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Abstract: The occurrence of the Askey–Wilson (AW) algebra in the SU(2) Chern–Simons
(CS) theory and in the Reshetikhin–Turaev (RT) link invariant construction with quantum
algebra Uq(su2) is explored. Tangle diagrams with three strands with some of them enclosed
in a spin-1/2 closed loop are associated to the generators of the AW algebra. It is shown
in both the CS theory and RT construction that the link invariant of these tangles obey the
relations of the AW generators. It follows that the expectation values of certain Wilson loops
in the CS theory satisfy relations dictated by the AW algebra and that the link invariants do
not distinguish the corresponding linear combinations of links.

1 Introduction

The purpose of this paper is to identify the presence of the Askey–Wilson algebra in the
Chern–Simons theory and the Reshetikhin–Turaev link invariant construction, and to discuss
the bearing it has in these contexts.

One of the fundamental problems in knot theory is to determine whether two links in
three-dimensional space are equivalent or not. In this regard, the study of link invariants plays
an important role towards a classification of knots and links up to isotopy. A link invariant
which is of interest in mathematical physics is the Jones polynomial, discovered in [32] via the
study of a trace on the Temperley–Lieb (TL) algebra. This algebra, which was introduced in
[45], is connected to integrable lattice models in physics. Other examples of link invariants
are the HOMFLY-PT [19, 42] and the Kauffman [34] polynomials, related respectively to the
Hecke [33] and the Birman–Murakami–Wenzl (BMW) [4, 40] algebras. These invariants are
two-variable polynomials which contain the Jones polynomial as a special case. An important
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feature of the TL, Hecke and BMW algebras associated to these polynomial link invariants is
that they are all quotients of the braid group algebra [1], which is central in the study of links.

The Chern–Simons (CS) theory is a quantum gauge field theory with an action that is
defined on three-dimensional manifolds without use of a metric. For this reason, the theory is
said to be topological. In [47], it is shown via the path-integral formalism that the expectation
values of the observables of the theory, called the Wilson loops, lead to link invariants. In
particular, the Jones polynomial is recovered when the manifold is the three-sphere, the gauge
group is SU(2) and all the Wilson loops are in the fundamental representation. The cases
where the gauge group is SU(N) or SO(N) lead respectively to the HOMFLY-PT and the
Kauffman polynomials (see also [2, 7, 24, 25, 30, 36, 48] for instance). Hence, the CS theory
provides an intrinsically three-dimensional interpretation of these link invariants, which usually
require a two-dimensional projection of the link to be defined.

In [43, 46], it is shown how link invariants can be constructed from Yang–Baxter representa-
tions of the braid group; this construction is related to how the Jones polynomial was originally
obtained in [32]. Integrable systems satisfy an integrability condition called the Yang–Baxter
equation. It is known that quasitriangular Hopf algebras yield interesting solutions of this
equation through the R-matrix. The HOMFLY-PT and Kauffman polynomials are recovered
in this construction [46] when considering the R-matrices in the fundamental representation of
the quantized universal enveloping algebras of suN and soN ; the Jones polynomial is in partic-
ular associated to the quantum group Uq(su2). Such a mathematical framework for obtaining
link invariants, to which we will refer as the Reshetikhin–Turaev (RT) construction, is further
developed in terms of ribbon Hopf algebras and functors in [44], with the aim of providing a
mathematical realization of the CS quantum field approach of [47]. Although the connections
between the CS theory and the formalism of quantum groups and R-matrices have been inves-
tigated (see for instance [26, 27, 28, 39]), the equivalence of the link invariants obtained with
both methods deserves to be spelled out.

The Askey–Wilson (AW) algebra was first introduced in [50]. It describes the bispectral
properties of the Askey–Wilson polynomials, which form the family of basic hypergeometric
orthogonal polynomials sitting on top of the q-Askey scheme [38]. The AW algebra is in
particular realized by the centralizer of the diagonal action of Uq(su2) in its threefold tensor
product [22, 31]. The role of the R-matrix in this realization was showcased in [9]. Due
to this connection with the centralizer of Uq(su2), the overlap coefficients associated to the
Racah problem for Uq(su2) are given in terms of the q-Racah polynomials, which are a finite
truncation of the AW ones [22, 37]. It is conjectured in [13] that in general the centralizer of
the diagonal action of Uq(su2) in the tensor product of three spin representations of Uq(su2) is
isomorphic to a quotient of the AW algebra, in the spirit of a generalized Schur–Weyl duality.
In particular, when considering three spins 1/2 or three spins 1, respectively, the TL and BMW
algebras are recovered as quotients of the AW algebra. In the context of knot theory, the AW
algebra is connected to the Kauffman skein algebra of (framed and unoriented) links in some
punctured surfaces, see [5, 6, 8, 29].

The connections that exist between the link invariants mentioned above and various alge-
braic structures such as the braid group, the TL and BMW algebras, and the quantum group
Uq(su2) all hint that the AW algebra must also belong to this picture. Therefore, it is natural
to examine how the AW algebra features in the CS theory and related link invariant construc-
tions. This is the goal of the present paper. Indeed, we show that the defining relations of the
AW algebra appear in the study of the link invariants that arise from the CS theory with gauge
group SU(2) and the RT construction with quantum group Uq(su2) when considering any spin
representations (see Theorems 4.1 and 5.1). A consequence of these observations for the CS
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theory is that the expectation values of some products of Wilson loops are linearly related by
the AW algebra. For knot theory, the implication is that the CS and RT link invariants do
not distinguish between some linear combinations of links that correspond to the AW algebra
relations. Moreover, the fact that the same results are obtained independently in the CS theory
and in the RT mathematical framework of Yang–Baxter operators provides another reason to
think that the link invariants in both cases are equivalent.

The strategy we follow in this paper is to associate to the generators of the AW algebra
some tangle diagrams composed of three straight strands with a subset of them being enclosed
by a loop associated to the spin 1/2 representation. These are inspired by the diagrams of the
Kauffman skein algebra in [8], where punctures on a plane are enclosed by loops. Then, we
show that the values of the link invariants of these diagrams satisfy the defining relations of
the AW algebra both (and independently) in the CS theory and the RT construction. In the
CS case, the proof is done by using the connections with the Kauffman bracket polynomial
while in the RT case, it is done by computing algebraically some partial traces of R-matrices
and identifying them as the intermediate Casimir elements of Uq(su2)

⊗3.
The paper is organized as follows. Section 2 contains a review of relevant concepts of the

theory of knots and links (Subsection 2.1) as well as a definition of the braid group and its
associated braid diagrams (Subsection 2.2). In Section 3, the AW tangle diagrams are defined
and put in correspondence with the generators of the AW algebra. Section 4 provides a proof
that these AW diagrams lead to the AW relations in the CS theory on R

3 with gauge group
SU(2). Some preliminaries on the CS theory are first recalled in Subsection 4.1, and the
relevant properties of the Wilson loop expectation values are presented in Subsection 4.2. The
known connection between the CS link invariant and Kauffman’s bracket polynomial is given in
Subsection 4.3. Then, the properties of the CS link invariant are used in Subsection 4.4 to prove
that the AW diagrams satisfy the AW relations. Subsection 4.5 comments on the connection
with the Temperley–Lieb algebra. In Section 5, it is shown that the same AW tangle diagrams
also lead to the AW relations in the RT construction of link invariants associated to Uq(su2).
Subsection 5.1 first recalls the definition and properties of the quantum group Uq(su2), and
Subsection 5.2 briefly discusses its finite irreducible representations. The RT construction of
link invariants via traces of Yang–Baxter operators is explained in Subsection 5.3. Then, it
is shown in Subsection 5.4 that the AW tangle diagrams, viewed as partially closed braids,
correspond to partial traces of R-matrices that are equal to the intermediate Casimir elements
of Uq(su2)

⊗3. Section 6 contains concluding remarks. The paper is complemented by two
appendices. The first (Appendix A) contains the technical proof of a proposition regarding a
known property of the trace in the RT construction. The second (Appendix B.2) provides a
new proof that the intermediate Casimir elements of Uq(su2)

⊗3 satisfy the relations of the AW
algebra, using the formalism of R-matrices and their partial traces.

2 Knot theory and braid group

This section recalls definitions and properties regarding knots, links and braids.

2.1 Knots and links

A knot is a smooth embedding of the circle S1 in R
3. A link with n components is the union of

n knots that do not intersect. In this paper, we will consider oriented knots and links, unless
stated otherwise.
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Two links in R
3 are said to be ambiant isotopic if one can be smoothly deformed into the

other in R
3. This defines an equivalence relation for links in R

3. A link invariant is a mapping
L 7→ I(L) such that I(L1) = I(L2) if L1 and L2 are equivalent links.

A link L in R
3 is conveniently represented by a link diagram DL, which is a projection of L

on a two-dimensional plane R
2 with a finite number of crossings. We distinguish between the

overcrossing (L+) and undercrossing (L−) configurations illustrated in Figure 2.1. A crossing

L+ L− L0

Figure 2.1: Crossing configurations.

of type L+ (resp. L−) is said to have positive (resp. negative) sign. The writhe number w(DL)
of a link diagram DL is defined as the sum of the signs of all the crossings. We also define the
configuration L0 illustrated in Figure 2.1, which has no crossing.

Two link diagrams represent ambiant isotopic links if and only if they are related by a
finite sequence of planar isotopies and Reidemeister moves (RM), illustrated in Figure 2.2.
The equivalence relation for link diagrams induced by planar isotopies and RM of type II and
III only is referred to as regular isotopy [34].

I
∼ ∼

II ∼

III ∼

Figure 2.2: The Reidemeister moves (where the components can have any orientation).

A framing of a link L is a continuous and nowhere vanishing vector field which is normal
to L. Therefore, framed links can be viewed as bands. Instead of representing framed links by
diagrams of bands, we choose to represent them by usual link diagrams with the convention
that, for each component of a link, the framing is given by a normal vector field which is
always perpendicular to the projection plane. This is known as the vertical framing. In this
representation, the configurations illustrated in Figure 2.3 are not equivalent. Therefore, in
the vertical framing convention, the RM of type I is not valid anymore. Note however that
the RM of types II and III can still be used. For this reason, regular isotopy is relevant when
studying framed links.

