete derivative formula. Therefore, and to limit the influence of the hyperparameters and the force platform characteristics, it is important to use robust methods such as spline interpolation or Savitzky-Golay filters to differentiate the signal [Press and Teukolsky, 1990, Savitzky and Golay, 1964, Curtain and Pritchard, 1977]. **Notation** In the following, $V^x = (V_n^x)_{1 \le n \le N}$ and $V^y = (V_n^y)_{1 \le n \le N}$ represent the estimations of the COP velocities in the ML and AP axis, respectively. In our experiments, they are computed using a Savitsky-Golay filter with a polynomial of order 3 and a filter window of length 5. V represents the norm of the velocity, i.e. for each $1 \le n \le N$, $$V_n = \sqrt{(V_n^x)^2 + (V_n^y)^2}$$ The mean values of V^x , V^y and V are respectively denoted by $\overline{V^x}$, $\overline{V^y}$ and \overline{V} . Figure 4: An example of velocity signal. The red dots indicate zero crossings identified using Definition 3 and the black crosses indicate the position of peaks identified using Definition 4 **Definition 3** (Zero crossing points of velocity). Let $V=(V_n)_{1\leq n\leq N}$ stand for the velocity signal in the ML or AP axis. The zero crossing points z_1,\ldots,z_J , are the variables in $\{1,\ldots,N\}$ verifying the following conditions: 1. For all $$\ell \in \{1, \dots, J\}$$, $V_{z_{\ell}-1} \times V_{z_{\ell}} \leq 0$ and $V_{z_{\ell}} \neq 0$ 394 2. $$V_{z_1} \times V_{n_0} < 0$$ and for all $\ell \in \{2, \dots, J\}, V_{z_\ell} \times V_{z_{\ell-1}} < 0$ **Definition 4** (Peaks of velocity). 395 400 401 402 403 404 406 407 408 410 411 413 414 415 Let $V=(V_n)_{1\leq n\leq N}$ stand for V^x or V^y . Let z_1,\ldots,z_J be the zero crossing points of V. Then for all $1\leq 1$ so $\ell\leq K=J-1$, the ℓ -th peak of V occurs at the sampling variable $n_{p_\ell^V}$ and is equal to p_ℓ^V , where $n_{p_\ell^V}=1$ arg $\max_{n\in\{1,\ldots,N\},\ z_\ell\leq n\leq z_{\ell+1}-1}|V_n|$ and $p_\ell^V=V_{n_{p_\ell^V}}$. An example of peaks identified on a velocity signal is shown in Figure 4. Mean Velocity (Normalized Sway Length, Sway Path) The mean velocity of the COP is one of the most widely used variables. Overall, the mean velocity is considered as one of the most reliable feature, especially in the AP direction [Low et al., 2017]. This variable has been shown to be influenced by age-related postural alterations, under both eyes-open and eyes-closed conditions [Prieto et al., 1993, 1996] and to be predictive of the risk of falling [Howcroft et al., 2017]. Indeed, the COP movement velocity was significantly correlated to age-related neuromuscular phenomena such as loss of plantar flexor muscle volume [Kouzaki and Masani, 2012], tremors [Kouzaki and Masani, 2012] or an increase of the co-contraction strategy of agonist and antagonist muscles of the leg [Benjuya et al., 2004, Carpenter et al., 2001a, Ho and Bendrups, 2002, Nelson-Wong et al., 2012]. The perception of the COP movement velocity could be an important factor in the control of ankle extensor activity through anticipatory strategies [Masani, 2003, Sun et al., 2019], highlighting the impact of age-related neuromuscular deterioration on static balance, with significant differences between eyes open or closed conditions [Howcroft et al., 2015] and more generally on the risk of falling [Brauer et al., 2000, Kwok et al., 2015]. For a constant sampling interval, the mean velocity is defined as the sum of the distances between consecutive points, also called sway length, divided by the duration of the recording. Therefore, the mean velocity can be seen as a normalized version, with respect to the duration, of the sway length, which has been previously cited as the most common feature in the literature to evaluate the effect of exercise interventions [Low et al., 2017], and has been shown to distinguish people at risk of falling from healthy people [Kantner et al., 1991]. 418 SWAY LENGTH ML $$\sum_{n=1}^{N-1} |X_{n+1} - X_n|$$ 419
SWAY LENGTH AP $$\sum_{n=1}^{N-1} |Y_{n+1} - Y_n|$$ 420 SWAY LENGTH $$\sum_{n=1}^{N-1} \sqrt{(X_{n+1} - X_n)^2 + (Y_{n+1} - Y_n)^2}$$ Figure 5: The sway area per second sums the area of the successive triangles OS_nS_{n+1} formed at each time n by the points of the signal and the center of the trajectory O. The figure shows in blue the triangle formed at a specific time for a centered trajectory. 421 MEAN SPD ML $$\frac{\text{SWAY LENGTH ML}}{\text{T}}$$ 422 MEAN SPD AP $$\frac{\text{SWAY LENGTH AP}}{\text{T}}$$ 423 MEAN SPD $$\frac{\text{SWAY LENGTH ML}}{\text{T}}$$ Note that it is also possible to compute the mean velocity differently, using the Savitzky-Golay derivative previously discussed in the paragraph *Computing Velocity*. While not mathematically equivalent, these two definitions lead to similar values of mean velocity, as the average operator is robust to smooth interpolation such as Savitzky-Golay filters. Therefore we present here the normalized sway length formulation, which is frequently used in clinical studies [Low et al., 2017]. Sway Area per second This variable evaluates the average area circumscribed by the COP for each one second time interval. The interval duration used for its calculation may vary between studies [Hufschmidt et al., 1980], and is not always clearly stated in the literature [Maranesi et al., 2016]. The sway area per second is computed by adding the area of the triangles whose vertices are two consecutive points of the COP trajectory and the mean position of the COP [Prieto et al., 1996, Hufschmidt et al., 1980]. Figure 5 shows an example of the triangle formed at a specific time for a real signal. This feature has been shown to significantly differ between non-fallers and fallers [Maranesi et al., 2016, Lichtenstein et al., 1988, Pajala et al., 2008]. 436 AREA PER SEC. $$\frac{1}{2T} \sum_{n=1}^{N-1} |X_{n+1}Y_n - X_nY_{n+1}|$$ Phase plane parameter This feature is thought to express the dispersion of both the velocity and the position of the COP [Riley et al., 1995]. It has been claimed that this variable provides insight into this dynamic aspect of balance control, and significantly differs between young healthy and elderly participants [Raymakers et al., 2005]. Moreover the phase plane parameter has been found to be reliable in both open and close eyes conditions [Qiu and Xiong, 2015, Moghadam et al., 2011]. However it should be noted that the two terms that are added together, the standard deviation of position and the standard deviation of velocity, are not homogeneous. 444 STD SPD ML $$\sqrt{\frac{1}{N}\sum_{n=1}^{N}(V_n^x-\overline{V^x})^2}$$ 438 439 442 443 445 STD SPD AP $$\sqrt{\frac{1}{N}\sum_{n=1}^{N}(V_n^y-\overline{V^y})^2}$$ 446 PHASE PLANE ML $$\sqrt{\text{RMS ML}^2 + \text{STD SPD ML}^2}$$ 447 PHASE PLANE AP $\sqrt{\text{RMS AP}^2 + \text{STD SPD AP}^2}$ VFY ¹ [Gagey and Gentaz, 1993] first defined this parameter as the variance of the COP velocity divided by the mean position of the COP on the AP axis, but this definition was contested by more recent work [Gagey, 1999]. However, this definition is still commonly used (see e.g. [Aufauvre et al., 2005]), therefore we chose to report it below. The VFY could correlated with the tension of the posterior leg muscles (due to both viscoelasticity and basic tone) [de Tauzia et al., 2010, Gagey and Gentaz, 1993] but the link with physiology has yet to be demonstrated. Importantly, the VFY suffers from the same drawback as the mean value does, due to the variability in the placement of the feet on the force platform [Duarte and Freitas, 2010]. 455 STD SPD $$\sqrt{\frac{1}{N}\sum_{n=1}^{N}(V_{n}-\overline{V})^{2}}$$ 456 VFY^{1} $$\frac{STD SPD^{2}}{MEAN AP}$$ Length Over Area (LFS) In [Aufauvre et al., 2005] the length over area is defined as the total length of the sway path over the surface of the circumscribing area (circle or ellipse). In their study, the authors did not find any significant difference between fallers and non fallers for this variable, or according to whether the eyes were open or closed. [Kim et al., 2019] have shown that the length over area was correlated in eyes closed condition with mild-to-moderate traumatic brain injury, showing an poorest balance control when the white matter trauma is more severe. 463 LFS $$\frac{\text{SWAY LENGTH}}{95\% \text{ CONF. AREA}}$$ Fractal Dimension The fractal dimension is a unitless measure of the degree to which a curve fills the space it is embedded in [Prieto et al., 1996]. Previous works have claimed that the fractal dimension of the COP is one of the most reliable sway variable for differentiating among age groups and pathologies [Myklebust et al., 1995]. Three main methods are used to compute the fractal dimension [Prieto et al., 1996]. In a first model, the area of the stabilogram is approximated using a circle including all the points of the COP trajectory, which generally over estimates the area enclosed by the signal [Prieto et al., 1996]. In the two other methods, the area is computed using either a confidence circle or a confidence ellipse. We present hereafter the formula using the confidence ellipse, which is more flexible. The value of the fractal dimension could increase in healthy adults when the eyes are closed [Tassani et al., 2019] or when wearing orthopaedic insoles [Bateni, 2013]. Significantly higher values were found in young participants than in elderly people during eyes open recording [Qiu and Xiong, 2015]. These findings are more in line with an improvement in stability as the value of the fractal dimension increases. FRACTAL DIM $$\frac{\log N}{\log N + \log \sqrt{\frac{4}{\pi} \times 95\% \text{ conf. Area}} - \log \text{SWay length}}$$ 2ero Crossing (of Velocity) This variable is defined as the number of times that the COP velocity crosses the zero value axe [Jeong et al., 2007]. Tuunainen et al. indicated that "zero crossing velocity showed a high rate of velocity change around the neutral position of stance" [Tuunainen et al., 2013]. The latter found an association between this variable and falls, but no significant difference between fallers and non-fallers, which is in line with previous results that found no significant difference, even when comparing the two groups of older people to healthy subjects [Hewson et al., 2010]. Let Z^{V^x} , Z^{V^y} denote the sets of zero crossing points of V^x, respectively V^y, given by Definition 3. The zero crossing variables represent the number of zero crossing points in each direction: 485 ZERO CROSS. ML $$\#\mathcal{Z}^{V^a}$$ 486 ZERO CROSS. AP $$\#\mathcal{Z}^{V^y}$$ ¹This definition is contested, see e.g [Gagey, 1999] 501 502 505 506 507 509 511 514 519 521 523 524 **Mean Velocity Peak** A velocity peak has been defined as the maximal value between two zero crossing points [Hewson et al., 2010]. The positive peaks of velocity, which correspond to displacements forward and to the right in the AP and ML axis respectively, may be considered separately from negative peaks, which correspond to displacements backward and to the left in the AP and ML axis respectively. The mean AP velocity peak has been shown to discriminate between elderly fallers and non-fallers [Hewson et al., 2010]. An increase in the absolute value would indicate poorest postural control. The zero crossing velocity variables are correlated 492 with each other in each direction (R=0.88) but may be more weakly correlated with other variables, especially 493 with positional variables (R<0.8), in the older population [Rasku et al., 2012]. Peak COP velocity has also been previously correlated to the severity of knee osteoarthrosis during the transition task from double-leg to 495 single-leg standing [Sabashi et al., 2021]. 496 $$\begin{array}{ll} \text{497} & \text{PEAK AP VEL.} + \text{ML} & \frac{\sum_{\ell=1}^{K} p_{\ell}^{\text{V}^x} \times \mathbb{1}_{\left\{p_{\ell}^{\text{V}^x} > 0\right\}}}{\sum_{\ell=1}^{K} \mathbb{1}_{\left\{p_{\ell}^{\text{V}^x} > 0\right\}}} \\ \\ \text{498} & \text{PEAK AP VEL.} - \text{ML} & \frac{\sum_{\ell=1}^{K} p_{\ell}^{\text{V}^x} \times \mathbb{1}_{\left\{p_{\ell}^{\text{V}^x} < 0\right\}}}{\sum_{\ell=1}^{K} \mathbb{1}_{\left\{p_{\ell}^{\text{V}^x} < 0\right\}}} \\ \\ \text{499} & \text{PEAK AP VEL. ML} & \frac{1}{K} \sum_{\ell=1}^{K} p_{\ell}^{\text{V}^x} \end{array}$$ These variables are similarly defined in the AP axis through replacing V^x by V^y Mean Sway Density Peak With the idea that postural control in quiet standing is governed by two major mechanisms (intrinsic feedback and anticipatory feedforward), previous studies have focused on structural posturographic parameters. [Baratto et al., 2002] have proposed a model in which these mechanisms, modulated by ankle muscle activation and the internal inverted pendulum model respectively, distinguish between short and long term factors. From this hypothesis, they propose to analyse the Sway Density (SD), counting the number of consecutive samples of the posturographic trajectory that, for each instant, fall within a circle of given radius defined by the operator (typically between 3 and 5 mm [Jacono et al., 2004]). In the resulting signal, the SD peaks (high values of the number of points in the circle) correspond to the moments when the ankle torque and the associated motor control systems enable relatively stable COP displacements. 510 PEAK SD $$\frac{1}{K} \sum_{\ell=1}^{K} p_{\ell}^{\text{SD}}$$ PEAK AP VEL. ML Mean Spatial Distance Between Sway Density Peaks While peaks of SD correspond to relatively stable COP displacements, valleys (low values of SD) are interpreted as destabilization phases in which the ankle 512 torque rapidly changes from one stable state to another, similarly to a micro-fall. Hence, the distance between two consecutive peaks in the SD represent a micro-fall or a period of destabilization for [Baratto et al., 2002]. This saccade could correspond to the amplitude of the posturographic
