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ABSTRACT In this paper, we propose a new approach to perform multiple error correction in wireless
communications over error-prone networks. It is based on the cyclic redundancy check syndrome, using an
optimized lookup table that avoids performing arithmetic operations. This method is able to achieve the same
correction performance as the state-of-the-art approaches while significantly reducing the computational
complexity. The table is designed to allow multiple bit error correction simply by navigating within it. Its
size is constant when considering more than two errors, which represents a tremendous advantage over
earlier lookup table-based approaches. Simulation results of a C implementation performed on a Raspberry
Pi 4 show that the proposed method is able to process single and double error corrections of large payloads in
100 ns and 642µs, respectively, while it would take 300µs and 1.5 s, respectively, with the state-of-the-art
CRC multiple error correction technique. This represents a speedup of nearly 3000××× for single error and
2300××× for double error correction, respectively. Compared to table-based approaches, the proposed method
offers a speedup of nearly 1200××× for single error and 2300××× for double error correction under the same
conditions. We also show that when multiple candidate error patterns are present, numerous errors can be
corrected by adding a checksum cross-validation step.

INDEX TERMS Cyclic redundancy check, error correction, lookup table, checksum control, wireless
communication.

I. INTRODUCTION
In wireless communications, cyclic redundancy checks
(CRCs) [1], [2] are widely adopted in order to enhance
the communication reliability between a transmitter and a
receiver. Indeed, CRCs are broadly used at different layers
of the protocol stack of a data transmission as they detect
transmission errors at the receiver. For instance, CRCs are
present at the physical layer of widely deployed wireless
protocols such as 802.11 [3] to protect the header of the
packet, and at the Medium Access Control (MAC) layer,
to protect the entire packet. An example of the latter is the
802.3 Ethernet protocol [4]. In general, CRCs are only used
to detect whether a transmitted packet has bit errors, in which
case the erroneous packet is discarded.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Fadda .

CRCs are computed from two main components: the pro-
tected bitstream, i.e., the message or data to transmit, which
we will call the payload, denoted dT (x) for transmitted data,
and a generator polynomial, denoted g(x). Both dT (x) and
g(x) are binary polynomials. The generator polynomial is a
constant binary polynomial, which is defined according to
the transmission standard used. There are various generator
polynomials in use, differentiated by their length and their
number of non-null coefficients. Larger generator polynomi-
als will lead to stronger error detection capabilities, but at the
cost of higher packet overheads.

The typical transmission and reception of a CRC-protected
data packet follow three main steps [1]. Firstly, at the trans-
mitter, the payload dT (x) is left-shifted by n positions, where
n is the degree of the generator polynomial, to produce
the transmitted packet pT (x) = dT (x).xn. This result is
then divided by the generator polynomial g(x) to obtain the
remainder of this division, denoted rT (x). Secondly, rT (x)
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is appended to the payload to be sent, and occupies the n
rightmost positions of the transmitted message. The transmit-
ted message is thus dT (x).xn + rT (x), where + is the addi-
tion which corresponds to an exclusive or (XOR) between
two binary polynomials,1 and has a total length of m + n
bits, where m is the payload length of the message. Thirdly,
at the receiver, the received packet, denoted pR, is divided by
the generator polynomial g(x) in order to check if an error
occurred during the transmission. If the message is intact, the
remainder of the division by g(x), called the computed CRC
syndrome s(x), will produce a result equal to zero since rT (x)
has been added to generate an entire multiple of g(x). On the
other hand, a non-zero CRC syndrome indicates an error in
the transmitted message.

In currently deployed systems and methods, conventional
CRC error management involves discarding a packet when
an error is detected at the receiver; that is, when the remain-
der is not equal to zero at the receiver. These approaches
do not allow for packets to be corrected. In such systems,
a received corrupted packet is processed as a lost packet. For
example, a packet having a single bit in error, and which
would otherwise be a good packet, will be detected as an
erroneous packet and will be entirely discarded. Discarding
entire packets having only one or a few errors leads to a
significant loss of valuable information which could have
been exploited if the errors had been corrected.

Therefore, various methods, described in Section II, were
developed to exploit the CRC to perform error correction in a
packet [6]–[16]. These methods includeMeggitt decoding [8]
and its practical variation called error-trappingwhich is capa-
ble of correcting, with high efficiency, single errors, short
double errors and burst errors [9]–[12]. This is achieved using
specialized circuitry. However, the approach cannot handle
errors which are not close to each other in a packet. To avoid
complex computational circuitry to identify the error posi-
tions, some approaches consist in storing the different syn-
dromes produced by the error patterns in a lookup table [1].
This is typically performed for small packets and for a single
error to maintain the size of these lookup tables reasonable.
For instance, in [15], the authors propose a fixed latency serial
transceiver with single bit error correction using a lookup
table. However, when considering challenging applications
such as video streaming, where packet length may be large
and where multiple errors may occur in a same packet, this
kind of solution becomes impracticable. In this paper, we pro-
pose an alternative and efficient method for CRC-based mul-
tiple error correction using an optimized lookup table. The
proposed method is not limited to a specific packet size and
is able to handle multiple errors. It is based on unpublished
research work from [17]. In our method, most of the required
operations are done offline and then stored in a table. The
table is designed to allow the results for single and double
error patterns to be accessed by simply navigating through the

1Binary packets of lengthm belong to the Galois Field GF(2m), where the
addition is performed as the bitwise XOR [5].

table, which results in significant processing time reductions
versus table-free methods. The proposed approach can also
be applied to identify any number of errors and at any posi-
tion, with significant speedups. This paper does not intend
to compete with existing error-correcting codes (e.g., turbo,
LDPC, polar), but rather provides a new error-correction
method that takes advantages of the widely used CRC present
in the protocol stack. In fact, the proposed method can be
used in addition to the codes mentioned above to reinforce
the robustness of transmitted data against channel errors in
a cross-layer context. The following are the benefits and
contributions of the proposed method:

• Significant speed gains: The proposed approach is
designed to allowmost to all of the arithmetic operations
required in the state-of-the-art table-free error correction
approach [18] to be performed offline and stored in a
table. This design contributes to greatly reducing the
processing time of the proposed method.

• Fixed-length tables: State-of-the-art table-based
approaches define distinct tables for each number of
errors and maximum packet size considered. Further-
more, these tables grow in size exponentially with the
number of errors considered, making them impractical
when considering 3 or more errors. In contrast, the
tables derived and used for the correction of multiple
bits in the proposed approach are fixed for a given
generator polynomial, and therefore possess a fixed
length, regardless of the number of errors or packet size
under consideration. We also propose another version of
the table for the special case of a single error correction,
which requires less memory storage.

• Analysis of the syndromes and of the table struc-
ture: We provide equations to identify, for any gen-
erator polynomial, syndromes with special properties
(e.g., syndromes for which there is no valid error pattern
comprising a single erroneous bit). We also highlight
the cyclic properties of the table-based process which
produces syndrome elements looping on themselves.

• Applicability to multiple error correction: Because
of its large speed gains and reasonable table sizes, the
proposed method is well-positioned to correct multiple
errors. Also, unlike state-of-the-art methods [8]–[12]
only handling errors occurring in bursts, the proposed
method can handle multiple errors regardless of their
individual positions in the packet. However, when mul-
tiple errors are considered, and especially when the burst
and maximum packet size conditions are relaxed, the
candidate error patterns leading to the computed syn-
drome are numerous, making the identification of the
true error pattern challenging. We show that we can
significantly reduce the list of candidates, even to the
point of having a single one and being able to correct
the packet, by performing an additional validation step in
the form of testing of the candidates with the checksum
found in UDP and TCP protocols.
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This paper is mainly based on the theory described and
discussed in [18], with which the reader is expected to
be familiar. The rest of the paper is organized as follows.
In Section II, we introduce related works on CRC error
correction covering lookup table methods and state-of-the-
art CRC multiple error correction. In Section III, we present
the concepts and implementation of the proposed optimized
table, as well as its use in multiple error correction systems.
We also analyze the structure of the table and syndromes
with special properties. In Section IV, we evaluate the per-
formance of the proposed approach in terms of processing
speed and memory usage, as compared to existing methods.
In Section V, we conclude and give an overview of future
research works.We assume that the reader is familiar with the
notations and concepts described in our previous works [18],
especially those related to the Galois Field GF(2) [19] and its
generalization to GF(2m).