Finally, a link L with n components is said to be colored if each component is associated
to some parameter αi (referred to as the “color”), for i = 1, ..., n.

In this paper, we will be interested by framed and colored links, where the colors are
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L(+) L(−) L(0)

Figure 2.3: Three configurations which are not equivalent for framed links.

non-negative integers or half-integers to be called “spins”.

2.2 Braid group

A convenient way of studying links is via braids. The braid group on n strands Bn is generated
by invertible elements σi, for i = 1, ..., n − 1, which satisfy the following defining relations

σiσj = σjσi, |i− j| > 1, (2.1)

σiσi+1σi = σi+1σiσi+1, i = 1, ..., n − 2. (2.2)

The generators and their inverses can equivalently be seen as the following braid diagrams

σi =

1
...

i i+ 1
...

n

, σ−1
i =

1
...

i i+ 1
...

n

, (2.3)

with the group product given by vertical concatenation. A general braid diagram is such that
n points on a line are connected by always upgoing strings to n points on a line above, with an
overcrossing and undercrossing specification. The defining relations of Bn are seen to express
an isotopy equivalence of braids. In particular, the relation σiσ

−1
i = 1 corresponds to the RM

of type II while the relation (2.2) corresponds to the RM of type III.
The importance of braids for links is given by Alexander’s theorem stating that any link

can be represented as the closure of a braid, obtained by connecting the top ends of the strings
on a braid diagram with their corresponding bottom ends.

3 Askey–Wilson diagrams

In this section, we define the diagrams associated to the generators of the Askey–Wilson
algebra, as will be shown later.

The idea is to consider three colored vertical strands and to encircle a (non-empty) subset
of them by a loop with spin 1/2. Since the spin 1/2 will play a special role in what is to come,
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we will represent any component of a diagram associated to this spin in blue. Hence, we define

A1 := , A2 := A3 := , (3.1)

A12 := , A23 := , A13 := , (3.2)

A123 := . (3.3)

The previous diagrams are known as colored and oriented (3,3)-tangle diagrams in knot theory1.
They are similar to braid diagrams on three strands, with the difference that they contain loops.
These tangle diagrams can be viewed to represent part of a colored and oriented link, where the
colors are given by spins. Unless required, the colors of the vertical strands are not indicated
on the figure. Since we will consider framed links, the equivalence relation which will be of
interest for us is regular isotopy. Hence, if X and Y are two regular isotopic tangle diagrams,
we will write X = Y to refer to their equivalence.

In what follows, we will be interested in deriving relations between the values of invariants
associated to framed links which only differ in some finite region by a combination of the tangle
diagrams (3.1)–(3.3). To do so, we first define the product XY of two such tangle diagrams X
and Y by vertical concatenation, with the convention that the diagram X is put on top of the
diagram Y . This product rule together with the regular isotopy equivalence imply that the
diagrams A1,A2,A3 and A123 commute with all the diagrams in (3.1)–(3.3). Indeed, one can
move the loops enclosing only one strand inside the larger loops, and the loops enclosing all
three strands around the smaller loops. However, the diagrams A12 and A23 do not commute a
priori because one cannot pass the top blue loop below the bottom one without encountering
a crossing in the following diagrams:

A12A23 = , A23A12 = . (3.4)

We can also define similarly the product of a braid σ ∈ B3 with the (3, 3)-tangle diagrams
in (3.1)–(3.3). It is then seen (by using again regular isotopy invariance) that the element A13

1A (m,n)-tangle diagram is such that m points on a bottom line and n points on a top line are connected
by arcs, and it can contain loops between the two lines.
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can be expressed in terms of A12 or A23 as follows:

A13 = σ1A23σ
−1
1 = = = σ−1

2 A12σ2. (3.5)

In order to state the connection between the diagrams (3.1)–(3.3) and the Askey–Wilson
algebra, we need the following definition.

Definition 3.1. [8] The special Askey–Wilson algebra saw(3) is generated by C12, C23, C13

and central elements C1, C2, C3, C123 subject to the relations

[C12, C23]q + (q2 − q−2)C13 = (q − q−1)(C1C3 + C2C123), (3.6)

[C23, C13]q + (q2 − q−2)C12 = (q − q−1)(C1C2 + C3C123), (3.7)

[C13, C12]q + (q2 − q−2)C23 = (q − q−1)(C2C3 + C1C123), (3.8)

qC12C23C13 + q2C2
12 + q−2C2

23 + q2C2
13 − qC12(C1C2 + C3C123)− q−1C23(C2C3 + C1C123)

− qC13(C1C3 + C2C123) = (q + q−1)2 − C2
123 −C2

1 − C2
2 − C2

3 − C1C2C3C123, (3.9)

where q is a complex number and [X,Y ]q = qXY − q−1Y X is the q-commutator.

Note that (3.6)–(3.8) are the defining relations of (a centrally extended version of) the
original AW algebra introduced in [50]. Moreover, the LHS of (3.9) is a Casimir element for
this algebra.

The main goal of this paper is to show that, when considering some specific link invariants,
the tangle diagrams (3.1)–(3.3) obey the Askey–Wilson algebra relations (3.6)–(3.8) under the
correspondence

CI 7→ AI , ∀I ∈ {1, 2, 3, 12, 23, 13, 123}. (3.10)

Let us mention that this correspondence between the AW algebra generators CI and the tangle
diagrams AI together with equation (3.5) is consistent with our understanding of the realization
of the AW algebra as the centralizer of Uq(su2) in Uq(su2)

⊗3 [9]. We will come back to this
point later in Subsection 5.4.

The two link invariants which will be considered here are: the one which arises from the
Chern–Simons quantum field theory with gauge group SU(2), and the one which follows from
the Reshetikhin–Turaev construction associated to the quantum group Uq(su2). Let us mention
again that there are reasons to believe that these two link invariants are in fact the same (see
[23, 26, 27, 28, 39, 44] for instance), but since this connection is not obvious to establish, we
will consider both cases independently.

4 Askey–Wilson algebra in the Chern–Simons theory

This section focuses on the Chern–Simons quantum field theory and its link invariants. It
will be shown that the tangle diagrams defined in (3.1)-(3.3) lead indeed to the Askey–Wilson
algebra in this context.
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4.1 Chern–Simons action and Wilson loops

Throughout this paper, we consider the Chern–Simons theory on R
3 with gauge group SU(2).

We will mainly follow the conventions of [23]. The Lie algebra su2 has generators T a, for
a = 1, 2, 3, with Lie bracket [T a, T b] = iǫabcT c, where ǫabc is the Levi-Civita symbol. For each
spin j = 0, 1/2, 1, ..., su2 has an irreducible representation of finite dimension 2j + 1. In the
fundamental (spin-1/2) representation, the generators T a are represented by the Pauli matrices
with a normalization factor of 1/2. The gauge potential of the field theory is the one-form
A =

∑
µAµdx

µ for µ = 0, 1, 2 with values in su2: Aµ(x) =
∑

aA
a
µ(x)T

a.
The Chern–Simons action is

SCS =
κ

4π

∫

R3

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (4.1)

where κ is the coupling constant, ∧ is the exterior product and Tr is the trace in the two-
dimensional spin-1/2 representation of su2. The action SCS as defined in (4.1) is manifestly a
topological invariant since it is the integral of a three-form over a three-manifold. Moreover,
it is invariant under the gauge transformation

Aµ(x) → AΩ
µ (x) = Ω−1(x)Aµ(x)Ω(x) − iΩ−1(x)∂µΩ(x), (4.2)

where Ω : R3 → SU(2) is a smooth map.
The gauge invariant observables of the CS theory are the Wilson loops, defined by

W (γ, j) = Tr

[
P exp

(
i

∮

γ
Aa

µT
a
(j)dx

µ

)]
, (4.3)

where γ is a closed and oriented smooth curve in R
3, P is the path-ordering operator and

T a
(j) denotes the spin-j representation of the generator T a of su(2). (Note that one speaks of

“Wilson lines” if the integral in (4.3) is taken along a path which is not closed and if there
is no trace.) More generally, we can consider the finite union of non-intersecting closed and
oriented smooth curves γi each associated to some spin ji; this defines an oriented and colored
link L. Then the product of Wilson loops associated to this link L is

W (L) = W (γ1, ..., γn; j1, ..., jn) =
n∏

i=1

W (γi, ji). (4.4)

The vacuum expectation value of a product of Wilson loops is given in terms of path integrals
by

〈W (L)〉 =

∫
DA W (L)eiSCS

∫
DA eiSCS

. (4.5)

In order for this expression to be well-defined, the link L must be framed. Hence, the expec-
tation value (4.5) depends on a choice of framing. To specify the choice of framing on link
diagrams, we will use the vertical framing (VF) convention. Therefore, the object of interest
will be

ICS(L) := 〈W (L)〉VF , (4.6)

where we use the same notation L for a link in R
3 and its two-dimensional projection diagram.

Note that ICS(L) can be expressed in terms of the deformation parameter

q := exp

(
−
iπ

κ

)
. (4.7)

In [23], the object ICS(L) is denoted E(L) and the deformation parameter corresponds to q2.
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4.2 Properties of the Wilson loop expectation values

We now provide a list of properties of ICS(L) which will be useful for what follows and which
can be derived from the CS theory [23, 47].

1. ICS is an ambiant isotopy invariant of oriented, colored and framed links in R
3, and a

regular isotopy invariant of oriented and colored link diagrams. This is a consequence of
the topological invariance of the CS theory. Actually, since we are considering the gauge
group SU(2), the value ICS(L) does not depend on the orientation of the components of
the link L, hence the previous statement holds for unoriented links (see for instance [23]
for more details).

2. If two links L(±) and L(0) are identical everywhere except at some small region where
they look as indicated in Figure 2.3, and if the component which differs is associated to
the spin j, then

ICS(L
(±); j) = q±2j(j+1)ICS(L

(0); j). (4.8)

The property (4.8) corresponds to a change of framing of one of the components of the
link.