command or "the amount of change in 515 torque required for stabilization" [Vieira et al., 2009b]. The values of the "jump" from one posturographic target to the next can be averaged to compute the mean spatial distance between peaks. The mean distance between peaks seems to increase significantly when the eyes are closed [Kim et al., 2012, Vieira et al., 2009b], 518 in old age [Kim et al., 2012] or with history of past falls [Audiffren et al., 2016, Maranesi et al., 2016]. 520 DIST. PEAK SD $$\frac{1}{K} \sum_{\ell=1}^K \sqrt{(X_{\tau_{\ell+1}} - X_{\tau_\ell})^2 + (Y_{\tau_{\ell+1}} - Y_{\tau_\ell})^2}$$ Mean Frequency The mean frequency is defined by [Prieto et al., 1996] as the rotational frequency, considering the total length of the COP as a trajectory around a circle with a radius equals to the mean distance. This variable is proportional to the ratio of the mean velocity to the mean distance, which has been studied in [Hufschmidt et al., 1980]. In [Maki et al., 1994], the mean frequency does not significantly differ between fallers and non-fallers in prospective follow-up. This result is in line with other studies on then retrospective evaluation of falls [König et al., 2014, Maranesi et al., 2016]. However, it has been argued that MEAN FREQUENCY, especially in the AP direction, can be used to distinguishing elderly fallers from non-fallers [McGrath et al., 2012], and is reliable [Qiu and Xiong, 2015]. $$\frac{1}{4\sqrt{2}} \times \frac{\text{mean SPD ML}}{\text{mean DIST ML}}$$ 530 Mean Freq. Ap $$\frac{1}{4\sqrt{2}} \times \frac{\text{mean SPD AP}}{\text{mean DIST AP}}$$ 531 Mean Freq. ML-Ap $$\frac{1}{2\pi} \times \frac{\text{mean SPD AP}}{\text{mean DIST AP}}$$ ## 3.4 Frequency variables 535 | Feature | Full Name | Formula | Units | |-------------------------|-------------------------------|---|--------------| | TOTAL POWER ML | Total Power ML | $\sum_{k=k_{ ext{inf}}}^{k_{ ext{sup}}} \Gamma_k^X$ | cm^2 | | 50 % power freq ml | Median of PSD ML | $\inf \left\{ k^{\star} \in \mathbb{N}, \sum_{k=k_{\inf}}^{k^{\star}} \Gamma_k^X \geq 0.5 \sum_{k=k_{\inf}}^{k_{\sup}} \Gamma_k^X \right\} \times \frac{\mathbf{F}_s}{\mathbf{N}}$ | Hz | | 95 % power freq ml | 95% percentile of PSD ML | $\inf \left\{ k^{\star} \in \mathbb{N}, \ \sum_{k=k_{\inf}}^{k^{\star}} \Gamma_k^X \ge 0.95 \sum_{k=k_{\inf}}^{k_{\sup}} \Gamma_k^X \right\} \times \frac{F_s}{N}$ | Hz | | POWER MODE ML | Mode of PSD | $ rac{F_s}{N} imes rg \max_{k_{inf} \leq k \leq k_{sup}} \Gamma_k^X$ | Hz | | CENTROIDAL FREQ ML | Centroidal Frequency ML | $\sqrt{ rac{M_2^X}{M_0^X}}$ | Hz | | FREQ. DISP. ML | Frequency Dispersion ML | $\sqrt{1 - \frac{(M_1^X)^2}{M_2^X M_0^X}}$ | - | | energy ≤ 0.5 Hz ML | Energy Content below 0.5Hz ML | $\sum_{f_{ ext{inf}} < f_k < 0.5} \Gamma^X(f_k)$ | ${\rm cm}^2$ | | ENERGY 0.5-2 HZ ML | Energy Content 0.5-2Hz ML | $\sum_{0.5 < f_k \leq 0.5}^{J_{inf} < J_k \leq 0.5} \Gamma^X(f_k)$ | ${\rm cm}^2$ | | energy > 2hz ml | Energy Content above 2Hz ML | $\sum_{2 < f_k \le f_{ ext{sup}}}^{0.5 < f_k \le 2} \Gamma^X(f_k)$ | ${\rm cm}^2$ | | FREQ. QUOTIENT ML | Frequency Quotient | $\frac{\sum_{2 < f_k \le 5} \Gamma^X(f_k)}{\sum_{f_{\inf} < f_k \le 2} \Gamma^X(f_k)}$ | - | Table 5: Summary of the definitions of the frequency features. All the listed features can also be computed for the AP coordinates. For units, cm stands for centimeter, Hz for Hertz, and — for unitless. This category is similar to the one presented in [Prieto et al., 1996], and includes the variables used to describe the Power Spectral Density of the COP trajectory. Similarly to the dynamic variables, these descriptors are influenced by the sampling frequency of the force platform as well as the signal preprocessing. **Notation** In the following, $\Gamma_k^X = \Gamma^X(f_k)$ denotes the Power Spectral Density (PSD) coefficient of X corresponding to the frequency $f_k = k \frac{F_s}{N}$, for $k \in \{1, \dots, N/2\}$ if N is even, $k \in \{1, \dots, (N-1)/2\}$ otherwise. The frequency-domain measures are calculated for the frequency range from $f_{\inf} = 0.15\,\mathrm{H}_z$ to $f_{\sup} = 5\,\mathrm{H}_z$, which corresponds to variables $k_{\inf} = \lfloor 0.15 \frac{N}{F_s} \rfloor + 1$ and $k_{\sup} = \lfloor 5 \frac{N}{F_s} \rfloor$, an interval likely to provide significant information about the postural control system [Prieto et al., 1996]. We denote by $$M_\ell^X = \sum_{k=k}^{k_{ ext{sup}}} f_k^\ell \, \Gamma_k^X$$ the ℓ -th moment of the PSD. Γ_k^Y and M_ℓ^Y are defined similarly. In our experiments, we estimate the PSD using Welch's method with 10 seconds segments, with 50% overlapping and linear detrending [Vieira et al., 2009a]. Total Power The total power is the energy contained in the entire power spectrum [Prieto et al., 1996]. Previous works have shown that the TOTAL POWER may be significantly larger in elderly participants compared to young adults [Loughlin and Redfern, 2001, Kim et al., 2010]. In both groups, TOTAL POWER seems positively correlated with height and be also dependant of the base-of-support in ML direction [Chiari et al., 2002, Kim et al., 2014b]. TOTAL POWER ML $$\sum_{k=k_{ ext{inf}}}^{k_{ ext{sup}}} \Gamma_k^X$$ The same feature is defined for the AP axis through replacing Γ_k^X by Γ_k^Y . Quantiles of PSD [Baratto et al., 2002] have shown that the frequency containing approximately 80% (from 70.7% to 95%) of the PSD may be of interest to the quantification of postural control. However these percentage values of interest vary significantly between studies. In [Maranesi et al., 2016] the authors proposed the values from 50 to 95%, which were in turn used in [Howcroft et al., 2017]. In particular, the 50% power frequency has been shown to be sensitive to muscle fatigue [Corbeil et al., 2003]. 50% power freq. ML $$\inf \left\{ k^\star \in \mathbb{N}, \; \sum_{k=k_{\mathrm{inf}}}^{k^\star} \Gamma_k^X \geq 0.5 \sum_{k=k_{\mathrm{inf}}}^{k_{\mathrm{sup}}} \Gamma_k^X \right\} imes \frac{\mathrm{F}_s}{\mathrm{N}}$$ 95% POWER FREQ. ML inf $$\left\{k^{\star} \in \mathbb{N}, \sum_{k=k_{\text{inf}}}^{k^{\star}} \Gamma_{k}^{X} \geq 0.95 \sum_{k=k_{\text{inf}}}^{k_{\text{sup}}} \Gamma_{k}^{X} \right\} \times \frac{F_{s}}{N}$$ The same features are defined for the AP axis through replacing Γ_k^X by Γ_k^Y . PSD mode The power spectrum density mode is the dominant frequency of the PSD [McClenaghan et al., 1995]. This variable has previously been used to track changes in the physiological rhythm, under the assumption that it would reflect modifications of the postural control strategy [Mackey and Glass, 1977, McClenaghan et al., 1995, Williams et al., 1997]. This parameter showed no significant difference between fallers and non fallers in either the AP or ML direction [Lajoie, 2004]. 558 POWER MODE ML $$\frac{\mathbf{F}_s}{\mathsf{N}} \times \arg\max_{k_{\inf} \leq k \leq k_{\sup}} \Gamma_k^X$$ The same feature is defined for the AP axis through replacing Γ_k^X by Γ_k^Y . Centroidal Frequency and Frequency Dispersion Both of these metrics measure the concentration of the spectral mass in the PSD. The centroidal freq locates where the spectral mass is concentrated, and is defined as the square root of the ratio of the second to the zeroth spectral moments. The frequency dispersion is a measure of the variability in the frequency content of the power spectral density, ranging from zero (no dispersion) to one (uniform spectral bandwidth) [Vanmarcke, 1972, Prieto et al., 1996]. In previous studies, these two variables have been found to be not significantly different between young individuals and elderly [Loughlin and Redfern, 2001]. $$_{567}$$ CENTROIDAL FREQ ML $\sqrt{\frac{M_2^X}{M_0^X}}$ FREQ. DISP. ML $$\sqrt{1-\frac{(M_1^X)^2}{M_2^XM_0^X}}$$ The same features are defined for the AP axis through replacing M_ℓ^X by M_ℓ^Y . | Feature | Full Name | Formula | |---------------------|-------------------------------------|--| | SHORT-TERM DIFF. ML | Short term diffusion coefficient ML | $\exp(\hat{\alpha}_s^X)$ | | LONG-TERM DIFF. ML | Long term diffusion coefficient ML | $\exp(\hat{lpha}_\ell^X)$ | | SHORT-TERM SCAL. ML | Short term Scaling coefficient ML | $\hat{eta}_s^X/2$ | | LONG-TERM SCAL. ML | Long term Scaling coefficient ML | $\hat{eta}_\ell^X/2$ | | CRIT. TIME ML | Critical Time ML | $\exp\left(\frac{\hat{\beta}_s^X - \hat{\beta}_\ell^X}{\hat{\alpha}_s^X - \hat{\alpha}_\ell^X}\right)$ | | CRIT. MSD ML | Critical MSD ML | $\hat{\alpha}_s^X \times \text{Crit. Time ML} + \hat{\beta}_s^X$ | Table 6: Summary of the definition of the stochastic features. All the listed features can also be computed for the AP coordinates. Units are not reported since they are undefined in the stochastic models. Energy Content of Frequencies Intervals The energy contents of particular frequency bands have raised 570 significant interest in the evaluation of postural control. In [Soames and Atha, 1982], the energy content (in 571 the AP direction) of the intervals 0.3-0.45 Hz, 0.6-0.75 Hz and 1.05-1.20 Hz were considered, while in the 572 ML directions, the intervals were 0.30-0.45 Hz, 0.45-0.60 Hz and 0.75-0.90 Hz. Since then, other studies have 573 proposed less granular intervals, to focus on low frequencies (between 0-2 Hz) and high frequencies (2-5Hz) 574 [Bauer et al., 2010, 2016a, Aufauvre et al., 2005]. This difference is partly due to the population studied: while [Soames and Atha, 1982] have studied the balance of young, healthy people, the more recent studies 576 were interested in older subjects. Similarly, [Baloh et al., 1998a] have proposed to study the quotient of the 577 power of high
frequencies (2-5Hz) over the power of low frequencies (0-2Hz). This quotient has been shown 578 to significantly differ between young and elderly people [Baloh et al., 1994], and may be relevant to evaluate the influence of neurological impairment over postural control [Sullivan et al., 2006, 2010, 2015]. 580 The same features are defined for the AP axis through replacing Γ_k^X by Γ_k^Y . #### **Stochastic variables** 3.5 591 The variables of this category are derived from stochastic models of the COP. The descriptors presented 587 originate from the seminal work of [Collins and De Luca, 1993], which introduced the idea of the SDA. 588 Stabilogram Diffusion Analysis In [Collins and De Luca, 1993], the authors have suggested that the COP 589 quadratic displacement is similar to the one of a fractional Brownian motion with two regimes. This claim was 590 based on the analysis of the Mean square Displacement (MSD) defined as follows: **Definition 5** (MSD). For any $0 \le \Delta t \le \Delta t_N = T/3$, the mean square displacement of the COP along the ML axis on the time interval Δt is defined as $$\mathit{MSD}^X(\Delta t) = \frac{1}{N - F_s \Delta t} \sum_{n=1}^{N - F_s \Delta t} (X_{n + F_s \Delta t} - X_n)^2$$ This function can be similarly defined for the AP axis with Y. 594 595 597 598 599 600 601 602 603 605 606 607 609 610 611 612 613 614 616 Figure 6: Example of Stabilogram Diffusion Analysis and parameters estimation in each regime. The fitted functions in each region are drawn in blue. (Top) Curve of the MSD as a function of the time interval. (Bottom) Curve of the MSD as a function of the time interval on a logarithmic scale and intervals of time used for the estimation of the linear functions in each region. The constraint $\Delta t \leq T/3$ limits the definition of the MSD to time intervals shorter than one third of the total duration, a necessary restriction to avoid unreliable results [Collins and De Luca, 1993]. In their work, [Collins and De Luca, 1993] have noted that there exists a critical time Δt_c such that the curve of the MSD variations with respect to Δt (called diffusion plot) can be split into two regions with very different behaviors: a short-term region ($\Delta t \leq \Delta t_c$) and a long-term region ($\Delta t \geq \Delta t_c$) (see Figure 6). The short-term and long-term regions are the expression of different behaviors of the dynamic on different time scales: on short time scales, the system exhibits persistence, i.e. positive correlation between successive displacements, and on longer time scales, the dynamic is anti-persistent, meaning that the successive displacements are negatively correlated [Collins and De Luca, 1993]. Different interpretations have been made following this observation. [Collins and De Luca, 1993] have claimed that it was the result of two different postural control regimes: on short time scales, the system evolves in open-loop, whereas on longer time scales, control is activated and produces postural adjustments. This conclusion has been however refuted by several authors, with the argument that a closed-loop continuous control model could reproduce similar patterns of the diffusion plot [Peterka, 2000]. Several control models have been proposed to explain the phenomenon and there is no consensus on the true model of control which governs posture stabilization [Collins and De Luca, 1993, Delignières et al., 2011, Peterka, 2000, Chow and Collins, 1995]. These short-term and long-term regions can be characterized through the estimation of the parameters in a tworegimes model of the MSD. For this purpose, we use the single model