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A NEW CLASS OF UNIFORMLY STABLE TIME-DOMAIN FOLDY-LAX MODELS FOR
SCATTERING BY SMALL PARTICLES. ACOUSTIC SOUND-SOFT SCATTERING BY

CIRCLES (EXTENDED VERSION)

MARYNA KACHANOVSKA∗

Abstract. In this work we study time-domain sound-soft scattering by small circles. Our goal is to derive an asymptotic model
for this problem valid when the size of the particles tends to zero. We present a systematic approach to constructing such models,
based on a well-chosen Galerkin discretization of a boundary integral equation. The convergence of the method is achieved by
decreasing the asymptotic parameter rather than increasing the number of basis functions. We prove the second-order convergence
of the field error with respect to the particle size. Our findings are illustrated with numerical experiments.

1. Introduction. The problem of wave scattering by many particles has been a subject of active research
since more than a century, cf. the monograph by Martin [32] for an overview of the various approaches to
multiple scattering, as well as various multiple scattering problem settings, or the monograph by Mishchenko
[36] for studies of electromagnetic multiple scattering. This type of wave propagation problems often appears
in applications, for example in non-destructive testing (elastic or sound wave scattering by small defects) and
atmospheric optics (scattering of light by atmospheric particles). Depending on the nature of the phenomena,
such multiple wave scattering can be studied either from deterministic or probabilistic viewpoint, see [41].
E.g. the original seminal articles by Foldy [15] and Lax [25] were concerned with scattering by randomly
positioned obstacles. In this work we will concentrate on the time-domain sound scattering by small particles
in a deterministic regime.

In the asymptotic regime when the size of the particles tends to zero, and the distance between them is
fixed (or decreases ’slowly’), it is possible to obtain simpler (and, in particular, easier for the computational
treatment) models. To our knowledge, there exist two principal approaches to do so: either by using matching
(near-field and far-field) asymptotic expansions, where one usually works with the original PDE, or by deriving
asymptotics from the integral equation representations. Somewhat apart stands the original method of Foldy
[15], developed further by Lax [25] (Foldy-Lax methods), cf. [32, Chapter 8.3] for its detailed description.

The literature on the frequency-domain asymptotic models for various types of wave propagation problems
is quite rich; a non-exhaustive list of works exploiting either of the above approaches includes [6, 7, 24, 10,
38, 11, 9, 26, 27]. It seems that there exist fewer results in the time domain (see the recent monograph by
Martin [33]). Asymptotic models for acoustic and electromagnetic wave propagation were obtained in [34, 4]
(3D scattering by a single obstacle), [31], [19] and in [20] (transmission problems) by using matched expansion
method. The integral equation approach was applied to the 3D wave scattering by multiple obstacles in the
recent work [40]. However, the stability of the model of [40] was proven under some geometric conditions
relating an asymptotic parameter, the number of particles and the minimal distance between them. In general,
time-domain asymptotic models may exhibit instabilities, unlike the original model. We will show that this is
the case for the time-domain counterpart of the Foldy-Lax model for the acoustic scattering by circles of [9].

The goal of this work is to derive an asymptotic Foldy-Lax model for the time domain scattering by small
particles, which would be stable for arbitrary geometries (i.e. provided that particles do not touch each other).
One of the novelties is the way such a model will be obtained: we start with a well-chosen boundary integral
formulation, which possesses some coercivity properties, and semi-discretize it in space with the help of a very
coarse Galerkin method. The resulting model is then stable due to the coercivity of the underlying boundary
integral formulation. The convergence of the method does not rely on increasing the number of the basis
functions, but on decreasing the asymptotic parameter. Let us remark that this idea is not entirely new: it
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appeared in the form of numerical experiments in the PhD thesis [23] for frequency-domain electromagnetic
scattering by spheres.

We proceed as follows. Section 2 is an introduction: we present the problem, introduce the notation, and
discuss whether the scattered field can be approximated by zero. We finish Section 2 by a motivation to the
present work: we examine the time-domain counterpart of the Foldy-Lax model for the acoustic scattering by
circles [9] and demonstrate that it is unstable for some geometric configurations. Section 3 is dedicated to the
introduction of the new Galerkin Foldy-Lax model. In Section 4 we present convergence analysis of the new
model. A short Section 5 extends the results of the article to the case when particles densify. In Section 6 we
present numerical experiments, and conclude with a discussion of open questions in Section 7.

2. Problem setting and motivation.

2.1. Problem setting. Let Ωj , j ∈ N := {1, . . . , N}, be a collection of N > 0 circular domains (particles),
with the jth particle being centered at cj ∈ R2 and having a radius Rj > 0, i.e. Ωj = B(cj , Rj). We assume
that Ωj ∩ Ωi = ∅ if i ̸= j. For 0 < ε ≤ 1, we introduce the rescaled domains Ωεj = B(cj , r

ε
j ), where r

ε
j = εRj .

Their interior, exterior and the boundary are denoted by

Ωε = ∪jΩεj , Ωε,c = R2 \ Ωε, Γεj = ∂Ωεj , Γε = ∪jΓεj = ∂Ωε.

For the particular case ε = 1, we use a simplified notation Ω = Ω1, Ωc = Ω1,c and Γ = Γ1. The trace operator
on Γε is denoted by γ0. Additionally, we define

dε∗ = min
i ̸=j

dist(Ωεi ,Ω
ε
j), d∗ = d1∗, R∗ = min

j
Rj , R∗ = max

j
Rj .

Evidently, d∗ > dε∗ for all 0 < ε < 1.
We look for the solution of the sound-soft scattering problem. Provided sufficiently regular initial data

u0, u1 : Ω 7→ R, s.t. suppu0 ∩ Ω = suppu1 ∩ Ω = ∅, we are given the solution uinc : R+ × R2 → R of the
free-space wave equation:

∂2t u
inc(t,x)−∆uinc(t,x) = 0, (t,x) ∈ R∗

+ × R2,

uinc(0,x) = u0(x), ∂tu
inc(0,x) = u1(x).

(2.1)

Presence of the obstacles Ωε alters the field; the new field uεtot satisfies the following boundary-value problem
(BVP):

∂2t u
ε
tot −∆uεtot = 0 in R∗

+ × Ωε,c,

γ0u
ε
tot(t) = 0, t ≥ 0,

uεtot(0) = u0, ∂tu
ε
tot(0) = u1, in Ωε,c.

The auxiliary scattered field uε := uεtot − uinc solves the inhomogeneous exterior BVP

∂2t u
ε −∆uε = 0, in R∗

+ × Ωε,c,

γ0u
ε(t) = gε(t), t ≥ 0, where gε(t) := −γ0uinc(t),

uε(0) = ∂tu
ε(0) = 0 in Ωε,c.

(2.2)

2.2. Goal of the present article. We are interested in solving the above problem efficiently in the
asymptotic regime, when the data gε is approximately frequency-bandlimited to the frequency ωmax, and ε is
small compared to the smallest wavelength present in the system, i.e. εωmax ≪ 1.
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For each fixed t > 0, for a compact K ⊂ Ωc, lim
ε→0

∥uε(t)∥L2(K) = 0. In 2D, we can expect that (cf. Section

2.4.1) ∥uε∥L∞(R+;L2(K)) ≥ c| log−1 ε|, with some c > 0 independent of ε. Our goal is to find an approximation
ũε of uε which would satisfy the following properties (provided that the initial data is sufficiently regular):

• (convergence) this approximation is more accurate than approximating uε by zero, i.e., for all t > 0,
compact K ⊂ Ωc and regular initial data u0, u1,

∥uε(t)− ũε(t)∥L2(K) = o(log−1 ε).(2.3)

• (uniform w.r.t. ε stability) the approximation is uniformly stable, i.e. there exist C > 0, ℓ0, ℓ1 ∈ N,
p ∈ N, s.t., for all 0 < ε ≤ 1, and all T > 0,

∥ũε∥L∞(0,T ;L2(Ωε,c)) ≤ C(1 + T )p(∥u0∥Hℓ0 (R2) + ∥u1∥Hℓ1 (R2)).(2.4)

The uniform stability requirement may seem too strong: indeed, in general it is not necessary for the convergence.
One could have authorized a super-polynomial growth (e.g. eaT , with a > 0 potentially depending on ε) of the
solution. Such a model would likely be unsuitable for long time simulations. Alternatively, one could think of
a CFL like condition on ε which would be dependent on the geometry and which would guarantee the bound
(2.4) (for example, this is the case for the model [40]). However, in practical situations such a condition may
be difficult to ensure. Thus we prefer to have models possessing a uniform stability property.

2.3. Notation. Fourier-Laplace transform. We will use the following convention of the Fourier-Laplace
transform; for v ∈ L1(R;X) (with X being a Banach space), s.t. v = 0 on R− (i.e. a causal function), we define

v̂(ω) :=

∫ +∞

0

eiωtv(t)dt, ω ∈ C.

The above integral converges in particular for ω ∈ C+ := {ω ∈ C : Imω > 0}.
In the frequency domain (2.2) reads, for ω ∈ C+,

− ω2ûε −∆ûε = 0 in Ωε,c,

γ0û
ε = ĝε, where ĝε = −γ0ûinc.

(2.5)

Let us introduce the fundamental solution for −∆− ω2:

Gω(r) =
i

4
H

(1)
0 (ωr), r > 0,

where H
(1)
0 is a Hankel function, cf. [13, Chapter 10.2]. It is a Fourier-Laplace transform of the Green function

for the 2D wave equation

G(t, r) = 1t>r
2π

√
t2 − r2

.

Sobolev spaces on the boundary of a circle. Let r > 0, and let Cr := ∂B(0, r). Given a function u ∈ L2(Cr), we
define its Fourier decomposition (with ŝθ = (cos θ, sin θ)):

u(ŝθ) =
∑
m∈Z

umeimθ, um =
1

2π

∫ 2π

0

e−imθu(ŝθ)dθ.
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The fractional Sobolev spaces on the boundary of the circle are defined as follows: u ∈ Hs(Cr), s ≥ 0, iff the
following norm is finite:

∥u∥2Hs(Cr)
= 2πr

∑
m∈Z

(
1 +

m2

r2

)s
|um|2.(2.6)

For s < 0, we define Hs(Cr) as a completion of L2(Cr) for the norm (2.6).
We will further make use of the following observation: by [18, proof of Lemma 4.2.5], the Sobolev-Slobodeckij

seminorm

|v|2H1/2(Cr)
=

∫∫
Cr×Cr

|v(x)− v(y)|2

|x− y|2
dx dy(2.7)

is equivalent to
∑
m ̸=0m|vm|2, with the equivalence constants independent of r.

Sobolev spaces on Γε. We define

Hs(Γε) :=
∏
k∈N

Hs(Γεk), s ∈ R.

For a function v ∈ Hs(Γε), let us set vm := v|Γε
m
. We equip Hs(Γε) with the norm

∥v∥2Hs(Γε) :=
∑
k∈N

∥vk∥2Hs(Γε
k)
.

Sometimes we will use a shortened notation ∥v∥s for ∥v∥Hs(Γε).
By (ρj , θj) we will denote the polar coordinates centered in cj . The coefficients of the Fourier expansion of

vj on Γεj will be denoted by vj,m, m ∈ Z.
The (real) duality bracket inH−1/2(Γε), H1/2(Γε) will be denoted by ⟨., .⟩. More precisely, for u, v ∈ L2(Γε),

⟨u,v⟩ =
∫
Γε

uv dΓ.