3. If L1 and L2 are two disjoint links, then

ICS(L1 ∪ L2) = ICS(L1)ICS(L2). (4.9)

This factorization property is a consequence of the topological invariance of the CS theory
and of the uniqueness of the vacuum.

4. If U1 and U2 are two unknots with zero writhe (see Figure 4.1a) and respective spins j1
and j2, then

ICS(U1, U2; j1, j2) =

j1+j2∑

j=|j1−j2|

ICS(U1; j). (4.10)

This is a consequence of the fusion property of the Wilson loops and of the direct sum
decomposition rule for the tensor product of two spin representations of su2.

5. In a 1 + 2 time and space decomposition of R
3, the (full) monodromy matrix which

describes the braiding of two Wilson lines associated to the representations of spins j1
and j2 of su2 is given by

B = q
4Ta

(j1)
⊗Ta

(j2) . (4.11)

The eigenvalues of the monodromy matrix are

q−2j1(j1+1)−2j2(j2+1)+2j(j+1), (4.12)

for j = |j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2. The half-monodromy matrix is given by

M = Π12q
2Ta

(j1)
⊗Ta

(j2) , (4.13)

where Π12 is the permutation operator that exchanges the representation spaces j1 and
j2. This matrix is associated to the exchange of two punctures in the 2-space of the CS
theory. In terms of link diagrams, it corresponds to performing the crossing L+ of Figure
2.1 (and the inverse matrix corresponds to L−). The minimal characteristic polynomial
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of the half-monodromy matrix leads to a skein relation (or a generalized version) for the
CS link invariant. For instance, when two Wilson lines are in the spin 1/2 representation,
M has two eigenvalues and one gets the relation

q
1
2 ICS(L+)− q−

1
2 ICS(L−) = (q − q−1)ICS(L0). (4.14)

These properties of the Wilson loop expectation values allow one to compute the CS invariant
associated to any link in R

3 (see [23]). The result is a Laurent polynomial in the variable q
1
2 .

Some useful cases are given in the following proposition.

Proposition 4.1. [23] Denote [x]q :=
qx−q−x

q−q−1 .

(a) The value of the unknot U with zero writhe (see Figure 4.1a) associated to the irreducible
representation of spin j of su2 is

ICS(U ; j) = [2j + 1]q. (4.15)

(b) The value of the Hopf link LH (see Figure 4.1b) whose components have zero writhe and
are associated to the irreducible representations of spins j1 and j2 of su2 is

ICS(LH ; j1, j2) = [(2j1 + 1)(2j2 + 1)]q. (4.16)

(a) (b)

Figure 4.1: The unknot (a) and the Hopf link (b).

When all the Wilson loops are in the spin-1/2 representation, the regular isotopy invari-
ance, the value of the unknot (4.15), the property (4.8) and the skein relation (4.14) uniquely
determine the value ICS(L) (see [23]). More generally, the CS link invariant can be determined
by a recursive method which reduces the computation to the case where all the spins are 1/2,
as per the following proposition.

Proposition 4.2. [23] Let L be a link with components K1,K2, ... associated to spins j1, j2, ...

(a) Any component Ki in the trivial representation can be removed from the computation of
ICS(L). That is, if j1 = 0 (without loss of generality), then

ICS(K1,K2, ...; 0, j2, ...) = ICS(K2, ...; j2, ...). (4.17)

(b) For any spin j1 (and similarly for any other spin ji of L),

ICS(K1,K2, ...; j1, j2, ...) =ICS(K1,K1,K2, ...; 1/2, j1 − 1/2, j2, ...) (4.18)

− ICS(K1,K2, ...; j1 − 1, j2, ...),

where the component K1 has been doubled in a parallel way in the first term on the RHS
of the equality (see Figure 4.2).

Part (a) of Proposition 4.2 is based on the fact that any component in the trivial representa-
tion can be unlinked since the full-monodromy matrix B acts as the identity in the case j1 = 0,
and also, on the factorization property (4.9). Part (b) follows from the spin decomposition
rule j ⊗ 1/2 = (j + 1/2) ⊕ (j − 1/2) and the fusion property (4.10).
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j1

=

1
2

j1 −
1
2

−

j1 − 1

Figure 4.2: Diagrammatic representation of equation (4.18). The equality depicted above
extends when the diagrams are part of a more complicated link.

4.3 Kauffman bracket

The strategy for establishing the role of the Askey–Wilson algebra in the CS theory will rely on
connecting the expectation values of the Wilson loops in the fundamental representation of su2
with the Kauffman bracket polynomial. It is relevant to point out a parallel with the relation
between the AW algebra and the Kauffman skein algebra that was obtained in [5, 6, 8, 29].

We start with a definition of Kauffman’s bracket polynomial.

Definition 4.1. [35] The bracket polynomial VB(L;x) for a non-oriented link L is defined by

(i) VB(L) = VB(L
′) if L and L′ are regular isotopic;

(ii) VB

( )
= −(x2 + x−2);

(iii) VB

( )
= −x3VB

( )
, VB

( )
= −x−3VB

( )
;

(iv) VB

( )
= xVB

( )
+ x−1VB

( )
.

In the previous equations, the dependence on the variable x is implicit, and it is understood in
(iii) and (iv) that the equalities hold for link diagrams which look the same everywhere except
at some small region where they differ as illustrated.

Note that given an oriented link L, one can compute its bracket polynomial VB(L) by
removing the orientation. The next result gives precisely the connection between the CS
expectation values and the bracket polynomial.

Proposition 4.3. [23] Let L be an oriented framed link with all components associated to the
fundamental (spin 1/2) representation of su2. Then the following relation holds

ICS(L) = exp

(
−
iπ

2
w(L)

)
VB(L; iq

1
2 ). (4.19)

The idea of the proof is to show that exp
(
iπ
2 w(L)

)
ICS(L) satisfies the properties (i)–(iv)

with x = iq
1
2 which uniquely define the bracket polynomial VB(L; iq

1
2 ).

4.4 Askey–Wilson relations from the Wilson loop expectation values

We are now ready to prove the following theorem.

Theorem 4.1. In the Chern–Simons theory on R
3 with gauge group SU(2) and vertical fram-

ing, the Wilson loop expectation values (4.6) of the diagrams (3.1)–(3.3) satisfy the Askey–
Wilson relations (3.6)–(3.8) under the correspondence (3.10).
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Let us consider the product A12A23. To simplify the drawings in what follows, we will
represent the tangle diagrams by viewing them from the top. In this case, the three vertical
strands look as three punctures on a plane, and the blue loops enclose them. Hence, in this
diagrammatic representation, the product looks like

A12A23 = • • • . (4.20)

The three strands (represented by the punctures) are associated to three spins j1, j2 and j3.
One can apply equation (4.18) recursively to reduce these three spins j1, j2 and j3 to 0 or 1/2,
at the cost of adding a finite number of parallel strands. Because of the property (4.17), the
strands with spin 0 can be removed. Therefore, one can express the product (4.20) as a linear
combination of diagrams with spin-1/2 (blue) components:

ICS

(
• • •

)
=

∑

n1,n2,n3

βn1,n2,n3ICS

(
{•}
n1

{•}
n2

{•}
n3

)
. (4.21)

In the previous equation, we have used the symbol {•} to represent a set of punctures all
associated to the spin 1/2, and we have indicated the number of punctures in each set by some
non-negative integers ni. The coefficient βn1,n2,n3 can be computed from (4.18), but its exact
form will not be relevant. In what follows, for simplicity the integers ni will not be indicated
explicitly on the diagrams anymore.

It is now possible to compute the bracket polynomial VB(L; iq
1
2 ) of the diagrams which

appear on the RHS in (4.21) by removing the orientation. More specifically, one can use the
property (iv) of the bracket polynomial to simplify the crossings of the diagrams. Such a
computation can be found in [8], but we reproduce it here:

VB

(
{•} {•} {•} ; iq

1
2

)

= iq
1
2VB

(
{•} {•} {•} ; iq

1
2

)
− iq−

1
2VB

(
{•} {•} {•} ; iq

1
2

)
(4.22)

= −qVB




{•} {•} {•}
; iq

1
2


+ VB

(
{•} {•} {•} ; iq

1
2

)
(4.23)

+ VB

(
{•} {•} {•} ; iq

1
2

)
− q−1VB




{•} {•} {•}
; iq

1
2


 .

Using the relation (4.19), one can write the previous equation in terms of the Wilson loops
expectation values ICS(L) with some exponential phases. Suppose the diagram on the LHS
of (4.23) has writhe w(L) and n2 punctures in the second set {•}. By inserting back the
orientations (all anti-clockwise), we find that the writhe numbers of the diagrams in (4.23) are
either w(L) or w(L) − 4n2, depending whether there are two or zero loops which enclose the
second set of punctures. Since n2 is an integer, all the exponential phases of the diagrams
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reduce to the factor exp (iπw(L)/2), which can be simplified from the equation. Hence

ICS

(
{•} {•} {•}

)
= −qICS




{•} {•} {•}


+ ICS

(
{•} {•} {•}

)
(4.24)

+ ICS

(
{•} {•} {•}

)
− q−1ICS




{•} {•} {•}


 .

We can proceed similarly for the product A23A12 and find

ICS

(
{•} {•} {•}

)
= −q−1ICS




{•} {•} {•}


+ ICS

(
{•} {•} {•}

)
(4.25)

+ ICS

(
{•} {•} {•}

)
− qICS




{•} {•} {•}


 .

