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ARTICLE

Meta-analysis of genome-wide association studies
identifies ancestry-specific associations underlying
circulating total tau levels
Chloé Sarnowski 1,30✉, Mohsen Ghanbari 2,3,30, Joshua C. Bis 4,30, Mark Logue5,6,30,

Myriam Fornage 7,30, Aniket Mishra 8,30, Shahzad Ahmad 2,9, Alexa S. Beiser10,11,12, Eric Boerwinkle7,

Vincent Bouteloup13, Vincent Chouraki14, L Adrienne Cupples 10,11, Vincent Damotte14, Charles S. DeCarli15,

Anita L. DeStefano10, Luc Djoussé16, Alison E. Fohner17, Carol E. Franz 18, Tiffany F. Kautz19,

Jean-Charles Lambert 14, Michael J. Lyons20, Thomas H. Mosley21, Kenneth J. Mukamal 22,

Matthew P. Pase 23,24, Eliana C. Portilla Fernandez2, Robert A. Rissman25, Claudia L. Satizabal11,12,19,

Ramachandran S. Vasan 11,26, Amber Yaqub 2, Stephanie Debette 8,27,31, Carole Dufouil 27,31,

Lenore J. Launer 28,31, William S. Kremen 18,31, William T. Longstreth29,31, M Arfan Ikram 2,31 &

Sudha Seshadri11,12,19,31

Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors

for tauopathies and related neurological disorders. Here, we confirmed and better char-

acterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 Eur-

opean participants and identified three novel loci in 953 African American participants (4q31,

5p13, and 6q25) at P < 5 × 10−8. We additionally detected 14 novel loci at P < 5 × 10−7,

specific to either Europeans or African Americans. Using whole-exome sequence data in

2,279 European participants, we identified ten genes associated with circulating total-tau

when aggregating rare variants. Our genetic study sheds light on genes reported to be

associated with neurological diseases including stroke, Alzheimer’s, and Parkinson’s (F5,

MAP1B, and BCAS3), with Alzheimer’s pathological hallmarks (ADAMTS12, IL15, and FHIT), or

with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and

suggests that the genetic architecture of circulating total-tau may differ according to

ancestry.
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The protein tau is an important biomarker of neuronal
injury and neurodegeneration. Alzheimer’s disease (AD)
and other dementias or related neurological disorders are

associated with abnormal intraneuronal tau aggregates (collec-
tively known as tauopathies)1. Newer techniques to diagnose AD
now examine CSF biomarkers to improve diagnostic certainty
and aid in earlier diagnosis2–4. However, their collection is
invasive and user variability can be large in the downstream
quantification assays. In addition, CSF tau levels are normal or
low in tauopathies like Progressive Supranuclear Palsy (PSP) and
in frontotemporal dementia patients with tau mutations5,6.

Using blood biomarkers with high specificity and sensitivity for
AD is ideal to lower cost, risk, and burden3. Circulating total-tau
(t-tau) levels can be quantified in serum or in plasma7 early in AD
due to blood brain barrier breakdown8,9. Particularly, they show
promise as a predictive biomarker for dementia and related
endophenotypes10, with higher levels in patients with dementia
or mild cognitive impairment compared to controls11,12, and
higher levels associated with poorer cognitive performance, and
smaller hippocampal volumes13,14. However, elevated levels may
lack diagnostic specificity for AD, and simply indicate that brain
injury is common to several neurological diseases. A recent paper
showed for example that higher circulating t-tau predicted a
higher risk of incident stroke15. Importantly, circulating bio-
markers do not need to mirror their level in CSF to be useful.
Altogether, the recent literature suggests that circulating t-tau
levels may be a predictive biomarker to improve risk stratification
for dementia and assess AD’s progression, help with enrollment
of high-risk individuals into dementia prevention trials, be useful
in addition to other blood biomarkers of neurodegeneration to
determine cognitive improvements in clinical trials, and represent
a useful biomarker for AD when added to CSF tau
measures10,15–17.

CSF t-tau and phosphorylated tau (p-tau) levels have been used
as endophenotypes in genome-wide association studies (GWAS)
to detect genetic variants associated with AD risk. Similarly,
circulating t-tau levels may be used as an endophenotype to
identify genetic risk factors for tauopathies and related neurolo-
gical disorders. Only two GWAS, conducted in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study, were published
for plasma t-tau or p-tau levels18,19. The modest sample size and
the inclusion of only European participants has limited the sta-
tistical power to identify potential novel associations (only MAPT
and APOE loci associations were statistically significant for t-tau
and p-tau respectively), the ability to explore less frequent genetic
variation, as well as the generalization of the findings to other
ancestries. Therefore, the aim of our study was to perform large-
scale meta-analyses of circulating t-tau levels, using 15,674
participants from eight studies representing two ancestries
(Europeans and African Americans), to explore genetic variation
underlying circulating t-tau levels and assess their overlap with
known genetic determinants of neurological diseases. We detec-
ted four ancestry-specific loci at the genome-wide significance
(17q21 in Europeans, and 4q31, 5p13, and 6q25 in African
Americans). We identified pleiotropic associations at 17q21 and
1q24 which, combined with the detection of an enrichment of
genes associated with neurological diseases or related traits,
suggested that a potential overlap exists between genetic deter-
minants of circulating t-tau levels and several neurological dis-
orders and traits including AD and stroke.

