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This document serves as a reference for the definition of the syntax and semantics of a subset of VHDL named H-VHDL. H-VHDL aims at the definition of synthesizable designs with a synchronous behavior (i.e. the execution of the designs is synchronized with a clock signal).

= (v + )
NATMAX denotes the maximum value for a natural number. The NATMAX value depends on the implementation of the VHDL language; NATMAX must at least be equal to 2 31 -1.

Definition 1 (Elaborated design). An elaborated design ∆ ∈ ElDesign is a record <G, I, O, S, P, C> where:

-G ∈ id (t × v)
is the function yielding the type and the value of generic constants.

-I ∈ id t is the function yielding the type of input ports.

-O ∈ id t is the function yielding the type of output ports.

-S ∈ id t is the function yielding the type of declared signals.

-

P ∈ id (id (t × v))
is the function associating process identifiers to their local environment.

-C ∈ id ElDesign is the function mapping component instance identifiers to their own elaborated design version.

We assume that there is no overlapping between the identifiers of the sub-environments of an elaborate design (i.e, an identifier belongs to at most one sub-environment), and also between the identifiers of the sub-environments and the identifiers of local environments. When there is no ambiguity, we write ∆(x) to denote the value returned for identifier x, where x is looked up in the appropriate field of ∆. We write x ∈ ∆ to state that identifier x is defined in the domain of one of ∆'s field. We note ∆(x) ← v the overriding of the value associated to identifier x with value v in the appropriate field of ∆, ∆ ∪ (x, v) to note the addition of the mapping from identifier x to value v in the appropriate field of ∆, that assuming x / ∈ ∆. We write x ∈ F(∆), where F is a field of ∆, when more precision is needed regarding the lookup of identifier x in the record ∆.

Definition 2 (Design state). A design state σ ∈ Σ is a couple (S, C) where:

-S ∈ id v is the signal store, i.e. the function yielding the current values of ports and declared signals.

-C ∈ id Σ is the design instance store, i.e. the function yielding the current state of design instances.

When there is no ambiguity regarding which store a given identifier belongs to, we use σ(id) as a shorthand notation for S(σ)(id) or C(σ)(id). Similarly, we write id ∈ σ as a shorthand notation for id ∈ dom(S(σ)) or id ∈ dom(C(σ)).

3 Elaboration rules

Implicit default value

The following predicate states that a semantic type is well-formed.

WFBool

WF(bool)

WFNat l ≤ u ≤ NATMAX WF(nat(l, u)) WFArr WF(t) l ≤ u ≤ NATMAX
WF(array(t, l, u))

Table 7: Well-formed semantic type

According to the VHDL LRM, at the declaration of a port, a signal or a variable, these items must receive an implicit default value depending on their types [1, p.61, 64, 173]. The dv relation determines the default value for a given type.

DefaultVBool bool dv -→ false DefaultVCNat WF(nat(l, u)) nat(l, u) dv -→ l DefaultVCArr WF(array(t, l, u)) t dv -→ v size = (u -l) + 1 array(t, l, u) dv -→ create_array(size, v)
Table 8: Type default value

The create_array(size, v) expression yields an array of size size where each element is initialized with the value v.

Typing relation

The typing relation ∈ c checks that a given value conforms to a given type.

IsBool b ∈ B b ∈ c bool IsCNat WF(nat(l, u)) n ∈ [l, u] n ∈ c nat(l, u) IsArray WF(array(t, l, u)) v i ∈ c t i = 1, . . . , n n = (u -l) + 1 (v 1 , . . . , v n ) ∈ c array(t, l, u)

Static expressions

Static expressions are either locally static or globally static; the LRM defines locally static and globally static expressions as follows.

Locally static expressions

The SE l relation, defined by the following rules, states that an expression is locally static.

LSENat n ∈ N SE l (n) LSEBool b ∈ B SE l (b) LSEUOp SE l (e)
SE l (uop(e))

LSEBOp SE l (e 1 ) SE l (e 2 ) SE l (bop(e 1 , e 2 ))

Globally static expressions

The SE g relation, defined by the following rules, checks that an expression is globally static in the context of an elaborated design ∆.