formulation proposed by [Chiari et al., 2000]: $$\mathit{MSD}^X(\Delta t) = egin{cases} \mathsf{D}_s \, \Delta t^{2\mathsf{H}_s} & \mathsf{for} \, \Delta t \leq \Delta t_c \, ext{(short-term)} \\ \mathsf{D}_\ell \, \Delta t^{2\mathsf{H}_\ell} & \mathsf{for} \, \Delta t \geq \Delta t_c \, ext{(long-term)} \end{cases}$$ where H_s and H_ℓ are the short and long-term scaling exponents and D_s and D_ℓ can be seen as short and long-term diffusion coefficients. Note that the model and the computation technique proposed in [Chiari et al., 2000] are not exactly the same as the one formerly introduced in [Collins and De Luca, 1993], therefore the resulting features are not directly comparable with the previous ones. However the general interpretation of the variables remains similar. *Diffusion and scaling coefficients* For parameters estimation, the two regimes (short-term and long-term) of the MSD are approximated by two linear functions of the time interval on a logarithmic scale: $$\ln \textit{MSD}^X(\Delta t) = \begin{cases} \alpha_s^X \, \ln(\Delta t) + \beta_s^X & \text{for } \Delta t \in [\Delta t_0, \Delta t_1] \\ & \textbf{(1) short-term} \\ \alpha_\ell^X \, \ln(\Delta t) + \beta_\ell^X & \text{for } \Delta t \in [\Delta t_2, \Delta t_N] \\ & \textbf{(2) long-term} \end{cases}$$ If this model fitted perfectly the data, we could directly search for the time Δt_c which separates the diffusion plot into two different linear regions. However, as stated in [Chiari et al., 2000], there exists for some trajectories a transition region in the MSD curve which is not well fitted by a linear model. For this reason the short-term regime is estimated on a first region $[\Delta t_0, \Delta t_1]$ where $\Delta t_0 = 1/F_s$ and Δt_1 is defined in the range [0.3s, 2.5s] as the highest time stamp which minimizes the root mean square error (RMSE) in the Ordinary Least Square (OLS) fit of the model (1), then the long-term regime is estimated on a second region $[\Delta t_2, \Delta t_N]$ where $\Delta t_N = T/3$ and Δt_2 is defined in the range [0.3s, 2.5s] as the highest time stamp which minimizes the mean square error in the Ordinary Least Square (OLS) fit of the model (2). An illustration of this estimation can be found in Figure 6. Let $\hat{\alpha}_s^X$, $\hat{\alpha}_\ell^X$, $\hat{\beta}_s^X$ and $\hat{\beta}_\ell^X$ denote the OLS estimator of α_s^X , α_ℓ^X , β_s^X and β_ℓ^X , respectively. Then: SHORT-TERM DIFF. ML $$\exp(\hat{\alpha}_s^X)$$ 619 620 62 622 623 626 627 645 646 647 630 LONG-TERM DIFF. ML $$\exp(\hat{lpha}_{\ell}^X)$$ SHORT-TERM SCAL. ML $$\frac{\hat{\beta}_s^X}{2}$$ 1832 LONG-TERM SCAL. ML $$\frac{\hat{eta}_\ell^X}{2}$$ These indices are similarly defined for the AP axis through replacing X by Y. In other words, the SDA models the CoP behavior on short and long-term scales as two distinct stochastic 634 processes. On the one hand, the diffusion coefficients are interpreted as the level of stochastic activity of the 635 process in the two control regimes, along the mediolateral and the anteroposterior axis [Melzer et al., 2010, 636 Collins and De Luca, 1993]. The short-term diffusion coefficient has been shown to differ significantly between 637 individuals who sustained injuries after falls compared to non fallers and fallers without injuries [Kurz et al., 2013]. On the other hand, the scaling coefficients are thought to quantify the correlation of the increments 639 of the process in its persistent (short-term) and its anti-persistent (long-term) regimes, along the mediolateral and the anteroposterior axis. In practice, the scaling coefficients generally appear to satisfy $H_s \geq 1/2$ and $H_{\ell} \leq 1/2$. Consequently, the short-term increments are considered to be positively correlated and the long-642 term increments negatively correlated [Collins and De Luca, 1993]. The long-term scaling coefficient has been 643 shown to significantly differ between young individuals and elderly. [Muir et al., 2013], Critical time and Critical MSD The critical time interval δ_c is estimated as the value of δ for which the two linear functions in the logarithmic scale, (1) (short-term) and (2) (long-term), intersect. The critical mean square displacement, is defined as the ordinate of the critical point, i.e. the value of the linear approximation at the critical time interval [Melzer et al., 2010]. It represents the mean quadratic displacement covered in the critical time interval, i.e. in a period of persistence. While these variables differ significantly between fallers and non fallers in [Tuunainen et al., 2014] and between individuals who sustained injuries after falls compared to non fallers and fallers without injuries in [Kurz et al., 2013], previous works have shown that these variables have low reliability [Qiu and Xiong, 2015]. Moreover, these variables are uniquely derived from the other SDA parameters and therefore with these additional features the model is not parcimonious [Chiari et al., 2000]. Let $\hat{\alpha}_s^X$, $\hat{\alpha}_\ell^X$, $\hat{\beta}_s^X$ and $\hat{\beta}_\ell^X$ denote the OLS estimator of α_s^X , α_ℓ^X , β_s^X and β_ℓ^X , respectively. Then: ess CRIT. TIME ML $$\exp\left(rac{\hat{eta}_s^X - \hat{eta}_\ell^X}{\hat{lpha}_s^X - \hat{lpha}_\ell^X} ight)$$ Note that if the estimated critical time is larger than duration limit $\Delta t_{\rm N}$, it is set at $\Delta t_{\rm N}$. The critical mean square displacement is defined as ``` \hat{lpha}_s^X imes Crit. MSD ML \hat{lpha}_s^X imes Crit. Time ML + \hat{eta}_s^X ``` Critical time and critical MSD are similarly defined for the AP axis with Y. ## 3.6 Descriptive analysis Average values of the different variables, and their standard deviations, are reported in Table 7. Variables that are strongly correlated to the total duration of the recording (such as LFS ML AND AP) are reported separaterly in the second part of the table. Interestingly, and despite the signifiant differences between the two datasets, the range of values obtained for were comparable for most variables. However, there are still some noticeable differences, particularly for the variables PEAK VELOCITY ML, TOTAL POWER ML,
ENERGY CONTENT BELOW 0.5Hz ML and SHORT TIME DIFFUSION ML which show standard deviations higher than the means on the SmartCheck database. This is in line with previous works that have hypothesized that longer recording duration might be necessary for the proper evaluation of the power spectrum [Vieira et al., 2009b]. Moreover, the standard deviation of the variables is generally higher in the recordings from our protocol, which might result from both the shorter recording duration, and the more varied demographics. ### 4 Discussion The main objective of this review is to present the variables calculated from the stabilogram that are most commonly used in the analysis of balance in elderly participants prone or not to fall. The rationale of this approach is to propose a common framework for the analysis of COP displacements by presenting together the calculation methods and the values obtained on two different databases. In order to provide an explicit corpus, we relied on a recent systematic review with published methodology and broad selection criteria for the variables. The results of 70 variables are presented for two groups of participants aged 60 and over, with and without a history of falls. The means and standard deviations thus obtained make it possible to appreciate the homogeneity of the values despite significant differences in the recording protocols. The first protocol corresponds to a methodology easily applicable in routine consultations, while the other is more in line with the metrological standards of posturography. #### 4.1 Ageing and postural control Falls in the older population are multifactorial in nature as they include socio-economic and environmental elements in addition to biomedical factors. By providing a quantification of motor control in the elderly people, static posturography could help to determine a balance semiology [Nardone and Schieppati, 2010], especially for the most fragile people. This is particularly true since age-related sensorimotor alterations can impact motor functions and increase the risk of falling [Ambrose et al., 2015]. Static balance is controlled in a complex way by different sensory (visual, vestibular, proprioceptive and tactile) and neuromotor systems (involving both sensory integration and movement planning to cortical control of standing and spinal reflex action resulting in changes in joint stiffness and damping) [Winter et al., 1998, Kang et al., 2013, Goodman and Tremblay, 2021]. Older people show altered motor strategies compared to young and healthy people, either for balance maintenance tasks or postural anticipation in the face of destabilisation [Woollacott and Manchester, 1993, Garcez et al., 2021]. But, in addition to the difficulty of studying the interactions between these systems and their actions in posture maintenance, there is a lack of interpretability of the COP variables [Palmieri et al., 2002], which is enhanced by the diversity of methods for calculating them. Finally, the choice of variables is difficult to justify from a physiological point of view [Chaudhry et al., 2011]. In the recent years, numerous methods have been proposed to analyse the trajectory of the COP, in order to investigate the differences between elderly fallers and non-fallers, as presented in our previous systematic review [Quijoux et al., 2020]. At the same time, the univariate analysis of postural variables provides limited information on the physiological causes of falls [Duarte and Freitas, 2010]. This has encouraged the multiplication of variables, as it may be necessary to analyse all the components of the stabilogram — | | Mean \pm std (WBB dataset) | Mean \pm std (Public dataset) | |---|-------------------------------------|--------------------------------------| | mean distance ML | 0.31 ± 0.25 | 0.24 ± 0.10 | | mean distance AP | 0.53 ± 0.28 | 0.39 ± 0.19 | | mean distance Radius | 0.68 ± 0.38 | 0.51 ± 0.22 | | maximal distance ML
maximal distance AP | 1.21 ± 0.98
1.89 ± 1.00 | 0.94 ± 0.40 | | maximal distance AP maximal distance Radius | 1.89 ± 1.00
2.05 ± 1.16 | 1.47 ± 0.65
1.58 ± 0.68 | | rms ML | 0.40 ± 0.31 | 0.30 ± 0.12 | | rms AP | 0.66 ± 0.35 | 0.49 ± 0.24 | | rms Radius | 0.79 ± 0.44 | 0.59 ± 0.26 | | amplitude ML | 2.08 ± 1.67 | 1.67 ± 0.69 | | amplitude AP | 3.37 ± 1.79 | 2.64 ± 1.15 | | amplitude ML AND AP | 3.59 ± 2.03 | 2.79 ± 1.20 | | quotient both direction ML AND AP
planar deviation ML AND AP | 0.62 ± 0.29
0.79 ± 0.44 | 0.66 ± 0.17
0.59 ± 0.26 | | coefficient sway direction ML AND AP | 0.79 ± 0.44
0.01 ± 0.30 | 0.03 ± 0.20
0.03 ± 0.20 | | confidence ellipse area ML AND AP | 6.01 ± 9.35 | 3.02 ± 3.32 | | principal sway direction ML AND AP | 17.91 ± 20.91 | 18.99 ± 11.57 | | mean velocity ML | 0.83 ± 0.68 | 0.50 ± 0.22 | | mean velocity AP | 1.60 ± 1.36 | 0.87 ± 0.39 | | mean velocity ML AND AP | 1.97 ± 1.60 | 1.10 ± 0.47 | | sway area per second ML AND AP | 0.48 ± 0.79 | 0.18 ± 0.20 | | phase plane parameter ML | 1.20 ± 1.03 | 0.75 ± 0.31 | | phase plane parameter AP
peak velocity pos SPD ML | 2.23 ± 1.74
1.04 ± 0.98 | 1.25 ± 0.55
0.65 ± 0.32 | | peak velocity pos SPD ML peak velocity neg SPD ML | 1.04 ± 0.98
1.05 ± 1.06 | 0.65 ± 0.32
0.65 ± 0.33 | | peak velocity all SPD ML | 1.05 ± 1.02 1.05 ± 1.02 | 0.65 ± 0.33 | | peak velocity pos SPD AP | 2.17 ± 2.12 | 1.19 ± 0.60 | | peak velocity neg SPD AP | 2.14 ± 1.95 | 1.20 ± 0.64 | | peak velocity all SPD AP | 2.16 ± 2.03 | 1.19 ± 0.62 | | mean peak Sway Density | 1.05 ± 0.71 | 1.84 ± 0.92 | | mean distance peak Sway Density | 0.59 ± 0.39 | 0.34 ± 0.20 | | mean frequency ML
mean frequency AP | 0.52 ± 0.21
0.56 ± 0.29 | 0.39 ± 0.13
0.42 ± 0.15 | | mean frequency ML AND AP | 0.30 ± 0.29 0.48 ± 0.22 | 0.42 ± 0.13
0.37 ± 0.12 | | total power ML | 3.03 ± 8.22 | 2.14 ± 2.08 | | total power AP | 6.33 ± 8.52 | 5.66 ± 10.22 | | power frequency 50 ML | 0.42 ± 0.13 | 0.43 ± 0.14 | | power frequency 50 AP | 0.37 ± 0.18 | 0.42 ± 0.13 | | power frequency 95 ML | 1.16 ± 0.42 | 1.09 ± 0.23 | | power frequency 95 AP | 1.33 ± 0.56 | 1.23 ± 0.24 | | frequency mode ML frequency mode AP | 0.32 ± 0.17
0.25 ± 0.19 | 0.33 ± 0.18
0.27 ± 0.14 | | centroid frequency ML | 0.65 ± 0.18 | 0.27 ± 0.14 0.61 ± 0.14 | | centroid frequency AP | 0.69 ± 0.25 | 0.66 ± 0.14 | | frequency dispersion ML | 0.61 ± 0.07 | 0.56 ± 0.06 | | frequency dispersion AP | 0.65 ± 0.07 | 0.60 ± 0.05 | | energy content below 05 ML | 2.23 ± 7.21 | 1.36 ± 1.75 | | energy content below 05 AP | 4.23 ± 5.71 | 3.67 ± 8.47 | | energy content 05 2 ML
energy content 05 2 AP | 0.75 ± 1.27
1.83 ± 3.46 | 0.76 ± 0.90 | | energy content above 2 ML | 0.05 ± 0.24 | 1.93 ± 2.23
0.01 ± 0.01 | | energy content above 2 AP | 0.26 ± 0.21 0.26 ± 1.53 | 0.05 ± 0.07 | | frequency quotient ML | 0.02 ± 0.02 | 0.01 ± 0.00 | | frequency quotient AP | 0.03 ± 0.06 | 0.01 ± 0.01 | | short time diffusion ML | 0.72 ± 1.44 | 0.32 ± 0.34 | | long time diffusion ML | 0.36 ± 1.10 | 0.09 ± 0.14 | | critical displacement MI | 0.54 ± 0.74 | 0.41 ± 0.22 | | critical displacement ML
short time scaling ML | 0.31 ± 1.05
0.83 ± 0.07 | 0.07 ± 0.14
0.90 ± 0.03 | | long time scaling ML | 0.83 ± 0.07
0.17 ± 0.19 | 0.90 ± 0.03
0.19 ± 0.10 | | short time diffusion AP | 1.72 ± 2.53 | 0.80 ± 1.03 | | long time diffusion AP | 0.88 ± 1.19 | 0.26 ± 0.59 | | critical time AP | 0.68 ± 0.47 | 0.43 ± 0.24 | | critical displacement AP | 0.81 ± 1.17 | 0.22 ± 0.58 | | short time scaling AP | 0.81 ± 0.10 | 0.88 ± 0.03 | | long time scaling AP | 0.08 ± 0.18 | 0.18 ± 0.12 | | Duration sensitive variables | Mean ± std (WBB dataset) | Mean ± std (Public dataset) | | Duration sensitive variables | | | | | 14.49 ± 9.52 | 31.26 ± 14.83 | | LFS ML AND AP