Results
Populations and participants. We included in our meta-analyses
15,674 participants from eight studies representing two major
ancestries: Europeans (N= 14,721) and African Americans

(N= 953) (Table 1, 2). A description of each study is included in
the Supplementary Notes 1–8. Proportion of males varied from
35% (The Cardiovascular Health Study, African Americans) to
100% (The Vietnam Era Twin Study of Aging). Mean age ranged
from 49 years (3.5) for The Coronary Artery Risk Development in
Young Adults, African Americans to 78 years (4.3) for The
Cardiovascular Health Study, African Americans (Table 2).

Main meta-analysis results. Quantile–Quantile and Manhattan
plots for each ancestry-specific meta-analysis of circulating t-tau
levels are presented in Figs. 1, 2 and Supplementary Fig. 1. We
confirmed and better characterized the strong association of genetic
variants at the microtubule associated protein tau (MAPT) 17q21
locus in European participants (lead genetic variant rs242557-A,
effect allele frequency= 0.38, beta= 0.20, P= 8.9 × 10−143, pro-
portion of variance explained (PVE) ~4.2%, Table 3). Stepwise
model selection procedure at the 17q21 locus identified three dis-
tinct signals (rs242557-A, beta= 0.20, P= 2.3 × 10−143; rs7502280-
T, beta= 0.17, P= 5.7 × 10−38, PVE ~ 1.1%, and rs2942003-T,
beta= 0.16, P= 3.9 × 10−78, PVE ~ 2.3%), Table 3, Supplementary
Table 1 and Fig. 3. We also detected, at the genome-wide threshold
(P < 5 × 10−8), three potential novel loci in African American
participants at 4q31 (lead genetic variant rs111836296-T, effect
allele frequency= 0.06, beta=−0.54, P= 1.7 × 10−8), 5p13
(rs74710969-T, effect allele frequency= 0.11, beta=−0.53,
P= 3.4 × 10−8, PVE ~ 3%) and 6q25 (rs674432-C, effect allele
frequency= 0.97, beta= 0.68, P= 1.8 × 10−8, Table 3). The var-
iants rs111836296 and rs74710969 are extremely rare or mono-
morphic in European populations. We detected additional
associations at P < 5 × 10−7 at eleven loci (2q23, 3p14, 3q11, 5q13,
7p21, 7p15, 7q36, 8p11, 10p11, 10q23, and 14q32) in African
American participants and three loci (1q24, 3p14, and 17q23) in
European participants (Supplementary Tables 2, 3). All the iden-
tified hits were ancestry specific (absence of association or mono-
morphic variant in one ancestry) as indicated by the high
heterogeneity (Table 3 and Supplementary Table 3). Forest plots
are presented in Supplementary Figs. 2–11 and indicated consistent
direction of effects across studies. Regional association plots for all
loci are presented in Supplementary Figs. 12–27.

We did not observe an association of the two SNPs defining
APOE in the main circulating t-tau European meta-analysis,
consistent with previous finding.18 In the additional APOE4-
stratified analyses, we observed similar magnitude and consistent
direction of effects for the main associations identified in
Europeans (Table 4).

Overlap of circulating t-tau genetic determinants with neuro-
logical diseases and traits. In addition to the strong associations
at the MAPT locus that is known to be pleiotropic, we identified
association at 1q24, a locus previously reported for stroke, Sup-
plementary Table 4.20 The lead genetic variant in our analysis
(rs6686805) was in linkage disequilibrium with rs1800594, a
GWAS hit for ischemic stroke. Analyses conducted with FUMA,
based on the main results from the European circulating t-tau
meta-analysis, identified significantly differentially expressed
genes in brain cerebellar hemisphere and brain cerebellum
(Supplementary Fig. 28) and enrichment of genes in gene sets
reported by GWAS of neurological diseases or traits including
Parkinson Disease (PD), craniofacial microsomia, intracranial
volume, cognitive function, subcortical brain region volumes, and
AD in APOE E4- carriers, as well as risk factors such as body
mass index (Supplementary Fig. 29). Finally, a genetic risk score
(GRS) based on the distinct genome-wide associations (two
MAPT genetic variants, rs242557 and rs376284405) from our
European meta-analysis of circulating t-tau levels (excluding the

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03287-y

2 COMMUNICATIONS BIOLOGY |           (2022) 5:336 | https://doi.org/10.1038/s42003-022-03287-y | www.nature.com/commsbio

www.nature.com/commsbio


Framingham Heart Study, FHS) was strongly associated with
circulating t-tau levels (beta= 0.3, P= 4 × 10−97, PVE= 7%) and
was associated with intracranial volume (beta= 15.1,
P= 3 × 10−4) in FHS. We did not detect significant associations
with the other traits tested (Supplementary Table 5). Altogether,
these findings suggest an overlap of the genetic associations of
circulating t-tau levels with known genetic determinants of neu-
rological disorders and associated traits.