GSELocal SE l (e) ∆ SE g (e) GSEGen id ∈ G(∆) ∆ SE g (id) GSEAggregate ∆ SE g (e i ) i = 1, . . . , n ∆ SE g ((e 1 , . . . , e n ))

Type indication elaboration

The econstr relation checks that a constraint is well-formed and evaluates the constraint bounds.

EConstr ∆ SE g (e 1 ) ∆ SE g (e 2 ) ∆ e 1 e -→ n 1 ∆ e 2 e -→ n 2 n 1 ∈ c nat(0, NATMAX) n 2 ∈ c nat(0, NATMAX) n1 ≤ n2 ∆ (e 1 , e 2 ) econstr -----→ (n 1 , n 2 )
The et relation checks the well-formedness of a type indication τ , and transforms it into a semantic type t (as defined in Table 6).

ETypeBool ∆ bool et -→ bool ETypeNat ∆ (e 1 , e 2 ) econstr -----→ (n 1 , n 2 ) ∆ nat(e 1 , e 2 ) et -→ nat(n 1 , n 2 ) ETypeArray ∆ τ et -→ t ∆ (e 1 , e 2 ) econstr -----→ (n 1 , n 2 ) ∆ array(τ, e 1 , e 2 ) et -→ array(t, n 1 , n 2 )
The econstr g relation checks that a generic constraint (i.e, a constraint appearing in a type indication associated with a generic constant declaration) is well-formed and evaluates the constraint bounds.

EConstrG SE l (e 1 ) SE l (e 2 ) e 1 e -→ n 1 e 2 e -→ n 2 n 1 ∈ c nat(0, NATMAX) n 2 ∈ c nat(0, NATMAX) n1 ≤ n2 (e 1 , e 2 ) econstrg -----→ (n 1 , n 2 )
The et g relation is specially defined to check the well-formedness of a type indication associated with a generic constant declaration.

ETypeGBool bool etg --→ bool ETypeGNat (e 1 , e 2 ) econstrg -----→ (n 1 , n 2 ) nat(e 1 , e 2 ) etg --→ nat(n 1 , n 2 )

Design elaboration

Given design store D ∈ id design and a dimensioning function M g ∈ id v, the elaboration phase generates an elaborated design ∆ ∈ ElDesign along with a default state σ e ∈ Σ out of a H-VHDL design d ∈ design. The elaboration performs static type-checking over the declarative (gens, ports and sigs) and behavioral (behavior) parts of a design, but also checks the well-formedness of generic and port maps in design instantiation statements, and finally checks that there is no multiply-driven signal.

DesignElab ∆ ∅ , M g d.gens egens ----→ ∆ ∆ , σ d.sigs esigs ---→ ∆ , σ ∆, σ ∅ d.ports eports ----→ ∆ , σ D, ∆ , σ d.beh ebeh ---→ ∆ , σ NoMDInCs(∆ , d.beh) D, M g d elab --→ ∆ , σ 3.6 Generic clause elaboration GenElabDimen τ etg --→ t SE l (e) e e -→ v v ∈ c t M(id) ∈ c t M(id) = v id / ∈ ∆ ∆, M (id, τ, e) egens ----→ ∆ ∪ (id, (t, M(id))) GenElabDefault τ etg --→ t e e -→ v SE l (e) v ∈ c t id / ∈ ∆ id / ∈ M ∆, M (id, τ, e) egens ----→ ∆ ∪ (id, (t, v)) GenElabComp ∆, M (id, τ, e) egens ----→ ∆ ∆ , M gens egens ----→ ∆ ∆, M (id, τ, e), gens egens ----→ ∆ 3.7 Port clause elaboration InPortElab ∆ τ et -→ t t dv -→ v id / ∈ ∆ id / ∈ σ ∆, σ (in, id, τ ) eports ----→ I(∆) ∪ (id, t), σ ∪ (id, v) OutPortElab ∆ τ et -→ t t dv -→ v id / ∈ ∆ id / ∈ σ ∆, σ (out, id, τ ) eports ----→ O(∆) ∪ (id, t), σ ∪ (id, v) PortElabComp ∆, σ pdecl eports ----→ ∆ , σ ∆ , σ ports eports ----→ ∆ , σ ∆, σ pdecl, ports eports ----→ ∆ , σ
where pdecl ::= (in|out), id, τ .