Using an argument similar to the one which lead to (4.21), each set of punctures {•} can be
put back to a single puncture • with spin ji for i = 1, 2, 3 in equations (4.24) and (4.25).
Therefore, these two equations imply

qICS

(
• • •

)
− q−1ICS

(
• • •

)
+ (q2 − q−2)ICS




• • •




= (q − q−1)

{
ICS

(
• • •

)
+ ICS

(
• • •

)}
, (4.26)

which is the defining relation (3.6) of the special Askey–Wilson algebra. The relations (3.7) and
(3.8) can be obtained by conjugating the diagrams in (4.26) by the braids σ1σ2 and (σ1σ2)

−1

respectively. With a similar method as for (3.6), relation (3.9) can be shown to hold at the
level of the bracket polynomial VB(L) [8]. Observing that each index 1, 2, 3 of the generators
of the special AW algebra is repeated twice in each term of this relation, one deduces again
that the exponential factors which appear in (4.19) all simplify. Therefore, relation (3.9) also
holds for the CS link invariant.

4.5 Connection with the Temperley–Lieb algebra

It is known that Kauffman’s bracket polynomial is connected to the Jones polynomial and to
the Temperley–Lieb algebra [32, 35, 45]. More recently, it has been shown through the study
of a generalization of the Schur–Weyl duality for Uq(sl2) that the Temperley–Lieb algebra is
isomorphic to a quotient of the Askey–Wilson algebra [13]. We offer now an interpretation of
this isomorphism in terms of diagrams.

Definition 4.2. [45] The Temperley–Lieb algebra TL3(q) is generated by e1 and e2 with the
following defining relations

e21 = (q + q−1)e1, e22 = (q + q−1)e2, (4.27)

e1e2e1 = e1, e2e1e2 = e2. (4.28)
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To establish precisely the connection between the bracket polynomial VB(L;x) and the
Temperley–Lieb algebra TL3(q), one defines the “hook” diagrams (see [35, 34])

E1 = , E2 = . (4.29)

From the properties (iii) and (iv) of Definition 4.1, it is seen that the following equalities hold
for the value VB(L;x) of the illustrated diagrams:

= −x3 = x + x−1 . (4.30)

Moreover, the regular isotopy invariance property (i) of Definition 4.1 implies for the value of
VB(L;x)

= , = . (4.31)

Therefore, one deduces from equations (4.30) and (4.31) that the bracket polynomial VB(L;x =

iq
1
2 ) of the diagrams E1, E2 satisfy the defining relations (4.27) and (4.28) of TL3(q), respec-

tively with ei 7→ Ei, for i = 1, 2.
In [13], the centralizer of the diagonal action of the algebra Uq(sl2) in the tensor product of

three finite irreducible representations of Uq(sl2) of spins j1, j2, j3 is conjectured to be isomor-
phic to a quotient of the special Askey–Wilson algebra saw(3). The conjecture is proven for
j1 = j2 = j3 = 1/2, in which case the centralizer is known to be isomorphic to the Temperley–
Lieb algebra TL3(q). As a result, an explicit isomorphism between a quotient of saw(3) and
TL3(q) was obtained in [13] (see therein Theorem 6.2). In the notations of the present paper,
this isomorphism maps the (quotiented) generators of saw(3) to elements of TL3(q) as follows

C12 7→ (q3 + q−3)− (q − q−1)2e1, (4.32)

C23 7→ (q3 + q−3)− (q − q−1)2e2. (4.33)

We have shown that, in the CS theory, the tangle diagrams A12 and A23 defined in (3.2) are
in correspondence with the generators C12 and C23 of the AW algebra. In the case where the
three vertical strands of these tangle diagrams have spins j1 = j2 = j3 = 1/2, we can remove
the orientations and compute the bracket polynomial, which is related to the CS expectation
value as stated in Proposition 4.3. It is straightforward to use the properties of VB(L; iq

1
2 ) to

find

VB


 ; iq

1
2


 = (q3 + q−3)VB


 ; iq

1
2


− (q − q−1)2VB


 ; iq

1
2


 . (4.34)
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By adding a third vertical strand on the right (resp. left) of the diagrams which appear in
(4.34), we recognize the tangle diagram A12 (resp. A23) on the LHS and the Temperley–Lieb
hook diagram E1 (resp. E2) in the second term of the RHS. Therefore, comparing with (4.32)
and (4.33), equation (4.34) can be seen as a diagrammatic representation of the isomorphism
between the quotient of the AW algebra and the TL algebra established in [13].

5 Askey–Wilson algebra in the Reshetikhin–Turaev link invari-

ant construction

In this section, we will consider the quantum algebra Uq(su2), a q-deformation of the universal
enveloping algebra of su2, and we will recall how its universal R-matrix can be used to construct
a link invariant. We will then show that the tangle diagrams (3.1)–(3.3) also lead to the Askey–
Wilson algebra relations in this framework. It will be assumed throughout this section that q
is a generic complex number.

5.1 Uq(su2) algebra

The quantum algebra Uq(su2) is the associative algebra generated by E, F and qH with the
defining relations

qHE = qEqH , qHF = q−1FqH , [E,F ] = [2H]q, (5.1)

where [X,Y ] = XY − Y X. For future convenience, we define

µ := q2H . (5.2)

The following Casimir element generates the center of Uq(su2):

Q = (q − q−1)2FE + q2H+1 + q−2H−1. (5.3)

We now describe some relevant features of the quasitriangular Hopf algebra structure of
Uq(su2). The comultiplication, or coproduct, is an algebra homomorphism ∆ : Uq(su2) →
Uq(su2)⊗ Uq(su2) which is defined on the generators by

∆(E) = E ⊗ q−H + qH ⊗ E, ∆(F ) = F ⊗ q−H + qH ⊗ F, ∆(qH) = qH ⊗ qH , (5.4)

and which is coassociative
(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. (5.5)

The antipode is an algebra anti-automorphism S : Uq(su2) → Uq(su2) defined by

S(E) = −q−1E, S(F ) = −qF, S(qH) = q−H . (5.6)

The universal R-matrix of Uq(su2) is an invertible element R ∈ Uq(su2)⊗Uq(su2) which satisfies

∆op(x) = R∆(x)R−1 ∀x ∈ Uq(su2). (5.7)

In the previous equation, ∆op is the opposite comultiplication and is defined by ∆op = τ ◦∆,
where τ(x⊗ y) = y ⊗ x for x, y ∈ Uq(su2). The universal R-matrix also satisfies

(id ⊗∆)(R) = R13R12, (∆ ⊗ id)(R) = R13R23, (5.8)
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and the Yang–Baxter equation

R12R13R23 = R23R13R12. (5.9)

We have used standard notations: if R = Rα ⊗ Rα, then R12 = R ⊗ 1 = Rα ⊗ Rα ⊗ 1,
R23 = 1 ⊗ R = 1 ⊗ Rα ⊗ Rα and R13 = (id ⊗ τ)(R12) = Rα ⊗ 1 ⊗ Rα (the sum w.r.t. α is
understood). We will also denote R21 = τ(R) = Rα ⊗Rα. The universal R-matrix of Uq(su2)
is explicitly given by [16]

R =
∞∑

k=0

(q − q−1)k

[k]q!
q−k(k+1)/2(F ⊗ E)k(qkH ⊗ q−kH)q2(H⊗H), (5.10)

where [n]q! := [n]q[n− 1]q . . . [2]q[1]q and, by convention, [0]q! := 1. The inverse is given by

R−1 = (S ⊗ id)(R) = (id⊗ S−1)(R). (5.11)

5.2 Representations of Uq(su2)

Like the Lie algebra su2, the algebra Uq(su2) has an irreducible spin-j representation Vj of finite
dimension 2j + 1 for each j = 0, 12 , 1, ... The basis vectors of Vj will be denoted by |j,m〉, and
the dual basis vectors by 〈j,m|, for m = −j,−j +1, ..., j. We have the following orthogonality
and completeness relations:

〈j,m|j, n〉 = δmn,

j∑

m=−j

|j,m〉 〈j,m| = id. (5.12)

The representation of Uq(su2) on the basis vectors |j,m〉, for m = −j, ..., j, is given by

E |j,m〉 = [j −m]q |j,m+ 1〉 , (5.13)

F |j,m〉 = [j +m]q |j,m − 1〉 , (5.14)

H |j,m〉 = m |j,m〉 . (5.15)

One deduces from (5.13)–(5.15) the constant action of the Casimir element (5.3) on Vj, for
m = −j, ..., j:

Q |j,m〉 = χj |j,m〉 , where χj := q2j+1 + q−2j−1. (5.16)

As for the Lie algebra su2, the tensor product decomposition rule for two irreducible represen-
tations of spins j1 and j2 of Uq(su2) is Vj1 ⊗ Vj2 =

⊕j1+j2
j=|j1−j2|

Vj . We will denote the tensor

product of two basis vectors as |j1,m1〉 ⊗ |j2,m2〉 = |j1,m1; j2,m2〉.
The universal R-matrix (5.10) with the first space in the fundamental (spin-1/2) represen-

tation of Uq(su2) is given by the following two by two matrix:

L−
12 =

(
qH 0

q−q−1

q1/2
E q−H

)
. (5.17)

Similarly, the element R21 with the first space in the spin-1/2 representation is given by

L+
12 =

(
qH q−q−1

q1/2
F

0 q−H

)
. (5.18)
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Then, one can show that the universal Yang–Baxter equation (5.9) with two spaces in the
spin-1/2 representation leads to the FRT relations [18]

R12L
−
13L

−
23 = L−

23L
−
13R12, (5.19)

R12L
+
23L

+
13 = L+

13L
+
23R12, (5.20)

L−
13R12L

+
23 = L+

23R12L
−
13, (5.21)

where R, called the R-matrix, is the spin-1/2 representation of the universal R-matrix in both
spaces:

R = q1/2




1 0 0 0
0 q−1 0 0
0 1− q−2 q−1 0
0 0 0 1


 . (5.22)

The three relations (5.19)–(5.21) are equivalent to the defining relations (5.1) of Uq(su2).
We obtain the following relations by representing the Yang–Baxter equation (5.9) in one

space

R23L
−
13L

−
12 = L−

12L
−
13R23, (5.23)

R12L
+
31L

+
32 = L+

32L
+
31R12, (5.24)

L+
21R13L

−
23 = L−

23R13L
+
21. (5.25)