fractal dimension ML AND AP | 14.49 ± 9.52
1.88 ± 0.23 | 31.26 ± 14.83
1.98 ± 0.15 | | LFS ML AND AP | | | Table 7: Distribution of COP variables. For each variable, average values and standard deviations are reported in each dataset. WBB dataset refers to the data from our experiment, recorded with the Wii Balance Board and Public dataset refers to the open-acces dataset of human balance [Santos and Duarte, 2016a]. Duration sensitive variables refer to variables that are strongly dependent on the duration of the recording. 709 710 71 712 713 716 717 718 720 721 724 725 726 727 728 729 73 732 733 734 735 738 739 740 742 743 746 747 750 75 753 754 756 in a particular axis and in two dimensions - to fully capture the COP dynamics and the age-related motor adaptations [Bargiotas et al., 2018]. Indeed, age-related decline in postural control is not uniform, which is understandable given the various anatomical structures that may be affected [Shaffer and Harrison, 2007]. Distal myelin fibres and sensory receptors are affected by senescence and sedentary life, leading to impaired proprioception, particularly in the hips, knees and ankles [Horak et al., 1989, Robbins et al., 1995], as well as loss of touch discrimination [Perry, 2006], with a potential predominance in the distal joints of the lower limb [Pickard et al., 2003, Shaffer and Harrison, 2007]. At the neuromuscular level, all the contractile properties of the muscles are impacted [Liu et al., 2005], notably by the reduction in the vascular feeding system and thus,
in the number of muscle fibres, their volume and their contractibility. Presynaptic inhibition of Ia afferents, which plays a role in leg muscle contractility, is more favoured in the elderly when sensory and somaesthetic afferents are reduced [Baudry and Duchateau, 2012]. This type of neuromuscular alteration could partly explain the the adoption of a leg muscle co-contraction strategy in the elderly [Papegaaij and Hortobágyi, 2017]. This co-contraction may reduce the exploitation of proprioceptive afferents from the mechanoreceptors [Benjuya et al., 2004, Baudry, 2016, Craig et al., 2016] and the efficiency of the muscular efferents in the segmental control of balance [Finley et al., 2012, Nelson-Wong et al., 2012]. A significant correlation between the increase in co-contraction measured in the elderly and the increase in MAX AP was found, whereas it was absent in young adults [Baudry and Duchateau, 2012]. As a result, studies agree that an overall shift in balance control from spinal to supraspinal levels occurs in older adults, in line with what is found in healthy subjects when proprioceptive afferents decrease [Alizadehsaravi et al., 2020]. Given the diversity of disorders affecting the elderly, a bilateral alteration of the vestibular system could lead to an increase in the values of the COP variables, as seen on SWAY LENGTH [Mbongo et al., 2005]. When visual inputs are altered (with the use of a moving target), there is an increase in the contribution of the knee and hip joints, which correlate with an increase in COP variables in the elderly people [Freitas and Duarte, 2012]. An increase in the amplitude of displacement suggests a decrease in the ability to maintain a stable upright position, but the diversity of results obtained for positional and dynamic variables led Palmieri et al. to minimize their clinical interpretation [Palmieri et al., 2002]. Dynamic, frequency and stochastic variables could provide complementary and clinically relevant information. Although more studies are needed before concluding on their physiological interpretation, we note that biomechanical modelling has shown a negative correlation between the supposed stiffness of the system and mean frequency and MEAN VELOCITY, but positive with CRITIAL TIME [Maurer and Peterka, 2005]. #### 4.2 Feature classification To the best of our knowledge, the classification of posturographic variables that is introduced in this study is new and differs from previous classification paradigms. [Duarte and Freitas, 2010] used a classification which distinguishes the descriptors resulting from a structural analysis – i.e. which aim to explain the control postural commands through the behaviour of the COP, with sway density models or stochastic models - from other variables. In [Prieto et al., 1996], four categories of descriptors were proposed: (1) Time-Domain Distance measures, (2) Time-Domain Area measures, (3) Hybrid measures, and (4) Frequency-Domain measures. The first class includes features associated with either the displacement of the COP from the average, or the velocity; the second gathers geometric approximations of the surface of the COP; the third includes combinations of distance measures [Prieto et al., 1996], which have been considered by others as dimensionless features [Qiu and Xiong, 2015]; the fourth contains variables related to the analysis of the power spectral density of the COP trajectory, usually obtained through Fast Fourier Transformation (FFT). Our classification, while similar to the one proposed in [Prieto et al., 1996], presents two major differences. First, since the work of [Prieto et al., 1996], popular stochastic models have been developed [Collins and De Luca, 1993, Duarte and Freitas, 2010, Qiu and Xiong, 2015]. Hence we introduce a fourth category of variables, called Stochastic descriptors, which includes the features derived from stochastic based models of the COP. Second, we choose to regroup the non-stochastic, non-frequency derived descriptors into positional and dynamic classes. Importantly, this classification originated from signal processing concepts, and its main purpose was to ease the reading of this study. #### 4.3 Variables reliability The reliability of stabilogram variables depends on several factors. The variation in the values of the posturographic variables recorded on the force platform reflect the participation of the muscles involved in maintaining balance and the contribution of the joints to postural oscillations. Feet placement could also 762 763 764 765 769 770 771 773 774 777 778 780 781 784 785 787 788 792 793 795 799 800 801 802 806 807 808 809 810 modify postural strategy in older population [Winter et al., 1996, Chiari et al., 2002]. For instance, when feet are joined, the ML displacements of the COP are mostly influenced by the hip adductors and abductors, whereas in the tandem position, movements in the ML direction are mostly related to the contractions of the invert and spurs muscles of the leg [Winter et al., 1996, 2003, Prince et al., 1995]. In the upright, straight position, feet open up by 45° apart, the movement in the ML direction is a mix of hip and ankle strategies, whereas the AP displacements are under the dominance of the ankle muscles. Anthropometric factors influencing posturographic variables include height, weight, maximum foot width, base-of-support area, and foot opening angle as the relevant biomechanical variables [Chiari et al., 2002]. The authors note a significant dependence of gender for the SWAY LENGTH, in the AP direction with eyes open. This could be explained by higher "height" and "weight" in males, with which the variables are strongly positively correlated. As also mentioned by the authors, several ML variables, especially positional (MEAN DISTANCE ML, SWAY LENGTH ML, RMS ML, RANGE ML), dynamic variables (MEAN VELOCITY ML) and frequentist variables (TOTAL POWER, FREQ. DISP. ML), decrease while baseof-support increase, in eyes open condition. Few frequentist variables are positively correlated with the size of the base-of-support (50 % Power Freq ML, 95 % Power Freq, Centroidal Freq ML). At the same time, the foot opening angle could have only a marginal or no impact on the variable values during open eyes recordings. The Maximum foot width showed a positive correlation for several frequentist variables but negative for the stochastic variables (notably SHORT TIME DIFFUSION COEFFICIENT, LONG TIME DIFFUSION COEFFICIENT and SHORT TIME SCALING DIFFUSION). These results illustrate the impact of morphological factors and foot position on the variables that vary within each family. It should be noted that these results are based on a signal filtered at 8 Hz and down-sampled at 20 Hz. Between sessions, posturographic variables have shown good reliability in the elderly people with the same experimental conditions [Li et al., 2016]. Riemann et al. have shown a better reliability of the variables when the position of the feet was left at the participant's choice, also considered as comfortable [Riemann and Piersol, 2017]. Imposing a standardized foot placement could lead to a change of the biomechanics of the lower limp by reducing the number of degrees of freedom and hence, modify the strategy adopted to maintain balance [Gibbons et al., 2019]. Finally, the authors do not agree on a recommendation concerning the position of the feet and the width of the base-of-support, either by standardising them or by leaving it to the subject's choice of comfort, to increase the reliability of the measurements [Ruhe et al., 2010, Riemann and Piersol, 2017]. The differences between the values reported in the literature may also be explained by differences in equipment, sampling frequency, preprocessing and acquisition protocol [Carpenter et al., 2001b, Ruhe et al., 2010, Vieira et al., 2009b, Schmid et al., 2002]. First, the sampling frequency varies greatly between studies. The sampling frequency seems to have a greater impact on frequency variables than on positional and dynamic variables. Rhea et al. add that a decrease in the sampling frequency (from 100 Hz to 25 Hz) has a non-significant impact on the non-linear analyses to obtain the stochastic variables [Rhea et al., 2015]. The reliability of the WBB, used in this study, has been widely studied in the literature and the authors generally conclude that it can be used to record balance [Clark et al., 2010, Bartlett et al., 2014, Abujaber et al., 2015, Severini et al., 2017]. However, we would emphasize the need to correct the sampling frequency of this force platform and refer the readers to our previous work for more details [Audiffren and Contal, 2016]. Secondly, the differences between preprocessing strategies that can be found in the literature may alter the computation of the parameters [Schmid et al., 2002], in particular for the dynamic group, as they involve the derivative of the trajectory and are sensitive to the cut-off frequency of applied filters. This led to the recommendation of a sampling frequency of 100 Hz and a cut-off frequency of 10 Hz, in the absence of further studies [Ruhe et al., 2010]. Thirdly, reliability may be affected by the acquisition protocol. It has been claimed that a sufficient recording duration, generally around 60 seconds, is required to obtain a robust estimation of the power spectral frequency [Vieira et al., 2009b]. The dynamic variables could show a greater reliability as the recording time is increased, up to 90 seconds, and then the benefit would be less noticeable [Ruhe et al., 2010]. However, the relevance of continuing the recordings beyond 60 seconds must be measured according to the population to be recorded because, on the one hand, good reliability has been obtained with dynamic and stochastic variables as early as 30 seconds [Caballero et al., 2015, Nagymáté et al., 2018] and the reproducibility of the variable measurements does not show the same