Architecture declarative part elaboration

SigElab ∆ τ et -→ t t dv -→ v id / ∈ ∆ id / ∈ σ ∆, σ (id, τ ) esigs ---→ S(∆) ∪ (id, t), σ ∪ (id, v) SigElabComp ∆, σ (id, τ ) esigs ---→ ∆ , σ ∆ , σ sigs esigs ---→ ∆ , σ ∆, σ (id, τ ), sigs esigs ---→ ∆ , σ 3.9 Behavior elaboration CsParElab D, ∆, σ cs ebeh ---→ ∆ , σ D, ∆ , σ cs ebeh ---→ ∆ , σ D, ∆, σ cs || cs ebeh ---→ ∆ , σ CsNullElab D, ∆, σ null ebeh ---→ ∆, σ PsElab ∆, Λ ∅ vars evars ---→ Λ ∆, S, Λ valid ss (ss) id / ∈ ∆ σ = (S, C) D, ∆, σ ps(id, vars, ss) ebeh ---→ ∆ ∪ (id, Λ), σ CompElab M ∅ g emapg ----→ M D, M d elab --→ ∆ c , σ c ∆, ∆ c , S valid ipm (i) ∆, ∆ c valid opm (o) idc / ∈ ∆, idc / ∈ σ σ = (S, C) D(ide) = d D, ∆, σ comp(id c , id e , g, i, o) ebeh ---→ ∆ ∪ (id c , ∆ c ), σ ∪ (id c , σ c ) 3.9.1 Process declarative part elaboration VarElab ∆ τ et -→ t t dv -→ v id / ∈ Λ id / ∈ ∆ ∆, Λ (id, τ ) evars ---→ Λ ∪ (id, (t, v)) VarElabComp ∆, Λ (id, τ ) evars ---→ Λ ∆, Λ vars 3.9.3 Map validity Dimensioning function construction AssocGElab SE l (e) e e -→ v id / ∈ M M (id ⇒ e) emapg ----→ M ∪ (id, v) GMElab M (id ⇒ e) emapg ----→ M M g emapg ----→ M M (id ⇒ e), g emapg ----→ M Input port map validity ListIPMSimple ∆, S e e -→ v v ∈ c t id / ∈ L, id ∈ I(∆c) vi s.t. (id, vi) ∈ L ∆c(id) = t ∆, ∆ c , S, L (id ⇒ e) listipm ----→ L ∪ {id} ListIPMPartial SE l (e i ) e i e -→ v i ∆, S e e -→ v v i ∈ c nat(n, m) v ∈ c t id / ∈ L, (id, vi) / ∈ L id ∈ I(∆c) ∆c(id) = array(t, n, m) ∆, ∆ c , S, L (id(e i ) ⇒ e) listipm ----→ L ∪ {(id, v i )} ListIPMCons ∆, ∆ c , S, L (name ⇒ e) listipm ----→ L ∆, ∆ c , S, L i listipm ----→ L ∆, ∆ c , S, L (name ⇒ e), i listipm ----→ L
where L ⊆ id ∪ (id × N).

check pm (P orts, L) ≡ ∀id f ∈ dom(P orts), id f ∈ L ∨ ∃t ∈ type, n, m ∈ N, (P orts(id f ) = array(t, n, m)∧ ∀i ∈ [n, m], (id f , i) ∈ L)
where P orts ∈ id type, and