II. RELATED WORKS
Several works have explored the error correction possibil-
ities of error detection codes, such as CRC [8]–[16] or
checksums [20]. They can be categorized as table-based
and table-free approaches. As described in [1] and more
recently in [13], [14], [16], the table-based approach consists
in computing a lookup table (LUT) prior to communication.
In this scheme, each LUT entry contains the pre-computed
syndrome corresponding to a specific single error position in
the received packet. An example of such a table for CRC-
8-CCITT is given in Table 1. A search for the computed
syndrome is performed in the table. If a match is found,
the bit at the corresponding position is flipped. The num-
ber of entries in the lookup table is based on the size of
the expected payload, and is constant. It has been applied
to other generator polynomials by [15]. Such tables have
been recently exploited in improved successive cancellation
list (SCL) decoding schemes of Polar codes [16]. Thismethod
is fast when conducted on small packets, but suffers from
some serious disadvantages. Firstly, the approach assumes
that a single error occurred in the packet, yielding a mis-
correction probability in severe channel conditions, since a
highly corrupted packet can produce the same syndrome as a
single error. Furthermore, to support the correction of multi-
ple errors, methods based on this approachmust store the syn-
dromes of all combinations of error positions. Consequently,
memory requirements grow exponentially with the number
of errors considered, limiting their use to small packet sizes
and few errors in practice. For instance, as shown in [16],
a table conceived to correct all single and double errors in
packets having bit lengths of 128 bits requires 128 entries
for single error positions and 8128 entries to cover all double
error positions.

Table-free approaches rely on on-the-fly arithmetic opera-
tions instead of pre-computed lookup tables to perform error
correction. They include Meggitt decoding [8] and error-
trapping [9]–[12] for which multiple error correction is pos-
sible only when errors are concentrated in a region of the

TABLE 1. Example of lookup table for single error correction as proposed
in the literature [13], applied to CRC8-CCITT of generator polynomial
g(x) = x8 + x2 + x + 1, considering a 10-bit payload.

packet not exceeding the CRC size, meaning that they can-
not correct errors which are located far apart in the packet.
In [18], we introduced a generic table-free multiple error
correction. This approach generates an exhaustive list of all
error patterns, regardless of where they are located in the
packet, corresponding to the computed syndrome up to a
predetermined (desired) number of errors. The data packet
includes a payload dT (x) and cyclic redundancy check (CRC)
information. The latter is calculated using a generator func-
tion or polynomial g(x). The method generates an exhaus-
tive list of valid error patterns containing N errors or less,
by exploiting the definition of CRC computation. The list can
comprise one or several candidates depending on g(x), the
CRC syndrome and the packet length. When the list contains
several candidates, various methods can be applied to identify
the error pattern within the list that actually occurred. For
instance, in [21], we proposed using a UDP checksum and a
non-desynchronizing bits validation steps to eliminate invalid
candidates in the context of error-prone transmission ofH.264
baseline profile compressed video streams. In [22], we com-
bined a UDP checksum and video decoding validation steps
for H.264 andH.265 video communications over 802.11p and
Bluetooth Low Energy wireless networks. We demonstrated
the possibility of correcting up to 3 errors in a video packet.
In [23], we extended our work to estimate the number of
candidates in the list and applied our method to correct up to
5 errors. All the approaches led to substantial video quality
improvements. Another example of using additional infor-
mation to perform CRC-based multiple bit error correction is
found in [24] where the authors identify the bits having a high
error probability to determine the most likely error patterns.
This shows that although the proposed method generates
several candidate error patterns, depending on the targeted
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application, it is possible to eliminate all but one candidates
using additional information present at other layers of the
protocol stack or from the application itself.

We now summarize the main approach described in [18].
We can express the syndrome computed at the receiver as:

s(x) = (dT (x).xn + rT (x)+ e(x)) mod g(x) (1)

where e(x) represents the potential error pattern that
corrupted the packet during the transmission, and where
erroneous positions in e(x) are identified by values of 1.
From this definition, it is clear that the result of (dT (x).xn +
rT (x)) mod g(x) is zero, as rT (x) is the remainder of the
division of dT (x) by g(x), and:

s(x) = e(x) mod g(x) (2)

If we isolate the error vector, e(x), we obtain:

e(x) = s(x)+ q(x).g(x) (3)

where q(x) can be any binary polynomial of the highest
degree (m− 1), with m being the payload length. As the total
number of possible values of q(x) is too high (there are 2m

such polynomials), the method proposes focusing on lightly
corrupted packets and then building q(x) term by term. This
is achieved by canceling the Least Significant Bit (LSB) term
of the current e(x), at each step of the process, through the
addition of properly left-shifted g(x) (i.e., so that its LSB
term is aligned with the term of e(x) to cancel2). Adding g(x)
aligned at any position maintains the class equivalence of (3)
and produces error pattern candidates having the same com-
puted syndrome at each step [18]. The number of non-null
coefficients in the polynomial e(x) corresponds to the number
of errors in the current candidate. The method thus only keeps
candidates when the number of non-null coefficients in e(x)
is equal to or less than a predefined number N . To handle
the correction of multiple bit errors, the method forces term
values in e(x) throughout the process (i.e., it sets such terms
to 1 or turns them into a 1 by adding g(x) aligned with their
positions). Once (N − 1) positions have been forced, single
error management is performed on the remaining length of
the packet to locate the last error. If this last error does not
exist, it means that the forced term values did not correspond
to a valid error pattern for the given syndrome (i.e., an error
pattern leading to the computed syndrome).

Although this method requires very little memory space,
one drawbackwith it, however, is that it is very complexwhen
considering several errors in a packet. This complexity, mea-
sured in the number of additions involving g(x), is O(mN−1),
where m represents the payload length and N the number of
errors considered. It thus grows exponentially with N .

III. PROPOSED METHOD
While the state-of-the-art method discussed in the last section
aims at generating the list of valid error patterns with arith-
metic operations, the proposed method does the same by

2In this paper, we assume that gn=g0=1 as observed in practice.

exploiting tables, and accordingly avoids most arithmetic
operations. Unlike previous methods [13], where tables are
sparse and contain error positions only for CRC syndromes
compatible with a certain packet size (e.g., that associated
with a standard), the proposed tables provide error patterns
for every possible syndrome value. In addition to being usable
for any packet size, these tables can be indexed directly by
syndrome value instead of being searched, as was the case
in the previous case. Indeed, the process of searching for a
pattern in a table, as in the previous approaches, is computa-
tionally intensive. This method thus provides enhanced speed
performance, but at the cost of higher memory requirements.
However, the proposed tables are solely dependent on the
generator polynomial of interest, and are fixed for any num-
ber of errors N , while the previous methods lead to tables
whose sizes grow exponentially with N .
In what follows, we will use the notation a to represent

the binary vector associated with a binary polynomial a(x).
The i-th element (LSB-wise) of this vector will be denoted ai.
The addition of polynomials a(x) and g(x), denoted a(x) +
g(x), will become the XOR of vectors a and g, denoted a⊕g.
The left shift of g(x) by n positions, denoted g(x). xn will
be denoted g � n. The addition of two vectors should be
interpreted as an XOR operation.