Two sample Mendelian Randomization (MR) analyses. Using
two sample MR and large GWAS summary statistics, we did not
identify significant causal associations between circulating t-tau
levels and AD, PD, stroke, or White Matter Hyperintensities
(WMH) (Supplementary Table 6). We also tested the opposite
hypothesis and did not find significant causal associations (Sup-
plementary Table 7). Our results did not indicate significant
heterogeneity or presence of directional horizontal pleiotropy,
except for a few analyses (WMH or PD as exposure; stroke as
outcome). We also performed power calculations for the MR
where circulating t-tau levels was the exposure variable (Supple-
mentary Table 8) that indicated that our analysis would be
underpowered if the instruments had small effects on the neu-
rological outcomes (especially for AD and PD analyses with
smaller numbers of cases).

Rare variant analyses using whole-exome sequence data. Using
SKAT (variance component test) or CMC (burden test), our rare
variant aggregation tests based on whole-exome sequence data
identified 10 genes (ELFN2, UBASH3B, RUSF1, ZFP28, LCT,
REM1, DELE1, SLIT3, NSD3, and MYO1G) significantly
(P ≤ 1.25 × 10−6) associated with circulating t-tau levels when
aggregating rare variants (MAF ≤ 5% or MAF ≤ 1%) with high or
moderate impact, including some missense and loss of function
variants (Supplementary Tables 9, 10 and Supplementary Figs. 30,
31). All except one gene (MYO1G) were detected with SKAT at
the gene level significance threshold (P= 1.25 × 10−6), while at
least nominally significant associations were observed for most
genes with CMC (Supplementary Tables 9, 10). These results
indicate that rare variants in those genes were likely to have
different magnitudes and directions of effects, including no effect.
This is a likely scenario as the number of rare variants aggregated
for each gene was somewhat large, ranging from 13 to 64 variants.
Similar results were observed for the two sets of annotations
tested (missense or loss of function versus high or moderate
impact). This observation, combined with the fact that one set of
annotations is a subset of the other, and the number of genetic
variants contributing to both analyses did not differ drastically,
suggested that the same variants were selected to be aggregated in
both analyses. Similar results were also observed for the two MAF
thresholds tested, except for NSD3 and SLIT3. For these two
genes, the addition of a small number of more frequent variants
(1% <MAF ≤ 5%) attenuated the association.

Discussion
The goal of our study was to characterize genetic variation
underlying circulating t-tau levels and to explore their overlap
with known genetic determinants of neurological diseases. By
performing large-scale meta-analyses in more than 15,000 parti-
cipants from two major ancestries, we identified new genetic
variants and genes associated with circulating t-tau levels, all
associations being observed in only one ancestry (African
Americans or Europeans). We identified pleiotropic signals at two
regions (17q21 and 1q24) that were previously reported for
plasma t-tau, AD, PD, WMH, and PSP (MAPT) or stroke (F5),
respectively, and enrichment of genes associated withT
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neurological diseases or related traits. Thus, our analyses high-
lighted that an overlap may exist between genetic determinants of
circulating t-tau levels and several neurological disorders and
traits including AD.

Our findings confirmed the importance of genes and pathways
already well known to be involved in AD or other tauopathies and
neurological diseases. Indeed, we first confirmed the strong
association in Europeans of the 17q21 MAPT locus (lead genetic
variant rs242557), which has been reported to be associated with
circulating t-tau levels18. The MAPT locus has also been asso-
ciated with AD, PD, and PSP, Supplementary Table 420–22,
indicating an important role of MAPT in many neurodegenera-
tive diseases. This locus has also been associated with head
size23–25 and notably child head circumference23, which may
indicate possible effects of this inversion on brain development
very early in life. We found an enrichment for gene sets reported
associated with craniofacial microsomia, intracranial volume, and
subcortical brain region volumes, which tend to also support this
hypothesis (Supplementary Fig. 29). We also identified a

significant positive association of a GRS, constructed based on
two distinct MAPT genetic variants (rs242557 and rs376284405),
with intracranial volume in the FHS, while these variants were
distinct from the ones reported by GWAS of intracranial volume
at this locus (rs199525, rs8072451, and rs17689882). Despite PD
is not a tauopathy, PSP and corticobasal degeneration, two PD
subtypes known as Parkinson-plus syndromes, are both asso-
ciated with the formation of tau deposits26. Here we were also
able to identify two additional and distinct signals at 17q21
(rs7502280 and rs2942003). The variant rs7502280 is located at
29 kb of the corticotropin releasing hormone receptor 1 (CRHR1)
and at 7.3 kb of the mitogen-activated protein kinase 8 interacting
protein 1 (LOC644172), and is a GWAS hit for relative carbo-
hydrate intake27 and sleep duration28. The variant rs2942003 lies
at 12 kb and tags the leucine rich repeat containing 37 member
A2 (LRRC37A2) gene (Fig. 3). One 17q21 variant (rs439945)
reported by the Parkinson Disease GWAS Consortium was found
to be significantly associated with nearby gene expression probes
targeting LRRC37A and LRRC37A2 by a study investigating the

Table 2 Description of the African American participants included in the meta-analysis of circulating total-tau levels.