L ⊆ id ∪ (id × N). ValidIPM ∆, ∆ c , S, L ∅ i listipm ----→ L check pm (I(∆ c ), L) ∆, ∆ c , S valid ipm (i)
Output port map validity

ListOPMSimpleToSimple id f / ∈ L id f ∈ O(∆c) ida ∈ S(∆) ∪ O(∆) ∆c(id f ) = ∆(ida) = t ∆, ∆ c , L (id f ⇒ id a ) listopm -----→ L ∪ {id f } ListOPMSimpleToPartial SE l (e i ) e i e -→ v i v i ∈ c nat(n, m) id f / ∈ L id f ∈ O(∆c) ida ∈ S(∆) ∪ O(∆) ∆c(id f ) = t ∆(ida) = array(t, n, m) ∆, ∆ c , L (id f ⇒ id a (e i )) listopm -----→ L ∪ {id f } ListOPMSimpleToOpen id f / ∈ L id f ∈ O(∆c) ∆, ∆ c , L (id f ⇒ open) listopm -----→ L ∪ {id f } ListOPMPartialToSimple SE l (e i ) e i e -→ v i v i ∈ c nat(n, m) id f , (id f , vi) / ∈ L id f ∈ O(∆c) ida ∈ S(∆) ∪ O(∆) ∆c(id f ) = array(t, n, m) ∆(ida) = t ∆, ∆ c , L (id f (e i ) ⇒ id a ) listopm -----→ L ∪ {(id f , v i )} ListOPMPartialToPartial SE l (e i ) SE l (e i ) e i e -→ v i e i e -→ v i v i ∈ c nat(n , m ) v i ∈ c nat(n, m) id f , (id f , vi) / ∈ L id f ∈ O(∆c) ida ∈ S(∆) ∪ O(∆) ∆c(id f ) = array(t, n, m) ∆(ida) = array(t, n , m ) ∆, ∆ c , L (id f (e i ) ⇒ id a (e i )) listopm -----→ L ∪ {(id f , v i )} ListOPMCons ∆, ∆ c , L assoc po listopm -----→ L ∆, ∆ c , L o listopm -----→ L ∆, ∆ c , L assoc po , o listopm -----→ L
where L ⊆ id ∪ (id × N) and assoc po ::= (id ⇒ (name|open)) (id(e) ⇒ name).

ValidOPM ∆, ∆ c , L ∅ , L ids∅ o listopm -----→ L, L ids ∆, ∆ c valid opm (o)

Detection of multiply-driven signals

Assignment in sequential statement

The is_assgd_in_ss function returns true if the signal identifier id s is assigned in the sequential statement ss, i.e. if id s appears in the left part of a signal assignment statement. 