A. SINGLE ERROR CORRECTION
The state-of-the-art method achieves CRC syndrome simpli-
fication through successive additions (XORs) of the current
error pattern vector (initialized to the computed syndrome)
with left-shifted versions of the generator polynomial, and an
updating of the error vector e with the result of the addition
until a single-bit error pattern appears in e (i.e., a single-bit
is set to 1). In the proposed method, we aim to avoid these
computations by storing the location (relative distance) of
the single error corresponding to each syndrome value in a
table. Because the table is directly indexed by these syndrome
values, the error location can be accessed directly by using
the syndrome as an index in the table. The first step of the
proposed method is thus to generate the table for single error
correction, following the steps illustrated in the flowchart
given in Figure 1.

Step 1: The table is initialized to -1. We choose this initial-
ization value as it cannot be a valid entry in the list, contrary
to 0, which would correspond to a single error at position 0.
The size of the table corresponds to the size of the possible
set of syndromes, (i.e., 2n− 1, where n is the bit length of the
syndrome s).
Step 2: The syndrome is then initialized to 0, which is

equivalent to null vector 0, although this value is not of
interest as it would indicate that there is no error in the packet.

Step 3: Next, the single error position P1 associated with
the syndrome s for a given polynomial g is determined. The
sub-steps to perform are illustrated in a separate flowchart
in Figure 2, where it can be seen that the state-of-the-art
single error algorithm is actually performed in steps 1, 2, 4,
5 and 6. Figure 2 presents an error handling process similar
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FIGURE 1. Flowchart representing the steps to build the table containing
the whole list of syndromes along with their associated single error
positions.

FIGURE 2. Flowchart representing the steps to obtain the single error
position from a computed syndrome (step 3 in Fig 1). In step 1,
0 represents the null vector.

to the CRC-based single error correction available in the
literature, where the packet length m is set to the largest
packet size before single error periodicity (i.e., we denote this
length as the cycle length of a generator polynomial). The
first step is to initialize e to m zeros and set its LSB value
to s. Then, for each syndrome, we thus count the number of
non-null values in the error vector e and check if this number
equals 1. If that is the case, the corresponding error position
is set in the corresponding entry of the table. If not, the LSB
non-null value is canceled and the error vector is checked
again, until we reach the cycle length. The cycle length for
any generator polynomial is equal to or less than 2n − 1, and
can be retrieved experimentally by determining the distance
between two single error patterns having the same syndrome.

Step 4: The single error position provided by step 3 is
stored in the table.

Step 5: If the whole set of possible syndromes has been
tested (final value of s reached), the process stops. If not, the
syndrome is updated by incrementing its value by 1.

At the end of the process, a table similar to Table 2 is
obtained, and shows an example for the polynomial generator
g(x) = x5 + x4 + x2 + 1. The index column is actually
implicit and does not need to be stored; in fact, it was added
here simply for better readability. In this table, P1 denotes the
degree of the single error position (i.e., the single non-null
position in e). For instance, looking at the table, the error
position is x10 when the computed syndrome is 7. It can be
seen that half the indexes indicate a position P1 of (−1).
This notation means that there is no single error position or
solution associated with the corresponding syndrome value.
Since the generator polynomial’s parity is even, it mainly
corresponds to syndromes with even parity. Of note, when
the generator polynomial has even parity, syndrome values
with even parity cannot lead to odd parity error patterns, and
thus, they cannot lead to single error solutions. We will see
later in this paper that there is also a specific syndrome for
which no solution exists when the generator polynomial has
even parity.

TABLE 2. Single error position table generated for a CRC-5 of generator
polynomial g(x) = x5 + x4 + x2 + 1.

The steps for identifying candidate single error posi-
tions when receiving a corrupted packet are illustrated in
Algorithm 1. The method proceeds by simply checking the
value of P1 in the table at the index corresponding to the
computed syndrome s, as shown in step 2. If P1 is different
from (−1) and indicates a value less than the length of the
packet, a candidate is appended to the list. A search for more
valid candidates is conducted, considering the cycle length of
the generator polynomial used. For example, in Table 2, the
cycle length is (24−1) = 15. Thus, the position P1 ranges
from 0 to 14, producing corresponding syndromes obtained
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from the Index column in the table (e.g. syndromes of 1 and
26 correspond to P1 = 0 and P1 = 14, respectively).
If an error occurs at position 15, as it corresponds to position
P1 = (0+ cycle), it will produce a syndrome equal to 1.
For a packet of length 50, when computing syndrome 1
(i.e., the same as position P1 = 0), the error can thus be at
positions 0, 15, 30 and 45. Since valid single error positions
are cyclic, we test all possible values up to the length of the
received packet. An error correction method may correct the
packet if a single candidate is returned by Algorithm 1 or if
one of them passes additional validations such as a UDP or
TCP checksum [25], [26].

The proposed single error correction approach differs from
the state-of-the-art lookup table approaches as it considers the
whole set of possible syndromes that can occur, regardless of
the packet length. Moreover, current lookup table approaches
are sorted in a bit error position-wise order, making it manda-
tory to scan the table to retrieve the error position. By sorting
the table in a syndrome-wise order, we do not have to scan
the table as it can be indexed with the computed syndrome
value.

B. DOUBLE ERROR CORRECTION
In order to handle double error correction, the strategy pro-
posed in the state-of-the-art CRC-based multiple error cor-
rection method is to force a first error and then search for the
second using the single error method [18]. As the first error is
forced at a specific position F1 by setting all lower positions
to 0 and this position to 1 through successive conditional
additions of g at required positions, the resulting syndrome is
expected to correspond to a single error syndrome. Checking
the position of this error by applying the single error method
will indicate whether the remaining error at position P1

Algorithm 1 SingleErrorCorrection(T [2n],s,n,m,cycle)

Inputs:
T [2n]: indexed table containing P1 for each syndrome
s: the syndrome vector
n: the length of the syndrome vector
m: the length of the payload vector
cycle: the cycle length of the generator polynomial

Output:
E1: the list of valid error positions for single-bit error

1: E1← {}
2: P1← T [s]
3: if P1 6= −1 then
4: while (P1 < m+ n) do
5: Add P1 to E1
6: P1← P1 + cycle
7: end while
8: end if
9: Return E1

FIGURE 3. Illustration of the next elements generation for the two
possible cases. In case 1, the newly forced value is already set to 1 after
the first XOR of g(x). In case 2, the newly forced position is 0 after the
first XOR, which requires a second XOR of g(x) to force this position to 1.
The red boxes represent the new position to force.

(as well as the other single errors at positions separated by
the cycle length for sufficiently large packets) occurs within
the packet, which would lead to a new candidate error pattern
with errors at positions (P1+1+F1) andF1. Thus, to consider
the entire set of possibilities, single error management must
be called for each possible location of the first error. At the
end of each verification, the LSB error is moved by one bit
toward the most significant bit (MSB), from the LSB position
where F1 = 0 to the end of the payload at position F1 =
m− 1. This repositioning is conducted in two steps:
• The previous bit position tested (former F1, forced to 1)
is set to 0 by XORing g at this position.

• The following bit toward the MSB is considered as the
new first error (i.e., F1 ← F1 + 1), and is either kept
at 1 if it was 1 or forced to 1 by XORing g at this position
if it was 0.

The process is repeated until the forced bit position reaches
the position m, corresponding to the length of the protected
data (position m− 1 is the last position processed).