CARDIA (N= 111) CHS (N= 273) ARIC (N= 569)

Men, N (%) 51 (46) 96 (35) 218 (38)
Age, mean (SD) 48.78 (3.46) 76.32 (4.93) 61.68 (4.47)
Age, median [25–75%] 48.0 [46.0–51.0] 75.0 [72.0–80.0] 61.0 [58.0–65.0]
Circulating t-tau, mean (SD) 0.57 (1.41) 0.46 (0.94) 0.50 (0.77)
Circulating t-tau, median [25–75%] 0.37 [0.22–0.60] 0.28 [0.18–0.46] 0.31 [0.20–0.50]
Circulating t-tau (log), mean (SD) −1.54 (1.03) −1.24 (0.85) −1.57 (1.10)
Circulating t-tau (log), median [25–75%] −1.43 [−2.24, −0.78] −1.27 [−1.73, −0.78] −1.69 [−2.36, −0.99]

CARDIA The Coronary Artery Risk Development in Young Adults Study, CHS The Cardiovascular Health Study, ARIC The Atherosclerosis Risk in Communities Study.

Fig. 1 Manhattan plot of association P values for the African American specific meta-analysis of GWAS of circulating total-tau levels. The –log10(P)-
value for each single nucleotide variant on the y axis is plotted against the build 37 genomic position on the x axis (chromosomal coordinate). The dashed
horizontal red line indicates the genome-wide significance threshold of P= 5 × 10−8 and the dashed horizontal black line indicates the threshold of
P= 5 × 10−7.
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modification of gene expression in prefrontal cortex brain sam-
ples of pathologically confirmed PD cases and controls29. Thus,
genetic variations in both MAPT and LRRC37A2 appear to be
important determinants of tauopathies and neurodegenerative
disorders. More research needs to be performed to understand
more precisely the mechanisms underlying their contributions to
other tauopathies. Particularly, the 17q21 region, a common
inversion polymorphism, is complex and may affect the expres-
sion of other genes in the region that may also be involved in
neurodegenerative disease pathology, possibly in a tissue-specific
manner.

In addition to the MAPT 17q21 locus identified in Europeans,
we detected three potential novel loci in African American par-
ticipants (4q31, 5p13, and 6q25) at the genome-wide significance
level. Two of the lead genetic variants (rs111836296 and
rs74710969) were extremely rare in Europeans and lie in or tag
candidate genes (IL15 and ADAMTS12) linked to AD and other
neurological disorders. The genetic variant rs111836296 at 4q31
lies at 6 kb and tags the interleukin 15 (IL15) gene (Supplemen-
tary Fig. 15). Serum IL15, a pro-inflammatory cytokine, has been
studied as a possible marker of AD30. The genetic variant
rs74710969 at 5p13 lies in an intron of the ADAM metallo-
peptidase with thrombospondin type 1 motif 12 (ADAMTS12)
gene (Supplementary Fig. 16). Previous studies have associated
ADAMTSs family of secreted metalloproteases with the repair of
the central nervous system, through its ability to degrade neu-
rocan, a novel component of brain extra-cellular matrix. Altera-
tions in this degradation processes could be associated with the
pathogenesis of neurological disorders31. Several studies also
suggest a role for ADAMTS12 in stroke32,33.

We also detected 14 loci at P < 5 × 10−7, eleven loci in African
American participants and three loci in Europeans.

Three signals identified in African Americans (3p14 and 5q13)
or Europeans (17q23) lie in genes related to the tubulin-

microtubule system (FHIT, MAP1B, and BCAS3). The signal at
3p14 lies in the fragile histidine triad diadenosine triphosphatase
(FHIT) gene (Supplementary Fig. 13) and the encoded protein
interacts with tubulin. The signal at 5q13 lies in the microtubule
associated protein 1B (MAP1B) gene (Supplementary Fig. 17).
Proteins of this family may be involved in microtubule assembly,
which is an essential step in neurogenesis. Gene knockout studies
of the mouse MAP1B gene suggested an important role in
development and function of the nervous system. Several studies
are also in favor of a role of MAP1B in AD34,35. MAP1B is also a
component of cortical Lewy bodies and binds alpha-synuclein
filaments, which suggests that it may be involved in the patho-
genesis of Lewy bodies36. The signal at 17q23 lies in the BCAS3
microtubule associated cell migration factor (BCAS3) gene
(Supplementary Fig. 27) that is highly expressed in the brain
(GTEx). In mice, Rudhira, a murine WD40 domain protein that
is 98% identical to BCAS3, has been shown to bind to micro-
tubules and vimentin intermediate filaments to promote cell
migration for angiogenic remodeling37.