S(id) = v id ∈ S(∆) ∪ I(∆) ∆, S, Λ id e -→ v Var Λ(id) = (t, v) ∆, S, Λ id e -→ v Gen G(∆)(id) = (t, v) ∆, S, Λ id e -→ v Out S(id) = v id ∈ O(∆) ∆, S id eo -→ v IdxOut e i e -→ n i a[i] = v id ∈ O(∆) ∆(id) = array(t, n, m) S(id) = a i = ni -n ∆, S id(e i ) eo -→ v IdxSig ∆, S, Λ e i e -→ n i a[i] = v id ∈ S(∆) ∪ I(∆) ∆(id) = array(t, n, m) S(id) = a i = ni -n ∆, S, Λ id(e i ) e -→ v IdxVar ∆, S, Λ e i e -→ n i a[i] = v id ∈ Λ Λ(id) = (array(t, n, m), a) i = ni -n ∆, S, Λ id(e i ) e -→ v Cst vcst(cst) = v ∆, S, Λ cst e -→ v BOp ∆, S, Λ e 1 e -→ v 1 ∆, S, Λ e 2 e -→ v 2 vbop(bop, v 1 , v 2 ) = v ∆, S, Λ bop(e 1 , e 2 ) e -→ v Not ∆, S, Λ e e -→ b ∆, S, Λ not(e) e -→ ¬b Aggreg ∆, S, Λ e i e -→ v i i = 1, . . . , n ∆, S, Λ (e 1 , . . . , e n ) e -→ (v 1 , . . . , v n ) Evaluation of constants vcst(b) = b vcst(n) = n if n ≤ NATMAX ∅ otherwise Evaluation of binary operators vbop(and, b 1 , b 2 ) = b 1 && b 2 vbop(or, b 1 , b 2 ) = b 1 || b 2 vbop(add, n 1 , n 2 ) = n 1 + n 2 if n 1 + n 2 ≤ NATMAX ∅ otherwise vbop(sub, n 1 , n 2 ) = n 1 -n 2 if n 1 ≥ n 2 ∅ otherwise vbop(eq, b 1 , b 2 ) = (b 1 = B b 2 ) vbop(eq, n 1 , n 2 ) = (n 1 = N n 2 ) vbop(eq, a 1 , a 2 ) = (a 1 = a a 2 ) vbop(neq, v 1 , v 2 ) = ¬b if vbop(eq, v 1 , v 2 ) = b ∅ otherwise vbop(gt, n 1 , n 2 ) = n 1 > n 2 vbop(ge, n 1 , n 2 ) = n 1 ≥ n 2 vbop(lt, n 1 , n 2 ) = n 1 < n 2 vbop(le, n 1 , n 2 ) = n 1 ≤ n 2
The function = a ∈ a → a → B is the equality between two arrays, where a ::= (v + ) as defined in the value set presented in Table 6. It yields true if the two compared arrays are of the same size and have all their elements positionally equal; the result is false otherwise. 

Evaluation of sequential statements

SigAssign ∆, S r , Λ e e -→ v v ∈ c t id ∈ S(∆) ∪ O(∆) ∆(id) = t ∆, S r , S w , Λ id ⇐ e ss -→ S w (id) ← v, Λ IdxSigAssign ∆, S r , Λ e i e -→ n i ∆, S r , Λ e e -→ v v ∈ c t n i ∈ c nat(n, m) id ∈ S(∆) ∪ O(∆) ∆(id) = array(t, n, m) Sw(id) = a i = ni -n a[i] ← v = a ∆, S r , S w , Λ id(e i ) ⇐ e ss -→ S w (id) ← a , Λ VarAssign ∆, S r , Λ e e -→ v v ∈ c t Λ(id) = (t, val) ∆, S r , S w , Λ id := e ss -→ S w , Λ(id) ← (t, v) IdxVarAssign ∆, S r , Λ e i e -→ n i ∆, S r , Λ e e -→ v n i ∈ c nat(n, m) v ∈ c t Λ(id) = array(t, n, m), a i = ni -n a[i] ← v = a ∆, S r , S w , Λ id(e i ) := e ss -→ S w , Λ(id) ← (t, a ) IfElse ∆, S r , Λ e e -→ true ∆, S r , S w , Λ ss 1 ss -→ S w , Λ ∆, S r , S w , Λ if(e) {ss 1 } else {ss 2 } ss -→ S w , Λ IfElse⊥ ∆, S r , Λ e e -→ false ∆, S r , S w , Λ ss 2 ss -→ S w , Λ ∆, S r , S w , Λ if (e) {ss 1 } else {ss 2 } ss -→ S w , Λ Loop⊥ ∆, S r , Λ e 2 > 0 e -→ true ∆, S r , Λ e 1 e -→ v 1 v 1 ∈ c nat(0, NATMAX) ∆, S r , S w , Λ(id) ← nat(0, NATMAX), v 1 ss ss -→ S w , Λ ∆, S r , S w , Λ for (id, e 1 + 1, e 2 -1) {ss} ss -→ S w , Λ ∆, S r , S w , Λ for (id, e 1 , e 2 ) {ss} ss -→ S w , Λ Loop ∆, S r , Λ e 2 = 0 e -→ true ∆, S r , S w , Λ for (id, e 1 , e 2 ) {ss} ss -→ S w , Λ \ {id} RisingEdgeDefault f =↑ f ∈ {↓, i, c} ∆, S r , S w , Λ rising {ss} ss f --→ S w , Λ FallingEdgeDefault f =↓ f ∈ {↑, i, c} ∆, S r , S w , Λ falling {ss} ss f --→ S w , Λ RisingEdgeExec ∆, S r , S w , Λ ss ss ↑ --→ S w , Λ ∆, S r , S w , Λ rising {ss} ss ↑ --→ S w , Λ FallingEdgeExec ∆, S r , S w , Λ ss ss ↓ --→ S w , Λ ∆, S r , S w , Λ falling {ss} ss ↓ --→ S w , Λ RstDefault ∆, S r , S w , Λ ss 2 ss f --→ S w , Λ f = i f ∈ {↑, ↓, c} ∆, S r , S w , Λ rst {ss 1 } else {ss 2 } ss f --→ S w , Λ RstExec ∆, S r , S w , Λ ss 1 ssi --→ S w , Λ ∆, S r , S w , Λ rst {ss 1 } else {ss 2 } ssi --→ S w , Λ Seq 
∆c(id) = t ∆, ∆ c , S, S c (id ⇒ e) mip --→ S c (id) ← v MipPartial ∆, S e e -→ v e i e -→ n i v ∈ c t n i ∈ c nat(n, m) id ∈ I(∆c) ∆c(id) = array(t, n, m) i = ni -n Sc(id) = a a[i] ← v = a ∆, ∆ c , S, S c (id(e i ) ⇒ e)
-→ v v ∈ c t id ∈ S(∆) ∪ O(∆) ∆(id) = t ∆, ∆ c , S, S c (name ⇒ id) mop ---→ S(id) ← v MopPartial e i e -→ n i ∆ c , S c name eo -→ v v ∈ c t n i ∈ c nat(n, m) id ∈ S(∆) ∪ O(∆) ∆(id) = array(t, n, m) i = ni -n S(id) = a a[i] ← v = a ∆, ∆ c , S, S c (name ⇒ id(e i )) mop ---→ S(id) ← a MopComp ∆, ∆ c , S, S c assoc po mop ---→ S ∆, ∆ c , S , S c o mop ---→ S ∆, ∆ c , S, S c assoc po , o mop ---→ S
where assoc po ::= (id ⇒ (name|open)) (id(e) ⇒ name).