It can be seen that based on these steps, the succession of
syndromes is always the same for a given generator polyno-
mial, and therefore we propose, in this method, to store the
value of the next syndrome based on the current one. More
specifically, the next element s′ of a given syndrome s is:

next =

{
(s′ ⊕ g)� 1 if s0 = 0
s′ � 1 if s0 = 1

(4)

where s′ is defined as:

s′ = [((s� 1)⊕ 1)⊕ g]� 1 (5)

The form of (5) actually corresponds to an updating of
the forced error position by canceling the previously forced
one and setting the new forced position to 1. These steps
are illustrated in Figure 3, where both cases discussed are
presented. In Figure 3a, the syndrome is first left-shifted by
one position and 1 is appended as the LSB, which represents
the formerly forced position. We cancel this position by
XORing the generator polynomial. As the new forced posi-
tion (represented by a red box) is already set to 1, no further
step is required, and we simply consider the next syndrome.
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On the other hand, in Figure 3b, the new forced position is
not set to 1 after the first XOR. In this case, therefore, another
XOR with the generator polynomial is needed to produce the
next syndrome. In the example of Figure 3a, it is clear that
starting from the syndrome s= [10111]= 23, we cancel the
previously forced value by XORing the generator polynomial
and leave the new position to force as 1, identified as a red
box. We thus obtain the next element for the syndrome equal
to 26, which is s= [00110]= 6. Linking a syndrome to the
next will significantly reduce the complexity of the approach
since the arithmetic operations will be pre-computed and
stored in the reference table.

In [18], it was shown that throughout the process of iden-
tifying error patterns with N or fewer errors, which operates
from the LSB to the MSB, only a range of n bits can contain
non-zero values since the lower positions are already elimi-
nated and the higher positions, initialized to 0, have not yet
been altered. The proposed method exploits this property by
considering only values within this range (sliding window)
and processing them as the syndromes of interest. In the
case of a double error, the forced error position will alter
the syndrome value on which our subsequent single error
position determination is based. Essentially, we consider the
effect of forcing the error position on the syndrome used for
identifying the remaining error position. This latter position
becomes relative to the forced position. It should be noted
that the forced error position, represented by a red box in Fig-
ure 3a, is not part of the syndrome considered for single-bit
error determination, but is implicitly present throughout the
process described in (5).

The following are the steps for generating the table con-
taining both the single error position and the next element,
as illustrated in Figure 4:

Step 1: The whole table is initialized to (-1). The number
of entries in the table is the same as for the single error table
previously described, with the difference lying in the number
of columns. For each row, another column containing the next
element of the current syndrome is appended.

Step 2: We initialize a, a variable representing the first
syndrome of the loop, to 1.

Step 3: We now begin to complete the table. In order
to avoid unnecessary computations, we first check that the
current table position has yet not been processed and that the
current values of a and g are able to produce a candidate.

Step 4: If that is the case, we initialize the next element to
0 and set a local syndrome b to the value of a.
Step 5: We first fill the single error position through to

steps described in the previous section (see Figure 2).
Step 6: The next element is identified for the current syn-

drome b and the generator polynomial g. The steps to deter-
mine the next element are described in a separate flowchart
in Figure 5. To generate the next element, we cancel the
previously forced bit position by XORing g and set the new
forced position through a new XOR if necessary.

Step 7: We store the single error position and the next
element in the table.

FIGURE 4. Flowchart representing the steps to generate the table T
containing single error position and next element to handle double error
correction.

Step 8: The local syndrome b is then updated to the next
position computed in step 6.

Step 9: If the next element has not yet been processed,
we keep on computing its associated single error position and
next element. If the next element has already been processed,
the current cycle of next has looped, which means that we
have to increment a and start a new loop.

Step 10: Once every value of a has been tested, the process
is ended as the table is complete.

Table 3 shows the complete table at the end of the process
for the generator polynomial g(x) = x5 + x4 + x2 + 1.
The P1 column corresponds to the relative distance of the
remaining single error, and the next column stores the next
syndrome to be tested (i.e., the syndrome after the forced
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FIGURE 5. Flowchart representing the steps to follow to generate the
next element from the computed syndrome and the generator polynomial
(step 6 of Fig. 4, illustrated in Fig. 3).

position is updated). Algorithm 2 illustrates the different
steps for performing the correction of double-bit errors when
the table is generated:

Step 1: The candidate list containing the candidates with
2 errors is initialized as an empty set.

Step 2: A vector s′ of length n bits is created, and it will
correspond to the updated version of the original syndrome s.
Step 3-7: As each next element from the table has been

generated given that an error had already been forced, the
first error must be added prior to navigation within the table.
Thus, if the LSB of the syndrome s is 0, an XOR with gmust
be performed to force the first position. Since this forced bit
is implicit and not part of the syndrome, a right shift is per-
formed in both cases. Note that in practice, such operations
can also be stored in the table. Adding two columns to store
these results would double the memory storage needed but
avoid any arithmetic operation.

Step 8: At this point, we consider the first error at posi-
tion 0, and perform the loop over all possible forced positions,
from 0 to m+ n− 1.
Step 9-10: The relative single error position is accessed

from table T . Two conditions must be met to consider the
candidate as valid. First, the position P1 must indicate a
relative distance (i.e., the single error position for a syndrome
value equal to the index), as tested in step 10, and then the
position of the error indicated by P1 must be in the range of
the packet.

Step 11: As the distance P1 is relative to the current forced
position F1, P1 < m + n is not enough to guarantee that the
error pattern is possible. Thus, considering a relative packet
size ofm+n−F1, we ensure that we identify only valid error
patterns.

Step 12: When both conditions described in Step 10 and
Step 11 are met, a candidate comprising the forced position
F1 and the remaining error position P1+1+F1 is appended
to the list.

Algorithm 2 TwoErrorCorrection(T [2n][2],s,n,m,cycle)
Inputs:

T [2n][2]: indexed table containing P1 and next
elements for each syndrome

s: the syndrome vector
n: the length of the syndrome vector
m: the length of the payload vector
cycle: the cycle length of the generator polynomial

Output:
E2: the list of valid error positions for double-bit error

1: E2← {}
2: Let s′ be a vector of length n
3: if s ∧ 1 = 0 then
4: s′← [s⊕ g]� 1 // Can be stored in a table
5: else
6: s′← s� 1 // Can be stored in a table
7: end if
8: for F1 = 0 to m+ n− 1 do
9: P1← T [s′][0]

10: if P1 6= −1 then
11: while (P1 < m+ n− F1) do
12: Add (P1 + 1+ F1,F1) to E2
13: P1← P1 + cycle
14: end while
15: end if
16: s′← T [s′][1]
17: end for
18: Return E2

Step 13: As the single error position is cyclic, we should
test every possible error pattern. At each loop, we add the
cycle length to the position P1 and check if the resulting
value is within the range of the packet. If not, the next forced
position must be tested.

Step 16: Once a forced position has been processed, the
updated syndrome, corresponding to the syndrome resulting
from the next forced position is accessed from the table.
It corresponds to the second column of the current syndrome
index, as illustrated in Table 3.

C. N ERROR CORRECTION
For N errors, the generalization of the strategy used for
double error correction is performed, as illustrated in Algo-
rithm 3. The concept is as follows. (N − 2) bit values must
be forced to 1 at each step (initialized to the (N − 2) LSBs of
the syndrome). Then, the double error method is performed
on the remaining bits of the packet. The number of errors,
N , is then decreased and when it reaches 1, single error
correction is performed on the computed syndrome.