Furthermore, two signals (1q24 and 10p11) lie in genes
reported to be associated with AD or stroke or have an important
function in the brain (F5, and PARD3). The signal at 1q24
identified in Europeans lies in the coagulation factor 5 (F5) gene
(Supplementary Fig. 24). The lead genetic variant rs6686805 is in
linkage disequilibrium with rs1800594, a GWAS hit for blood
protein levels and ischemic stroke (Supplementary Tables 4,
11),38–40 and with rs6030, a missense variant in F5. A rare pro-
tective variant in F5 (rs2027885) has been reported to be asso-
ciated with AD in African Americans41 and with hippocampal
atrophy42. The signal at 10p11 identified in African Americans
lies in the par-3 family cell polarity regulator (PARD3) gene
(Supplementary Fig. 21) that is required for establishment of
neuronal polarity and normal axon formation in cultured hip-
pocampal neurons43,44. Par3 regulates microtubule stability and

Fig. 2 Manhattan plot of association P values for the European ancestry specific meta-analysis of GWAS of circulating total-tau levels. The –log10(P)-
value for each single nucleotide variant on the y axis is plotted against the build 37 genomic position on the x axis (chromosomal coordinate). The dashed
horizontal red line indicates the genome-wide significance threshold of P= 5 × 10−8 and the dashed horizontal black line indicates the threshold of
P= 5 × 10−7. The y axis was truncated for ease of interpretation.
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organization, crucial for neuronal polarization45. Moreover, aty-
pical protein kinase C (aPKC) in complex with PAR-3/PAR-6
negatively regulates microtubule affinity-regulating kinases,
which in turn causes dephosphorylation of microtubule-
associated proteins, such as tau, leading to the assembly of
microtubules and elongation of axons46. Par3 also regulates APP
processing and trafficking47, polarized convergence between APP
and BACE1 in hippocampal neurons48, and retrograde endo-
some-to- trans-Golgi network trafficking of BACE1 along with
aPKC49. Brain regulatory marks (promoter and enhancer) are
reported at the lead variant rs12245909 (HaploReg v4.1), which
may suggest a functional role of this variant in the brain.

We looked up the main distinct lead genetic variants from the
published ADNI GWAS of circulating tau levels18 in our Eur-
opean meta-analysis (excluding ADNI). We confirmed the strong
association of the MAPT rs242557-A genetic variant (Table 5 and
Supplementary Table 12). However, we did not find evidence of
association for the three other loci that were detected at P < 10−5

in the original ADNI GWAS, suggesting that these signals may
have been false positives.

Among the 10 genes identified when leveraging whole exome
sequence data and aggregating rare variants with high or mod-
erate impact, four have a function relevant to the brain (ELFN2,
UBASH3B, SLIT3, and NSD3). Interestingly, SLIT3 and NSD3
associations were more impacted by the choice of the MAF
threshold to select rare variants to aggregate. For both genes,
results were only significant with SKAT when using a MAF ≤ 1%,
indicating that only rarer variations were contributing to the
associations. The extracellular leucine rich repeat and fibronectin
type III domain containing 2 gene (ELFN2), is overexpressed
in the brain. The encoded protein is a postsynaptic adhesion
molecule that selectively binds with group III metabotropic glu-
tamate receptors50,51. ELFN1, a protein of the same family, has
been reported to be associated with neuropsychiatric disorders
(attention deficit hyperactivity disorder, post-traumatic stress
disorder, and epilepsy). Distinct neuronal expression patterns are
reported for ELFN1 and ELFN251. The ubiquitin associated and
SH3 domain containing B gene (UBASH3B) is overexpressed in
the brain. The encoded protein is a phosphatase, and the con-
certed action of protein kinases and phosphatases represents a
critical signaling event controlling synaptic functions and higher-
order brain functions, such as learning and memory52. The slit
guidance ligand 3 gene (SLIT3) encodes an axon guidance
molecule expressed by motor neurons53,54. SLIT3 may also play a
role in essential tremor disease pathogenesis55. The nuclear
receptor binding SET domain protein 3 gene (NSD3) is highly
expressed in the brain. The encoded protein is a SET domain-
containing methyltransferase, an epigenetic regulator that is
selectively expressed in primary microglia56. Follow-up studies
are needed to characterize the potential role of these four genes in
tauopathies.

A summary of the neurological traits reported in the GWAS
catalog for genetic variants in the main genes identified in the
meta-analyses of circulating t-tau levels (IL15, FHIT, ADAMTS12,
PARD3, F5, BCAS3, UBASH3B, and SLIT3) and described above
is available in Supplementary Table 11.