dependence on the duration of recording according to the families of variables [Nejc et al., 2010], while on the other hand, proposing long recordings with several repetitions does not seem very feasible for measuring the balance in the clinical context, especially for extremely fragile people [Alsubaie et al., 2019]. Additionally, many of the parameters, such as the MEAN VALUE, RMS and all variables derived from the power spectral density analysis, are based on the assumption that the center of pressure signal is stationary, which is generally not true [Strang et al., 2013]. This could significantly impact the variability of the parameters [Carroll and Freedman, 1993]. This influence of individual factors, experimental conditions and preprocessing methods on the values of the COP variables makes particularly essential studies reproducibility. which could be eased by the use of standardized definitions and implementation of the posturographic variables. ## 4.4 Scope and limitations 813 814 816 817 818 819 823 824 827 831 832 834 835 838 839 84 842 848 851 855 857 859 This review focuses on the variables used to discriminate between elderly fallers and other older adults. However, in order to generalize the description of the variables, and more generally the mathematical requirements for calculating them, it was necessary to extend the search to the references of the articles, which made it possible to highlight the reliability of several indices as well as their variability according to age. This review does not take into account indices that can be used to distinguish between younger and older participants and as such cannot be described as comprehensive. Many other posturographic variables have been proposed to assess the risk of falls in older people, either through measures of dynamic balance [Ringhof and Stein, 2018], or in correlation with clinical assessments of motor skills [Karlsson and Frykberg, 2000, Cheng et al., 2012], or because they are less commonly found in the literature, which did not fit the selection criteria of this review. Regarding the latter, we have not included variables based on biomechanical or other equilibrium modelling [McKee and Neale, 2019, Koltermann et al., 2020, Nicolai et al., 2021], as well as several other modelizations such as wavelet analyses [Chagdes et al., 2009], sample entropy analysis and other associated entropies computations [Gow et al., 2015, Degani et al., 2017] or analyses based on markov chains [Hur et al., 2012]. To overcome these limitations, further literature reviews should be conducted in the future to explore the most recent methods that have been applied to the postural signals. This would require going beyond the variables used to discriminate between fallers and non fallers. We only present the calculation methods here, but the search for correlations between the risk of falling and these posturographic variables and their exploitation for prevention purposes leads to selection processes. Several models could be considered to identify the most relevant variables in the assessment of fall risk, whether using a Poisson regression [Palumbo et al., 2015] or zero-inflated models [Ullah et al., 2010] to describe the number of falls in a given time as well as other non-linear approaches with a selection process of the multiple variables as it was recently done in patients with Parkinson's disease [Bargiotas et al., 2021] or between healthy fallers and non fallers [Audiffren et al., 2016]. The presentation of the values on the basis of two different recording protocols, and the similarity of the results obtained for these two populations, should enable more homogeneity in future studies, whilst the link between the physiology of static balance and these posturographic variables remains to be clarified. ## 5 Conclusion A review of the literature on the analysis of the characteristics of the center of pressure for the discrimination of elderly people at high risk of falling revealed the lack of information concerning the methods of calculation of the posturographic variables used, as well as the lack of homogeneity and standardization between studies. By presenting a comprehensive glossary of calculation methods and a library of functions that is as clear and exhaustive as possible, this should facilitate reproducibility between studies. Comparison with future studies should also be made easier by providing a basis for comparing these variables for two different protocol of COP recording, in elderly participants, with or without a history of falls. The choice of the selection of variables among the growing number of possible methods of analysis of the COP trajectory should be explained, in particular to make explicit whether it is based on a statistical approach to reduce the dimensionality of the exploration or on habits that are the result of clinical experience and interpretability of the chosen variables. Furthermore, the exact definitions of the variables used should be detailed and it should be precised if these variables depend strongly on the standardization of foot placement or on the length of the recording. In addition, despite the similarities that we observed between the values obtained with two different protocols of quiet stance balance recorded on two different samples of elderly people, it is advisable to follow when possible the recommendations concerning recording times (of at least 60s with several repetitions) and the sampling frequency (100 Hz and a cut-off frequency of 10 Hz) and a standardisation of the placement of the feet on the force platform (especially if the variables that depend on the base of support are used) Regarding the 868 869 instructions, the positioning of the arms, generally alongside the body, the use of instructions to the participant such as to remain stable without moving or the addition of a visual target to facilitate standing at a distance of a few meters from the person should be indicated. These recommendations must take into account the feasibility of recording balance in a real environment, which does not necessarily permit this level of standardisation depending on the equipment used, the space available or the physical capacities of the elderly people being recorded, especially when their frailty leads to a high risk of falling, since these people are probably the ones who could benefit most from fine balance measurements. Future studies with a larger sample size and longitudinal follow-up could further investigate the choice of a combination of postural variables, as well as the benefits of multidimensional analysis in elderly people. ## 2 References - S. Abujaber, G. Gillispie, A. Marmon, and J. Zeni Jr. Validity of the nintendo wii balance board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. *Gait & posture*, 41(2):676–682, 2015. - L. Alizadehsaravi, S. M. Bruijn, H. Maas, and J. H. van Dieën. Modulation of soleus muscle H-reflexes and ankle muscle co-contraction with surface compliance during unipedal balancing in young and older adults. Experimental Brain Research, 238(6):1371–1383, June 2020. ISSN 0014-4819, 1432-1106. doi: 10.1007/s00221-020-05784-0. URL http://link.springer.com/10.1007/s00221-020-05784-0. - S. F. Alsubaie, S. L. Whitney, J. M. Furman, G. F. Marchetti, K. H. Sienko, and P. J. Sparto. Reliability of Postural Sway Measures of Standing Balance Tasks. *Journal of Applied Biomechanics*, 35(1):11–18, Feb. 2019. ISSN 1065-8483, 1543-2688. doi: 10.1123/jab.2017-0322. URL https://journals.humankinetics.com/doi/10.1123/jab.2017-0322. - A. F. Ambrose, L. Cruz, and G. Paul. Falls and Fractures: A systematic approach to screening and prevention. **Maturitas*, 82(1):85-93, Sept. 2015. ISSN 03785122. doi: 10.1016/j.maturitas.2015.06.035. URL http: **//linkinghub.elsevier.com/retrieve/pii/S0378512215300013. Number: 1. - J. Audiffren and E. Contal. Preprocessing the nintendo wii board signal to derive more accurate descriptors of statokinesigrams. *Sensors*, 16(8):1208, 2016. - J. Audiffren, I. Bargiotas, N. Vayatis, P.-P. Vidal, and D. Ricard. A non linear scoring approach for evaluating balance: classification of elderly as fallers and non-fallers. *PLoS one*, 11(12):e0167456, 2016. - V. Aufauvre, G. Kemoun, P. Carette, and E. Bergeal. Évaluation posturale à domicile chez la personne âgée: comparaison chuteurs—non chuteurs. In *Annales de réadaptation et de médecine physique*, volume 48, pages 165–171. Elsevier, 2005. - R. W. Baloh, T. D. Fife, L. Zwerling, T. Socotch, K. Jacobson, T. Bell, and K. Beykirch. Comparison of static and dynamic posturography in young and older normal people. 42(4):405-412, 1994. doi: 10. 1111/j.1532-5415.1994.tb07489.x. URL http://onlinelibrary.wiley.com/doi/10.1111/j.1532-5415.1994.tb07489.x/full. - R. W. Baloh, K. M. Jacobson, K. Beykirch, and V. Honrubia. Static and dynamic posturography in patients with vestibular and cerebellar lesions. *Archives of neurology*, 55(5):649–654, 1998a. - R. W. Baloh, K. M. Jacobson, J. A. Enrietto, S. Corona, and V. Honrubia. Balance disorders in older persons: quantification with posturography. *Otolaryngology—Head and Neck Surgery*, 119(1):89–92, 1998b. - L. Baratto, P. G. Morasso, C. Re, and G. Spada. A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. *Motor control*, 6(3):246–270, 2002. - I. Bargiotas, J. Audiffren, N. Vayatis, P.-P. Vidal, S. Buffat, A. P. Yelnik, and D. Ricard. On the importance of local dynamics in statokinesigram: A multivariate approach for postural control evaluation in elderly. *PloS one*, 13(2), 2018. - I. Bargiotas, A. Kalogeratos, M. Limnios, P.-P. Vidal, D. Ricard, and N. Vayatis. Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning. *PLOS ONE*, 16(2):e0246790, Feb. 2021. ISSN 1932-6203. doi:
10.1371/journal.pone. 0246790. URL https://dx.plos.org/10.1371/journal.pone.0246790. - H. L. Bartlett, L. H. Ting, and J. T. Bingham. Accuracy of force and center of pressure measures of the wii balance board. *Gait & posture*, 39(1):224–228, 2014. - H. Bateni. Changes of postural steadiness following use of prefabricated orthotic insoles. *Journal of applied biomechanics*, 29(2):174–179, 2013. - S. Baudry and J. Duchateau. Age-related influence of vision and proprioception on ia presynaptic inhibition in soleus muscle during upright stance. *The Journal of physiology*, 590(21):5541–5554, 2012. - 924 C. Bauer, I. Gröger, A. Glabasnia, C. Bergler, and K. G. Gassmann. First results of evaluation of a falls clinic. 4(3):130-136, 2010. URL http://www.sciencedirect.com/science/article/pii/ S1873959810700363. - C. Bauer, I. Gröger, R. Rupprecht, V. Marcar, and K. Gassmann. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis. *Zeitschrift für Gerontologie* und Geriatrie, 49(3):232–236, 2016a. - C. M. Bauer, I. Gröger, R. Rupprecht, V. L. Marcar, and K. G. Gaßmann. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis. *Zeitschrift Für Gerontologie Und Geriatrie*, 49(3):232–236, Apr. 2016b. ISSN 1435-1269. doi: 10.1007/s00391-015-0885-0. Number: 3. - O. Beauchet, V. Dubost, C. Revel-Delhom, G. Berrut, and J. Belmin. HOW TO MANAGE RECURRENT FALLS IN CLINICAL PRACTICE: GUIDELINES OF THE FRENCH SOCIETY OF GERIATRICS AND GERONTOLOGY. *The Journal of Nutrition*, 15(1):6, 2011. - N. Benjuya, I. Melzer, and J. Kaplanski. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. 59(2):M166-M171, 2004. URL http://biomedgerontology.oxfordjournals.org/content/59/2/M166.short. - K. E. Bigelow and N. Berme. Development of a protocol for improving the clinical utility of posturography as a fall-risk screening tool. *Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences*, 66 (2):228–233, 2011. - J. W. Błaszczyk, M. Beck, and D. Sadowska. Assessment of postural stability in young healthy subjects based on directional features of posturographic data: vision and gender effects. *Acta Neurobiol Exp*, 74(4): 433–442, 2014. - F. G. Borg and G. Laxåback. Entropy of balance-some recent results. *Journal of neuroengineering and* rehabilitation, 7(1):38, 2010. - S. G. Brauer, Y. R. Burns, and P. Galley. A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. 55(8):M469–M476, 2000. doi: 10.1093/gerona/55.8.M469. URL http://biomedgerontology.oxfordjournals.org/content/55/8/M469.short. - C. Caballero, D. Barbado, and F. J. Moreno. What COP and Kinematic Parameters Better Characterize Postural Control in Standing Balance Tasks? *Journal of Motor Behavior*, 47(6):550–562, Nov. 2015. ISSN 0022-2895, 1940-1027. doi: 10.1080/00222895.2015.1014545. URL http://www.tandfonline.com/doi/full/10.1080/00222895.2015.1014545. - R. Camicioli, V. P. Panzer, and J. Kaye. Balance in the healthy elderly: posturography and clinical assessment. Archives of neurology, 54(8):976–981, 1997. - M. Carpenter, J. Frank, C. Silcher, and G. Peysar. The influence of postural threat on the control of upright stance. 138(2):210–218, 2001a. ISSN 00144819. doi: 10.1007/s002210100681. URL http://link.springer.com/10.1007/s002210100681. - M. G. Carpenter, J. S. Frank, D. A. Winter, and G. W. Peysar. Sampling duration effects on centre of pressure summary measures. *Gait & posture*, 13(1):35–40, 2001b. - J. P. Carroll and W. Freedman. Nonstationary properties of postural sway. *Journal of biomechanics*, 26(4-5): 409–416, 1993. - J. R. Chagdes, S. Rietdyk, J. M. Haddad, H. N. Zelaznik, A. Raman, C. K. Rhea, and T. A. Silver. Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis. *Experimental Brain Research*, 197(3):297–310, Aug. 2009. ISSN 0014-4819, 1432-1106. doi: 10.1007/s00221-009-1915-1. URL http://link.springer.com/10.1007/s00221-009-1915-1. Number: 3. - H. Chaudhry, B. Bukiet, Z. Ji, and T. Findley. Measurement of balance in computer posturography: Comparison of methods—A brief review. *Journal of Bodywork and Movement Therapies*, 15(1):82–91, Jan. 15(1):82–91, Jan. 15(1):82–91, Jan. 16(1):82–91, Jan. 17(2):82–91, Jan. 17(3):82–91, Jan. 18(3):82–91, Jan. 18(4):82–91, Jan. 18(5):82–91, Jan. 18(6):82–91, Jan. 18(7):82–91, Jan. 18(8):82–91, - Y.-Y. Cheng, P.-Y. Chen, W.-L. Hsieh, J.-R. Cheen, and C.-L. Kao. Correlation of the composite equilibrium score of computerized dynamic posturography and clinical balance tests. *Journal of Clinical Gerontology and Geriatrics*, 3(2):77–81, June 2012. ISSN 22108335. doi: 10.1016/j.jcgg.2012.04.004. URL http://linkinghub.elsevier.com/retrieve/pii/S2210833512000263. Number: 2. - L. Chiari, A. Cappello, D. Lenzi, and U. Della Croce. An improved technique for the extraction of stochastic parameters from stabilograms. *Gait & Posture*, 12(3):225–234, 2000. - L. Chiari, L. Rocchi, and A. Cappello. Stabilometric parameters are affected by anthropometry and foot placement. *Clinical biomechanics*, 17(9-10):666–677, 2002. - 981 C. C. Chow and J. J. Collins. Pinned polymer model of posture control. *Physical Review E*, 52(1):907, 1995. - R. A. Clark, A. L. Bryant, Y. Pua, P. McCrory, K. Bennell, and M. Hunt. Validity and reliability of the nintendo wii balance board for assessment of standing balance. *Gait & posture*, 31(3):307–310, 2010. - N. Colledge, P. Cantley, I. Peaston, H. Brash, S. Lewis, and J. Wilson. Ageing and balance: the measurement of spontaneous sway by posturography. *Gerontology*, 40(5):273–278, 1994. - J. J. Collins and C. J. De Luca. Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. 