For each forced bit error position (in the double error
approach after forcing the (N − 2) bits), the next element
(forcing the next bit toward the MSB) can be accessed from
the reference table to reduce the computational complexity
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TABLE 3. Table generated for double-bit error correction for a CRC-5 of
generator polynomial g(x) = x5 + x4 + x2 + 1.

and avoid arithmetic operations. Therefore, we look at every
possible combination of forcing (N−2) bit values to 1 within
the m− 1 first bits (LSB) of the packet. Let the forced bits be
at positions F1,F2, . . . ,FN−2 with F1 < F2 < . . . < FN−2
(sorted by increasing the bit position). Forcing some bits to 1
means that the bits at positions F1,F2, . . . ,FN−2 are set to 1
and the other bit positions below position FN−2 are set to 0.
With this definition, it can be noted that all the bits with a
position below FN−2 are actually forced (to a value of 0 or 1).
Steps 4 to 12 of Algorithm 3 illustrate this forcing process.

Steps 1-2: First, we initialize both the candidate list to an
empty set, and k , the local number of errors to consider, to its
maximum value N .
Step 3: This step and the following ones are repeated for

every value of k for which N ≥ k > 2.
Step 4-5: At step 4, the set of forced bits F is initialized

to the (k − 1) LSB positions. Step 5 shows that the process
continues untilF is set to the (m+n)MSB positions. In step 8,
& and || represent the logical and and logical or operations,
respectively. In this approach, ‘‘forced bits’’ means the posi-
tions forced to 1, representing the (N − 2) errors placed.
However, it should be understood that if a bit within the range
of forced bit positions is not forced to 1, then it is forced to 0.
More generally, we focus on the positions forced to 1 because
the algorithm strives to set the other positions to 0 during its
elimination process.

Step 6: We start by initializing the binary vector s′, repre-
senting the updated syndrome, to s.
Steps 7-11: Forcing of bit positions must be achieved

through the successive addition of the generator polynomial
vector and an accumulation in the updated syndrome s′ in
order to obtain the desired result.

The syndrome cannot simply be ignored and the bit values
changed at desired positions. Rather, the equivalence rela-
tionship with the original syndrome must be maintained, i.e.,

Algorithm 3 NErrorCorrection(T [2n][2],s,n,m,cycle,N )

Inputs:
T [2n][2]: indexed table containing P1 and next

elements for each syndrome
s: the syndrome vector
n: the length of the syndrome vector
m: the length of the payload vector
cycle: the cycle length of the generator polynomial
N : the maximum number of errors to consider

Output:
EN : the list of valid error patterns up to N errors

1: EN ← {}
2: k ← N
3: while k > 2 do
4: F ← (0, . . . , k − 2)
5: while F 6= (m+ n− k + 1, . . . ,m+ n− 1) do
6: s′← s
7: for i = 0 to Fk−2 do
8: if (s′1 = 0 & i ∈ F) || (s′1 = 1 & i /∈ F) then
9: s′← (s′ ⊕ g)� 1 // Can be stored in a table

10: else
11: s′← (s′ � 1) // Can be stored in a table
12: end if
13: end for
14: m′← m− (Fk−2 + 1)
15: Add TwoErrorCorrection(T ,s′,n,m′,cycle), F to EN

16: F ←UpdateForcedPosition(F ,m)
17: end while
18: k ← k − 1
19: end while
20: Add TwoErrorCorrection(T ,s,n,m,cycle), F to EN
21: Add SingleErrorCorrection(T [][0],s,n,m,cycle) to EN
22: Return EN

only shifted versions of g may be added to it. This is done
by starting at bit 0 of the syndrome, and if its value is the
desired value, then nothing is done for that position. Other-
wise, gmust be added at that position (i.e., XOR performed),
which contains 1 at its LSB, to modify it. The decision as to
whether or not to perform the XOR is illustrated in step 8 of
Algorithm 3.

As the method successively processes the next positions
from LSB (bit 0) to MSB (bit FN−2) in a similar fashion, it is
important that g be added at each step at the current position
(i.e., g should be XORed at step 9 when processing position i)
and the syndrome value when the conditions of step 8 are met
until position FN−2 is processed. Otherwise, the syndrome is
right-shifted by one position at each step, as shown in step 11.

In practice, these operations can also be stored in a table
when searching for N error patterns. Thus, two additional
columns would be added, doubling the required storage, but
every computation would be stored in the table. Only the
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forced bit positions setF and the current position i are needed
to perform the full candidate list generation.

From there, since all the forced bit positions have been
properly set, the process described for double error handling
is performed on the remaining length of the packet. The
following are the remaining steps:

Step 14: We introduce m′, which corresponds to the
remaining length of the packet. It is crucial to take into
account the fact that the double-bit error correction must be
performed with the current position taken into account to
ensure the whole set of possibilities are considered.

Step 15: We perform a double-bit error correction on the
updated syndrome s′, comprising the (N − 2) LSB forced
positions, for a packet lengthm′. The candidate error patterns
comprise the 2 positions returned by Algorithm 2 and the
forced positions contained in F .
Step 16: Once the double error correction has been per-

formed, we must update the forced error position, as illus-
trated in Algorithm 4, to test all possible (N − 2) forced
positions.

Step 18: The main loop is performed for every number of
errors k from N to 3 (i.e., when the error must be forced).
When k reaches a value of 2, the last steps to perform are
a double-bit error correction, followed by a single-bit error
correction on the original syndrome s and payload length m,

Algorithm 4 UpdateForcedPositions(F ,m)

Inputs:
F : sorted list (F1, . . . ,Fk−1) of (k − 1) bit positions

forced to 1, such that Fi < Fi+1,∀i
m: the length of the payload vector

Note that k = len(F)+ 1, with len(F) being the number
of elements in the list F

Output:
F ′: the updated sorted list of forced positions

1: if Fk−1 < (m− 1) then
2: Fk−1← Fk−1 + 1
3: Return F ′← (F1, . . . ,Fk−1)
4: else
5: for i = k − 2 to 1 do
6: if Fi < Fi+1 − 1 then
7: Fi← Fi + 1
8: j← i
9: while j < k − 1 do

10: Fj+1← Fj + 1
11: j← j+ 1
12: end while
13: Return F ′← (F1, . . . ,Fk−1)
14: end if
15: end for
16: end if

as shown in steps 20 and 21. We return the completed list of
candidates EN at step 22.

D. CYCLES OF next ELEMENTS
In this subsection, we study some properties of the generated
lookup table. Although this knowledge does not impact the
functionality of the proposed algorithms, it provides valu-
able insights into the nature of the solutions to expect, and
that could be further exploited. Although more complex, the
approach has similarities with periodic sequence and shift
registers (linear and non-linear feedback shift registers) over
Galois Fields [27], which have been studied in the liter-
ature [28]–[30]. We can see in the flowchart of Figure 4
that there are two distinct variables for determining the
syndromes, namely, a and b. In the last subsection, a was
described as the main loop syndrome and b as the local loop
syndrome. While a was incremented by 1 at each main loop,
the syndrome value of b was successively updated to its next
element until the next element had been processed (i.e., all the
syndromes in the current cycle had been added to the table).
Such cycles are observed for every generator polynomial.
Figure 6 presents an example of this cycle. In the figure,
we present the next element cycles for a generator polynomial
g(x) = x5+x4+x2+1. It can be seen that since the generator
polynomial parity is even, the sets of syndromes resulting
from an odd or an even number of errors are disjoint. The
value of each syndrome is expressed as a decimal value in
Figure 6, where it can be seen that most parts of the table will
be completed once these two cycles (i.e., two local loops on b)
are performed.

A straightforward design to generate the table would
consider the local odd and even loops only. However,
we observed two exceptions to these cycles. In fact, two
syndrome values are out of the cycle loops, and are repre-
sented by red circles in Figure 6. For the considered generator
polynomial, these two syndrome values correspond to s = 9
and s = 26, respectively corresponding to s = [01001] and
s = [11010] in binary vector representation, from MSB to
LSB. We present the computation of the next element for
both cases in Figure 7, where they are referred to as self-loop
syndromes, types I and II. It can be seen that in both cases, the
next element corresponds to the element itself. To understand
why the next element is the syndrome itself and to make sure
that there is no other case than these two, we performed an
analysis of such syndromes.