Evaluation of concurrent statements

1 Definition merge(σ, σ , σ ) := 2 let σ = (S, C) in 3 let σ = (S , C ) in 4 let σ = (S , C ) in 5 let Sm(id) =      S (id) if S (id) = S(id) S (id) if S (id) = S(id) S(id) otherwise in 6 let Cm(id) =      C (id) if C (id) = C(id) C (id) if C (id) = C(id) C(id) otherwise in 7 (Sm, Cm).
Listing 1: The merge function that fuses together an origin state σ, with two states σ and σ generated by the execution of two H-VHDL concurrent statements.

The merge function is correct if the three input design states assume the same domains in their signal store and design instance store, and also if there are no multiply driven signal, i.e. a signal that would have a value that is different from the original signal store S in both signal stores S and S . In practice, the case where a design instance identifier could be associated with a different state in both design instance store C and C is not possible. Such a case could only arise if two design instances with the same identifier exist in a design's behavior, and such a design can never be elaborated.

Ps

∆, S, S, Λ ss

ss f --→ S , Λ ∆(id) = Λ σ = (S, C) D, ∆, σ ps(id, vars, ss) cs f --→ (S , C) Comp ∆, ∆ c , S, S c i mip --→ S c D, ∆ c , (S c , C c ) d.beh cs f --→ σ c ∆, ∆ c , S, S c o mop ---→ S D(ide) = d ∆(idc) = ∆c σ(idc) = σc σ = (S, C) σc = (Sc, Cc) σ c = (S c , C c ) D, ∆, σ comp(id c , id e , g, i, o) cs f --→ (S , C(id c ) ← σ c ) Par D, ∆, σ cs cs f --→ σ D, ∆, σ cs cs f --→ σ D, ∆, σ cs || cs cs f --→ merge(σ, σ , σ ) Null ∆, σ null cs f --→ σ
where f ∈ {i, ↑, ↓, c}. The i flag (resp. ↑, ↓, c) stands for the evaluation of concurrent statements during the initialization phase (resp. rising edge, falling edge and stabilization phases).