95(2):308-318, 1993. URL http://link.springer.com/article/10.1007/BF00229788. - J. E. Condron, K. D. Hill, and G. D. Physio. Reliability and Validity of a Dual-Task Force Platform Assessment of Balance Performance: Effect of Age, Balance Impairment, and Cognitive Task. Journal of the American Geriatrics Society, 50(1):157–162, Jan. 2002. ISSN 0002-8614, 1532-5415. doi: 10.1046/j.1532-5415.2002.50022.x. URL https://onlinelibrary.wiley.com/doi/abs/10. 1046/j.1532-5415.2002.50022.x. - V. S. Conn, J. C. Valentine, H. M. Cooper, and M. J. Rantz. Grey literature in meta-analyses. *Nursing research*, 52(4):256–261, Aug. 2003. ISSN 0029-6562 0029-6562. doi: 10.1097/00006199-200307000-00008. Number: 4. - P. Corbeil, J.-S. Blouin, F. Bégin, V. Nougier, and N. Teasdale. Perturbation of the postural control system induced by muscular fatigue. *Gait & posture*, 18(2):92–100, 2003. - C. Craig, D. Goble, and M. Doumas. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults' dynamic postural control. *Neuroscience*, 322:251–261, May 2016. ISSN 03064522. doi: 10.1016/j.neuroscience.2016.02.036. URL https://linkinghub.elsevier.com/retrieve/pii/S0306452216001767. - R. F. Curtain and A. J. Pritchard. Functional analysis in modern applied mathematics. Academic press, 1977. - B. R. da Costa, A. W. S. Rutjes, A. Mendy, R. Freund-Heritage, and E. R. Vieira. Can Falls Risk Prediction Tools Correctly Identify Fall-Prone Elderly Rehabilitation Inpatients? A Systematic Review and Meta Analysis. PLoS ONE, 7(7):e41061, July 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.0041061. URL http://dx.plos.org/10.1371/journal.pone.0041061. Number: 7. - A. de Sá Ferreira and P. J. F. Baracat. Test–retest reliability for assessment of postural stability using center of pressure spatial patterns of three-dimensional statokinesigrams in young health participants. *Journal of biomechanics*, 47(12):2919–2924, 2014. - A. de Tauzia, T. Ferrus, P. Villeneuve, B. Weber, and P.-M. Gagey. Étude Stabilométrique de L'effet de la Hauteur des Talons sur le Contrôle Postural Chez la Danseuse Professionnelle. pages 166–172, 2010. doi: 10.1016/B978-2-294-70943-2.50018-4. URL https://linkinghub.elsevier.com/retrieve/pii/B9782294709432500184. - A. M. Degani, C. T. Leonard, and A. Danna-dos Santos. The effects of early stages of aging on postural sway: A multiple domain balance assessment using a force platform. *Journal of Biomechanics*, 64:8–15, Nov. 2017. ISSN 00219290. doi: 10.1016/j.jbiomech.2017.08.029. URL https://linkinghub.elsevier.com/retrieve/pii/S0021929017304517. - D. Delignières, K. Torre, and P.-L. Bernard. Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control. *PLoS Comput Biol*, 7(2):e1001089, 2011. - T. L. Doyle, R. U. Newton, and A. F. Burnett. Reliability of traditional and fractal dimension measures of quiet stance center of pressure in young, healthy people. 86(10):2034–2040, 2005. ISSN 00039993. doi: 10.1016/j.apmr.2005.05.014. URL https://linkinghub.elsevier.com/retrieve/pii/ 50003999305005204. - M. Duarte and S. M. Freitas. Revision of posturography based on force plate for balance evaluation. 14(3):183–192, 2010. URL http://www.scielo.br/scielo.php?pid=S1413-35552010000300003&script=sci_arttext. - M. Duarte and V. Zatsiorsky. Control of equilibrium in humans: Sway over sway. pages 219–242, 2011. - J. M. Finley, Y. Y. Dhaher, and E. J. Perreault. Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads. *Experimental Brain Research*, 217(1):53–66, Mar. 2012. ISSN 0014-4819, 1432-1106. doi: 10.1007/s00221-011-2972-9. URL http://link.springer.com/10.1032 - S. M. S. F. Freitas and M. Duarte. Joint coordination in young and older adults during quiet stance: Effect of visual feedback of the center of pressure. *Gait & Posture*, 35(1):83–87, Jan. 2012. ISSN 09666362. doi: 10.1016/j.gaitpost.2011.08.011. URL
https://linkinghub.elsevier.com/retrieve/pii/ S0966636211002542. - P. Gagey. Faut-il sauver le vfy. http://ada-posturologie.fr/VFYSauver.htm, 1999. - 1038 P.-M. Gagey and R. Gentaz. Le paramètre vfy en stabilométrie. Agressologie (Paris), 34(4):183–185, 1993. - D. R. Garcez, G. C. da Silva Almeida, C. F. O. Silva, T. de Souza Nascimento, A. de Athayde Costa e Silva, A. F. R. Kleiner, G. da Silva Souza, E. S. Yamada, and B. Callegari. Postural adjustments impairments in elderly people with chronic low back pain. *Scientific Reports*, 11(1):4783, Dec. 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-83837-2. URL http://www.nature.com/articles/s41598-021-83837-2. - A. C. Geurts, B. Nienhuis, and T. Mulder. Intrasubject variability of selected force-platform parameters in the quantification of postural control. *Archives of physical medicine and rehabilitation*, 74(11):1144–1150, 1993. - C. T. Gibbons, P. G. Amazeen, and A. D. Likens. Effects of foot placement on postural sway in the anteroposterior and mediolateral directions. *Motor control*, 23(2):149–170, 2019. - R. Goodman and L. Tremblay. Older adults rely on somatosensory information from the effector limb in the planning of discrete movements to somatosensory cues. *Experimental Gerontology*, 150:111310, July 2021. ISSN 05315565. doi: 10.1016/j.exger.2021.111310. URL https://linkinghub.elsevier.com/retrieve/pii/S0531556521000851. - B. Gow, C.-K. Peng, P. Wayne, and A. Ahn. Multiscale Entropy Analysis of Center-of-Pressure Dynamics in Human Postural Control: Methodological Considerations. *Entropy*, 17(12):7926–7947, Nov. 2015. ISSN 1099-4300. doi: 10.3390/e17127849. URL http://www.mdpi.com/1099-4300/17/12/7849. - M. E. Hernandez, J. Snider, C. Stevenson, G. Cauwenberghs, and H. Poizner. A correlation-based framework for evaluating postural control stochastic dynamics. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 24(5):551–561, 2015. - D. J. Hewson, N. K. Singh, H. Snoussi, and J. Duchêne. Classification of elderly as fallers and non-fallers using centre of pressure velocity. pages 3678–3681, 2010. - C. Y. Ho and A. P. Bendrups. Ankle reflex stiffness during unperceived perturbation of standing in elderly subjects. 57(9):B344-B350, 2002. ISSN 1079-5006, 1758-535X. doi: 10.1093/gerona/57.9. B344. URL https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/57.9.B344. - A. Hof, M. Gazendam, and W. Sinke. The condition for dynamic stability. *Journal of Biomechanics*, 38(1): 1–8, Jan. 2005. ISSN 00219290. doi: 10.1016/j.jbiomech.2004.03.025. URL http://linkinghub.elsevier.com/retrieve/pii/S0021929004001642. Number: 1. - F. B. Horak, C. L. Shupert, and A. Mirka. Components of postural dyscontrol in the elderly: a review. Neurobiology of aging, 10(6):727–738, 1989. - J. Howcroft, E. D. Lemaire, J. Kofman, and W. E. McIlroy. Elderly fall risk prediction using static posturography. *PLoS one*, 12(2):e0172398, 2017. - J. D. Howcroft, J. Kofman, E. D. Lemaire, and W. E. McIlroy. Static posturography of elderly fallers and non-fallers with eyes open and closed. 51:966–969, 2015. doi: 10.1007/978-3-319-19387-8_235. URL http://link.springer.com/10.1007/978-3-319-19387-8_235. - A. Hufschmidt, J. Dichgans, K.-H. Mauritz, and M. Hufschmidt. Some methods and parameters of body sway quantification and their neurological applications. *Archiv für Psychiatrie und Nervenkrankheiten*, 228(2): 135–150, 1980. - P. Hur, K. A. Shorter, P. G. Mehta, and E. T. Hsiao-Wecksler. Invariant density analysis: Modeling and analysis of the postural control system using markov chains. *IEEE Transactions on Biomedical Engineering*, 59(4): 1094–1100, 2012. - A. Huurnink, D. P. Fransz, I. Kingma, and J. H. van Dieën. Comparison of a laboratory grade force platform with a nintendo wii balance board on measurement of postural control in single-leg stance balance tasks. Journal of biomechanics, 46(7):1392–1395, 2013. - P. Ilett, N. Lythgo, C. Martin, and K. Brock. Balance and gait in people with multiple sclerosis: A comparison with healthy controls and the immediate change after an intervention based on the bobath concept. *Physiotherapy Research International*, 21(2):91–101, 2016. doi: 10.1002/pri.1624. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pri.1624. - M. Jacono, M. Casadio, P. G. Morasso, and V. Sanguineti. The sway-density curve and the underlying postural stabilization process. *Motor control*, 8(3):292–311, 2004. - J. Jeong, W. Cho, Y. Kim, and H. Choi. Recognition of lower limb muscle emg patterns by using neural networks during the postural balance control. In *3rd Kuala Lumpur International Conference on Biomedical Engineering 2006*, pages 82–85. Springer, 2007. - J. Johansson, E. Jarocka, G. Westling, A. Nordström, and P. Nordström. Predicting incident falls: Relationship between postural sway and limits of stability in older adults. *Human Movement Science*, 66:117–123, Aug. 2019. ISSN 01679457. doi: 10.1016/j.humov.2019.04.004. URL https://linkinghub.elsevier.com/retrieve/pii/S0167945718306973. - H. G. Kang, L. Quach, W. Li, and L. A. Lipsitz. Stiffness control of balance during dual task and prospective falls in older adults: The MOBILIZE Boston Study. *Gait & Posture*, 38(4):757–763, Sept. 2013. ISSN 09666362. doi: 10.1016/j.gaitpost.2013.03.022. URL https://linkinghub.elsevier.com/retrieve/pii/S0966636213001811. - R. M. Kantner, A. M. Rubin, C. W. Armstrong, and V. Cummings. Stabilometry in balance assessment of dizzy and normal subjects. *American journal of otolaryngology*, 12(4):196–204, 1991. - A. Karlsson and G. Frykberg. Correlations between force plate measures for assessment of balance. *Clinical Biomechanics*, 15(5):365–369, June 2000. ISSN 0268-0033. doi: 10.1016/S0268-0033(99)00096-0. URL http://www.sciencedirect.com/science/article/pii/S0268003399000960. Number: 5. - E. Kim, H. G. Seo, H. H. Lee, S. H. Lee, S. H. Choi, R.-E. Yoo, W.-S. Cho, A. K. Wagner, and B.-M. Oh. Altered white matter integrity after mild to moderate traumatic brain injury. *Journal of clinical medicine*, 8 (9):1318, 2019. - J. Kim, Y. Kwon, G.-M. Eom, J.-H. Jun, J.-W. Lee, and G.-R. Tack. Effects of vision, age and gender on structural and global posturographic features during quiet standing. 13(6):969–975, 2012. ISSN 2234-7593, 2005-4602. doi: 10.1007/s12541-012-0126-z. URL http://link.springer.com/10.1113 - J.-W. Kim, G.-M. Eom, C.-S. Kim, D.-H. Kim, J.-H. Lee, B. K. Park, and J. Hong. Sex differences in the postural sway characteristics of young and elderly subjects during quiet natural standing. *Geriatrics & gerontology international*, 10(2):191–198, 2010. - J.-W. Kim, Y. Kwon, H.-M. Jeon, M.-J. Bang, J.-H. Jun, G.-M. Eom, and D.-H. Lim. Feet distance and static postural balance: Implication on the role of natural stance. *Bio-Medical Materials and Engineering*, 24 (6):2681–2688, 2014a. ISSN 09592989, 18783619. doi: 10.3233/BME-141085. URL https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/BME-141085. - J.-W. Kim, Y.-R. Kwon, H.-M. Jeon, G.-M. Eom, Y. B. Cho, and B. K. Park. GENDER-DIFFERENCE IN THE RELATIONSHIP BETWEEN POSTURAL SWAY AND BODY FACTORS DURING QUIET STANDING IN THE ELDERLY. *Journal of Mechanics in Medicine and Biology*, 14(06):1440008, Dec. 2014b. ISSN 0219-5194, 1793-6810. doi: 10.1142/S0219519414400089. URL https://www.worldscientific.com/doi/abs/10.1142/S0219519414400089. - G. W. King, E. L. Abreu, A.-L. Cheng, K. K. Chertoff, L. Brotto, P. J. Kelly, and M. Brotto. A multimodal assessment of balance in elderly and young adults. *Oncotarget*, 7(12):13297–13306, Mar. 2016. ISSN 1949-2553. doi: 10.18632/oncotarget.7758. URL https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.7758. - M. Kirchner, P. Schubert, D. Schmidtbleicher, and C. Haas. Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools. 391(20):4692–4703, 2012. ISSN 03784371. doi: 10.1016/j.physa.2012.05.034. URL http://linkinghub.elsevier.com/retrieve/pii/S0378437112004050. - J. J. Koltermann, H. Beck, and M. Beck. Investigation of the Correlation between Factors Influencing the Spectrum of Center of Pressure Measurements Using Dynamic Controlled Models of the Upright Stand and Subject Measurements. *Applied Sciences*, 10(11):3741, May 2020. ISSN 2076-3417. doi: 10.3390/app10113741. URL https://www.mdpi.com/2076-3417/10/11/3741. - N. König, W. Taylor, G. Armbrecht, R. Dietzel, and N. B. Singh. Identification of functional parameters for the classification of older female fallers and prediction of 'first-time' fallers. *Journal of The Royal Society Interface*, 11(97):20140353, 2014. - N. Korhonen, S. Niemi, M. Palvanen, J. Parkkari, H. Sievänen, and P. Kannus. Declining age-adjusted incidence of fall-induced injuries among elderly finns. *Age and ageing*, 41(1):75–79, 2012. - M. Kouzaki and K. Masani. Postural sway during quiet standing is related to physiological tremor and muscle volume in young and elderly adults. *Gait & Posture*, 35(1):11–17, Jan. 2012. ISSN 09666362. doi: 10.1016/j.gaitpost.2011.03.028. URL http://linkinghub.elsevier.com/retrieve/pii/ S0966636211002402. Number: 1. - I. Kurz, L. Oddsson, and I. Melzer. Characteristics of balance control in older persons who fall with injury–a prospective study. *Journal of electromyography and kinesiology*, 23(4):814–819, 2013. - B.-C. Kwok, R. A. Clark, and Y.-H. Pua. Novel use of the Wii Balance Board to prospectively predict falls in community-dwelling older adults. *Clinical Biomechanics*, 30(5):481–484, June 2015. ISSN 02680033. doi: 10.1016/j.clinbiomech.2015.03.006. URL http://linkinghub.elsevier.com/retrieve/pii/S0268003315000716. Number: 5. - Y. Lajoie. Effect of computerized feedback postural training on posture and attentional demands in older adults. *Aging clinical and experimental research*, 16(5):363–368, 2004. - C. A. Laughton, M. Slavin, K. Katdare, L. Nolan, J. F. Bean, D. Kerrigan, E. Phillips, L. A.