For the case presented in Figure 7a, applied to even parity
polynomials, and based on the operations needed to obtain
the next element, it can be seen that:

(s� 2)⊕ (1� 1) = (s� 1)⊕ 1⊕ g

H⇒ (s� 2)⊕ (s� 1) = g⊕ (1� 1)⊕ 1. (6)

This equation can be expressed as:

si−1 = gi+1 ⊕ si ∀ (n− 1) ≥ i ≥ 1 (7)

with sn−1 = 0. Because g(x) has even parity, it can be shown
that s0 6= g1.
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FIGURE 6. Example of cycles and exceptions when the generator polynomial is g(x) = x5 + x4 + x2 + 1.

This equation can be applied to the generator polynomial
to retrieve the even exception of this g(x):

s4 = 0, s3 = g5 ⊕ s4 = 1, s2 = g4 ⊕ s3 = 0

s1 = g3 ⊕ s2 = 0, s0 = g2 ⊕ s1 = 1 (8)

At the end of the process, the only exception of type I is
s = [01001] = 9, which corresponds to the one identified
in Figure 6.

The other exception can be expressed in the same way,
using the operations described in Figure 7b:

(s� 2)⊕ (1� 1) = (s� 1)⊕ 1⊕ g⊕ (g� 1)

H⇒ (s� 2)⊕ (s� 1) = (g� 1)⊕ g⊕ (1� 1)⊕ 1

(9)

which can be expressed as:

si−1 = gi+1 ⊕ gi ⊕ si ∀ (n− 1) ≥ i ≥ 1 (10)

with sn−1 = 1. Because g(x) has even parity, it can be shown
that s0 = g1. By applying this equation to the considered
generator polynomial, the following is obtained:

s4 = 1, s3 = g5 ⊕ g4 ⊕ s4 = 1, s2 = g4 ⊕ g3 ⊕ s3 = 0

s1 = g3 ⊕ g2 ⊕ s2 = 1, s0 = g2 ⊕ g1 ⊕ s1 = 0 (11)

At the end of the process, the only exception of type II is s =
[11010] = 26, which also corresponds to the one identified
in Figure 6.

We will now study the case of odd parity generator polyno-
mials. Since the addition of such polynomials to a syndrome
changes the parity, it can be seen in Figure 7a that the next
element of a syndrome s(x) cannot possibly be s(x) itself.
However, since the generator polynomial is added twice in
7b, it can be shown that the solution is:

si = gi+1 ∀ (n− 1) ≥ i ≥ 0 (12)

The solution can also be expressed as s = (g � 1). There-
fore, only type II self-loops exist for odd parity generator
polynomials.

FIGURE 7. Representation of the self-loop next elements for the two
syndromes exceptions in Figure 6.

Studying these elements is important because doing so pro-
vides insight into the nature of the solutions to be expected.
The next elements have the potential to generate numerous
candidates. Let us assume that N − 1 bit positions have
been forced and that the syndrome is one of these two next
elements. If the associated P1 leads to the remaining bit
error being at position k within the packet, then the same
N − 1 forced bits along with any position k + i < m + n
with i ≥ 1 also constitute a valid error pattern. For example,
this next element in Table 3 is at index 26. For this syndrome
value, the single error position P1 is 14, and the next element
itself is 26. If after forcing (N − 1) errors, we obtain this
syndrome and the remaining length is 50 bits, we get a first
candidate error pattern, with errors at a forced position and at
(FN−1+1+P1). In the very next step, the update syndrome is
26 once again. As the remaining length is now 49 bits, another
candidate is found, with forced position FN−1 and position
P1 both increased by one. At each step, a new candidate is
appended to the list until reaching the end of the message.

E. SYNDROMES WITH NO SOLUTION FOR SINGLE ERROR
We also observed an exception in the single error position
search. Given the parity of both the generator polynomial and
the syndrome, we are able to determine whether the number
of errors that occurred in the packet is odd or even. Based
on this knowledge, a particular entry of the table represented
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FIGURE 8. Single error correction method performed on syndrome
s(x) = x4 + x + 1 using a generator polynomial g(x) = x5 + x4 + x2 + 1
(even parity).

in Table 3 is worthy of interest. The syndrome s = 19 =
[10011] has an odd number of non-null coefficients, and is
thus expected to have an associated single error position.
However, Table 3 shows that there is no single error position
for this syndrome, for any possible packet length. Figure 8
illustrates the single error correction applied to the syndrome.
It can be clearly seen that at each step, the resulting syndrome
corresponds to the originally computed one, and therefore,
there is no possibility of having only one non-null coefficient
at any step of the process.

Similarly to the next element cycles described previously,
it can be seen that for this exception to be realized, the
following equality must be met for an even parity generator
polynomial:

(s� 1) = s⊕ g H⇒ (s� 1)⊕ s = g (13)

which can be expressed as:

si−1 = gi ⊕ si ∀ (n− 1) ≥ i ≥ 1 (14)

with sn−1 = 1. It can easily be shown that s0 = 1 for even
parity generator polynomials, and that the syndrome therefore
never contains a single error pattern. Again, applying this
equation to the generator polynomial used here yields:

s4 = 1, s3 = g4 ⊕ s4 = 0, s2 = g3 ⊕ s3 = 0

s1 = g2 ⊕ s2 = 1, s0 = g1 ⊕ s1 = 1 (15)

At the end of the process, the syndrome is s = [10011] = 19,
which is the one identified in Table 3.

For odd parity generator polynomials, syndromes with no
solution must belong to a cycle comprising an even number
of syndromes, where an even parity syndrome leads to an odd
parity syndrome after the addition of the generator polyno-
mial, and vice versa. Let us now investigate the conditions for
having a pair of syndromes with no solution (i.e., the shortest
such cycles). Let s and s′ be these two syndromes. They must
meet the following expression:

(s′ � 1)⊕ s = g and (s� 1)⊕ s′ = g

H⇒ (s′ ⊕ s)� 1 = s⊕ s′ (16)

which can be expressed as:

si−1 ⊕ s′i−1 = si ⊕ s′i ∀ (n− 1) ≥ i ≥ 1 (17)

with sn−1 = s′n−1. It follows that si = s′i,∀i, and therefore,
there is no cycle of two elements, one leading to the other,

TABLE 4. Value of syndrome exceptions for commonly used generator
polynomials (CRC-8-CCITT, CRC-16-CCITT, CRC-24-BLE and
CRC-32-Ethernet).

for odd parity generator polynomials. Further investigation is
required to conclude on the existence of longer cycles.

In Table 4, we present the decimal values of the syn-
drome exceptions for different generator polynomials. In it,
the syndrome whose next element is itself is denoted as
‘‘Self-loop.’’ As has been demonstrated, there are two such
types of elements. A syndrome that does not provide a single
error candidate is denoted ‘‘No single error’’. Since CRC-32-
Ethernet uses an odd parity generator polynomial, there is no
such syndrome identified, and it exhibits a type II self-loop.

Having this knowledge on the structure of cycles and
exceptions in CRC error correction can help save computa-
tions if such a syndrome is spotted at the receiver. By identi-
fying an exception, we can avoid unnecessary computations
while ensuring the exhaustive list of error patterns is obtained.