The coproduct can also be defined in this formalism. Indeed, one gets

∆(L+
12) = L+

12L
+
13, ∆(L−

12) = L−
13L

−
12, (5.26)

where it is understood that ∆ acts on the space which is not represented.
We will also denote by M the spin-1/2 matrix representation of the element µ defined in

(5.2), given by

M =

(
q 0
0 q−1

)
. (5.27)

5.3 Trace and link invariants

Let n be a positive integer, and denote the tensor product of Uq(su2)-representations of spins
j1, ..., jn by

V = Vj1 ⊗ Vj2 ⊗ ...⊗ Vjn . (5.28)

This vector space has dimension (2j1 +1)× ...× (2jn+1) and basis vectors |j1,m1; ...; jn,mn〉,
where mi = −j1, ..., ji for all i = 1, ..., n. We will now provide an action of the braid group Bn

on V and define a trace which is a link invariant. The construction follows [43, 46].
For i = 1, 2, ..., n−1, we define the permutation operator Πi,i+1 which exchanges the vectors

in the positions i and i+ 1 of the n-fold tensor product space V , that is

Πi,i+1 |...; ji,mi; ji+1,mi+1; ...〉 = |...; ji+1,mi+1; ji,mi; ...〉 . (5.29)

Using this permutation operator, we can define for i = 1, 2, ..., n − 1 the following universal
braided R-matrix:

Ři,i+1 = Πi,i+1Ri,i+1. (5.30)
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The action of the operator (5.30) on V is obtained from the explicit expression (5.10) of the
universal R-matrix, from the actions (5.13)–(5.15) of Uq(su2) and from the action (5.29) of the
permutation operator. The operator (5.30) has an inverse on V which is given by

Ř−1
i,i+1 = R−1

i,i+1Πi,i+1. (5.31)

Since Ři,i+1 acts only on the factors i and i+1 of the n-fold tensor product space V , it is seen
that the following equality of operators acting on V holds

Ři,i+1Řj,j+1 = Řj,j+1Ři,i+1 if |i− j| > 1. (5.32)

Moreover, using the Yang–Baxter equation (5.9) and the action (5.29) of the permutation
operator, one can show that the following braid relation holds on V

Ři,i+1Ři+1,i+2Ři,i+1 = Ři+1,i+2Ři,i+1Ři+1,i+2. (5.33)

Therefore, the following defines an action of the braid group Bn on V :

σ±1
i |j1,m1; ...; jn,mn〉 = Ř±1

i,i+1 |j1,m1; ...; jn,mn〉 . (5.34)

From (5.34), it is seen that we can use interchangeably the braid group generators σi and their
corresponding universal braided R-matrices Ři,i+1 when acting on V .

If X is an operator which admits an action on V , we define its trace on V by

Tr(j1,...,jn)(X) :=

j1∑

m1=−j1

...

jn∑

mn=−jn

〈j1,m1; ...; jn,mn|X |j1,m1; ...; jn,mn〉 . (5.35)

We also define the partial trace of X on the first tensor factor of V , denoted Tr
(j1)
1 (X), as the

operator acting on Vj2 ⊗Vj3⊗ ...⊗Vjn which satisfies for all mi, ℓi = −ji, ..., ji, with i = 2, ..., n,
the following relation

〈j2,m2; ...; jn,mn|Tr
(j1)
1 (X) |j2, ℓ2; ...; jn, ℓn〉

=

j1∑

m1=−j1

〈j1,m1; j2,m2...; jn,mn|X |j1,m1; j2, ℓ2; ...; jn, ℓn〉 . (5.36)

The partial trace of X on the nth tensor factor of V will be understood similarly and denoted

Tr
(jn)
n (X). Let us recall the following proposition which can be found in [43, 46].

Proposition 5.1. The following equality of operators acting on the tensor product of any two
spin representations of Uq(su2) holds

Ř(µ ⊗ µ) = (µ⊗ µ)Ř. (5.37)

Moreover, we have the following equalities of operators acting on any spin-j representation of
Uq(su2)

Tr
(j)
1 (Ř±1(µ⊗ 1)) = q±2j(j+1)id, (5.38)

Tr
(j)
2 (Ř±1(1⊗ µ−1)) = q±2j(j+1)id. (5.39)
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Proof. See Appendix A.

Remark 5.1. The element µ−1 with the commutativity property (5.37) and the partial trace
property (5.39) is called an “enhancement” in [46]. The R-matrix together with such an en-
hancement is said to be an “enhanced” Yang–Baxter operator.

Let L be a link with components each associated to a spin. This link L can be obtained as
the closure of a braid σ(L) ∈ Bn with n strands labeled by a set of spins {ji}

n
i=0, as illustrated

in Figure 5.1. Note that the spins of the top endpoints of the braid must be equal to those of

j1

j1

j2

j2

...

...

jn

jn

σ(L) −→

...

...

σ(L)

Figure 5.1: Closure of a braid σ(L) representing a colored link L.

the bottom endpoints in order for the closure to make sense. In other words, the braid σ(L)
viewed as a permutation must leave the ordered set {ji}

n
i=0 invariant.

We can assign to the link L the value of the “quantum” trace of the braid σ(L) which
represents it, defined as

IRT(L) := Tr(j1,...,jn)(σ(L)µ⊗n). (5.40)

A map such as (5.40) defines a regular isotopy invariant for colored and oriented link diagrams.
To see this, one can first observe that IRT(L) multiplied by a factor q−2ji(ji+1)w(L) for each spin
ji coloring the link L is an ambiant isotopy invariant, as shown in [43, 46]. Indeed, it is known
that two braids represent ambiant isotopic links if and only if they are related by Markov
moves [3]. The invariance under the first and second Markov moves of the renormalized value
of IRT(L) can be deduced respectively from (5.37), which expresses the commutativity of the
action of the braid group Bn with µ⊗n, and from the partial trace property (5.38), which is
understood diagrammatically as follows

j j

= q2j(j+1)

j

,

j j

= q−2j(j+1)

j

. (5.41)

Since the writhe w(L) is a regular isotopy invariant, it is then concluded that IRT(L) as defined
in (5.40) is also a regular isotopy invariant which satisfies

IRT(L
(±)) = q±2j(j+1)IRT(L

(0)), (5.42)

where we recall that the configurations L(±) and L(0) are illustrated in Figure 2.3 (the compo-
nents must be oriented downward in order for this figure to fit with our conventions for braids
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and their closure). Note that we chose to work with the regular isotopy invariant (5.40) instead
of its renormalized ambiant isotopy version.

Remark 5.2. The trace in the RT link invariant construction was originally [43, 46] defined
as

Tr(j1,...,jn)(σ(L)(µ−1)⊗n). (5.43)

The difference in this case is that equation (5.42) is verified with the help of the partial trace
property (5.39), which can be expressed diagrammatically as follows

j j

= q2j(j+1)

j

,

j j

= q−2j(j+1)

j

. (5.44)

Therefore, the interpretation of (5.43) is simply that the braid σ(L) is closed on the right (as is
usually done by convention) instead of the left. For the quantum group Uq(su2), both quantum
traces (5.40) and (5.43) lead to the same invariant because the irreducible spin representations
of Uq(su2) are isomorphic to their dual representations.

The invariant IRT(L) obtained in the mathematical framework of Yang–Baxter operators
and quantum groups appears to be related to the invariant ICS(L) obtained by means of the
Chern–Simons quantum field theory (see discussions in [23, 26, 27, 28, 39, 44] for instance). In
the case where all the representations are spin 1/2, it is known that both invariants lead to the
Jones polynomial [46, 47]. Here are some arguments in support of the claim ICS(L) = IRT(L) in
general. First, consider the unknot U associated to a spin j. This unknot can be represented
by the closure of the identity braid with one strand. The associated value of the invariant
(5.40) is

IRT(U ; j) = Tr(j)(µ) =

j∑

m=−j

〈j,m| q2H |j,m〉 =

j∑

m=−j

q2m = [2j + 1]q, (5.45)

which is equal to the value ICS(U ; j) as seen from the result (4.15). Moreover, IRT(L) and
ICS(L) have the same properties under a change of the form L(±) ↔ L(0) (see equations (4.8)
and (5.42)). Finally note that the eigenvalues of the representation of the braided universal
R-matrix of Uq(su2) (see [43] for instance) are the same as those of the half-monodromy matrix
of the CS theory with gauge group SU(2), which lead to the same skein relations.

5.4 Casimir elements and Askey–Wilson relations

In this section, we will use the trace (5.40) and its partial versions to show that the tangle
diagrams (3.1)–(3.3) also lead to the Askey–Wilson algebra in the RT construction.

We start by considering the tangle diagram where a single strand in any spin representation
of Uq(su2) is encircled by a loop in the spin-1/2 representation, illustrated by:

. (5.46)

This tangle is obtained by taking the partial closure of the braid σ2
1 ∈ B2, as indicated below:
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−→ = .

Therefore, in the RT construction, the operator associated to the tangle (5.46) is the partial

trace Tr
( 1
2
)

1 (Ř2
12(µ ⊗ 1)) = Tr

( 1
2
)

1 (R21R12(µ ⊗ 1)). The element R21R12 commutes with the
coproduct of any element of Uq(su2), as can be deduced from (5.4). It is known since the
inception of quantum groups [16] that the quantum partial trace of such an element belonging
to the centralizer of the diagonal action of Uq(su2) in Uq(su2)

⊗2 is a central element of Uq(su2)
(see also [17, 21, 49]). In the following proposition, we compute explicitly the central element
associated to the tangle (5.46).

Proposition 5.2. The universal R-matrix of Uq(su2) satisfies the following property

Tr
( 1
2
)

1 (R21R12(µ ⊗ 1)) = Q, (5.47)

where Q is the Casimir element defined in (5.3).

Proof. Since the first space on which the operator in the trace of (5.47) acts is a spin 1/2
carrier, we can write

Tr
( 1
2
)

1 (R21R12(µ⊗ 1)) = Tr1(L
+
12L

−
12(M ⊗ 1)). (5.48)

Using the explicit expressions (5.17), (5.18) and (5.27), we obtain

Tr
( 1
2
)

1 (R21R12(µ⊗ 1)) = q2H+1 + q−2H−1 + (q − q−1)2FE, (5.49)

which is precisely the Casimir element of Uq(su2).