By performing meta-analyses separately in African Americans
and European-ancestry participants, we were able to identify
ancestry-specific associations for circulating t-tau levels. The lead
variants at the three loci identified at the genome-wide threshold
in African American participants were extremely rare in Eur-
opean populations. In addition, most loci identified in African
American participants were driven by the largest study, ARIC.
Two of the findings identified at the genome-wide threshold in
African Americans were low frequency variants, with no linkage
disequilibrium support (Supplementary Figs. 15, 18), and withT
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only two of the three cohorts that contributed to the meta-
analysis. Caution is thus needed regarding the interpretation of
these findings as such results are typically seen in GWAS of
admixed populations with small sample sizes and could be driven
by a few outliers. We also found that the strong association of the
MAPT locus with circulating t-tau levels was specific to
European-ancestry participants. This result is consistent with the
recent finding from the Florida Consortium for African American
Alzheimer’s Disease studies57. The majority of loci identified in
European-ancestry participants were driven by the two largest
studies, FHS and RSI. The fact that we did not detect an

association in the African American participants for the novel loci
detected at P < 5 × 10−7 in the European-ancestry participants
may be due to a lack of power because of the limited sample size
of this subgroup. However, our multi-ancestry meta-analysis
showed that the hits identified were ancestry specific (Supple-
mentary Table 3). The high heterogeneity observed across
ancestry suggests that the genetic architecture of circulating t-tau
levels may differ between European-ancestry and African
American populations.

We explored the potential pleiotropy of loci previously
reported for several neurological disorders with circulating t-tau

Fig. 3 Regional association plot at the MAPT 17q21 locus. Genetic variants are plotted with their P values (-log10 values, left y axis) as a function of the
build 37 genomic position (x axis). Estimated recombination rates (right y axis) reflect the local linkage disequilibrium (LD) structure around the top
distinct associated genetic variants (red and blue diamonds, denoting rs242557 and rs2942003, respectively), identified using stepwise model selection
procedure, and their correlated proxies. Genetic variants in LD with rs242557 are indicated with circles according to a light to dark red scale, from r²= 0 to
1. Genetic variants in LD with rs2942003 are indicated with triangles according to a light to dark blue scale, from r²= 0 to 1. Gray crosses (X) represent
SNPs with missing LD. The third distinct genetic variant (rs7502280), indicated in black on the plot, was not present in the reference panel to calculate the
LD with the other variants in the region. Reference panel used was the 1000 Genomes November 2014 European population.

Table 4 Results of the APOE4-stratified analyses for the lead genetic variants in each locus passing the threshold of P < 5 × 10−7

in the European meta-analysis of GWAS of circulating total-tau levels.

Main analysis
(N= 14,721)

APOE4 carriers
(N= 3640)

APOE4 Non-
carriers
(N= 10,574)

rsid Chr Build 37 Pos (bp) Eff NEff EAF Beta P Beta P Beta P Gene

rs6686805 1 169,512,643 A C 0.67 −0.04 3.4E-07 −0.02 0.21 −0.04 5.1E-07 F5
rs139843727 3 66,316,022 A C 0.99 0.22 2.9E-07 0.08 0.44 0.24 6.5E-07 SLC25A26
rs7502280 17 43,670,221 T G 0.88 0.17 8.0E-38 0.16 2.2E-09 0.18 1.4E-30 intergenic
rs242557 17 44,019,712 A G 0.38 0.20 8.9E-143 0.19 1.3E-37 0.20 1.4E-105 MAPT
rs2942003 17 44,576,704 T G 0.34 0.16 1.9E-78 0.17 3.5E-22 0.16 3.4E-58 intergenic
rs4968553 17 59,428,962 C G 0.16 −0.05 4.6E-07 −0.05 0.02 −0.06 1.7E-07 BCAS3

EAF effect allele frequency, Eff effect (alternate) allele, Neff non-effect (reference) allele.
The association of the two SNPs defining APOE in the main European meta-analysis were: rs429358-T (Beta=−0.02, P= 0.10) and rs7412-T (Beta= 0.01, P= 0.49).
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levels by performing a look-up of these loci in our European
meta-analysis. We also used MR analyses to evaluate the potential
causal associations between circulating t-tau levels with several
neurological disorders and traits, but we did not identify sig-
nificant causal associations. Limitations of these analyses are the
availability of large, complete, and publicly available GWAS
summary statistics, and the strength of the MR instruments due
to the limited number of associations in the European circulating
t-tau meta-analysis and the limited number of AD and PD cases.

Strengths of our study are the large sample size, with the
inclusion of eight population-based cohorts with ancestral
diversity, with genotype data and information on circulating t-tau
levels measured with ultra-sensitive assays. We leveraged large
imputations reference panels (1000 Genomes and the Haplotype
Reference Consortium) to study common genetic variations
complemented with whole exome sequence data to explore less
frequent genetic variations. Some limitations include the modest
sample size of the African American sample that has limited our
ability to confirm the GWAS findings and perform secondary
analyses in this subgroup, such as stratification on APOE4 status,
and the fact that the contributed studies only had circulating t-tau
measurement available, and not specifically phosphorylated tau.
The fact that the APOE locus was not associated with circulating
t-tau levels may suggest that circulating t-tau and phosphorylated
tau have different genetic architectures. Replication of the African
American potential novel loci and the less common variant
association identified in Europeans is needed to confirm our
findings but the availability of samples with circulating t-tau
levels and genetic data is limited.