IV. PERFORMANCE AND COMPLEXITY
In this section, we compare different performance aspects
of the proposed CRC-based error correction method using
an optimized table (which we will refer to as CRC-ECOT)
to several other CRC-based error correction methods, listed
next:
• Arithmetic operations (CRC-ECA): the method
described in [18], which generates the candidate list
using logical operations on-the-fly, and does not require
storing a table.

• Explicit lookup table (CRC-ECEXP): the traditional
lookup table approach [13], which is based on stor-
ing syndromes and their associated error positions.
ECEXP explicit) means that the error positions are
explicitly inserted in the lookup table. Note that this
lookup table approach was recently used in a novel Polar
SCL Decoding method [16].

• Implicit lookup table (CRC-ECIMP): a proposed
design of a lookup table approach similar to CRC-
ECEXP, but where the error positions are not added to
the table. The values of the error positions correspond to
an implicit index (specific order in which the error posi-
tions are scanned) of the associated syndrome, which
reduces the memory needed to implement such tables.

• Exhaustive search (CRC-ECES): this corresponds to
the arithmetic brute force scheme. No table is required
in this method, but all the possible combinations of
N error positions are successively tested to determine
which ones lead to the computed syndrome.
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Note that for our tests, we implemented the EC-ECOT
version, as proposed in Algorithm 2, where the table size is
smaller since steps 9 and 11 are not included.

A. COMPUTATIONAL COMPLEXITY
The methods compared have the same ability to correct mul-
tiple errors using the CRC syndrome. In terms of compu-
tational complexity, the CRC-ECOT method requires fewer
operations as most of the computations are performed offline
and then integrated into the table. We propose comparing
the complexity of the method to that of the CRC-ECA
and CRC-ECES approaches. Upon reception of a corrupted
packet of m bits, the CRC-ECES method would test every
error pattern up to N errors, i.e., it flips the error positions
of the pattern and then computes the syndrome over the
reconstructed packet. If the syndrome is null, a valid error
pattern is found.

The complexity in this section is expressed as the number
of additions to perform with g. In the case of CRC-ECES,
m such operations are required for each long division. Thus,
for the search of a single error, there are m long divisions
to perform in order to test every possible error position,
yieldingm2 operations. By extending this process toN errors,
we obtain a global complexity of O(mN+1).
The CRC-ECA method only performs one long division

for a single error search, which can be performed through m
additions of g. Extending this method to search for several
errors requires setting (N − 1) forced positions, and a long
division must be performed on the remaining length of the
packet. A double-bit error search thus requiresm2 operations.
Generalized to the search ofN error patterns, it yields a global
complexity of O(mN ), as demonstrated in [18].

The complexity of the proposed CRC-ECOT method can
be expressed through the complexity required to build the
table and through the complexity required to perform the
identification of the candidate error patterns. The former is
highly complex, but is performed offline, prior to the commu-
nication.Wewill thus focus on the latter. For CRC-ECOT, the
complexity up to double-bit error correction is extremely low
thanks to the next element column integrated into the table.
Single error correction requires a single lookup, while double
error correction requires m table lookups. When the number
of errors is increased, forced positions must be set. Thus,
when searching for N errors, (N −2) positions must be tested
and the global complexity of the proposed approach will be
O(mN−2) additions of g times m table lookups. These gains
are significant since the complexity increases significantly
as N increases. Note that we could completely eliminate the
arithmetic operations at the expense of a larger lookup table
by storing [s′ ⊕ g]� 1 and s′� 1 for all syndrome values3

in steps 9 and 11 of Algorithm 3. This would allow to further

3Note that depending on the architecture on which the algorithm is imple-
mented and the generator polynomial of interest, it may be less complex to
perform s′�1 than to retrieve it from a table.

increase the speed for N > 2 by a new global complexity of
O(mN−1) table lookups.
We tested a C implementation of the CRC-ECA, the

CRC-ECOT and both the CRC-ECEXP and CRC-EXIMP
approaches to compare their processing speeds on a Rasp-
berry Pi model 4 [31], with a BroadcomBCM2711 processor,
Quad-core Cortex-A72 (ARMv8) 64-bit SoC@ 1.5GHz and
8GB RAM. The test results are available in Figure 9, with
log-log scales.
First, it can be seen that when searching for single errors,

as in Figure 9a, the processing time per symbol of the
CRC-ECOT is independent of the length of the packet. In fact,
as the table is syndrome-indexed, when a corrupted packet is
received, we only need to read the content of the table at the
computed syndrome’s entry, regardless of the packet’s length.
On the other hand, the CRC-ECEXP and CRC-ECIMP

lookup table-based methods must scan the packet in order
to search for potential single error positions, which leads
to higher processing times as the maximum packet length
increases. In our example, the maximum packet length con-
sidered is 2500 bytes. The processing time per syndrome
on the tested CPU for the proposed CRC-ECOT method is
100 ns, on average, whereas the CRC-ECAmethod’s process-
ing time ranges from 1.7µs for the smallest payload (36 bits)
to 300µs for the largest payload considered. Both lookup
table-based methods offer a constant processing time since
they must scan the whole table for any computed syndrome.
This processing time is 120µs on the tested architecture.
The proposed method’s speedup for single error correction
is thus 1200 times, as compared to these table approaches,
and ranges from 17 to 3000 times faster, as compared to
CRC-ECA, depending on the packet size.
The double error correction case illustrated in Figure 9b

shows that again, CRC-ECOT processes each syndrome
much faster than do all the other tested methods. Here,
it can be seen that the processing time is not constant for
CRC-ECOT as the packet length increases. For double error
correction, we must consider the next element of each syn-
drome for the whole length of the packet. The processing
time thus depends on the packet length. It is also interesting
to note that as the packet length increases, the processing time
gains also increase. When considering the smallest packet
length (36bits), the average processing time for double error
correction is 8.3µs for the proposed method and 12.6µs for
the arithmeticmethod, which gives a time ratio of 1.5 between
the two methods. This ratio increases with the packet length,
and is ultimately very significant for the largest payloads.
The proposed method requires 642µs to process a syndrome
while the arithmetic method needs 1.5 s, yielding a time
ratio of about 2300. Of course, these gains are due to the
design of the proposed method as most of the computation is
performed offline, prior to communication. CRC-ECIMP and
CRC-ECEXP processing times for double-bit error correc-
tion are still constant at 1.5 s. The proposedmethod’s speedup
goes from 174,000 for the smallest packets to 2300 for
the largest ones, as compared to these table approaches,
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FIGURE 9. Comparison of the average processing time per syndrome for single and double error corrections for state-of-the-art CRC-based
error correction [18] (CRC-ECA), the proposed optimized table (CRC-ECOT), the implicit table (CRC-ECIMP) and explicit table [13] (CRC-ECEXP)
applied to CRC-16-CCITT.

depending on the packet size. Note that these speedups can
be further increased by storing the values of steps 9 and 11 of
Algorithm 3 in the table, but at the cost of increased memory
requirements.

B. MEMORY REQUIREMENTS
We also compared the memory required to store the
CRC-ECOT and CRC-ECEXP tables in Table 5, when using
a packet of 1500 bytes, as it is the largest payload available in
Ethernet (MTU). We compared these approaches for various
generator polynomials:

• CRC-8-CCITT, where g(x) = x8 + x2 + x + 1.
• CRC-16-CCITT, used to protect the headers of
802.11 [3] and in low consumption 802.15.4 [32] com-
munications, where g(x) = x16 + x12 + x5 + 1.

• CRC-24-BLE, used to protect Bluetooth Low
Energy [33] packets, where g(x) = x24 + x10 + x9 +
x6 + x4 + x3 + x + 1.

• CRC-32-Ethernet, used to protect the entire packet in
Ethernet [4] protocol, where g(x) = x32 + x26 + x23 +
x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.