Lipsitz, and J. J. Collins. Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. 18(2):101–108, 2003. ISSN 09666362. doi: 10.1016/S0966-6362(02)00200-X. URL http: //linkinghub.elsevier.com/retrieve/pii/S096663620200200X. - J. Leach, M. Mancini, R. Peterka, T. Hayes, and F. Horak. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures. Sensors, 14(10):18244–18267, Sept. 2014. ISSN 1424-8220. doi: 10.3390/s141018244. URL http://www.mdpi.com/1424-8220/14/10/18244. Number: 10. - Z. Li, Y.-Y. Liang, L. Wang, J. Sheng, and S.-J. Ma. Reliability and validity of center of pressure measures for balance assessment in older adults. *Journal of physical therapy science*, 28(4):1364–1367, 2016. - M. J. Lichtenstein, S. L. Shields, R. G. Shiavi, and M. C. Burger. Clinical determinants of biomechanics platform measures of balance in aged women. *Journal of the American Geriatrics Society*, 36(11):996–1002, 1988. - J.-X. Liu, P.-O. Eriksson, L.-E. Thornell, and F. Pedrosa-Domellöf. Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii. *Journal of Histochemistry & Cytochemistry*, 53(4):445–454, 2005. - S. R. Lord and R. D. Clark. Simple physiological and clinical tests for the accurate prediction of falling in older people. *Gerontology*, 42(4):199–203, 1996. ISSN 0304-324X 0304-324X. Number: 4. - P. J. Loughlin and M. S. Redfern. Spectral characteristics of visually induced postural sway in healthy elderly and healthy young subjects. *IEEE Transactions on neural systems and rehabilitation engineering*, 9(1): 24–30, 2001. - D. C. Low, G. S. Walsh, and M. Arkesteijn. Effectiveness of exercise interventions to improve postural control in older adults: A systematic review and meta-analyses of centre of pressure measurements. 47(1):101–112, 2017. ISSN 0112-1642, 1179-2035. doi: 10.1007/s40279-016-0559-0. URL http://link.springer.com/10.1007/s40279-016-0559-0. - M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. *Science*, 197(4300): 287–289, 1977. - B. E. Maki, P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. *Journal of gerontology*, 49(2):M72–M84, 1994. - M. Mancini and F. B. Horak. The relevance of clinical balance assessment tools to differentiate balance deficits. European journal of physical and rehabilitation medicine, 46(2):239, 2010. URL http://www.ncbi. nlm.nih.gov/pmc/articles/PMC3033730/. Number: 2. - K. B. Mansour, P. Gorce, and N. Rezzoug. The multifeature gait score: An accurate way to assess gait quality. 12(10):e0185741, 2017. - E. Maranesi, A. Merlo, S. Fioretti, D. Zemp, I. Campanini, and P. Quadri. A statistical approach to discriminate between non-fallers, rare fallers and frequent fallers in older adults based on posturographic data. *Clinical biomechanics*, 32:8–13, 2016. - K. Masani. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. 90(6):3774–3782, 2003. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.00730.2002. URL http://jn.physiology.org/cgi/doi/10.1152/jn.00730.2002. - C. Maurer and R. J. Peterka. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control. *Journal of Neurophysiology*, 93(1):189–200, Jan. 2005. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.00221.2004. URL https://www.physiology.org/doi/10.1152/jn.00221.2004. - F. Mbongo, T. Patko, P. Vidal, N. Vibert, P. Tran Ba Huy, and C. de Waele. Postural Control in Patients with Unilateral Vestibular Lesions Is More Impaired in the Roll than in the Pitch Plane: A Static and Dynamic Posturography Study. Audiology and Neurotology, 10(5):291–302, 2005. ISSN 1421-9700, 1420-3030. doi: 10.1159/000086081. URL http://www.karger.com/doi/10.1159/000086081. Number: 5. - B. McClenaghan, H. Williams, J. Dickerson, M. Dowda, L. Thombs, and P. Eleazer. Spectral characteristics of ageing postural control. *Gait & Posture*, 3(3):123–131, 1995. - D. McGrath, E. P. Doheny, L. Walsh, D. McKeown, C. Cunningham, L. Crosby, R. A. Kenny, N. Stergiou, B. Caulfield, and B. R. Greene. Taking balance measurement out of the laboratory and into the home: discriminatory capability of novel centre of pressure measurement in fallers and non-fallers. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 3296–3299. IEEE, 2012. - K. L. McKee and M. C. Neale. Direct estimation of the parameters of a delayed, intermittent activation feedback model of postural sway during quiet standing. *PloS one*, 14(9):e0222664, 2019. - I. Melzer, I. Kurz, and L. I. Oddsson. A retrospective analysis of balance control parameters in elderly fallers and non-fallers. *Clinical Biomechanics*, 25(10):984–988, 2010. - A. Merlo, D. Zemp, E. Zanda, S. Rocchi, F. Meroni, M. Tettamanti, A. Recchia, U. Lucca, and P. Quadri. Postural stability and history of falls in cognitively able older adults: The canton ticino study. 36(4):662–666, 2012. ISSN 09666362. doi: 10.1016/j.gaitpost.2012.06.016. URL http://linkinghub.elsevier.com/retrieve/pii/S0966636212002330. - M. Moghadam, H. Ashayeri, M. Salavati, J. Sarafzadeh, K. D. Taghipoor, A. Saeedi, and R. Salehi. Reliability of center of pressure measures of postural stability in healthy older adults: effects of postural task difficulty and cognitive load. *Gait & posture*, 33(4):651–655, 2011. - J. W. Muir, D. P. Kiel, M. Hannan, J. Magaziner, and C. T. Rubin. Dynamic parameters of balance which correlate to elderly persons with a history of falls. *Plos one*, 8(8), 2013. - J. B. Myklebust, T. Prieto, and B. Myklebust. Evaluation of nonlinear dynamics in postural steadiness time series. 23(6):711–719, 1995. ISSN 0090-6964, 1573-9686. doi: 10.1007/BF02584470. URL http://link.springer.com/10.1007/BF02584470. - G. Nagymáté, Z. Orlovits, and R. M. Kiss. Reliability analysis of a sensitive and independent stabilometry parameter set. *PLOS ONE*, 13(4):e0195995, Apr. 2018. ISSN 1932-6203. doi: 10.1371/journal.pone. 0195995. URL https://dx.plos.org/10.1371/journal.pone.0195995. - A. Nardone and M. Schieppati. The role of instrumental assessment of balance in clinical decision making. European journal of physical and rehabilitation medicine, 46(2):221–237, June 2010. ISSN 1973-9095 1973-9087. Number: 2. - S. Nejc, R. Jernej, S. Loefler, and H. Kern. Sensitivity of body sway parameters during quiet standing to manipulation of support surface size. *Journal of sports science & medicine*, 9(3):431, 2010. - E. Nelson-Wong, R. Appell, M. McKay, H. Nawaz, J. Roth, R. Sigler, J. Third, and M. Walker. Increased fall risk is associated with elevated co-contraction about the ankle during static balance challenges in older adults. 112(4):1379–1389, 2012. ISSN 1439-6319, 1439-6327. doi: 10.1007/s00421-011-2094-x. URL http://link.springer.com/10.1007/s00421-011-2094-x. - A. Nicolai, M. Limnios, A. Trouve, and J. Audiffren. A Langevin-Based Model With Moving Posturographic Target to Quantify Postural Control. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 29:478–487, 2021. ISSN 1534-4320, 1558-0210. doi: 10.1109/TNSRE.2021.3057257. URL https://ieeexplore.ieee.org/document/9347559/. - M. Ojala, E. Matikainen, and J. Juntunen. Posturography and the dizzy patient: a neurological study of 133 patients. *Acta Neurologica Scandinavica*, 80(2):118–122, 1989. - L. Oliveira, D. Simpson, and J. Nadal. Calculation of area of stabilometric signals using principal component analysis. *Physiological measurement*, 17(4):305, 1996. - S. Pajala, P. Era, M. Koskenvuo, J. Kaprio, T. Törmäkangas, and T. Rantanen. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 63(2):171–178, 2008. - R. M. Palmieri, C. D. Ingersoll, M. B. Stone, and B. A. Krause. Center-of-pressure parameters used in the assessment of postural control. *Journal of Sport Rehabilitation*, 11(1):51–66, 2002. URL http://journals.humankinetics.com/doi/abs/10.1123/jsr.11.1.51. Number: 1. - P. Palumbo, L. Palmerini, S. Bandinelli, and L. Chiari. Fall Risk Assessment Tools for Elderly Living in the Community: Can We Do Better? *PLOS ONE*, 10(12):e0146247, Dec. 2015. ISSN 1932-6203. doi: 10. 1371/journal.pone.0146247. URL https://dx.plos.org/10.1371/journal.pone.0146247. - S. Papegaaij and T. Hortobágyi. *Age-Related Changes in the Neural Control of Standing Balance*, pages 427–444. Springer International Publishing, Cham, 2017. ISBN 978-3-319-48980-3. doi: 10.1007/978-3-319-48980-3_27. URL https://doi.org/10.1007/978-3-319-48980-3_27. - D.-S. Park and G. Lee. Validity and reliability of balance assessment software using the nintendo wii balance board: usability and validation. *Journal of neuroengineering and rehabilitation*, 11(1):99, 2014. - P. P. Perrin, C. Jeandel, C. A. Perrin, and M. C. Bene. Influence of visual control, conduction, and central integration on static and dynamic balance in healthy older adults. *Gerontology*, 43(4):223–231, 1997. - S. D. Perry. Evaluation of age-related plantar-surface insensitivity and onset age of advanced insensitivity in older adults using vibratory and touch sensation tests. *Neuroscience Letters*, 392(1-2):62–67, Jan. 2006. ISSN 03043940. doi: 10.1016/j.neulet.2005.08.060. URL https://linkinghub.elsevier.com/retrieve/pii/S0304394005010256. Number: 1-2. - R. J. Peterka. Postural control model interpretation of stabilogram diffusion analysis. *Biological cybernetics*, 82(4):335–343, 2000. - C. M. Pickard, P. E. Sullivan, G. T. Allison, and K. P. Singer. Is There a Difference in Hip Joint Position Sense Between Young and Older Groups? *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*,