In conclusion, our large multi-ancestry meta-analysis identified
new genetic variants and loci associated with circulating t-tau
levels. Notably, our study revealed that the genetic architecture
underlying circulating t-tau levels might differs between African
American and European-ancestry populations and that genetic
variation underlying circulating t-tau levels may overlap with
known genetic determinants of neurological disorders. To better
understand how these variants may contribute to AD and other
tauopathies, further investigations of these findings will be
necessary, including cohorts with a broader ancestral diversity,
biological experiments, functional and omic studies, and animal
models.

Methods
Populations and participants. We included in our multi-ancestry and ancestry-
specific meta-analyses of total-tau participants from eight studies: seven cohorts
from the Cohorts for heart and aging research in genomic epidemiology (CHARGE)
consortium (the Framingham Heart Study (FHS), the Rotterdam Study (RSI and
RSII), the MEMENTO Study, the Coronary Artery Risk Development in Young
Adults (CARDIA) Study, the Cardiovascular Health Study (CHS), the Vietnam Era
Twin Study of Aging (VETSA) Study, and the Atherosclerosis Risk in Communities
(ARIC) Study), and the ADNI Study. All participants included in this study pro-
vided written informed consent for genetic testing and analyses. Study-specific
information including study description, and detailed information about genotyping
and imputations and GWAS analysis is included in the Supplementary Notes 1–8.

Tau quantification. Circulating (in plasma or in serum) t-tau levels were quan-
tified using the Human Total Tau kit on the Simoa™ HD-1 analyzer (ADNI,
plasma), the Simoa™ Tau 2.0 Kit and the Simoa™ HD-1 analyzer (FHS, plasma), the
Simoa™ Tau 2.0 Kit (MEMENTO_1, plasma), the Simoa™ Human Neurology 4-Plex
A assay with the Simoa™ HD-X analyzer (the Atherosclerosis Risk in Communities
study, MEMENTO_2 and the Coronary Artery Risk Development in Young
Adults, plasma and the Cardiovascular Health Study, serum), the Simoa™ Human
Neurology 3-Plex A assay with the Simoa™ HD-1 analyzer (the Rotterdam Study,
plasma) and high throughput bioassays platforms or single analyte assays using the
Simoa™ HD-X or Fujirebio analyzer (the Vietnam Era Twin Study of Aging,
plasma).

Genotyping and imputation. Studies used the densest imputation reference panel
available to them at the time of analyses, either 1000 Genomes or the HaplotypeT
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Reference Consortium. A description of the reference panel used by each study is
provided in Supplementary Tables 13–15.

Genome-wide association studies (GWAS) and quality control. Each study
evaluated the association of single-nucleotide genetic variants with log2-
transformed circulating t-tau levels under an additive model. Analyses were
adjusted for age, sex, and additional study specific covariates to control for
population structure (including principal components). Studies with both Eur-
opeans and African Americans analyzed each ancestry separately. The minimum
sample size for each ancestry/phenotype combination for inclusion in this study
was fixed to 100. Additional stratified analyses according to APOE4 status (APOE4
carriers vs non APOE4 carriers) were performed in European participants only,
given the modest sample size of the African American sample. Study-specific
GWAS results were filtered based on an imputation quality score greater or equal
to 0.30 and a minor allele count greater or equal to 20. The minor allele frequency
threshold to include a genetic variant in the meta-analyses is indicated for each
study in Supplementary Tables 13–15.

Multi-ancestry and ancestry-specific meta-analyses. GWAS results across all
studies were meta-analyzed by ancestry with METAL using an inverse variance-
weighted average method58. For each meta-analysis, we selected results for which
two third of the studies contributed. Results from the European and the African
American meta-analyses, and for which at least two studies contributed to each
meta-analysis, were then meta-analyzed using Metasoft59,60.

Conditional and joint association analysis based on summary statistics.
Conditional and joint association analysis in loci associated with circulating t-tau
levels at the genome-wide threshold (P < 5 × 10−8) were performed using the
Genome-wide Complex Trait Analysis61,62 based on the European meta-analysis
results. A stepwise model selection procedure was used to select distinct associated
genetic variants (P < 5 × 10−8). The FHS Haplotype Reference Consortium impu-
ted data was used as the reference panel with unrelated participants only.