We choose to remove from the side condition of the rule Par that was stating the absence of multiply-driven signal, and of twin design instances. The two can be obtain after a successful elaboration phase. 

  ps(id, process identifier vars = {(id, τ ) * }, local variable declarations body = ss) statement body comp ::= comp(id c , component instance identifier id e , instantiated design identifier g = {(id ⇒ e) * }, generic constant map i = {(name ⇒ e) * }, input port map o = {((id ⇒ (name|open))|(id(e) ⇒ name)) * }) output port map Table 4: Concurrent statements design ::= {gens = {(id, τ, e) * }, generic constants ports = {((in|out), id, τ ) * }, input and output ports sigs = {(id, τ ) * },

  No multiply-driven signal check NoMDInCs(∆, cs) ≡ ∀id s ∈ O(∆) ∪ S(∆), is_md_in_cs(cs, id s ) = false.

Sig

  

  ∆, S r , S w , Λ ss 1 ss -→ S w , Λ ∆, S r , S w , Λ ss 2 ss -→ S w , Λ ∆, S r , S w , Λ ss 1 ; ss 2 ss -→ S w , Λ Null ∆, S r , S w , Λ null ss -→ S w , Λ 4.3 Evaluation of input and output port maps 4.3.1 Evaluation of an input port map

  mip --→ S c (id) ← a MipComp ∆, ∆ c , S, S c (name ⇒ e) mip --→ S c ∆, ∆ c , S, S c i mip --→ S c ∆, ∆ c , S, S c (name ⇒ e), i mip --→ S c 4.3.2 Evaluation of an output port map MopOpen ∆, ∆ c , S, S c (id ⇒ open) mop ---→ S MopSimple ∆ c , S c name eo

  No multiply-driven signal nmds(S, S , S ) ≡ dom(S) = dom(S ) = dom(S) ∧ ∀id s , S(id s ) = S (id s ) ∨ S(id s ) = S (id s ) where S, S , S ∈ id v, i.e. three signal stores.State equality relationσ Σ = σ ≡ ∀id s , S(σ)(id s ) = S(σ )(id s ) ∧ ∀id c , C(σ)(id c ) Σ = C(σ )(id c ) No twin design instance ntdi(C, C , C ) ≡ dom(C) = dom(C ) = dom(C) ∧ ∀id c , C(id c ) Σ = C (id c ) ∨ C(id c ) Σ = C (id c ) where C, C , C ∈ id Σ, i.e. three design instance stores. Input port values update). Given a simulation environment E p ∈ N → (id v), let us define the function that update of the value of signals at a given design state σ ∈ Σ and clock cycle count τ ∈ N. The function is defined as follows: inj(σ, E p , τ ) = (S ← ∪ E p (τ ), C) where σ = (S, C), and for all sets X and Y , and for all partial functionf, f ∈ X Y , f ← ∪ f (x) = f (x) if x ∈ dom(f ) f (x) otherwise . Cycle D, ∆, inj(σ, E p , τ ) cs cs ↑ --→ σ ↑ D, ∆, σ ↑ cs -→ σ D, ∆, σ cs cs ↓ --→ σ ↓ D, ∆, σ ↓ cs -→ σ D, E p , ∆, τ, σ cs p , ∆, 0, σ cs → [ ] SimLoop D, E p , ∆, τ, σ cs ↑,↓ --→ σ , σ D, E p , ∆, τ -1, σ cs → θ τ > 0 D, E p , ∆,τ, σ cs → (σ :: σ :: θ) p , ∆, τ, σ 0 d.beh → θ ∀τ, dom(Ep(τ )) ⊆ dom(I(∆)) D, M g , E p , τ d f ull --→ (σ 0 :: θ)