As a corollary, we can now obtain the operator associated to the tangle where two strands
are encircled by a blue loop and which can be obtained by taking the partial closure of the
braid σ1σ

2
2σ1 ∈ B3, as illustrated below.

−→ =
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Similarly as before, the associated operator is Tr
( 1
2
)

1 (R21R31R13R12(µ ⊗ 1⊗ 1)).

Corollary 5.1. The universal R-matrix of Uq(su2) satisfies the following property

Tr
( 1
2
)

1 (R21R31R13R12(µ⊗ 1⊗ 1)) = ∆(Q). (5.50)

Proof. Take the coproduct of (5.47) to get

∆

(
Tr

( 1
2
)

1 (R21R12(µ ⊗ 1)(µ ⊗ 1))

)
= ∆(Q). (5.51)

This equation can be written as

Tr
( 1
2
)

1 ((id ⊗∆)(R21R12(µ⊗ 1))) = ∆(Q). (5.52)

The coproduct is a homomorphism, therefore

Tr
( 1
2
)

1 ((id ⊗∆)(R21)(id ⊗∆)(R12)(id ⊗∆)(µ ⊗ 1)) = ∆(Q). (5.53)

One can show that the second relation in (5.8) implies that (id ⊗∆)(R21) = R21R31. Using
this and the first relation in (5.8), one gets the result (5.50).

Proposition 5.2 means that, in the RT link invariant construction, an open straight braid
strand enclosed by a loop (that is, a closed braid strand) associated to the spin-1/2 repre-
sentation of Uq(su2) corresponds to the Casimir element of Uq(su2). Moreover, Corollary 5.1
shows that adding a straight braid strand on the right of another strand inside a spin-1/2 loop
corresponds to taking the coproduct of the Casimir element. This process of adding straight
strands inside a spin-1/2 loop can be repeated as many times as wished, and corresponds to
applying repeatedly the coproduct on the Casimir element.

Adding a straight strand on the right of a set of strands enclosed by a loop in a diagram
simply corresponds algebraically to adding a tensor factor of the identity on the right inside the
associated partial traces expressions. Hence, from the results of Proposition 5.2 and Corollary
5.1, it is seen that in the RT link invariant construction, the diagrams A1,A12 and A123

correspond respectively to the following intermediate Casimir elements of Uq(su2)
⊗3:

Q1 := Q⊗ 1⊗ 1, Q12 := ∆(Q)⊗ 1, Q123 := (id⊗∆) ◦∆(Q). (5.54)

By regular isotopy, one has

= = . (5.55)

22



As a consequence of Proposition 5.2, the operator associated to the tangle diagram (5.55) is

Ř−1
12 (Q⊗ 1)Ř12 = R−1

12 (1⊗Q)R12 = 1⊗Q, (5.56)

where we used the fact that Q is central in Uq(su2). Therefore, it is seen that we can asso-
ciate the diagrams A2 and A3 respectively to the following intermediate Casimir elements of
Uq(su2)

⊗3:
Q2 := 1⊗Q⊗ 1, Q3 := 1⊗ 1⊗Q. (5.57)

Finally, we can obtain with a similar procedure the operators associated to the diagrams
A23 and A13. Indeed, on one hand, it is shown in [9] that the element

Q13 := Ř−1
23 Q12Ř23 (5.58)

can be interpreted as the third intermediate Casimir element of Uq(su2)
⊗3, and that the fol-

lowing equality holds
Q23 := 1⊗∆(Q) = Ř−1

12 Ř
−1
23 Q12Ř23Ř12. (5.59)

On the other hand, one has the following equalities of diagrams (by regular isotopy)

A13 = σ−1
2 A12σ2, A23 = σ−1

1 σ−1
2 A12σ2σ1. (5.60)

Therefore, it is seen that A23 and A13 are associated to the intermediate Casimir elements Q23

and Q13.
Now it is known [50] that the intermediate Casimir elements QI belong to the centralizer of

the diagonal action of Uq(su2) in Uq(su2)
⊗3 and satisfy the relations of the special Askey–Wilson

algebra saw(3) under the mapping CI 7→ QI , for all I ∈ {1, 2, 3, 12, 23, 13, 123}. Therefore, we
have the following observation for the RT link invariant obtained by taking a full trace of an
operator acting on the tensor product of Uq(su2)-representations.

Theorem 5.1. The Reshetikhin–Turaev link invariant (5.40) based on the universal R-matrix
of Uq(su2) does not distinguish between the linear combinations of links given by the relations
(3.6)–(3.9) of saw(3) under the correspondence (3.10) for the diagrams (3.1)–(3.3).

To justify Theorem 5.1, we used the equality between the partial traces associated to the
tangle diagrams AI and the intermediate Casimir elements QI of Uq(su2)

⊗3. However, it
is possible to obtain the first Askey–Wilson relation (3.6) by considering the partial traces
associated to the tangle diagrams which appear in (3.6) and by using the properties of the
R-matrix of Uq(su2). The relations (3.7) and (3.8) are then implied by conjugations of the first
one. This more direct demonstration of Theorem 5.1 for the three first relations of saw(3),
which is albeit technical presented in Appendix B, yields as a byproduct a different proof (based
on the R-matrix formalism) that the intermediate Casimir elements of Uq(su2)

⊗3 satisfy the
original Askey–Wilson algebra [50].

We conclude this section with some remarks.

Remark 5.3. In addition of Q13, there is another element of the centralizer of Uq(su2) in
Uq(su2)

⊗3 associated to the recoupling of the first and third factors (studied in [9]):

Q̃13 := Ř−1
12 Q23Ř12 = Ř23Q12Ř

−1
23 . (5.61)
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According to (5.61), the element Q̃13 can be associated to the following diagrams

Ã13 = σ2A12σ
−1
2 = = = σ−1

1 A23σ1. (5.62)

By regular isotopy invariance, we see that

Ã13 = . (5.63)

Note that Q13 is denoted by C
(0)
13 in [9], and Q̃13 is denoted by C

(1)
13 . Let us mention here that

the equalities in (3.5) and (5.62) provide a diagrammatic interpretation of the intermediate
Casimir elements Q13 and Q̃13 of Uq(su2)

⊗3 as conjugations by braided universal R-matrices
of Q12 or Q23, as studied in [9].

Remark 5.4. The results obtained in Proposition 5.2 and Corollary 5.1 are “universal”, in
the sense that there is no need to make use of a specific Uq(su2) representation (except for
the blue loop since it has to be traced out). The assignment of a spin to a strand corresponds
to representing the associated factor of Uq(su2). Recall that the Casimir element of Uq(su2)
is represented by the identity operator times the constant χs = q2s+1 + q−2s−1 in the spin-s
irreducible representation. Hence, we can write in the RT link invariant construction

s

= χs

s

. (5.64)

It can be verified that the closure of equation (5.64) is consistent with the value of the unknot
(4.15) and the Hopf link (4.16) in the CS theory, i.e.

s

= [2(2s + 1)]q = χs[2s + 1]q = χs

s

. (5.65)

The same check can be done for several strands inside a blue loop, by using the fusion property
of the Wilson lines and the knowledge of the eigenvalues of the intermediate Casimir elements
of Uq(su2)

⊗3.

Remark 5.5. If the orientation of the blue loop in (5.46) is inverted, then one must consider
the quantum partial trace of the element R−1

12 R
−1
21 instead in (5.47). Using the antipode S

defined by (5.6), the property (5.11) for the inverse of the universal R-matrix and the defining
relations (5.1) of Uq(su2), one can proceed as in Proposition 5.2 to show that the result of the
quantum partial trace is again the Casimir element Q of Uq(su2). This is in agreement with
the fact that the link invariant associated to the quantum algebra Uq(su2) does not depend on
the orientation since the irreducible representations are isomorphic to their duals.
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6 Conclusion

In summary, we considered the tangle diagrams where a subset of three vertical strands asso-
ciated to any spin representations of su2, or Uq(su2), is encircled by a loop associated to the
spin 1/2 representation. We showed that in the Chern–Simons theory on R

3 with gauge group
SU(2), the Wilson loop vacuum expectation values of framed and colored links which differ in
some region by a product of some of these tangle diagrams are related by the special Askey–
Wilson algebra. Moreover, the same tangle diagrams were examined in the Reshetikhin–Turaev
link invariant construction with quantum group Uq(su2). We have shown that the quantum
partial traces of the braids representing these tangle diagrams, computed using the universal
R-matrix of Uq(su2), are equal to the intermediate Casimir elements of Uq(su2)

⊗3. We found
from this result that the RT link invariant also obeys the special Askey-Wilson algebra, with
the generators of the algebra associated to the tangle diagrams.

The present work opens the path for some further investigations. An obvious generaliza-
tion would be to consider tangle diagrams with n strands, for n an integer larger than three.
According to the results of this paper, such tangle diagrams are associated to intermediate
Casimir elements of Uq(su2)

⊗n. Therefore, there should be connections between the link in-
variants of the CS theory and of the RT construction, and a generalized Askey–Wilson algebra
AW (n) [14, 15, 41]. Another idea would be to reproduce the same analysis for different gauge
groups in the CS theory, and for their corresponding quantum groups in the RT construction.
A specific example would be to consider SU(3), to determine if similar tangle diagrams are
also associated to natural elements of the centralizers of Uq(su3) in its tensor products, and to
look if the approach using tangles and partial traces allows to understand better the algebra
formed by these elements. The study of the algebraic structure of the centralizer of U(su3) has
been initiated in [10, 11]. It could also be interesting to examine how the choice of a different
manifold for the CS action affects the results of this paper. For instance, if S3 is considered
instead of R3, then the coupling parameter κ has to be an integer in order for the theory to
remain invariant under gauge transformations, and hence the deformation parameter q must
be a root of unity. Finally, the algebra formed by the tangle diagrams considered in this paper
together with the braid diagrams could be studied on its own. This algebra is certainly of
interest and should be related for instance to the centralizers of Uq(su2) and to orthogonal
polynomials [12, 13]. We plan to investigate these aspects for future works.