An energy norm. Given a > 0 and a domain O, we denote

∥v∥2a,O = a2∥v∥2L2(O) + ∥∇v∥2L2(O).

A notation for a complement domain. Given a domain O, we denote by Oc = R3 \ O.
Trace operators. Later in the article it will be necessary to distinguish between the exterior and the interior
traces.

We define a normal n to Ωε so that it points into the exterior of Ωε. Let us consider a function ϕ ∈
H1

∆(R
2 \ Γε), where

H1
∆(R

2 \ Γε) = {v ∈ L2(R2) : v|Ωε ∈ H1
∆(Ω

ε), v|Ωε,c ∈ H1
∆(Ω

ε,c)}, with

H1
∆(O) = {v ∈ H1(O) : ∆v ∈ L2(O)}.

We then denote by γ+0 ϕ and γ+1 ϕ its exterior trace and its exterior normal trace, and by γ−0 ϕ and γ−1 ϕ its
interior traces. More precisely, if ϕ is sufficiently regular, we have that γ−1 ϕ =

(
γ−0 ∇ϕ

)
· n. By [γ0ϕ], [γ1ϕ] we

denote the respective jumps:

[γ0ϕ] = γ−0 ϕ− γ+0 ϕ, [γ1ϕ] = γ−1 ϕ− γ+1 ϕ.

Inequality notation. We will use a ≲ b (resp., a ≳ b) to indicate that a ≤ Cb (resp., a ≥ Cb), for a generic
constant C independent of ε, N , geometry, final time, data (i.e. any parameters of the problem).
Notation for min(1, a). Where convenient, we will use the notation a = min(1, a).
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2.4. Motivation for designing a new asymptotic model. In this section we argue that constructing a
non-trivial asymptotic model for (2.2) is necessary, since the exact solution uε decays to zero as ε→ 0 at a fairly
slow rate O(log−1 ε), cf. Section 2.4.1. On the other hand, simple rewriting of an available frequency-domain
Foldy-Lax model in the time domain by applying the inverse Fourier-Laplace transform may yield a potentially
unstable in the time domain model, see Section 2.4.2.

10−6 10−5 10−4 10−3 10−2 10−1

10−1

100

rε = ε

∥uε(.,x0)∥L∞(0,T )

O(log−1 ε−1)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

t

u
ε
(x

0
,t
)

rε = 10−1

rε = 10−3

rε = 10−6

Fig. 2.1. Illustration to Section 2.4.1. Left: dependence of ∥uε(.,x0)∥L∞(0,T ) at x0 = (0.2, 0.2), T = 8, on ε. Right:
dependence of uε(t,x0) on time for different values of ε.

2.4.1. Slow convergence of the solution uε to zero. First of all, let us consider scattering by a single
particle in the frequency domain. In the result below we provide an asymptotic expansion of the solution with
respect to ε > 0.

Proposition 2.1. Let ω > 0, N = 1, c1 = 0, R1 = 1 and ρ > 0 be fixed. Additionally, let ûinc ∈ C1(R2).
Then, as ε→ 0, the following holds true uniformly in θ ∈ [0, 2π):

ûε(ω, ρŝθ) =
iπ

2
H

(1)
0 (ωρ)ûinc(ω, 0) log−1 ε+ o(log−1 ε).

Proof. See Appendix A.

This result can be translated into the time domain. Since this is technical, we rather illustrate the time-
domain counterpart with numerical experiments. Let us finally remark that a related (but more general)
question was studied in [4].

To obtain a numerical time-domain counterpart of Proposition 2.1, we compute the field scattered by a
single obstacle (N = 1, R = 1, c1 = 0) on the interval (0, 8) for different ε > 0. The incident field is given

by uinc(t,x) = −e−20(t−d·x−1)2 , with d = (0, 1). The solution is computed using the time-domain BEM, semi-
discretized in time using the trapezoid rule Convolution Quadrature (CQ) method [30, 28, 29], and in space
using the Galerkin method with the basis functions {eimθ}Ns

m=−Ns
. The results are given in Figure 2.1. We

observe a good agreement of the results with the lower bound ∥uε(.,x0)∥L∞(0,T ) ≥ cT log−1 ε.

2.4.2. Potential instability of frequency-domain models recast into the time domain. Let us
consider one of frequency-domain models, namely the Foldy-Lax model analyzed in [9], which is O(ε/ log ε)-
accurate in the frequency domain. We will show that there exist geometric configurations for which this model
is unstable.
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Foldy-Lax model of [9]. In [9] it was suggested to approximate the field ûε(x) solving (2.5) with ω > 0 by
the following linear combination:

ûε(x) ≈ ûεFL(x) =
∑
k∈N

Gω(∥x− ck∥)
Gω(rεk)

λ̂εFL,k, where λ̂
ε

FL ∈ CN solves(2.8)

λ̂εFL,n +
∑

k∈N\{n}

Gω(∥cn − ck∥)
Gω(rεk)

λ̂εFL,k = −ûinc(cn), n = 1, . . . , N.(2.9)

To rewrite the above in the time domain, first of all we remark that λ̂
ε

FL is frequency-dependent, and can be

shown to be a Fourier-Laplace transform of a causal time-dependent function. With µ̂εFL,n = (Gω(r
ε
n))

−1λ̂εFL,n,
the time-domain Foldy-Lax approximation of the scattered field reads:

uε(t,x) ≈ uεFL(t,x) =
∑
k∈N

G(t, ∥x− ck∥) ∗t µεFL,k

=
1

2π

∑
k∈N

∫ t

0

1t−τ>∥x−ck∥√
(t− τ)2 − ∥x− ck∥2

µεFL,k(τ)dτ,
(FL1)

where the functions µεFL : R+ → RN satisfy, for all n = 1, . . . , N ,

G(t, rεn) ∗t µεFL,n +
∑

k∈N\{n}

G(t, ∥cn − ck∥) ∗t µεFL,k = −uinc(t, cn).(FL2)

It is possible to show that, for N ≤ 2, the model (FL1-FL2) is uniformly stable, i.e. (2.4) holds for ũε = uεFL.
However, when N > 2, this is no longer the case; e.g. (FL1-FL2) can exhibit instabilities when the particles are
very close to each other.

Instability of the model (FL1-FL2). It appears that for a particular geometry consisting of three particles
that are located in the vertices of an equilateral triangle, s.t. the distance between them is smaller than their
diameter, the Foldy-Lax model (FL1-FL2) is unstable. This is formalized in the statement below.

Proposition 2.2. Let N = 3 and Ri = r for all i. Let ∥ci − cj∥ = c > 0 for all i ̸= j (in other words,
the centers of the particles are located in the vertices of an equilateral triangle of side length c). Assume that
c/r < 4.

Then there exist u0, u1 ∈ C∞
0 (Ωc), a compact K ⊂ Ωc and A,C > 0 s.t.

lim sup
t→+∞

(e−At∥u1FL(t, .)∥L2(K)) ≥ C.

The proof of this proposition can be found in Appendix B. Let us explain its main idea. Examining (FL1),
(FL2) shows that the temporal behaviour of u1FL is closely related to that one of λ1

FL. In order to show that
t 7→ ∥λ1

FL(t)∥ admits exponential growth, we prove that its Fourier-Laplace transform has poles in C+. Its
(infinitely many) poles {ωn}n∈Z satisfy (using the notation of Proposition 2.2)

lim
n→±∞

Imωn =
1

r(η − 1)
log

2
√
η
> 0, where η = cr−1 < 4.(2.10)

One can then expect the rate A in Proposition 2.2 to be close to sup
n

Imωn.
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A numerical illustration to Proposition 2.2. Let us now illustrate the statement of Proposition 2.2. We
computed the Foldy-Lax solution uεFL for the configuration of Proposition 2.2, with r = 0.1, ci located in the
vertices of the equilateral triangle with c1 = (−0.105, 0), c2 = (0.105, 0) and c3 ≈ (0, 0.1819) (so that η = 2.1).
Moreover, the incident field and the final simulation time are given by

uinc(t,x) = e−20(t−x2−2)2 sin(30(t− x2 − 2)), T = 4.4.

An illustration to this experiment is given in Figure 2.2. As discussed after the statement of Proposition 2.2,

0 0.5 1 1.5 2 2.5 3 3.5 4
10−4

10−2

100

102

t

|uεFL(t,x0)|, r = 0.1, η = 2.1
O(exp(2.93t))

Fig. 2.2. The dependence of the absolute value of the solution uε
FL(t,x0), x0 = (0.2, 0.2) on time, computed for the experiment

of Section 2.4.2.

we expect the rate of the exponential growth of the solution to be close to supn Imωn. The asymptotic rate
given by (2.10) is approximately 2.93, which, as we see in Figure 2.2, predicts fairly well the behaviour of the
solution.

Remark 1. Performing a direct numerical simulation of the problem in Proposition 2.2 is delicate, due to
the time semi-discretization. The CQ method, cf. the end of Section 2.4.1, can be shown to converge for this
problem, see the analysis in [30], but the issue lies in its implementation, namely computation of the convolution
weights. This is usually done in the Laplace domain using contour integration techniques [29], with the contour
that depends on the final simulation time and the time step ∆t. This procedure may fail because of the presence
of the resonances in C+. Hence it is difficult to ensure convergence of the algorithm in this case, though the
exponential blow-up is of course seen numerically. Because of such convergence problems, we computed the
Foldy-Lax solution only on a fairly short time interval, where we could ensure the validity of the method used
for approximating the convolution weights.

Discussion. Proposition 2.2 states that for some geometric configurations, the Foldy-Lax model (FL1-FL2)
exhibits instabilities. However, as ε→ 0, one can prove that the three-particle configuration of Proposition 2.2
with rεj = εr becomes again stable. For the moment, we do not know whether for any system of particles there
exists ε0 > 0 depending on N , d∗, s.t. (FL1-FL2) is stable for all ε < ε0 (we conjecture that this is the case).

In this paper we develop an alternative Foldy-Lax model, which is uniformly stable and O(ε2)-convergent.
This model it is stable for any geometric configuration where the particles do not touch each other. It can
be viewed as an O(ε2)-perturbation of the Foldy-Lax model (FL1-FL2), see Section 3.4.3. More experiments
comparing the two models can be found in Section 6.2.

3. Galerkin Foldy-Lax model.
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3.1. Derivation. The solution to (2.2) can be represented as the single-layer potential of an unknown
density µε:

uε(t,x) = Sε(∂t)ϕ(t,x) =
∫ t

0

∫
Γε

G(t− τ,x− y)µε(τ,y)dΓy dτ, x ∈ Ωε,c.(3.1)

The trace of the single-layer potential is continuous across Γε, and thus the density µε can be found from the
following boundary integral equation:

gε(t,x) = γ0u
ε(t,x) = Sε(∂t)µ

ε(t,x),(3.2)

Sε(∂t)µ
ε(t,x) = γ0Sε(∂t)µε(t,x) =

∫ t

0

∫
Γε

G(t− τ,x− y)µε(τ,y)dΓy dτ, x ∈ Γε.

We will not make precise the spaces in which the single-layer operator Sε is invertible; those can be found in [2].
Nonetheless, since we are going to construct the asymptotic model as its Galerkin semi-discretization in space,
we remark that the operator Sε is an inverse Fourier-Laplace transform of the Helmholtz single-layer boundary
integral operator Ŝε. The latter is defined for a sufficiently regular ϕ as follows:

Ŝεϕ :=

∫
Γε

Gω(∥x− y∥)ϕ(y)dΓy, x ∈ Γε,(3.3)

and is continuous in appropriate spaces: Ŝε ∈ L(H−1/2(Γε), H1/2(Γε)). Therefore, a spatial variational formu-
lation for (3.2) can be written as follows:

find µε : R+ → H−1/2(Γε), s.t.