Overlap of circulating t-tau genetic determinants with neurological diseases
and traits. We extracted from the GWAS Catalog20 (https://www.ebi.ac.uk/gwas/
downloads/summary-statistics) all reported associations for AD, t-tau (in plasma
or CSF), stroke, PSP, Parkinson’s Disease (PD), and White Matter Hyperintensities
(WMH), and looked them up in our European meta-analysis results. We also used
the FUMA GWAS platform (Functional Mapping and Annotation of Genome-
Wide Association Studies, https://fuma.ctglab.nl/) using as input the summary
statistics from the European circulating t-tau meta-analysis to leverage functional,
biological information to prioritize genes and check expression patterns and shared
molecular functions between these genes63,64. Finally, we performed a GRS asso-
ciation analysis in the FHS. We first re-ran the European circulating t-tau levels
meta-analysis without FHS. We then used the Genome-wide Complex Trait
Analysis to identify distinct genome-wide associations on chromosome 17. We
computed the GRS using the distinct variants identified by the Genome-wide
Complex Trait Analysis for all FHS participants using the Haplotype Reference
Consortium imputed genotypes and weights from the new meta-analysis. We
tested the association of the GRS with incident AD (140 cases, 2775 controls) and
stroke (149 cases, 3461 controls), and with four brain MRI phenotypes (hippo-
campal volume, white matter hyperintensities, total brain volume, and intracranial
volume, N ranging from 3489 to 4310). Details regarding trait measurements and
definitions in the FHS have been published elsewhere65–67. We used logistic or
linear mixed-effects model, adjusted for age at baseline or at MRI and sex, while
accounting for relatedness. For the brain MRI analyses, we excluded participants
with dementia, stroke, large brain infarcts, tumor or any other finding that could
have affected the scan and additionally adjusted the hippocampal volume, white
matter hyperintensities, and total brain volume analyses for intracranial volume. If
a significant association was detected (P= 0.05/6= 0.008), an additional adjust-
ment for APOE4 was performed.

Two sample mendelian randomization (MR) analyses. We used the TwoSam-
pleMR R package in R68,69 to assess the causal association of circulating t-tau levels
with AD, PD, stroke, and WMH using publicly available large European GWAS
summary statistics. We selected large GWAS with independent samples from the
ones included our meta-analysis. Briefly, we used an arbitrary threshold of
P < 5 × 10−6 in the European meta-analysis of circulating t-tau levels to select the
genetic variants to be used in the MR and performing clumping to select distinct
variants based on 1000 Genomes European linkage disequilibrium reference panel.
We then extracted these SNPs from the outcome GWAS based on summary sta-
tistics from the GWAS catalog (https://www.ebi.ac.uk/gwas/downloads/summary-
statistics) or the IEU GWAS database (IGD, https://gwas.mrcieu.ac.uk/) and per-
formed harmonization of the alleles. As MAPT locus is known to be pleiotropic, we
conducted the mendelian randomization using different methods and carefully
check for presence of heterogeneity and horizontal pleiotropy. For this analysis, we
conducted power calculations for a continuous exposure and a PVE on the
exposure of 8%, using the power analysis calculator https://sb452.shinyapps.io/

power/. Finally, we tested the opposite hypothesis that AD, PD, stroke, and WMH
are causally associated with circulating t-tau levels.

Rare variant analyses using whole exome sequence data. To explore the
association of rare variations with circulating t-tau levels, we selected the two
largest studies (FHS and RSI) to perform rare-variant aggregation tests based on
whole exome sequence data from the Cohorts for heart and aging research in
genomic epidemiology (CHARGE) consortium70. A total of 2279 participants
were included in the analyses. Information on sequencing and quality control is
provided in the Supplementary Notes 9 and 10. To make sure that the same allele
was coded as the effect allele for FHS and RSI, we used the effect (alternate) allele
from a consensus SNP info file from the Cohorts for heart and aging research in
genomic epidemiology (CHARGE) consortium71. Annotations of the exome
variants was performed with dbNSFP72. We selected variants with a MAF ≤ 1%
or 5%, and (1) missense and loss of function variants only or (2) variants with
high or moderate impact from Ensembl Variant Effect Predictor73 including
missense and loss of function variants. The analyses were performed using the R
package seqMeta (http://cran.r-project.org/web/packages/seqMeta/). Each cohort
used the seqMeta prepScores function to generate single variant score statistics
and genotype covariance matrices for all variants. Results were then meta-
analyzed using the skatMeta and burdenMeta functions. We used a Bonferroni
correction for the number of genes included in the analyses and the number of
tests (P= 0.05/20,000/2= 1.25 × 10−6) and filtered the results based on a
cumulative minor allele count of 30, that accounts for the number of genetic
variants per gene.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available either within the main article
or the supplementary information. Summary statistics from the ancestry-specific meta-
analyses of circulating levels of total-tau have been deposited and are publicly accessible
on the GWAS catalog FTP (study accession numbers GCST90095138, and
GCST90095139). Genome-wide summary statistics for complex disorders used in the
secondary analyses were downloaded from public repositories (GWAS catalog: https://
www.ebi.ac.uk/gwas/downloads/summary-statistics; and IEU GWAS database: https://
gwas.mrcieu.ac.uk/).
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