Table 1 :

 1 Expressions τ ::= bool boolean | nat (e 1 , e 2 ) natural range e 1 to e 2 | array (τ , e 1 , e 2 ) array of τ with index range e 1 to e 2

	1 Abstract syntax of H-VHDL
	e ::= name	read a signal, a local variable
		or a generic constant value
	| cst	constant
	| bop(e 1 , e 2 )	binary operation
	| uop(e)	unary operation
	| (e + )	aggregate expression
	name ::= id	read a signal, local variable,
		or generic constant value
	| id(e)	read value of an array signal
		or local variable at index e

cst ::= n | b natural or Boolean bop ::= and | or Boolean operators | add | sub natural number arithmetic | eq | ne | gt | ge | lt | le comparisons uop ::= not Boolean negation

Table 2 :

 2 Type indication

	ss ::= name ⇐ e	assignment to a signal
	| name := e	assignment to a local variable
	| if(e){ss 1 } else {ss 2 } conditional
	| for(id, e 1 , e 2 ){ss}	range loop
	| falling{ss}	falling edge block
	| rising{ss}	rising edge block
	| rst {ss 1 } else {ss 2 }	reset conditional
	| ss 1 ;ss 2	sequence
	| null	no operation

Table 3 :

 3 Sequential statements

Table 6 :

 6 The t (type) and v (value) semantic types. Boolean type | nat(n 1 , n 2 ) natural range n 1 to n 2 | array(t, n 1 , n 2 ) array of t with index range n 1 to n 2

	v ::= b	Boolean
	| n	natural number (limited to NATMAX)
	| a	array of values
	a ::	

t ::= bool

  is_assgd_in_ss(id s ⇐ e, id s ) is_assgd_in_ss(id s (e 1 ) ⇐ e 2 , id s ) = true is_assgd_in_ss(for(id, e 1 , e 2 ){ss}, id s ) is_assgd_in_ss(falling{ss}, id s ) is_assgd_in_ss(rising{ss}, id s ) = is_assgd_in_ss(ss, id s ) is_assgd_in_ss(if(e){ss 1 } else {ss 2 }, id s ) is_assgd_in_ss(rst {ss 1 } else {ss 2 }, id s ) is_assgd_in_ss(ss 1 ;ss 2 , id s ) The is_assgd_in_omap function returns true if the signal identifier id s is an actual part (i.e. the right part of an association) in the output port map o. is_assgd_in_omap(o, id s ) = true if ∃name s.t. (name ⇒ id s ) ∈ o false otherwise

	=	is_assgd_in_ss(ss 1 , id s ) or is_assgd_in_ss(ss 2 , id s )
	otherwise = false
	Assignment in output port map	
	Assignment in concurrent statement	

is_assgd_in_cs(ps(id, vars, body), id s ) = is_assgd_in_ss(body, id s )

is_assgd_in_cs(comp(id c , id e , g, i, o), id s ) = is_assgd_in_omap(o, id s ) is_assgd_in_cs(cs 1 || cs 2 , id s ) = is_assgd_in_cs(cs 1 , id s ) or is_assgd_in_cs(cs 2 , id s ) is_assgd_in_cs(null, id s ) =

false Multiply-driven signal in output port map is_md_in_omap(o, id s ) = is_assgd_in_omap(o \ {(name ⇒ id s )}, id s ) if ∃name s.t. (name ⇒ id s ) ∈ o false otherwise Multiply-driven signal in concurrent statement is_md_in_cs(comp(id c , id e , g, i, o), id s ) = is_md_in_omap(o, id s ) is_md_in_cs(cs 1 || cs 2 , id s ) = is_md_in_cs(cs 1 , id s ) or is_md_in_cs(cs 2 , id s ) or (is_assgd_in_cs(cs 1 , id s ) and is_assgd_in_cs(cs 2 , id s )) otherwise = false