⟨v, gε(t, .)⟩ = ⟨v,Sε(∂t)µε(t, .)⟩, for all v ∈ H−1/2(Γε).
(3.4)

Let us now introduce the following coarse Galerkin space:

Vε0 ⊂ H−1/2(Γε), Vε0 =

N∏
n=1

V0(Γ
ε
n), V0(Γ

ε
n) = span{1, x ∈ Γεn}.(3.5)

Evidently, Vε0 is an N -dimensional space, with the basis {eε,n(x)}Nn=1 defined as

eε,n(x) =

{
1, x ∈ Γεn,
0, otherwise.

The main idea is to discretize (3.4) by using the Galerkin method with the trial and test space Vε0 . Such a
discretization rewrites:

find µεG : R+ → Vε0 , s.t.
⟨eε,n, gε(t, .)⟩ = ⟨eε,n,Sε(∂t)µεG(t, .)⟩, for all n ∈ N .

(3.6)

Let us introduce

Gεnk(t) =
∫∫

Γε
n×Γε

k

G(t, ∥x− y∥)dx dy,(3.7)
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and rewrite µεG(t,x) =
∑
n∈N µεG,n(t)e

ε,n(x). Then (3.6) can be rewritten as a convolutional system of equa-
tions: ∫

Γε
n

gεn(t,x)dΓx =

∫ t

0

Gεnn(t− τ)µεG,n(τ)dτ

+
∑

k∈N\{n}

∫ t

0

Gεnk(t− τ)µεG,k(τ)dτ, n ∈ N .

(GFL1)

Knowing the approximate density µεG allows to compute the approximate solution according to (3.1):

uεG(t,x) =
∑
k∈N

∫ t

0

Gεk(t− τ,x)µεG,k(τ)dτ, Gεk(t,x) =
∫
Γε
k

G(t,x− y)dΓy.(GFL2)

The problem (GFL1) together with (GFL2) is the desired asymptotic model.

Remark 2. The above model is a priori stable for each 0 < ε ≤ 1. This is formalized in Theorem 4.1 and in
Proposition 4.3. The reason for this is that the system of equations in (GFL1) stems from the Galerkin semidis-
cretization of the single-layer boundary integral operator Sε(∂t). By applying the Fourier-Laplace transform to
(3.6) we obtain the following identity for each ω ∈ C+:

⟨eε,n, ĝε⟩ = ⟨eε,n, Ŝεµ̂εG⟩, for all n ∈ N .(3.8)

The above problem is well-posed because the frequency-domain single layer boundary integral operator is coercive

for all ω ∈ C+: Im
(
− ⟨v, ωŜεv⟩

)
≳ c1(ε, ω)∥v∥2H−1/2(Γε)

. Combined with some analyticity arguments, this

argument allows to show the well-posedness of (3.6). Moreover, the frequency-domain bound ∥µ̂εG∥−1/2 ≲
c2(ε, ω)∥ĝε∥1/2 can be translated into a time-domain stability bound. See the proof of Proposition 4.3 for a more
detailed description of this approach.

3.2. Numerical illustration of the stability of the Galerkin Foldy-Lax model for the configura-
tion of Proposition 2.2. Let us illustrate the stability of the Galerkin Foldy-Lax model for the configuration
described in Proposition 2.2. For this we use the same data as in Section 2.4.2. The field uεG(t,x0) is shown
in Figure 3.1. It remains bounded, unlike uεFL, cf. Figure 2.2, although we see that the solution obtained with
the help of the asymptotic model is quite far from the reference solution, computed with the help of high-order
BEM.

3.3. Galerkin Foldy-Lax model in the frequency domain. For the analysis purposes, we will need
to work with the Fourier-Laplace transformed Galerkin Foldy-Lax model.
We fix ω ∈ C+. Then the exact solution to (2.5) can be written as the single layer potential of the density
µ̂ε(x):

ûε(x) = Ŝεµ̂ε(x) =
∫
Γε

Gω(∥x− y∥)µ̂ε(y)dΓy, x ∈ Ωε,c.(3.9)

The above operator satisfies: Ŝε ∈ L(H−1/2(Γε), H1(Rd \ Γε)). The density can be found from the frequency-
domain counterpart of (3.2),

ĝε(x) = Ŝεµ̂ε =
∫
Γε

Gω(∥x− y∥)µ̂ε(y)dΓy, x ∈ Γε,(3.10)
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0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

t

uεG(t,x0)
uε(t,x0)

Fig. 3.1. An illustration to the numerical experiment of Section 3.2. The dependence of the approximate solution uε
G(t,x0)

and the reference solution uε(t,x0) at x0 = (0.2, 0.2) on time.

see also (3.3). Introducing

Ŝεnk : H−1/2(Γεk) → H1/2(Γεn), n, k ∈ N ,

defined for a sufficiently regular ϕ by

(Ŝεnkϕ)(x) =
∫
Γε
k

Gω(∥x− y∥)ϕ(y)dΓy, x ∈ Γεn,(3.11)

we can further rewrite the equation (3.10) as follows:

ĝεn(x) = Ŝεnnµ̂
ε
n +

∑
k∈N\{n}

Ŝεnkµ̂
ε
k, n ∈ N .(3.12)

The frequency-domain counterpart of the Foldy-Lax model (GFL1) then reads:∫
Γε
n

ĝεn(x)dΓx = µ̂εG,n

∫∫
Γε
n×Γε

n

Gω(∥x− y∥)dΓy dΓx

+
∑

k∈N\{n}

µ̂εG,k

∫∫
Γε
n×Γε

k

Gω(∥x− y∥)dΓx dΓy, n ∈ N .
(3.13)

An approximation ûεG to the exact solution ûε can be computed according to (3.9):

ûεG(x) =

N∑
k=1

µ̂εG,k

∫
Γε
k

Gω(∥x− y∥)dΓy, x ∈ Ωε,c.(3.14)

3.4. Explicit Galerkin Foldy-Lax model for circles. Practical implementation of the Galerkin Foldy-
Lax model relies on the evaluation of the quantities (3.7) (computing the respective double integrals). In the
case of the circular scatterers, this can be done analytically, exploiting the Graf addition theorem, on one hand,
and the fact that constant functions are eigenfunctions of the single-layer boundary integral operator on a circle,
on the other hand.
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Fig. 3.2. An illustration to the two applications of the Graf addition theorem.

3.4.1. Galerkin Foldy-Lax model in the frequency domain.
Derivation of the system of equations for unknown coefficients. We start with the variational formulation

(3.8), which we rewrite in accordance with (3.12):

⟨eε,n, ĝε⟩ = ⟨eε,n, Ŝεnneε,n⟩µ̂εG,n +
∑

k∈N\{n}

⟨eε,n, Ŝεnkeε,k⟩µ̂εG,k.(3.15)

Let us rewrite the right-hand side of the above identity. The operator Ŝεnn is normal, as proven in [8]; moreover,
its (non-normalized) eigenfunctions are {eikθn(x)}k∈Z, and eigenvalues are given by [22, 21],

Ŝεnne
ikθn =

iπrεn
2

H
(1)
|k| (ωr

ε
n)J|k|(ωr

ε
n)e

ikθn , therefore(3.16)

⟨eε,n, Ŝεnneε,n⟩ = iπ2(rεn)
2H

(1)
0 (ωrεn)J0(ωr

ε
n).

The operator Ŝεnk can also be rewritten in a more convenient form, by using the Graf addition theorem [1,
9.1.79]. According to it, for z, p ∈ C, s.t. p = |p|eiθp , z = |z|eiθz , with |p| > |z|, and w = p − z = |w|eiθw ,
χ = θw − θp, it holds that

H(1)
m (ω||p|eiθ

p

− |z|eiθ
z

|) = e−imχ
∑
k∈Z

H
(1)
m+k(ω|p|)Jk(ω|z|)e

ik(θp−θz).(3.17)

Given x ∈ Γεk, y ∈ Γεn, first we apply the Graf theorem to H
(1)
0 (ω∥x − y∥), with p = ∥x − cn∥eiθn(x) and

z = ∥y− cn∥eiθn(y). We obtain its expansion into the series of H
(1)
m (ω∥x− cm∥), and next we re-apply the Graf

theorem to each of the terms of the series, with p = ∥cn − ck∥eiθk(cn) and z = ∥x − ck∥eiθk(x) (in this latter
case w = p − z = ∥x − cn∥eiθn(x), θn(ck) = π + θk(cn) and χ = θn(x) − θn(ck)). These two applications are
illustrated in Figure 3.2. We finally obtain the following expansion:

H
(1)
0 (ω∥x− y∥) =

∞∑
m=−∞

Jm(ωrεn)e
−imθn(y)

×
∞∑

j=−∞
H

(1)
m+j(ω∥cn − ck∥)ei(mθn(ck)+jθk(cn))Jj(ωr

ε
k)e

ijθk(x).

Replacing H
(1)
0 in the definition of Ŝεnk by the above expression yields

⟨en,ε, Ŝεnkek,ε⟩ = iπ2rεkr
ε
nJ0(ωr

ε
k)J0(ωr

ε
n)H

(1)
0 (ω∥ck − cn∥).(3.18)
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Therefore, the Foldy-Lax model (3.15) then can be rewritten in the following form:∫
Γε
n

ĝε(x)dΓx = iπ2(rεn)
2H

(1)
0 (ωrεn)J0(ωr

ε
n)µ̂

ε
G,n

+ iπ2
∑

k∈N\{n}

rεkr
ε
nJ0(ωr

ε
k)J0(ωr

ε
n)H

(1)
0 (ω∥ck − cn∥)µ̂εG,k.

(3.19)

Approximation of the field. Once the coefficients µ̂εG are found by solving the system of equations (3.19), it
remains to approximate the field ûε. We start with (3.14), which we further rewrite by using the Graf addition
theorem (3.17):

ûεG =
i

4

∑
k∈N

µ̂εG,k

∫
Γε
k

H
(1)
0 (ω∥x− y∥)dΓy

=
i

4

∑
k∈N

µ̂εG,kH
(1)
0 (ω∥x− ck∥)

∫
Γε
k

J0(ω∥y − ck∥)dΓy

=
iπ

2

∑
k∈N

µ̂εG,kr
ε
kH

(1)
0 (ω∥x− ck∥)J0(ωrεk).(3.20)

3.4.2. Galerkin Foldy-Lax model in the time domain. To rewrite the Galerkin Foldy-Lax model for
circular obstacles in the time domain, let us introduce the following causal distributions (with ’sc’ standing for
’scaled’, compared to the analogous definitions in Section 3.1):

Gsc,εnn = F−1 iπr
ε
n

2
J0(ωr

ε
n)H

(1)
0 (ωrεn),

Gsc,εnk = F−1 iπr
ε
k

2
J0(ωr

ε
k)J0(ωr

ε
n)H

(1)
0 (ω∥ck − cn∥), k ̸= n,

Gsc,εk (x) = F−1 iπr
ε
k

2
H

(1)
0 (ω∥x− ck∥)J0(ωrεk).