58(7):M631–M635, July 2003. ISSN 1079-5006, 1758-535X. doi: 10.1093/gerona/58.7. M631. URL https://academic.oup.com/biomedgerontology/article-lookup/doi/ 10.1093/gerona/58.7.M631. Number: 7. - M. Piirtola and P. Era. Force platform measurements as predictors of falls among older people a review. 52 (1):1–16, 2006. ISSN 0304-324X, 1423-0003. doi: 10.1159/000089820. URL http://www.karger.com/?doi=10.1159/000089820. - L. Pizzigalli, S. Ahmaidi, and A. Rainoldi. Effects of sedentary condition and longterm physical activity on postural balance and strength responses in elderly subjects. *Sport Sciences for Health*, 10(2):135–141, Aug. 2014. ISSN 1824-7490, 1825-1234. doi: 10.1007/s11332-014-0184-y. URL http://link.springer.com/10.1007/s11332-014-0184-y. Number: 2. - W. H. Press and S. A. Teukolsky. Savitzky-golay smoothing filters. *Computers in Physics*, 4(6):669–672, 1990. - T. E. Prieto, J. B. Myklebust, and B. M. Myklebust. Characterization and modeling of postural steadiness in the elderly: a review. 1(1):26–34, 1993. URL http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=242405. - T. E. Prieto, J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust. Measures of postural steadiness: differences between healthy young and elderly adults. *IEEE Transactions on biomedical engineering*, 43(9):956–966, 1996. - F. Prince, D. Winter, and S. Archer. Assessment of postural control during quiet stance with different foot configuration. *Gait & Posture*, 2(3):110, 1995. - H. Qiu and S. Xiong. Center-of-pressure based postural sway measures: Reliability and ability to distinguish between age, fear of falling and fall history. *International Journal of Industrial Ergonomics*, 47:37–44, 2015. - F. Quijoux, A. Vienne-Jumeau, F. Bertin-Hugault, M. Lefèvre, P. Zawieja, P.-P. Vidal, and D. Ricard. Center of pressure characteristics from quiet standing measures to predict the risk of falling in older adults: a protocol for a systematic review and meta-analysis. *Systematic Reviews*, 8(1):232, Dec. 2019. ISSN 2046-4053. doi: 10.1186/s13643-019-1147-9. URL https://systematicreviewsjournal.biomedcentral. com/articles/10.1186/s13643-019-1147-9. Number: 1. - F. Quijoux, A. Vienne-Jumeau, F. Bertin-Hugault, P. Zawieja, M. Lefèvre, P.-P. Vidal, and D. Ricard. Center of pressure displacement characteristics differentiate fall risk in older people: A systematic review with meta-analysis. 62:101117, 2020. ISSN 15681637. doi: 10.1016/j.arr.2020.101117. URL https://limkinghub.elsevier.com/retrieve/pii/S156816372030252X. - S. Ramdani, G. Tallon, P. L. Bernard, and H. Blain. Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers. *Annals of biomedical engineering*, 41(8):1713–1725, 2013. - J. Rasku, M. Juhola, M. Garcia, T. Harris, L. Launer, G. Eiriksdottir, K. Siggeirsdottir, P. Jonsson, H. J. Hoffman, H. Petersen, et al. Evaluation of the postural stability of elderly persons using time domain signal analysis. *Journal of Vestibular Research*, 22(5, 6):243–252, 2012. - J. Raymakers, M. Samson, and H. Verhaar. The assessment of body sway and the choice of the stability parameter (s). *Gait & posture*, 21(1):48–58, 2005. - C. A. Reed, A. M. Chaudhari, L. C. Worthen-Chaudhari, K. E. Bigelow, and S. M. Monfort. A new perspective on transient characteristics of quiet stance postural control. *Plos one*, 15(8):e0237246, 2020. - C. K. Rhea, A. W. Kiefer, W. G. Wright, L. D. Raisbeck, and F. J. Haran. Interpretation of postural control may change due to data processing techniques. *Gait & Posture*, 41(2):731–735, Feb. 2015. ISSN 09666362. doi: 10.1016/j.gaitpost.2015.01.008. URL https://linkinghub.elsevier.com/retrieve/pii/ S0966636215000107. - B. L. Riemann and K. Piersol. Intersession reliability of self-selected and narrow stance balance testing in older adults. *Aging clinical and experimental research*, 29(5):1045–1048, 2017. - P. O. Riley, B. Brenda, K. M. Gill-Body, and D. E. Krebs. Phase plane analysis of stability in quiet standing. *Journal of rehabilitation research and development*, 32:227–227, 1995. - S. Ringhof and T. Stein. Biomechanical assessment of dynamic balance: Specificity of different balance tests. *Human movement science*, 58:140–147, 2018. - S. Robbins, E. Waked, and J. McClaran. Proprioception and Stability: Foot Position Awareness as a Function of Age and Footwear. *Age and Ageing*, (24):6, 1995. Number: 24. - L. Rocchi, L. Chiari, and A. Cappello. Feature selection of stabilometric parameters based on principal component analysis. 42(1):71–79, 2004. ISSN 0140-0118, 1741-0444. doi: 10.1007/BF02351013. URL http://link.springer.com/10.1007/BF02351013. - A. Ruhe, R. Fejer, and B. Walker. The test–retest reliability of centre of pressure measures in bipedal static task conditions–a systematic review of the literature. *Gait & posture*, 32(4):436–445, 2010. - K. Sabashi, T. Ishida, H. Matsumoto, K. Mikami, T. Chiba, M. Yamanaka, Y. Aoki, and H. Tohyama. Dynamic postural control correlates with activities of daily living and quality of life in patients with knee osteoarthritis. *BMC Musculoskeletal Disorders*, 22(1):287, Dec. 2021. ISSN 1471-2474. doi: 10.1186/s12891-021-04164-1. URL https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-021-04164-1. - T. E. Sakanaka, M. Lakie, and R. F. Reynolds. Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy. *The Journal of physiology*, 594(3):781–793, 2016. - D. A. Santos and M. Duarte. A public data set of human balance evaluations. *PeerJ*, 4:e2648, 2016a. - D. A. Santos and M. Duarte. A public data set of human balance evaluations. *PeerJ*, 4:e2648, Nov. 2016b. ISSN 2167-8359. doi: 10.7717/peerj.2648. URL https://peerj.com/articles/2648. - A. Savitzky and M. J. Golay. Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639, 1964. - M. Schmid, S. Conforto, V. Camomilla, A. Cappozzo, and T. D'alessio. The sensitivity of posturographic parameters to acquisition settings. *Medical engineering & physics*, 24(9):623–631, 2002. - P. Schubert and M. Kirchner. Ellipse area calculations and their applicability in posturography. *Gait & Posture*, 39(1):518–522, 2014. - P. Schubert, M. Kirchner, D. Schmidtbleicher, and C. T. Haas. About the structure of posturography: Sampling duration, parametrization, focus of attention (part i). 05(9):496–507, 2012. ISSN 1937-6871, 1937-688X. doi: 10.4236/jbise.2012.59062. URL http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jbise.2012.59062. - G. Severini, S. Straudi, C. Pavarelli, M. Da Roit, C. Martinuzzi, L. D. M. Pizzongolo, and N. Basaglia. Use of nintendo wii balance board for posturographic analysis of multiple sclerosis patients with minimal balance impairment. *Journal of neuroengineering and rehabilitation*, 14(1):19, 2017. - S. W. Shaffer and A. L. Harrison. Aging of the somatosensory system: a translational perspective. *Physical therapy*, 87(2):193–207, 2007. - R. Soames and J. Atha. The spectral characteristics of postural sway behaviour. *European journal of applied physiology and occupational physiology*, 49(2):169–177, 1982. - V. S. Stel, J. H. Smit, S. M. Pluijm, and P. Lips. Balance and mobility performance as treatable risk factors for recurrent falling in older persons. *Journal of clinical epidemiology*, 56(7):659–668, 2003. - A. J. Strang, A. DiDomenico, W. P. Berg, and R. W. McGorry. Assessment of differenced center of pressure time series improves detection of age-related changes in postural coordination. *Gait & posture*, 38(2): 345–348, 2013. - E. V. Sullivan, J. Rose, and A. Pfefferbaum. Effect of vision, touch and stance on cerebellar vermian-related sway and tremor: a quantitative physiological and mri study. *Cerebral cortex*, 16(8):1077–1086, 2006. - E. V. Sullivan, J. Rose, and A. Pfefferbaum. Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. *Biological psychiatry*, 67(1):44–51, 2010. - E. V. Sullivan, N. M. Zahr, T. Rohlfing, and A. Pfefferbaum. Cognitive demands during quiet standing elicit truncal tremor in two frequency bands: differential relations to tissue integrity of corticospinal tracts and cortical targets. *Frontiers in human neuroscience*, 9:175, 2015. - R. Sun, K. L. Hsieh, and J. J. Sosnoff. Fall risk prediction in multiple sclerosis using postural sway measures: A machine learning approach. 9(1):16154, 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-52697-2. URL http://www.nature.com/articles/s41598-019-52697-2. - J. Swanenburg, E. D. de Bruin, D. Uebelhart, and T. Mulder. Falls prediction in elderly people: a 1-year prospective study. *Gait & posture*, 31(3):317–321, 2010. - S. Tassani, J. M. Font-Llagunes, M. Á. G. Ballester, and J. Noailly. Muscular tension significantly affects stability in standing posture. *Gait & Posture*, 68:220–226, 2019. - E. Tuunainen, J. Rasku, P. Jäntti, P. Moisio-Vilenius, E. Mäkinen, E. Toppila, and I. Pyykkö. Postural stability and quality of life after guided and self-training among older adults residing in an institutional setting. Clinical interventions in aging, 8:1237, 2013. - E. Tuunainen, J. Rasku, P. Jäntti, and I. Pyykkö. Risk factors of falls in community dwelling active elderly. *Auris Nasus Larynx*, 41(1):10–16, 2014. - S. Ullah, C. F. Finch, and L. Day. Statistical modelling for falls count data. *Accident Analysis & Prevention*, 42(2):384–392, Mar. 2010. ISSN 00014575. doi: 10.1016/j.aap.2009.08.018. URL https://linkinghub.elsevier.com/retrieve/pii/S0001457509002279. - M. Vališ, J. Dršata, D. Kalfeřt, P. Semerák, and J. Kremláček. Computerised static posturography in neurology. Open Medicine, 7(3):317–322, 2012. - E. van Wegen, R. van Emmerik, and G. Riccio. Postural orientation: Age-related changes in variability and time-to-boundary. *Human Movement Science*, 21(1):61–84, Apr. 2002. ISSN 01679457. doi: 10.1016/S0167-9457(02)00077-5.
URL https://linkinghub.elsevier.com/retrieve/pii/S0167945702000775. - E. H. Vanmarcke. Properties of spectral moments with applications to random vibration. *Journal of the Engineering Mechanics Division*, 98(2):425–446, 1972. - T. Vieira, L. Oliveira, and J. Nadal. Estimation procedures affect the center of pressure frequency analysis. *Brazilian Journal of Medical and Biological Research*, 42(7):665–673, 2009a. - T. d. M. M. Vieira, L. F. d. Oliveira, and J. Nadal. An overview of age-related changes in postural control during quiet standing tasks using classical and modern stabilometric descriptors. 19(6):e513-e519, 2009b. ISSN 10506411. doi: 10.1016/j.jelekin.2008.10.007. URL https://linkinghub.elsevier.com/retrieve/pii/S1050641108001624. - A. Vienne, R. P. Barrois, S. Buffat, D. Ricard, and P.-P. Vidal. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. *Frontiers in psychology*, 8:817, 2017. - WHO. Who global report on falls prevention in older age. *World Health Organization*, page 47, 2008. ISSN 978-92-4-156353-6. OCLC: ocn226291980. - H. G. Williams, B. A. McClenaghan, and J. Dickerson. Spectral characteristics of postural control in elderly individuals. 78(7):737–744, 1997. ISSN 0003-9993. - D. A. Winter, F. Prince, J. S. Frank, C. Powell, and K. F. Zabjek. Unified theory regarding a/p and m/l balance in quiet stance. 75(6):2334–2343, 1996. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.1996.75.6.2334. URL https://www.physiology.org/doi/10.1152/jn.1996.75.6.2334. - D. A. Winter, A. E. Patla, F. Prince, M. Ishac, and K. Gielo-Perczak. Stiffness Control of Balance in Quiet Standing. *Journal of Neurophysiology*, 80(3):1211–1221, Sept. 1998. ISSN 0022-3077, 1522-1598. doi: 10. 1152/jn.1998.80.3.1211. URL https://www.physiology.org/doi/10.1152/jn.1998.80. 3.1211. - D. A. Winter, A. E. Patla, M. Ishac, and W. H. Gage. Motor mechanisms of balance during quiet standing. *Journal of electromyography and kinesiology*, 13(1):49–56, 2003. - M. H. Woollacott and D. L. Manchester. Anticipatory Postural Adjustments in Older Adults: Are Changes in Response Characteristics Due to Changes in Strategy? *Journal of Gerontology*, 48(2):M64–M70, Mar. 1993. ISSN 0022-1422. doi: 10.1093/geronj/48.2.M64. URL https://academic.oup.com/geronj/article-lookup/doi/10.1093/geronj/48.2.M64. - S.-p. Xiong and M. Karim. A preliminary study on effects of vision, standing posture and support surface on human balance. pages 873–880, 2013.