Acknowledgments: The authors are grateful to Löıc Poulain d’Andecy for enlightening dis-
cussions, relevant observations and pointing out useful references. They also acknowledge
helpful conversations with Julien Gaboriaud. NC thanks the CRM for its hospitality and
is supported by the international research projects AAPT of the CNRS. The work of LV is
supported by a Discovery Grant from the Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada. MZ holds an Alexander–Graham–Bell graduate scholarship from
NSERC.

A Proof of Proposition 5.1

This appendix presents a direct proof of Proposition 5.1.
From the definition (5.4) of the coproduct of Uq(su2), one finds ∆(µ) = ∆op(µ) = µ ⊗ µ.

One also finds from the property (5.7) that R∆(µ) = ∆op(µ)R. These two facts together with
the action (5.29) of the permutation operator and the definition (5.30) imply equation (5.37).
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For m,n = −j, ..., j, one can write

〈j,m|Tr
(j)
1 (Ř(µ⊗ 1)) |j, n〉 =

j∑

ℓ=−j

〈j,m; j, ℓ| R(µ⊗ 1) |j, ℓ; j, n〉 . (A.1)

Using the explicit form (5.10) of the universal R-matrix, the orthogonality and the completeness
relation (5.12) of the basis vectors, and the fact that 〈j,m|H |j, n〉 = nδmn as seen from (5.15),
one can write the RHS of the previous equation as

j∑

ℓ=−j

∞∑

k=0

(q − q−1)k

[k]q!
q−k(k+1)/2 〈j,m|F k |j, ℓ〉 〈j, ℓ|Ek |j, n〉 q2ℓn+(k+2)ℓ−kn. (A.2)

For k = 0, 1, ..., one can show by induction from the actions (5.13) and (5.14) the following

〈j,m|Ek |j, n〉 =

{
[j−n]q!

[j−n−k]q!
if m− n = k,

0 otherwise,
(A.3)

〈j,m|F k |j, n〉 =

{
[j+n]q!

[j+n−k]q!
if n−m = k,

0 otherwise.
(A.4)

Hence the only non-zero terms in the sum (A.2) are such that m = n and ℓ = m+ k, and this
sum becomes

δmn

j−m∑

k=0

(q − q−1)k

[k]q!
q−k(k+1)/2 [j +m+ k]q! [j −m]q!

[j +m]q! [j −m− k]q!
q2(m+k)m+(k+2)(m+k)−km. (A.5)

In terms of q-Pochhammer symbols (see [20] for instance), this can be rewritten as

δmnq
2m(m+1)

j−m∑

k=0

(−1)kqk(k+1+2m−2j) (q2; q2)j−m(q2; q2)j+m+k

(q2; q2)k(q2; q2)j−m−k(q2; q2)j+m
. (A.6)

Using the following two identities [20]

(q; q)n
(q; q)n−k

= (q−n; q)k(−1)kqnk−(
k
2),

(a; q)n+k

(a; q)n
= (aqn; q)k, (A.7)

one can write (A.6) as

δmnq
2m(m+1)

j−m∑

k=0

(q−2(j−m); q2)k(q
2(j+m+1); q2)k

(q2; q2)k
q2k. (A.8)

Finally, by applying to (A.8) the q-hypergeometric function formula [20]

2φ1

(
q−n, b

c
; q, q

)
=

(c/b; q)n
(c; q)n

bn (A.9)

with the substitutions q → q2, n = j −m, b = q2(j+m+1) and c = 0, one gets

〈j,m|Tr
(j)
1 (Ř(µ⊗ 1)) |j, n〉 = q2j(j+1)δmn, (A.10)
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which proves the case with positive exponents of (5.38). A similar procedure proves the same
case for (5.39). Note that if one already knows (from previous results, see [17, 21, 49] for
instance) that the quantum partial trace in (A.1) is central, then the proof presented above
simplifies by choosing to evaluate expression (A.1) for m = n = j only.

To obtain the case with negative exponents in (5.38), one can first write

Ř−1(µ ⊗ 1) = R−1(1⊗ µ)Π12. (A.11)

The inverse of the universal R-matrix is given by (5.11). Using the definition (5.6) of the
antipode S and the explicit expression (5.10) of the universal R-matrix, one finds that R−1

is the same as R with the replacement q → q−1. It is also obviously true that the inverse of
µ = q2H is the same as µ with the replacement q → q−1. Therefore, one finds from (A.11)

(
Ř−1(µ⊗ 1)

)
(q) =

(
Π12Ř(1⊗ µ−1)Π12

)
(q−1), (A.12)

where the dependence in q has been explicitly written. As a consequence, one gets

Tr
(j)
1 (Ř−1(µ ⊗ 1)) = Tr

(j)
2 (Ř(1⊗ µ−1))(q−1) = q−2j(j+1)id. (A.13)

The case with negative exponents in (5.39) is obtained similarly.

B Askey–Wilson relations from partial traces of R-matrices

In this appendix, we present an alternative proof of the fact that the intermediate Casimir
elements of Uq(su2) satisfy the three Askey–Wilson relations (3.6)–(3.8) using quantum partial
traces of R-matrices. Note that throughout this appendix, we will often make use of the
Yang–Baxter relation in the form of equations (5.19)–(5.21) and (5.23)–(5.25) without stating
it explicitly.

B.1 Intermediate Casimir elements in terms of partial traces

The goal of this subsection is to write each of the intermediate Casimir elements of Uq(su2)
⊗3

as the quantum trace on the first space of a product of universal R-matrices. The first space,
which is traced out in the spin-1/2 representation, will be labeled by a, and the others will be
labeled by numbers 1, 2, 3.

For the elements Q1 and Q12, this is already done in Proposition 5.2 and Corollary 5.1 (one
must simply add some tensor factors of 1 on the right if necessary). The element Q123 can be
obtained in a similar manner, by applying id⊗∆ on equation (5.50). For reference, we write
here these elements in terms of the matrices L± (which we recall are universal R-matrices with
the first factor represented in the spin-1/2) and the spin-1/2 matrix representation M of the
element µ which acts only on the traced space a :

Q1 = Tra(L
+
a1L

−
a1Ma), (B.1)

Q12 = Tra(L
+
a1L

+
a2L

−
a2L

−
a1Ma), (B.2)

Q123 = Tra(L
+
a1L

+
a2L

+
a3L

−
a3L

−
a2L

−
a1Ma). (B.3)

The following proposition and its corollary allow to also write the elements Q2 and Q23 as
partial traces with the traced space a on the first position.
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Proposition B.1. The following equation of operators acting on two Uq(su2)-representations
holds:

Q2 = Tra(L
+
a1L

+
a2L

−
a2(L

+
a1)

−1Ma). (B.4)

Proof. Using the fact that Q is central in Uq(su2) and the result of Proposition 5.2, one finds

Q2 = R−1
12 Tra(L

+
a2L

−
a2Ma)R12 (B.5)

= R−1
12 Tra(L

+
a2L

−
a2R12L

+
a1(L

+
a1)

−1Ma) (B.6)

= R−1
12 Tra(L

+
a2L

+
a1R12L

−
a2(L

+
a1)

−1Ma) (B.7)

= Tra(L
+
a1L

+
a2L

−
a2(L

+
a1)

−1Ma). (B.8)

Corollary B.1. The following equation of operators acting on three Uq(su2)-representations
holds:

Q23 = Tra(L
+
a1L

+
a2L

+
a3L

−
a3L

−
a2(L

+
a1)

−1Ma). (B.9)

Proof. Apply (id⊗∆) to equation (B.4). Then, on the RHS of the resulting equation, use the
fact that ∆ is a homomorphism and the properties (5.26).

The partially closed braids associated to the algebraic expressions (B.4) and (B.9) are
illustrated in Figure B.1 at the end of this appendix. Note that one could proceed similarly
for the element Q3, but this will actually not be useful for deriving the Askey–Wilson relations
later.

Finally, we will need the following proposition to express the intermediate Casimir elements
associated to the recoupling of the factors 1 and 3 of Uq(su2)

⊗3.

Proposition B.2. The following equations of operators acting on three Uq(su2)-representations
hold:

Q13 =Ř−1
23 Q12Ř23 = Tra(L

+
a1L

+
a2L

+
a3L

−
a3(L

+
a2)

−1L−
a1Ma), (B.10)

Q̃13 =Ř23Q12Ř
−1
23 = Tra(L

+
a1(L

−
a2)

−1L+
a3L

−
a3L

−
a2L

−
a1Ma). (B.11)

Proof. One may use the expression (B.2) and then proceed as indicated below:

Ř−1
23 Q12Ř23 = Ř−1

23 Tra(L
+
a1L

+
a2L

−
a2L

−
a1Ma)Ř23 (B.12)

= R−1
23 Tra(L

+
a1L

+
a3L

−
a3L

−
a1Ma)R23 (B.13)

= R−1
23 Tra(L

+
a1L

+
a3L

−
a3R23L

+
a2(L

+
a2)

−1L−
a1Ma) (B.14)

= R−1
23 Tra(L

+
a1L

+
a3L

+
a2R23L

−
a3(L

+
a2)

−1L−
a1Ma) (B.15)

= R−1
23 Tra(L

+
a1R23L

+
a2L

+
a3L

−
a3(L

+
a2)

−1L−
a1Ma) (B.16)

= Tra(L
+
a1L

+
a2L

+
a3L

−
a3(L

+
a2)

−1L−
a1Ma), (B.17)

Ř23Q12Ř
−1
23 = Ř23Tra(L

+
a1L

+
a2L

−
a2L

−
a1Ma)Ř

−1
23 (B.18)

= R32Tra(L
+
a1L

+
a3L

−
a3L

−
a1Ma)R

−1
32 (B.19)

= Tra(L
+
a1(L

−
a2)

−1L−
a2R32L

+
a3L

−
a3L

−
a1Ma)R

−1
32 (B.20)

= Tra(L
+
a1(L

−
a2)

−1L+
a3R32L

−
a2L

−
a3L

−
a1Ma)R

−1
32 (B.21)

= Tra(L
+
a1(L

−
a2)

−1L+
a3L

−
a3L

−
a2R32L

−
a1Ma)R

−1
32 (B.22)

= Tra(L
+
a1(L

−
a2)

−1L+
a3L

−
a3L

−
a2L

−
a1Ma). (B.23)
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The partially closed braids associated to the algebraic expressions (B.10) and (B.11) are
illustrated in Figure B.2.