Then the Galerkin Foldy-Lax model (3.19), (3.20) in the time domain rewrites as

− 1

2π

∫ 2π

0

uinc(t, cn + rεnŝθ)dθ = Gsc,εnn ∗t µεG,n +
∑

k∈N\{n}

Gsc,εnk ∗t µεG,k, n ∈ N ,

uεG(t,x) =
∑
k∈N

Gsc,εk (x) ∗t µεG,k.(3.21)

3.4.3. Connection to the Foldy-Lax model (2.9). The goal of this section is to show the relation
between the original Foldy-Lax model and the new Galerkin one; we will show it in the frequency domain, i.e.
for (2.9) and (3.19). We start by rewriting (3.19) in a form similar to (2.9). Let us consider the left-hand side
of (2.9). First, ûinc(x) satisfies the homogeneous Helmholtz equation inside B(cn, r

ε
n), therefore

ûinc(cn + ρŝθ) = −
∑
m∈Z

ĝεn,m
Jm(ωρ)

Jm(ωrεn)
e−imθ, ρ < rεn.

Because Jm(0) = δ0m,

−J0(ωr
ε
n)û

inc(cn) = ĝεn,0 = (2πrεn)
−1

∫
Γε
n

ĝε(x)dΓx.(3.22)
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Next, let us rewrite the right-hand side of (2.9). Let

λ̂εG,n =
iπ

2
rεnH

(1)
0 (ωrεn)µ̂

ε
G,n.

Replacing the left-hand side of (3.19) by (3.22) and µ̂εG by its expression of λ̂
ε

G yields

−ûinc(cn) = λ̂εG,n +
∑

k∈N\{n}

J0(ωr
ε
k)

H
(1)
0 (ω∥ck − cn∥)
H

(1)
0 (ωrεk)

λ̂εG,k, n ∈ N .(3.23)

And the field approximation then reads

−ûεG(x) =
∑
k∈N

J0(ωr
ε
k)

H
(1)
0 (ω∥x− ck∥)
H

(1)
0 (ωrεk)

λ̂εG,k.(3.24)

We recognize in (3.23) the system of equations (2.9), and in (3.24) the approximation (2.8), modulo the term
J0(ωr

ε
k). For a fixed frequency ω, as rεn → 0, J0(ωr

ε
n) = 1 + O(ε2), and thus approximating J0(ωr

ε
n) by 1 does

not seem to affect the convergence rates of the model, at least in the frequency domain [9]. However, in the
time domain, the absence of this term is accountable for a potential lack of stability.

4. Convergence Analysis. We aim at obtaining an estimate of the type

∥uε(t)− uεG(t)∥L2(K) < C × error(ε),

where we will specify the type of dependence (e.g. polynomial) of the constant C on the number of particles
N , the minimal distance between particles d∗, simulation time, the largest and smallest radii R∗ and R∗, and
make explicit the dependence of the error on a certain norm of the data uinc. In the analysis, we never use an
assumption about N being a fixed number with respect to ε > 0, or dε∗ > d∗ = const. This enables us to extend
our results to the case when N and dε∗ depend on the asymptotic parameter ε (Section 5).

4.1. Main results. Let us first introduce a technical assumption.

Assumption 1. We assume that the incident field satisfies

uinc ∈ H8(0, T ;W 1,∞(R2)).

Such a regularity assumption holds true notably when u0, u1 ∈ C∞
0 (R2).

We will additionally need the weighted norm

∥v∥2Hm
ε (0,T ;X) :=

m∑
k=0

ε2k∥∂kt v∥2L2(0,T ;X).

Remark 3. We would like to use such an ε-dependent norm in the convergence estimates, where suitable,
since it takes into account the interplay between the wavelength and the asymptotic parameter ε: for v(t) = eiwt,

with w > 0, one has that ∥v∥Hm
ε (0,T ) ≲ T

(∑m
k=0(εw)

2k
)1/2

.

The principal result of this section is summarized below.
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Theorem 4.1 (Convergence of uεG). Let Assumption 1 hold true. Let δ = δε > 0. Then, for all 0 < ε ≤ 1,
0 < t < T , for all x ∈ Ωε+δε,c, the field uεG satisfies the following error bound, with a constant CG depending
polynomially on R∗, R−1

∗ , N, d∗
−1 and T :

eε(t,x) = |uεG(t,x)− uε(t,x)| ≤ ε2 ×max(1, δ−1
ε )CG∥∂5t uinc∥H3

ε (0,T ;W 1,∞(R2)).

In particular,
• when δε ≥ δ = const > 0 (’far-field’), then, for all x ∈ Ωδ,c, as ε→ 0,

eε(t,x) = O(ε2).

• when δε = εα, with α ∈ (0, 2) (’near-field’), then, for xε s.t. dist(xε,Ω
ε) = δε, it holds that

eε(t,xε) = O(ε2−α), as ε→ 0.

Remark 4. The error bound in the statement of the theorem can be refined to:

eε(t,x) ≤ ε2 ×max(1, δ−1
ε )CG(∥∂5t uinc∥H3

ε (0,T ;L∞R2) + ∥∂4t uinc∥H2
ε (0,T ;W 1,∞(R2))).

The proof of this theorem can be found in Section 4.6. The above result shows that the Galerkin Foldy-Lax
model yields a second-order accurate approximation of the far field and a first-order approximation at the
distance ε to the particle, provided that ε is sufficiently small with respect to the wavelength.

Remark 5. Let us quantify the term ’sufficiently small’. Let the incident field be given by uinc(t,x) =
Φ(t− x · d), with ∥d∥ = 1 and Φ : R → R being approximately bandlimited to the frequency ωmax > 1 (a typical

example being a modulated Gaussian Φ(p) = sin(ω0p)e
−σp2χ(p), with χ(p) being a smooth truncation function

that vanishes for sufficiently large |p|). In this case, cf. Remark 4, informally, we have

∥∂5t uinc∥H3
ε (0,T ;L∞R2) ≲ ω5

max

3∑
j=0

(ωmaxε)
j ,

∥∂4t uinc∥H2
ε (0,T ;W 1,∞R2) ≲ ω5

max

2∑
j=0

(ωmaxε)
j .

This shows that the Galerkin Foldy-Lax model starts converging in the far-field as soon as ε2ω5
max ≲ 1. We

believe this condition to be non-optimal (probably εωmax ≲ 1 is sufficient). It is due to the technique chosen to
analyze the problem, see Section 4.7.

With Theorem 4.1, we can show that the Galerkin Foldy-Lax model has the desired properties listed in
Section 2.2.

Corollary 4.2. Under Assumption 1, the Galerkin Foldy-Lax model is convergent and uniformly stable,
as defined in Section 2.2.

Proof. See Appendix C.

Theorem 4.1 relies on the following result about convergence of the density µε.

Proposition 4.3 (Convergence of the density). Let Assumption 1 hold true. Let T > 0. For all 0 < ε ≤ 1,
the density µεG ∈ L∞(0, T ;Vε0) satisfies the following bound, with the constant Cµ0 depending polynomially on
R∗, R−1

∗ , N , d∗
−1 and T :

∥µεG∥L∞(0,T ;H−1/2(Γε)) ≤ ε−1/2 × Cµ0∥∂2t uinc∥H1
ε (0,T ;L∞(R2)).
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The error eε = µεG −µε satisfies, with the constant Cµ,G depending polynomially on R∗, R−1
∗ , N , d∗

−1 and T :

∥eε∥L∞(0,T ;H−1/2(Γε)) ≤ ε× Cµ,G∥∂5t uinc∥H3
ε (0,T ;W 1,∞(R2)).

The proof of this proposition is presented in Section 4.5. It states two results:
• the H−1/2(Γε)-norm of the Galerkin density µεG(t) grows at most as O(ε−1/2); this implies in particular
that ∥µεG(t)∥L∞(Γε) ≲ ε−1.

• the Galerkin Foldy-Lax method approximates µεG with the error O(ε), i.e. we can expect the relative
error to be of order O(ε3/2).

The growth of the density µεG w.r.t. ε is due to the choice of the Foldy-Lax unknown µε as a solution to the
single-layer integral equation. It is possible to rescale the formulation in order to avoid this problem, by taking
as the new unknown

λεk = Sεkk(∂t)µ
ε
k =

∫ t

0

∫
Γε
k

G(t− τ, .− y)µεk(τ,y)dτ dΓy, k = 1, . . . , N.

It can be shown that the Galerkin method applied to the integral formulation with this new unknown will
yield a problem equivalent to (3.6), because constant functions are eigenfunctions of Ŝεkk. The analysis of the
respective model is out of scope of the present article, since, conceptually, it will not differ much from the
analysis presented here, however, requires some extra technical results.

Remark 6. Comparing Proposition 4.3 and Theorem 4.1, one may find it surprising that the error in the
density of O(ε) can produce an error of O(ε2) in the field. See Section 4.6 for a detailed explanation to such a
’super-convergence’ phenomenon.

The sections that follow are dedicated to the proof of Theorem 4.1 and Proposition 4.3. We will perform the
analysis in the Fourier-Laplace domain, see the seminal work by Bamberger and Ha-Duong [2] and the recent
monograph by Sayas [39].

For this we first study the convergence of the asymptotic method, reformulated in the frequency domain,
for the frequencies with absorption (ω ∈ C+). The main goal is then to obtain convergence estimates that would
be explicit in the asymptotic parameter ε and the frequency ω. Next they need to be translated into the time
domain based on the Plancherel theorem.

The rest of this section is organized as follows. In Section 4.2 we introduce the basis of our analysis. We
derive an expression for the Galerkin error of the density µ̂ε, which would involve in particular the restrictions
of the operator Ŝε to different subspaces of H−1/2(Γε), as well as ε-dependent H1/2(Γε)-norms of the data.
Then the bound on the error can be derived by obtaining explicit in ε estimates on the operator norms and on
the data.

Section 4.3 is dedicated to obtaining the estimates on the operators in the frequency domain. For our
purposes, it will be necessary to obtain the estimates on the data directly in the time domain, which is done
in Section 4.4. In Section 4.5, we prove Proposition 4.3, by combining the results of the previous section. In
Section 4.6 we prove Theorem 4.1. Finally, Section 4.7 is dedicated to the discussion of the optimality of the
results, see also Remark 5.

4.2. Error expression in the frequency domain. To obtain an expression for the error that will be
convenient to analyze, we will work with the Foldy-Lax model (FL1), (FL2) in the frequency domain, namely
with (3.13) and (3.14). In this section we will obtain an expression for the error ∥µ̂ε − µ̂εG∥−1/2 between the
densities (cf. Proposition 4.3). It is organized as follows. In Section 4.2.1, we introduce a decomposition of the
spaces that will allow to consider separately the constant component of the error (i.e. the one that belongs to
the Galerkin space) and the remainder; these errors will have different scalings with respect to the asymptotic
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parameter ε. Section 4.2.2 is dedicated to deriving an expression for the error that will serve as a basis for our
analysis.

4.2.1. Decomposition of spaces. Let us decompose the space H1/2(Γε) into a direct sum of the spaces
(orthogonal with respect to L2(Γε)-scalar product)

H1/2(Γε) = Vε0 ∔H
1/2
∗ (Γε),

where Vε0 was defined in (3.5) as follows:

Vε0 =
∏
n∈N

V0(Γ
ε
n), V0(Γ

ε
n) = span{1, x ∈ Γεn}, and

H
1/2
∗ (Γε) = {v ∈ H1/2(Γε) : (eε,n,v)L2(Γε) = 0, for all n ∈ N}.

The respective L2(Γε)-orthogonal projector on the space Vε0 is denoted by Pε0, and on the space H
1/2
∗ (Γε) by

Pε⊥. For any v ∈ H1/2(Γε), we introduce the decomposition v = v0 ∔ v⊥, with v0 ∈ Vε0 , v⊥ ∈ H
1/2
∗ (Γε).