The CRC-ECEXP approach calls for storage of a syndrome
along with the corresponding error positions for every possi-
ble error case, yielding the following memory requirement:

MCRC-ECEXP =

(
m
N

)
× [length(s)+ (2× N )] bytes (18)

wherem is the bit length of the payload, length(s) corresponds
to the byte length of the syndrome, and N is the maximum
number of errors. We considered positions to be integer vari-
ables of 2 bytes, since the maximum single position is 12,000
in this implementation.

We also propose a comparison with the CRC-ECIMP
method, which is an implementation requiring less memory
than CRC-ECEXP. The implicit table approach consists in
indexing a syndrome with its associated error position, which

reduces the size of the table:

MCRC-ECIMP =

(
m
N

)
× length(s) bytes (19)

This strategy calls for knowledge of error position manage-
ment when considering several errors (e.g., syndrome at index
12,001 corresponds to a double error at positions (0, 1)).
The proposed CRC-ECOT approach requires listing, for

all the syndromes, the next element, whose size is always
of length(s) bytes, as well as the error position P1. Note
that considering that the table is initialized to (−1), a neg-
ative element, the number of bits required to store P1 is
log2(cycle + 1) + 1. As most cycle lengths are (2n−1 − 1)
as shown in Table 5, it would take n bits to store P1. It can
be seen that the cycle length for CRC-32 is 2n − 1, yielding
the need for an additional bit, for a total of (n + 1) bits to
store P1 (i.e., 33 bits4 for CRC-32). Except for such cases,
the memory required can thus be expressed as:

MCRC-ECOT =

{
2n × length(s) bytes, if N = 1
2n × 4× length(s) bytes, if N > 1

(20)

It can first be seen in Table 5 that, unlike in CRC-ECEXP,
where the table size is a function of the number of errors
considered, the proposed approach has a fixed length for
(N > 1). In fact, for single error correction, the column
comprising the next elements is not needed, and with double
error correction, the columns can store both the next element
and the results of steps 9 and 11 of Algorithm 3, which
multiply the storage needed by 4. The table size for the pro-
posed approach is less than for CRC-ECEXP, for all generator
polynomial lengths n when (N > 2). The proposed table is
also smaller for N = 2 up to n = 24, and up to n = 8 for
N = 1, thanks to the way in which cycles are handled in our
method. It should be recalled that the arithmetic method does

4Note that some architectures will not support 33-bit numbers efficiently,
and will consider 64 bits when exceeding 232 − 1, which would double the
memory required.
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TABLE 5. Comparison of the memory required for the tables in the CRC-ECEXP [13] and the proposed CRC-ECOT approaches. The packet considered here
has a length of 1500 bytes. Note that the arithmetic method is table-free, and thus, its memory requirements remain negligible for any case described in
this table.

FIGURE 10. Evolution of the SCR and post-checksum validation SCR for CRC-8-CCITT as a function of the packet length.

not need to store a table at all, but this is at the cost of much
higher computational complexity. The best compromise will
depend on the application and hardware on which the method
is implemented. For instance, the proposed method is very
appealing for small CRCs or for correcting a high number of
errors, while the arithmetic method may be more appealing
for single error correction when long CRCs (e.g., CRC-32)
are used.

C. APPLICATION TO THE CORRECTION OF MULTIPLE
ERRORS
The method proposed in this paper is able to output an
exhaustive list of candidate error patterns having up to N
errors. In practice, we assume that this method is applied
in the context of relatively reliable communication chan-
nels, where corrupted packets tend to be mildly damaged.
The authors in [34] demonstrated a realistic experimental
scenario in which most damaged packets in a Bluetooth
low energy (BLE) environment contained 3 errors or less.
As our method is able to generate the list with a lower
complexity, its use can be considered to increase the value
of N to handle more error cases. However, the number of
candidates increases significantly with N for a given packet
length. In [18], we investigated the ratio of error patterns that
would output a candidate list with a single entry, thus allowing
the correction of the packet, over all possible error patterns
for a given N , and termed this ratio the Single Candidate
Ratio (SCR). We show that CRCs with low-degree generator
polynomials never reach an SCR of 100% when considering

multiple bit errors, and rapidly decrease as the packet length
increases.

As an example, we propose to analyze the impact of
a checksum cross-validation on the SCR for the generator
polynomial used in CRC-8-CCITT. The SCR of this CRC is
illustrated in Figure 10. It can be seen that when considering
a single error, up to 127 bits (i.e., 27 − 1), the SCR is 100%,
which illustrates the importance of the cycle length, as there
is no list with multiple single error candidates for packets
smaller than this cycle value. The SCR then rapidly decreases
and reaches 0% for packets greater than 245 bits. When con-
sidering double- and triple-bit error patterns, the SCR is very
low, even for the smallest packet values considered. It reaches
0% for lengths of 26 and 6 bits, for double and triple error
patterns, respectively.

Implementing a checksum validation step, as in the UDP
and TCP protocols, helps to significantly increase such ratios
and achieve decent error correction rates on small packets,
even when using CRC-8-CCITT. In Figure 10b, it can be seen
that the SCR is noticeably higher for all the numbers of errors
considered. The SCR remains at 100% when dealing with
packet lengths of up to 41 bits and 11 bits for double and triple
error patterns, respectively. Moreover, it can be seen that the
SCR is still over 50% for double error patterns, up to a packet
length of 270 bits. For single error correction, the SCR, which
reaches 0% for packet sizes larger than 245 bits in Figure 10,
remains at 100% up to a significant length of 2000 bits with
checksum validation, which allows reconstruction of many
more error cases. Themethod should perform even better with
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an actual BLE system with small packets (up to 39 bytes, and
now increased to a maximum of 255 bytes) protected by a
strong CRC-24.

Thus, when increasing the number of errors, validation
steps such as a checksum cross-validation will help maintain
a high correction rate when the candidate list size increases
significantly. This allows to take advantage of the process-
ing speed gains of the proposed method and to consider
larger values of N . Increasing N brings a lot of changes
and challenges in the literature methods as they are designed
for a specific number of errors. We demonstrated that table-
based CRC-ECEXP and CRC-ECIMP produce intractable
table sizes from N = 3. The complexity of CRC-ECA
methods is greatly affected whenever N is increased. The
proposed CRC-ECOT replaces the arithmetic operations with
successive table lookups, thus reducing the global complex-
ity. As well, the table size is easily managed and constant
for N ≥ 2, which makes it very appealing for multiple error
correction.

V. CONCLUSION AND PERSPECTIVES
In this paper, we propose an optimized table-based method
for performing multiple error correction based on the CRC
syndrome. The approach offers a low complexity alternative
to the state-of-the-art error correction method as it generates
a table that contains precomputed operations required to per-
form error pattern searches, avoiding most to all arithmetic
operations.

Thanks to offline table generation, the proposed approach
achieves the same error correction performance as state-of-
the-art approaches while providing computational savings
and thus improving the processing speeds. We show through
simulations that the proposed method achieves significant
speed gains over the table-free arithmetic method, and is
between 2300× and 3000× faster when generating the list
of double and single error patterns, respectively.

Thus, reducing the complexity offers the possibility of
increasing the number of errors to consider, while keeping the
same processing time. Since this greatly increases the number
of candidates in the output error pattern list, we present a
validation step that increases the correction rate for lists con-
taining many candidates. Other validation steps could be used
such as those based on bit error probability. Future work will
look at integrating the proposed CRC-based error correction
solution into a complete cross-layer receiver architecture in
order to benefit from other validation mechanisms available
in the protocol stack. The objective is to further reduce the
list size or to be able to determine the best candidate out of
several in order to reconstruct the best signal quality at the
receiver side (e.g., visual quality, in the case of video content
transmission).
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