B.2 Recovering the Askey–Wilson relations

In this subsection, we derive the Askey–Wilson relations (3.6)–(3.8) with the method of partial
traces of (universal) R-matrices.

Using the expressions (B.2) and (B.9) of the previous subsection and the fact that Q12

commutes with the diagonal action of Uq(su2) in Uq(su2)⊗Uq(su2), one can write the product
Q12Q23 as follows:

Q12Q23 = Q12Tra(L
+
a1L

+
a2L

+
a3L

−
a3L

−
a2(L

+
a1)

−1Ma) (B.24)

= Tra(L
+
a1L

+
a2L

+
a3Q12L

−
a3L

−
a2(L

+
a1)

−1Ma) (B.25)

= Tra(L
+
a1L

+
a2L

+
a3Trb(L

+
b1L

+
b2L

−
b2L

−
b1Mb)L

−
a3L

−
a2(L

+
a1)

−1Ma) (B.26)

= Trab(RbaL
+
a1L

+
a2L

+
b1L

+
b2L

+
a3L

−
a3L

−
b2L

−
b1L

−
a2(L

+
a1)

−1R−1
ba MaMb) (B.27)

= Trab(L
+
b1L

+
b2L

+
a1L

+
a2RbaL

+
a3L

−
a3R

−1
ba L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb). (B.28)

The partially closed braid corresponding to (B.28) is illustrated in Figure B.3.
In order to recover the AW relations, the idea is to simplify the two blue crossings which

appear in the braid of Figure B.3. Algebraically, these two crossings correspond to the R-
matrices acting on the spaces a and b in (B.28). In two spins-1/2 representations, one can
verify that the braided R-matrix Ř = Π12R and its inverse can be written as

Ř = q
1
2 − q−

1
2P, Ř−1 = q−

1
2 − q

1
2P, (B.29)

where

P =




0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0


 . (B.30)

It is easy to verify that the matrix P satisfies

P 2 = (q + q−1)P, (B.31)

Tr1(P (M ⊗ I2)) = I2. (B.32)

The following propositions are also useful.

Proposition B.3. Denote an element of Uq(su2) ⊗ Uq(su2) with the first factor represented
in the spin 1/2 representation by F = Fα ⊗ fα (a sum with respect to α is understood). Then
the following equation holds

P12F23P12 = P12Tra(Fa3Ma). (B.33)

Proof. Write

P12F23P12 = (P ⊗ 1)(I2 ⊗ Fα ⊗ fα)(P ⊗ 1) = P (I2 ⊗ Fα)P ⊗ fα. (B.34)

Suppose that the matrix Fα is given by

Fα =

(
a b
c d

)
. (B.35)
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Using the explicit matrix representations (B.30) for P , (B.35) for Fα and (5.27) for M , it is
easy to verify that

P (I2 ⊗ Fα)P = (qa+ q−1d)P = Tr(FαM)P. (B.36)

Hence
P12F23P12 = Tr(FαM)P ⊗ fα = P ⊗ Tr(FαM)fα = P12Tra(Fa3Ma). (B.37)

Proposition B.4. The following equations hold

P12 = L+
23L

+
13P12(L

+
13)

−1(L+
23)

−1, (B.38)

= (L−
23)

−1(L−
13)

−1P12L
−
13L

−
23, (B.39)

= L+
23L

+
13P12L

−
13L

−
23. (B.40)

Proof. It is straightforward to verify these relations using the explicit matrix representations
(5.17), (5.18) and (B.30). Alternatively, (B.38) and (B.39) can be proven algebraically by using
(B.29) and the Yang–Baxter equations for L±.

One can use (B.29) to write the partial trace (B.28) as follows

Trab(L
+
b1L

+
b2L

+
a1L

+
a2RbaL

+
a3L

−
a3R

−1
ba L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

=Trab(L
+
b1L

+
b2L

+
a1L

+
a2ŘabL

+
b3L

−
b3Ř

−1
ab L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb) (B.41)

=Trab(L
+
b1L

+
b2L

+
a1L

+
a2L

+
b3L

−
b3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb) (B.42)

−qTrab(L
+
b1L

+
b2L

+
a1L

+
a2L

+
b3L

−
b3PabL

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

−q−1Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabL

+
b3L

−
b3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

+Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabL

+
b3L

−
b3PabL

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb).

We will now show that each of the terms in equation (B.42) can be written using the interme-
diate Casimir elements of Uq(su2).

The trace in the first term of (B.42) is simplified as follows:

Trab(L
+
b1L

+
b2L

+
a1L

+
a2L

+
b3L

−
b3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

=Trab(L
+
b1L

+
b2L

+
a1L

+
a2L

−
a2(L

+
a1)

−1L+
b3L

−
b3L

−
b2L

−
b1MaMb) (B.43)

=Trb(L
+
b1L

+
b2Tra(L

+
a1L

+
a2L

−
a2(L

+
a1)

−1Ma)L
+
b3L

−
b3L

−
b2L

−
b1Mb) (B.44)

=Trb(L
+
b1L

+
b2Q2L

+
b3L

−
b3L

−
b2L

−
b1Mb) (B.45)

=Q2Trb(L
+
b1L

+
b2L

+
b3L

−
b3L

−
b2L

−
b1Mb) (B.46)

=Q2Q123. (B.47)

In the previous equations, we used the expressions (B.3) and (B.4) and the the fact that Q2 is
central. The partially closed braid corresponding to the algebraic partial trace expression for
Q2Q123 is illustrated in Figure B.4.
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The trace in the second term of (B.42) is simplified by using (B.40), (B.38) and (B.32) as
indicated:

Trab(L
+
b1L

+
b2L

+
a1L

+
a2L

+
b3L

−
b3PabL

−
a2L

−
b2(L

+
a1)

−1L−
b1MaMb)

=Trab(L
+
b1L

+
b2L

+
a1L

+
b3L

−
b3(L

+
b2)

−1Pab(L
+
a1)

−1L−
b1MaMb) (B.48)

=Trab(L
+
b1L

+
b2L

+
b3L

−
b3(L

+
b2)

−1(L+
b1)

−1PabL
+
b1L

−
b1MaMb) (B.49)

=Trb(L
+
b1L

+
b2L

+
b3L

−
b3(L

+
b2)

−1(L+
b1)

−1Tra(PabMa)L
+
b1L

−
b1Mb) (B.50)

=Trb(L
+
b1L

+
b2L

+
b3L

−
b3(L

+
b2)

−1L−
b1Mb) (B.51)

=Q13. (B.52)

The trace in the third term of (B.42) can be simplified in a similar manner by using the
results (B.40), (B.38) and (B.32):

Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabL

+
b3L

−
b3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

=Trab(L
+
b1L

+
a1Pab(L

−
b2)

−1(L−
a2)

−1L+
b3L

−
b3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb) (B.53)

=Trab(PabL
+
b1(L

−
b2)

−1L+
b3L

−
b3L

−
b2L

−
b1MaMb) (B.54)

=Trb(Tra(PabMa)L
+
b1(L

−
b2)

−1L+
b3L

−
b3L

−
b2L

−
b1Mb) (B.55)

=Trb(L
+
b1(L

−
b2)

−1L+
b3L

−
b3L

−
b2L

−
b1Mb) (B.56)

=Q̃13. (B.57)

Finally, the trace in the fourth term of (B.42) is simplified with the help of equations
(B.33), (B.40), (B.38) and (B.32):

Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabL

+
b3L

−
b3PabL

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb)

=Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabTrc(L

+
c3L

−
c3Mc)L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb) (B.58)

=Trab(L
+
b1L

+
b2L

+
a1L

+
a2PabQ3L

−
a2(L

+
a1)

−1L−
b2L

−
b1MaMb) (B.59)

=Trab(L
+
b1L

+
a1L

+
b2L

+
a2PabL

−
a2L

−
b2(L

+
a1)

−1L−
b1MaMb)Q3 (B.60)

=Trab(L
+
b1L

+
a1Pab(L

+
a1)

−1L−
b1MaMb)Q3 (B.61)

=Trab(PabL
+
b1L

−
b1MaMb)Q3 (B.62)

=Trb(Tra(PabMa)L
+
b1L

−
b1Mb)Q3 (B.63)

=Trb(L
+
b1L

−
b1Mb)Q3 (B.64)

=Q1Q3. (B.65)

Note that we also used expression (B.1) and the fact that Q3 is central.
Therefore, by combining the previous results, we have found

Q12Q23 = Q2Q123 − qQ13 − q−1Q̃13 +Q1Q3. (B.66)

One can proceed similarly for the product Q23Q12, the difference being that the blue crossings
in Figure B.3 have to be inverted. From (B.29), we see that this corresponds to taking q → q−1

in (B.66). From this results, the Askey–Wilson relation (3.6) is recovered. The relations (3.7)
and (3.8) can be obtained by conjugations of (3.6) with universal R-matrices, as shown in [9].
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Q2 → Q23 →

Figure B.1: Partially closed braids associated to the intermediate Casimir elements Q2 and
Q23.

Q13 → Q̃13 →

Figure B.2: Partially closed braids associated to the intermediate Casimir elements Q13 and
Q̃13.
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Q12Q23 →

Figure B.3: Partially closed braid associated to the product Q12Q23.
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Q2Q123 →

Figure B.4: Partially closed braid associated to the product Q2Q123.
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[10] N. Crampé, L. Poulain d’Andecy and L. Vinet, The missing label of su3 and its symmetry,
arXiv:2110.03521 (2021).
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