In a similar manner we decompose

H−1/2(Γε) = Vε0 ∔H
−1/2
∗ (Γε), where

H
−1/2
∗ (Γε) = {v ∈ H−1/2(Γε) : ⟨v, eε,n⟩ = 0, for all n ∈ N}.

The respective adjoint projectors will be denoted by

Pε,∗0 : H−1/2(Γε) 7→ Vε0 , Pε,∗⊥ : H−1/2(Γε) 7→ H
−1/2
∗ (Γε).

They are defined as follows. For v ∈ H−1/2(Γε), λ ∈ H1/2(Γε):

⟨Pε,∗0 v,λ⟩ = ⟨v,Pε0λ⟩, ⟨Pε,∗⊥ v,λ⟩ = ⟨v,Pε⊥λ⟩.

Any v ∈ H−1/2(Γε) can be written as v = v0 ∔ v⊥, with v0 ∈ Vε0 , v⊥ ∈ H
−1/2
∗ (Γε).

It remains to introduce the following operators:

Ŝε00 := Pε0ŜεPε,∗0 , Ŝε0⊥ = Pε0ŜεPε,∗⊥ , Ŝε⊥0 = Pε⊥ŜεPε,∗0 , Ŝε⊥⊥ = Pε⊥ŜεPε,∗⊥ .(4.1)

The main idea of the error analysis is to exploit different scaling of the norms of these operators with respect
to ε→ 0.

Remark 7. Remark that there should be no confusion between Ŝε00 defined above and the operators Ŝεkk,
k = 1, . . . , N, corresponding to the single layer boundary integral operators for a single obstacle, cf. (3.11).

Remark 8. Where convenient, we will view the operators (4.1) as operators acting on the subspaces Vε0 ,
H

±1/2
∗ (Γε), without specifying this explicitly. E.g.

Ŝε00 :
(
Vε0 , ∥.∥−1/2

)
→
(
Vε0 , ∥.∥1/2

)
,

Ŝε0⊥ : H
−1/2
∗ (Γε) →

(
Vε0 , ∥.∥1/2

)
, and so on.

In what follows, we will also omit the indices in the operator norms ∥.∥ when working with the above operators.
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4.2.2. Error expression in the frequency domain. With the decomposition of the spaces introduced
in the previous section, we rewrite the Galerkin Foldy-Lax model as: find µ̂εG ∈ Vε0 , s.t.

ĝε0 = Ŝε00µ̂
ε
G.(4.2)

The exact solution µ̂ε satisfies the system(
Ŝε00 Ŝε0⊥
Ŝε⊥0 Ŝε⊥⊥

)(
µ̂ε0
µ̂ε⊥

)
=

(
ĝε0
ĝε⊥

)
.

From the above it is straightforward to obtain an equation for the error êε = µ̂ε − µ̂εG:(
Ŝε00 Ŝε0⊥
Ŝε⊥0 Ŝε⊥⊥

)(
êε0
êε⊥

)
=

(
0

ĝε⊥ − Ŝε⊥0µ̂
ε
G

)
.

The constant component of the error can be obtained by the usual Schur complement:

êε0 = −
(

Ŝε00
)−1

Ŝε0⊥ êε⊥,(4.3)

and the non-constant component is nothing else than

êε⊥ = Pε,∗⊥ (Ŝε)−1Pε⊥(ĝ
ε
⊥ − Ŝε⊥0µ̂

ε
G) = Pε,∗⊥ (Ŝε)−1Pε⊥(ĝ

ε
⊥ − Ŝε⊥0

(
Ŝε00
)−1

ĝε0).

Next, we estimate

∥êε0∥−1/2 ≤ ∥
(
Ŝε00
)−1∥∥Ŝε0⊥∥ ∥ê

ε
⊥∥−1/2,

∥êε⊥∥−1/2 ≤ ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥
(
∥ĝε⊥∥1/2 + ∥Ŝε⊥0∥∥

(
Ŝε00
)−1∥∥ĝε0∥1/2

)
.

(4.4)

Thus, the convergence of the Galerkin Foldy-Lax model relies on the estimates of the data ĝε and on the
estimates on the operator norms of the (inverses of) restrictions of Ŝε to different subspaces, as ε→ 0.

Let us anticipate the results that we will prove in the sections that follow. For the data, we will see that
as ε → 0, it is a constant component of ĝε that provides the most significant contribution in the norm of
∥ĝε∥H1/2(Γε):

∥ĝε0∥1/2 = O(ε1/2), ∥ĝε⊥∥1/2 = O(ε).(4.5)

For the operators, this is the case as well: the most significant contribution to
(
Ŝε
)−1

is provided by the inverse

of Ŝε00, which scales as O(ε−1). Moreover, as ε → 0, the operator matrix Ŝε approaches a diagonal operator
matrix. This is reflected below:

∥
(
Ŝε00
)−1∥ = O(ε−1), ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ = O(1), ∥Ŝε0⊥∥ = ∥Ŝε⊥0∥ = O(ε3/2).(4.6)

These estimates, combined with (4.4), will imply the following error behaviour:

∥êε⊥∥−1/2 = O(ε), ∥êε0∥−1/2 = O(ε3/2).

We proceed as follows. Because our final goal is to obtain time-domain estimates, we
• first obtain frequency-domain estimates on the operators, explicit in the frequency and in the asymptotic
parameter;

• next obtain estimates on the data, directly in the time domain;
• translate all the estimates into the time domain.
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4.3. Estimates on the operators in the frequency domain. The goal of this section is to prove the
bounds (4.6), explicit in the frequency.

Our proof of the estimates on the operator norms ∥(Ŝε00)−1∥ and ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ will follow the path of
[2]. It is based on three elements: 1) coercivity of the underlying operators; 2) their connection to solutions
of the Helmholtz transmission/boundary-value problems (BVPs); 3) a so-called lifting lemma. More precisely,
with the help of the first two ingredients, we will obtain the following bounds, with C0, C⊥ > 0,

∥(Ŝε00)−1∥ ≤ C0 sup
λ∈Vε

0\{0}
Lε|ω|(λ),

∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ ≤ C⊥ sup
λ∈H1/2

∗ (Γε)\{0}
Lε|ω|(λ),

where Lε|ω|(λ) = inf
Λ∈H1(R2):
γ0Λ=λ

∥Λ∥|ω|,R2

∥λ∥1/2
.(4.7)

Remark the difference in the sets over which supremum is taken in the bounds in the operator norms. The
constants in the above bounds depend on frequency only, and all the information about the geometry and
asymptotic parameter is contained in Lε|ω|(λ). Appropriate bounds on Lε|ω|(λ) are then given by the lifting
lemma.
To prove the remaining estimates on ∥Ŝε0⊥∥, ∥Ŝε⊥0∥, we will make use of the explicit representation of the

operator Ŝε.
This section is organized as follows. In Section 4.3.1, we derive a lifting lemma (Proposition 4.4). This

result is then used in Section 4.3.2 to obtain an estimate on ∥(Sε00)−1∥ and in Section 4.3.3 to obtain an estimate
on ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥. Finally, Section 4.3.4 is dedicated to the proof of the bounds on ∥Ŝε0⊥∥ ∥Ŝε⊥0∥.

4.3.1. Lifting lemmas. The goal of this section is to provide an estimate on the quantity (4.7), for the

case when λ ∈ Vε0 or H
1/2
∗ (Γε). Finding an optimal upper bound on (4.7) amounts to finding a lifting Λε of λ

that would minimize the norm ∥.∥|ω|,R2 . Such a lifting is given by the solution of the boundary-value problem
defined in the statement of the proposition below, with a = |ω|.

Proposition 4.4 (Lifting lemma for multiple scatterers). Let a > 0, λ ∈ H1/2(Γε), and Λε ∈ H1(R2)
satisfy the following two boundary-value problems:

−∆Λε + a2Λε = 0 in Ωε, γ−0 Λε = λ,

−∆Λε + a2Λε = 0 in Ωε,c, γ+0 Λε = λ.

Let us define

C0(ε, d
ε
∗) := 1 +

ε

dε∗
, dε∗ = min(1, dε∗).(4.8)

If λ ∈ Vε0 , then, with a constant cm,0 depending polynomially on R−1
∗ and R∗,

∥Λε∥2a,R2 ≤ cm,0ε
−1 max(1, εa)C0(ε, d

ε
∗)∥λ∥2H1/2(Γε).(4.9)

If λ ∈ H
1/2
∗ (Γε), then, with a constant cm,⊥ depending polynomially on R−1

∗ and R∗,

∥Λε∥2a,R2 ≤ cm,⊥ max(1, εa)C0(ε, d
ε
∗)∥λ∥2H1/2(Γε).(4.10)
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Remark 9. The index ’m’ in cm,0, cm,⊥ stands for ’multiple’.

In the above result we distinguish between the data from different subspaces of H1/2(Γε). This is important
for the analysis, in particular since two obtained bounds differ by a factor of ε−1, see the discussion in the
beginning of Section 4.3.

Remark as well that the constants in (4.9) and (4.10) are independent of the number of the particles N .
The rest of the section is dedicated to the proof of Proposition 4.4. The principal difficulty in the proof of the

above result is to derive estimates explicit in the small parameter ε > 0. To do so, we will base our considerations
on the idea from the recent work by Hassan and Stamm [17], which addresses the three-dimensional electrostatic
problem in the exterior of multiple spheres. They adapt the lifting lemma to their geometry, and we will make
use of their construction, with some modifications due to the nature of our model.

We first obtain the lifting bounds for the case of a single scatterer, see Lemmas 4.6, 4.7. Next, we argue
how these results can be extended to multiple scatterers.

Lifting lemmas for a single obstacle. We start by recalling the lifting lemma of [2], in the form presented
in the monograph by Sayas [39].

Proposition 4.5 (Proposition 2.5.1 in [39]). Let O be a Lipschitz domain. Then there exists CO > 0, s.t.
for all ξ ∈ H1/2(∂O) and all a > 0, the solution v ∈ H1(O) to the Dirichlet problem

−∆v + a2v = 0 in O, γ0v = ξ,

is bounded as follows:

∥v∥a,O = (∥∇v∥2L2(O) + a2∥v∥2L2(O))
1/2 ≤ CO max(1, a1/2)∥ξ∥H1/2(O).

Our goal is to prove lifting lemmas analogous to the above proposition, when O = B(0, r) and where the
constant CO depends explicitly on r. We will also need to consider separately the two cases: when the data

belongs to the space H
1/2
∗ (Cr) and the data is constant on Cr, cf. Proposition 4.4. We start with the latter case.

In what follows, we use the notation

Br,r+d = B(0, r + d) \B(0, r).

Lemma 4.6 (Lifting lemma for constants). Let a, r > 0, and V r ∈ H1(R2) satisfy the interior boundary
value problem

−∆V r + a2V r = 0 in B(0, r), γ−0 V
r = 1,

and the exterior boundary value problem

−∆V r + a2V r = 0 in Bc(0, r), γ+0 V
r = 1.

Then, for all d > 0, V r satisfies the following bounds

∥V r∥2a,R2 ≲ max(1, ar),(4.11)

∥V r∥2L2(Br,r+d)
≲ rd+ d2.(4.12)

Proof. The solution V r is defined via the modified Bessel functions:

V r(ρ) =


I0(aρ)
I0(ar)

ρ < r,

K0(aρ)
K0(ar)

ρ > r.

(4.13)
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Proof of the bound (4.12). Using Lemma D.2 to bound K0(aρ)/K0(ar),

∥V r∥2L2(Br,r+d)
= 2π

∫ r+d

r

∣∣∣∣K0(aρ)

K0(ar)

∣∣∣∣2 ρdρ ≲ d(r + d).

Proof of the bound (4.11). To prove this result, one could have used an explicit expression (4.13) and next
proved some bounds on the modified Bessel functions. We have tried this approach, however, the final bound
did not improve significantly over the bound obtained from a simple scaling argument, which we will present
below.

In what follows, we use the fact that V r is rotation invariant, and we make its dependence on a explicit by
writing V r(ρ, a) instead of V r(ρ). By a scaling argument, one can verify that V r(ρ, a) = V 1(ρr , ar). Moreover
(where we use V r ∈ H1(R2)):

∥V r(., a)∥2a,R2 =

∫ +∞

0

(
|∂ρV r(ρ, a)|2 + a2|V r(ρ, a)|2

)
ρdρ = ∥V 1(., ar)∥2ar,R2 .(4.14)

To obtain (4.11), it suffices to bound

∥V 1(., ar)∥2ar,R2 = ∥V 1(., ar)∥2ar,B(0,1) + ∥V 1(., ar)∥2ar,Bc(0,1),

which is done by applying Proposition 4.5 twice, first with O = B(0, 1) and next with O = Bc(0, 1).

A similar scaling approach can be used to prove a lifting lemma for the case when the boundary data is
orthogonal to constants.

Lemma 4.7 (Lifting lemma for elements of H
1/2
∗ (Cr)). Given a, r > 0, gr ∈ H

1/2
∗ (Cr), let V r ∈ H1(R2)

satisfy the interior boundary value problem

−∆V r + a2V r = 0 in B(0, r), γ−0 V
r = gr,

and the exterior boundary value problem

−∆V r + a2V r = 0 in Bc(0, r), γ+0 V
r = gr.

Then, for all d > 0, V r satisfies the following bounds:

∥V r∥2a,R2 ≲ max(1, ar)∥gr∥2H1/2(Cr)
,(4.15)

∥V r∥2L2(Br,r+d)
≲ rd∥gr∥2H1/2(Cr)

.(4.16)

Proof. Provided that gr =
∑
m∈Z\{0} g

r
meimθ, the solution to the above BVPs can be written explicitly, as

a series of modified Bessel functions:

V r(ρ, θ) =
∑

m∈Z\{0}

vrm(ρ)eimθ, vrm(ρ) =


I|m|(aρ)

I|m|(ar)
grmeimθ, ρ < r,

K|m|(aρ)

K|m|(ar)
grmeimθ, ρ > r.

(4.17)

Proof of the bound (4.16). We start by bounding ∥vrm∥2L2(Br,r+d)
. With Lemma D.3,∫ r+d

r

∣∣∣∣Km(aρ)

Km(ar)

∣∣∣∣2 ρdρ ≲ r2m
∫ r+d

r

ρ−2m+1dρ ≲ r

∫ r+d

r

dρ ≲ rd, ∀m ≥ 1.
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From the definition of V r(ρ, θ), it is straightforward to see that

∥V r∥2L2(Br,r+d)
≲ rd

∑
m∈Z\{0}

|grm|2 ≲ rd∥gr∥2H1/2(Cr).

Proof of the bound (4.15). For the same reason as in the proof of Lemma 4.6, we will use the scaling argument
to prove (4.15).

First of all, let g1(x) := gr(rx), for x ∈ C1. Let V 1(ρ, b) satisfy:

−∆V 1 + b2V 1 = 0 in B(0, 1), γ−0 V
1 = g1,

−∆V 1 + b2V 1 = 0 in Bc(0, 1), γ+0 V
1 = g1.

Again, by the scaling argument, one can verify that V r(ρ, a) = V 1(ρr , ar), and one has the norm identity (4.14).
It remains to use Proposition 4.5 which yields

∥V r(., a)∥2a,R2 ≤ Cmax(1, ar)∥g1∥2H1/2(C1)
.(4.18)

Here the constant C is independent of r, but encodes some information about the circular shape of the scatterer.
The functions g1, gr are defined by their Fourier series, for x = (cos θ, sin θ),

g1(x) = gr(rx) =
∑

m∈Z\{0}

g1meimθ =
∑

m∈Z\{0}

grmeimθ.

We remark that

∥g1∥2H1/2(C1)
=

∑
m∈Z\{0}

(1 +m2)1/2|g1m|2 ≤ 2
∑

m∈Z\{0}

|m||g1m|2

≤ 2r
∑
m∈Z

(1 +
m2

r2
)1/2|grm|2 = 2∥gr∥2H1/2(Cr)

,

which, with (4.18), yields the desired inequality.

Remark 10. Comparing the results of Lemmas 4.6 and 4.7, it may seem that the bounds on ∥V r∥a,R2

are identical with respect to the norm of the boundary data ∥g∥H1/2(Cr) and the scaling parameter r (with g
being equal to 1 or gr). This is however not the case: the bound (4.11) can alternatively be rewritten as
∥V r∥2a,R2 ≲ max(1, ar)r−1∥g∥2

H1/2(Cr)
.

To prove the analogous results for multiple circles (Proposition 4.4), let us introduce an auxiliary truncation
function, following [17].

An auxiliary truncation function. Let

χr,d(ρ) =

 1, ρ < r + d/8,
0, ρ > r + d/4,
pr,d(ρ), otherwise,

(4.19)

with pr,d =
7∑
k=0

ak(ρ − r − d/8)k, with the coefficients ak chosen so that χr,d ∈ C3(R≥0). One can verify that

ak = ck/d
k (with some ck independent of d and r), for k ≥ 4, and a3 = a2 = a1 = a0 = 0. We then introduce

χεn(x) := χrεn,dε∗(∥x− cn∥), χε(x) :=
∑
n∈N

χεn(x).(4.20)
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With this definition,

suppχεn ∩ suppχεk = ∅, if n ̸= k,(4.21)

suppχεn ⊆ B(cn, r
ε
n + dε∗/2).(4.22)

It is then straightforward to see that

∥χε∥L∞(R2) ≲ 1, ∥χε∥W s,∞(R2) ≲
(
dε∗
)−s

, s ≥ 0.(4.23)

Proof of Proposition 4.4. Remark that Λε = argminv∈H1(R2): γ±
0 v=λ ∥v∥a,R2 . Thus, to bound ∥Λε∥a,R2 , we

can construct a lifting v ∈ H1(R2) of λ, obtain an explicit stability bound ∥v∥a,R2 ≤ Cε∥λ∥H1/2(Γε), and
conclude that ∥Λε∥a,R2 ≤ Cε∥λ∥H1/2(Γε). Let us define the following lifting of λ:

Λεχ :=
∑
n∈N

Λεnχ
ε
n,

where χεn are as in (4.20) and each Λεn ∈ H1(R2) solves the following exterior and interior boundary value
problems, with λn ∈ H1/2(Γεn),

−∆Λεn + a2 Λεn = 0 in Ωεn, γ−0 Λεn = λn,

−∆Λεn + a2 Λεn = 0 in Ωε,cn , γ+0 Λεn = λn.
(4.24)

We next relate ∥Λεχ∥2a,R2 to the norms ∥Λεn∥2a,R2 , which we will bound based on Lemmas 4.6, 4.7. By definition,

∥Λεχ∥2a,R2 = a2∥
∑
n∈N

χεnΛ
ε
n∥2 + ∥

∑
n∈N

χεn∇Λεn∥2 + ∥
∑
n∈N

∇χεnΛεn∥2.

By the property (4.21), we have that

∥Λεχ∥2a,R2 = a2
∑
n∈N

∥χεnΛεn∥2 +
∑
n∈N

∥χεn∇Λεn∥2 +
∑
n∈N

∥∇χεnΛεn∥2

≤
∑
n∈N

∥χεn∥2L∞∥Λεn∥2a,R2 +
∑
n∈N

∥∇χεn∥2L∞∥Λεn∥2supp∇χε
n

(4.21)
= ∥χε∥2L∞

∑
n∈N

∥Λεn∥2a,R2 + ∥∇χε∥2L∞

∑
n∈N

∥Λεn∥2supp∇χε
n

(4.23)

≲
∑
n∈N

∥Λεn∥2a,R2 + (dε∗)
−2
∑
n∈N

∥Λεn∥2supp∇χε
n
.(4.25)

It remains to bound all the above quantities, by recalling that, see (4.22), supp∇χεn ⊂ B(cn, rεn + dε∗/2) \
B(cn, r

ε
n). We consider two cases: λ ∈ Vε0 and λ ∈ H

1/2
∗ (Γε).

Case 1. Bound (4.9) for λ ∈ Vε0 . Lemma 4.6 yields

∥Λεχ∥2a,R2 ≲
∑
n∈N

max(1, arεn)|λn,0|2 + (dε∗)
−2
∑
n∈N

dε∗(r
ε
n + dε∗)|λn,0|2.



A TIME-DOMAIN FOLDY-LAX MODEL FOR SCATTERING BY SMALL CIRCLES 23

Because ∥λ∥2
H1/2(Γε)

= 2π
∑
n∈N rεn|λn,0|2, we have the following bound, with a constant C1 > 0 depending on

R−1
∗ and R∗ polynomially:

∥Λεχ∥2a,R2 ≤ C1ε
−1

(
max(1, εa) +

ε

dε∗
+ 1

)
∥λ∥2H1/2(Γε).

With the use of 1 ≤ max(1, aε), the bound of the proposition follows straightforwardly from the above and
∥Λε∥a,R2 ≤ ∥Λεχ∥a,R2 .

Case 2. Bound (4.10) for λ ∈ H
1/2
∗ (Γε). An application of bounds of Lemma 4.7 to bound the right-hand side of

the inequality (4.25) yields the following bound, with a constant C2 depending on on R−1
∗ and R∗ polynomially:

∥Λεχ∥2a,R2 ≤ C2

(
max(1, εa) +

ε

dε∗

)
∥λ∥2H1/2(Γε).

The bound in the statement of the proposition is then obtained like in Case 1.

4.3.2. An estimate on ∥
(
Ŝε00
)−1∥. Our goal is to prove that ∥

(
Ŝε00
)−1∥ behaves as O(ε−1) as ε → 0.

In the proof of this result, we will make use of the connection between the solution to a certain transmission
problem and the potential Ŝε.

Given ω ∈ C+, η ∈ H1/2(Γε), we denote vεη := Ŝεη ∈ H1(R2). We remark that vεη solves the following
transmission problem:

−∆vεη − ω2vεη = 0 in R2 \ Γε,
[γ0v

ε
η] = 0, [γ1v

ε
η] = η,

(4.26)

and, moreover, γ0v
ε
η = Ŝεη.

Theorem 4.8. Let ω ∈ C+. The operator Ŝε00 : Vε0 → Vε0 satisfies, with cm,0, C0(ε, d
ε
∗) as in Proposition

4.4,

∥
(
Ŝε00
)−1∥ ≤ cm,0C0(ε, d

ε
∗)ε

−1 max(1, ε|ω|) |ω|
Imω

.

Proof. As usual in the theory of time-domain boundary integal equations, we will prove a coercivity bound
on Ŝε00, cf. [2]. Let η ∈ Vε0 . Then

Pε0γ0v
ε
η = Pε0ŜεPε,∗0 η = Ŝε00η.

Therefore, since η ∈ Vε0 ,

⟨η, Ŝεη⟩ = ⟨η, Ŝε00η⟩.

Hence,

− Im⟨η, ωŜε00η⟩ = − Im⟨η, ωŜεη⟩ = − Im ⟨[γ1vεη], ωγ0vεη⟩(4.27)

= − Im
(
ω∥∇vεη∥2 − ω|ω|2∥vεη∥2

)
= Imω∥vεη∥2|ω|,R2 ,
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where we used the Green formula and (4.26). Next, we need to relate the right-hand side of the above to η, i.e.
to prove the bound ∥η∥H−1/2(Γε) ≤ Cω∥vεη∥2|ω|,R2 with an explicit dependence on ω in the constant Cω. This is
done in a classical way:

∥η∥H−1/2(Γε) = sup
λ∈Vε

0\{0}

⟨η,λ⟩
∥λ∥H1/2(Γε)

= sup
λ∈Vε

0\{0}
inf

Λ∈H1(R2):
γ0Λ=λ

⟨η, γ0Λ⟩
∥λ∥H1/2(Γε)

.

Again, by the Green identity,

⟨η, γ0Λ⟩ =
∫

R2

∇vεη∇Λ dx− ω2

∫
R2

vεηΛ dx.

Then

∥η∥H−1/2(Γε) ≤ ∥vεη∥|ω|,R2 sup
λ∈Vε

0\{0}
inf

Λ∈H1(R2):
γ0Λ=λ

∥Λ∥|ω|,R2

∥λ∥H1/2(Γε)

.(4.28)

The inf
Λ∈H1(R2): γ0Λ=λ

∥Λ∥|ω|,R2 is realized for Λ = Λε, where Λε is from Proposition 4.4, with a = |ω|. With the

notation of Proposition 4.4, we obtain

∥η∥2H−1/2(Γε) ≤ cm,0ε
−1 max(1, ε|ω|)C0(ε, d

ε
∗)∥vεη∥2|ω|,R2 .

Therefore, from (4.27) and the above, we obtain the coercivity bound

− Im⟨η, ωŜε00η⟩ ≥ ε c−1
m,0 min(1, (ε|ω|)−1) C−1

0 (ε, dε∗) Imω∥η∥2H−1/2(Γε),

and the bound for the inverse
(
Ŝε00
)−1

stated in the theorem follows from the above.

4.3.3. An estimate on ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥. In the theorem below we show that ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ = O(1),
and thus this term does not have an effect on the asymptotic error estimate.

Theorem 4.9. Let ω ∈ C+. The operator Ŝε : H−1/2(Γε) → H1/2(Γε) satisfies, with cm,⊥ like in Proposi-
tion 4.4,

∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ ≤ cm,⊥
|ω|
Imω

C0(ε, d
ε
∗)max(1, ε|ω|).

Proof. We have that

∥Pε,∗⊥ (Ŝε)−1Pε⊥∥H1/2(Γε)→H−1/2(Γε) = ∥Pε,∗⊥ (Ŝε)−1∥
H

1/2
∗ (Γε)→H−1/2(Γε)

.

Let λ ∈ H
1/2
∗ (Γε), and η = (Ŝε)−1λ ≡ (Ŝε)−1Pε⊥λ. Our goal is to find an estimate on η⊥ = Pε,∗⊥ (Ŝε)−1Pε⊥λ

by λ. For this we remark that

⟨η, Ŝεη⟩ = ⟨η,λ⟩ = ⟨η⊥,λ⟩,

because λ ∈ H
1/2
∗ (Γε). We proceed now like in the proof of Theorem 4.8. We define vεη := Ŝεη ∈ H1(R2) the

solution to the transmission problem (4.26). The Green identity yields

− Im⟨η⊥, ωλ⟩ = Imω∥vεη∥2|ω|,R2 .
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It remains to estimate η⊥ by ∥vεη∥|ω|,R2 , like in (4.28):

∥η⊥∥ ≤ ∥vεη∥|ω|,H1(R2) sup
λ∈H1/2

∗ (Γε)\{0}
inf

Λ∈H1(R2):
γ0Λ=λ

∥Λ∥|ω|,R2

∥λ∥H1/2(Γε)

.

The desired estimate again follows from Proposition 4.4, cf. proof of Theorem 4.8. We have

− Im⟨η⊥, ωλ⟩ ≥ c−1
m,⊥ Imωmin(1, (ε|ω|)−1)C−1

0 (ε, dε∗)∥η⊥∥2H−1/2(Γε),

which yields the estimate in the statement of the theorem.

4.3.4. An estimate on ∥Ŝε0⊥∥ and ∥Ŝε⊥0∥. The upper bounds on the norms of these operators will be
obtained in a different manner compared to the proofs of Theorems 4.8 and 4.9. The first result shows that it
is sufficient to obtain a bound on either of the norms ∥Ŝε0⊥∥ or ∥Ŝε⊥0∥.

Proposition 4.10. ∥Ŝε⊥0∥ = ∥Ŝε0⊥∥.
Proof. We start with

∥Ŝε0⊥∥ = sup
µ∈Vε

0

sup
λ∈H−1/2

∗ (Γε)

⟨µ, Ŝελ⟩
∥λ∥H−1/2(Γε)∥µ∥H−1/2(Γε)

,

∥Ŝε⊥0∥ = sup
µ∈Vε

0

sup
λ∈H−1/2

∗ (Γε)

⟨λ, Ŝεµ⟩
∥λ∥H−1/2(Γε)∥µ∥H−1/2(Γε)

.

With the notation like in (4.26), third Green’s identity yields

⟨µ, Ŝελ⟩ − ⟨λ, Ŝεµ⟩ =
∫

R2\Γε

(∆vεµ + ω2vεµ)v
ε
λ −

∫
R2\Γε

(∆vελ + ω2vελ)v
ε
µ = 0,

and hence the desired result.

Before proving the main theorem of this section, let us state an auxiliary lemma, which we will use also later.

Lemma 4.11. Let ω ∈ C+, r > 0, and the point x ∈ Bc(0, r) be such that dist(x, B(0, r)) = d. Let
h : Cr → C be defined by h(y) = Gω(y − x). Then the following bounds hold true:

∥h∥L2(Cr) ≲ r1/2 min

(
max

(
1, log

1

d Imω

)
, |ωd|−1/2

)
,

∥h⊥∥H1/2(Cr) ≲ rmax(1, r1/2)d−1 max(1, |ωd|1/2).

Proof. Evidently, ∥h∥2L2(Cr)
≲ ∥h∥2L∞(Cr)

r. For all y ∈ Cr, the function ω 7→ Gω(y) is analytic in ω ∈ C+

and its restriction to C+ is continuous up to the set R\{0}. Therefore, we make use of the following bound that
stems from the asymptotic behaviour of the Hankel functions for ω ∈ C+, when ω → 0 and when |ω| → +∞,
cf. [13, Section 10.8, Section 10.17(iv)] (remark that the asymptotic expansions are uniform in Argω)):

|h(y)| ≲ min

(
max

(
1, log

1

|ω|∥x− y∥

)
,

1

|ω|1/2∥x− y∥1/2

)
.

To obtain the desired bound we use Imω < |ω|.
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To compute ∥h⊥∥H1/2(Cr), we proceed as follows. First of all, we compute the L2-norm:

∥h⊥∥2L2(Cr)
= inf
c∈C

∥h− c∥2 ≤ ∥h(.)− h(0)∥2L2(Cr)

≲ ∥∇h∥2L∞(B(0,r))r
3 = ∥∇Gω(.− x)∥2L∞(B(0,r))r

3.

Because d
dzH

(0)
0 (z) = −H(0)

1 (z),

|∇yGω(y − x)| ≲ |ω||H(1)
1 (ω∥y − x∥)| ≲ |ω|max

(
1

|ω|∥y − x∥
,

1√
|ω∥y − x∥

)
,

and we again used the fact that the restriction z 7→ H
(1)
1 (z) to C+ is analytic, and continuous up to R \ {0}, as

well as the asymptotics of the Hankel functions, cf. [13, Section 10.8, Section 10.17(iv)]. This finally yields

∥h⊥∥2L2(Cr)
≲ r3d−2 max(1, |ω|d).

Next, to obtain a complete bound for ∥h⊥∥H1/2(Cr), it remains to compute its Sobolev-Slobodeckii seminorm,
where we again use the Lipschitz regularity of h:

∥h⊥∥2H1/2(Cr)
=

∫
Cr

∫
Cr

|h(y)− h(y′)|2

∥y − y′∥2
dΓydΓy′ ≲ ∥∇h∥2L∞(B(0,r))

∫
Cr

dΓydΓy′

≲ r2d−2 max(1, |ω|d).

Finally we have all the necessary results to formulate and prove the principal result of this section.

Theorem 4.12. Let ω ∈ C+. Then the following bound holds for all ε > 0, with a constant C0⊥ depending
on R−1

∗ and R∗ polynomially:

∥Ŝε⊥0∥ = ∥Ŝε0⊥∥ ≤ C0⊥ε
3/2N(dε∗)

−1|ω|1/2 max(1, (Imω)−1/2).

Proof. By Proposition 4.10, it suffices to prove the bound on Ŝε0⊥. This will be done using its explicit
representation.

Let η = Ŝελ, with λ ∈ H
−1/2
∗ (Γε). Our goal is to bound the constant component η0 by λ; by the density

argument it suffices to obtain the bound for λ sufficiently regular (e.g. λ ∈ C0(Γε)). On Γεℓ , it holds that

ηℓ = Ŝεℓℓλℓ +
∑

n∈N\{ℓ}

Ŝεℓnλn,

see (3.11) for the definition of the above operators. Let us consider the first term in the above. Because the

eigenfunctions of Ŝℓ are given by {eimϕ}m∈Z, see e.g. [8] and references therein, and λ ∈ H
−1/2
∗ (Γε), it follows

that Ŝεℓℓλℓ ∈ H
1/2
∗ (Γεℓ). Therefore, we have, after integrating both sides of the above over Γεℓ ,

rεℓηℓ,0 =
1

2π

∑
n∈N\{ℓ}

∫
Γε
ℓ

∫
Γε
n

Gω(x− y)λn(y)dΓy dΓx.
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It remains to use the definition of ∥η0∥2L2(Γε):

∥η0∥2L2(Γε) ≲
∑
ℓ∈N

(rεℓ )
−1

∣∣∣∣∣∣
∑

n∈N\{ℓ}

∫∫
Γε
ℓ×Γε

n

Gω(x− y)λn(y)dΓydΓx

∣∣∣∣∣∣
2

≲ R−1
∗ ε−1

∑
ℓ∈N

∣∣∣∣∣∣
∑

n∈N\{ℓ}

rεℓ sup
x∈Γε

ℓ

∣∣∣∣∣
∫
Γε
n

H
(1)
0 (ω∥x− y∥)λn(y)dΓy

∣∣∣∣∣
∣∣∣∣∣∣
2

.(4.29)

We then use the bound of Lemma 4.11 to obtain, with C1 depending polynomially on R∗ and R−1
∗ , for x ∈ Γεℓ :∣∣∣∣∣

∫
Γε
n

H
(1)
0 (ω∥x− y∥)λn(y)dΓy

∣∣∣∣∣ ≲ ∥Gω(x− .)∥H1/2(Γε
n)
∥λn∥H−1/2

∗ (Γε
n)

≤ C1ε/d
ε
∗ max(1, |ωdε∗|1/2)∥λn∥H−1/2

∗ (Γε
n)
.

The rest follows by the Cauchy-Schwarz inequality and by remarking that

(dε∗)
−1 max(1, |ωdε∗|1/2) ≤ (dε∗)

−1 max(1, (dε∗)
1/2)max(1, |ω|1/2)

≤ max(1, (dε∗)
−1)|ω|1/2 max(1, (Imω)−1/2).

4.4. Estimates on the data in the time domain. The purpose of this section is to prove (4.5), more
precisely

∥ĝε0∥1/2 = O(ε1/2), ∥ĝε⊥∥1/2 = O(ε).

For technical reasons, see the discussion in the end of Step 1.2 in Section 4.5.2, we provide these bounds in the
time domain directly; they of course can be translated to the frequency domain.

The two main results of this section are Propositions 4.15 and 4.16, which relate the ε-dependent norms
∥gε⊥∥1/2 and ∥gε0∥1/2 to ε-independent norms of the field uinc.

The proof of these propositions relies on two auxiliary lemmas, formulated for the case of a single circle of a
fixed radius r > 0. We will make use of the same decomposition of the spaces, as the one introduced in Section
4.2.1, however, for the case of the single boundary Cr. The projection operators corresponding to Pε0 and Pε⊥
will be denoted by P0 and P⊥. We start with estimating P0γ0v.

Lemma 4.13. There exists C > 0 s.t., for all r > 0, v ∈ L∞(R2),

∥P0γ0v∥L2(Cr) ≤ Cr1/2∥v∥L∞(R2).

Proof. We have that P0γ0v = 1
2πr

∫
Cr
vdΓ, thus, ∥P0γ0v∥L2(Cr) ≤ (2πr)1/2∥v∥L∞(Cr).

Next, let us estimate P⊥γ0v.

Lemma 4.14. There exists C > 0, s.t., for all r > 0, v ∈W 1,∞(R2),

∥P⊥γ0v∥H1/2(Cr) ≤ Crmax(1, r1/2)∥v∥W 1,∞(R2).
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Proof. Decomposing γ0v into its Fourier series (2.6) yields

∥P⊥γ0v∥2H1/2(Cr)
= r

∑
m∈Z\{0}

(
1 +

m2

r2

)1/2

|vm|2 ≤ 2max(1, r)
∑

m∈Z\{0}

m|vm|2.

To estimate the above, we use the seminorm (2.7). Defining ŝθ = (cos θ, sin θ), we rewrite it in the following
way:

∥P⊥γ0v∥2H1/2(Cr)
=

∫ 2π

0

∫ 2π

0

|v(rŝθ)− v(rŝψ)|2

|ŝθ − ŝψ|2
dθdψ ≲ r2 sup

x∈B(0,r)

|∇v(x)|2.

The above two lemmas then allow us to estimate gε0 and gε⊥.

Proposition 4.15. Let ℓ ∈ N, and let for all t ≥ 0, ∂ℓtu
inc(t) ∈ L∞(R2). There exists c0 > 0, depending

polynomially on R∗, s.t.

∥∂ℓtgε0(t)∥L2(Γε) ≤ c0ε
1/2N1/2∥∂ℓtuinc(t)∥L∞(R2), t ≥ 0.

Proof. We prove the result for ℓ = 0; for ℓ > 0 the proof is a straightforward extension. By Lemma 4.13,
we have the bound ∑

n∈N
∥gε0(t)∥2L2(Γε

n)
≲
∑
n∈N

rεn∥uinc(t)∥2L∞(R2) ≤ R∗Nε∥uinc(t)∥2L∞(R2).

The counterpart of Lemma 4.14, which relates gε⊥ to uinc, is given below.

Proposition 4.16. Let ℓ ∈ N, and let, for all t ≥ 0, ∂ℓtu
inc(t) ∈W 1,∞(R2). There exists c⊥ > 0, depending

polynomially on R∗, s.t.

∥∂ℓtgε⊥(t)∥H1/2(Γε) ≤ c⊥εN
1/2∥∂ℓtuinc(t)∥W 1,∞(R2), t ≥ 0.

Proof. The proof mimics almost verbatim the proof Proposition 4.15.

We have now finished with the proofs of auxiliary results, namely, the bounds on the data and the bounds on the
operators. In the section that follows we will use these ingredients to prove Proposition 4.3 about convergence
of the density, and use this result in order to prove the principal statement of Section 4, i.e. Theorem 4.1.

4.5. Proof of Proposition 4.3. The proof of Proposition 4.3 is based on the Plancherel theorem. We
split the proof into two parts: first we summarize the bounds in the frequency domain (Section 4.5.1), and next
show how they can be translated to the time domain in Section 4.5.2.

4.5.1. Intermediate frequency domain bounds. Here we will summarize the frequency-domain bounds
corresponding to the quantities in the statement of Proposition 4.3, which will serve as a base for deriving the
time-domain bounds.

The constants in the bounds in this and the section that follows depend on R−1
∗ , R∗, d∗

−1, N polynomially.

First of all, the frequency-domain bound for the density µ̂εG = (Ŝε00)
−1ĝε0 follows from Theorem 4.8. With

C1 > 0, we have that

∥µ̂εG∥−1/2 ≤ C1ε
−1 max(1, ε|ω|) |ω|

Imω
∥ĝε0∥1/2 ≤ C1ε

−1 |ω|
Imω

∥(1− iεω)ĝε0∥1/2,(4.30)
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where we used max(a, b) ≤ a+ b. We bound max(1, ε|ω|)∥ĝε0∥1/2 by ∥(1− iεω)ĝε0∥1/2, since the latter expression
is more convenient when passing to the time domain. Let

P̂εω = (1− iεω).(4.31)

The error for the orthogonal component of the density can be bounded using the expression (4.4), based on
Theorems 4.8, 4.12, 4.9:

∥êε⊥∥−1/2 ≤ C2
|ω|
Imω

(
∥P̂εωĝ

ε
⊥∥1/2 + ε

1
2 |ω| 32 max(1, (Imω)−

3
2 )∥(P̂εω)2ĝ

ε
0∥1/2

)
(4.32)

≤ C2
|ω|
Imω

(
∥P̂εωĝ

ε
⊥∥1/2 + ε

1
2 |ω|2 max(1, (Imω)−2)∥(P̂εω)2ĝ

ε
0∥1/2

)
,(4.33)

where to obtain the last expression we used the bound |ω|1/2 max(1, (Imω)−1/2) ≤ |ω|max(1, (Imω)−1). The
formula (4.33), compared to (4.32), is easier to use to pass to the time domain.

Finally, (4.4) can be used to bound the constant component of the density error, combined with (4.32),
Theorems 4.8 and 4.12:

∥êε0∥−1/2 ≤ C3ε
1
2

|ω|2

(Imω)2

(
|ω|max(1, (Imω)−1)∥(P̂εω)2ĝ

ε
⊥∥1/2+

+ε
1
2 |ω|2 max(1, (Imω)−2)∥(P̂εω)3ĝ

ε
0∥1/2

)
,(4.34)

where we used the bound |ω|1/2 max(1, (Imω)−1/2) ≤ |ω|max(1, (Imω)−1).

4.5.2. Translating the bounds into the time domain. Step 1. Stability bound for the density. To
obtain a time-domain bound on µεG, we apply the Plancherel identity∫ +∞

−∞
e−2ηt∥f(t)∥2dt = 1

2π

∫ +∞+iη

−∞+iη

∥f̂(ω + iη)∥2dω, η > 0,(4.35)

to (4.30). This will make appear the terms of the type ∥∂kt gε0∥H1/2(Γε), which we will further bound by a certain

ε-independent norm of uinc, as stated in Section 4.4.
Step 1.1. Application of the Plancherel identity and the causality argument. Rewriting the bound (4.30) in

the time domain is quite classical, and, e.g. can be found in the monograph [39], or [3], [5], see the references
therein. For the convenience of the reader, we will outline the corresponding procedure below.

Let us first of all remark that in the time-domain, t 7→ µεG(t) vanishes with all its derivatives in the vicinity

of 0 as a convolution of a causal operator-valued distribution, whose symbol is given by (Ŝε00)
−1, and gε0, which

itself vanishes in the vicinity of 0 (see Section 2.1).
Let T > 0. First, we use the Plancherel identity (4.35) and the causality of µεG to obtain the following

inequality, valid for any η > 0,∫
R+

e−2ηt∥µεG(t)∥2−1/2dt =
1

2π

∫
R
∥µ̂εG(ω + iη)∥2−1/2dω ≲ C1ε

−2η−2

×
∫

R
|ω + iη|2∥P̂εω+iηĝ

ε
0(ω + iη)∥21/2dω.

We next apply the Plancherel identity again to the right-hand-side of the above inequality, in order to obtain a
bound on µεG by gε0, rather than its Fourier-Laplace transform. In particular, recalling that gε0 vanishes in the
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vicinity of 0, and choosing η = 1
T yields the following bound (recall the definition (4.31) of P̂εω = (1− iωε))∫

R+

e−2t/T ∥µεG(t)∥2−1/2dt ≲ C1ε
−2T 2

∫
R+

e−2t/T ∥(1 + ε∂t)∂tg
ε
0(t)∥21/2dt.(4.36)

Our goal is now to replace in the above the integrals over R+ by the integrals over (0, T ). This is trivial for the
integral on the left; however, to do so for the right-hand side we should make use of the causality argument.
More precisely, as argued before, µεG is a convolution of two causal distributions. This implies that the density
µεG(t) depends only on gε0(τ) for τ ≤ t. Hence, if gεT,0 is s.t.

gεT,0 = gε0 on (−∞, T ),

and
µεG,T = (Sε00(∂t))

−1
gεT,0,

then we have that µεG = µεG,T on (−∞, T ). Moreover, if gεT,0 is sufficiently regular, the bound (4.36) holds with
µεG, g

ε
0 replaced respectively by µεG,T , g

ε
T,0. We choose gεT,0 so that it solves the following Cauchy problem (cf.

the proof of Proposition 3.2.2 in [39]), cf. (4.36),

(1 + ε∂t)∂tg
ε
T,0(t) = 0 on (T,∞), ∂ℓtg

ε
T,0(T ) = ∂ℓtg

ε
0(T ), for ℓ = 0, 1.

With this choice, (4.36) becomes∫
R+

e−2t/T ∥µεG,T (t)∥2−1/2dt ≲ C1ε
−2T 2

∫ T

0

e−2t/T ∥(1 + ε∂t)∂tg
ε
0(t)∥21/2dt.(4.37)

We use µεG,T (t) = µεG(t) on (0, T ) and 1 > e−t/T > e−1 on (0, T ) to obtain further∫ T

0

∥µεG(t)∥2−1/2dt ≲ C1ε
−2T 2

∫ T

0

∥(1 + ε∂t)∂tg
ε
0(t)∥21/2dt.(4.38)

Thus, we have derived a time-domain bound on µεG in terms of gε0.
To get a stronger L∞(0, T ;H−1/2(Γε))-bound on µεG, we use the following bound (see the explanation below

on how it can be obtained)

∥µεG∥L∞(0,T ;Vε
0 )

≤ T 1/2∥∂tµεG∥L2(0,T ;Vε
0 )
,(4.39)

and the bound on ∥∂tµεG∥L2(0,T ;H−1/2(Γε)) can be obtained like (4.38), with gε0 replaced by ∂tg
ε
0. Finally, to

derive (4.39), we use the following identity, valid for sufficiently regular t 7→ v(t), with v taking values in a
Banach space X and s.t. v(0) = 0:

v(t) =

∫ t

0

∂τv(τ)dτ =⇒ ∥v(t)∥X ≤ t1/2∥∂tv∥L2(0,t;X),(4.40)

where the last bound follows from the Cauchy-Schwarz inequality.
Altogether, we obtain

∥µεG∥L∞(0,T ;Vε
0 )

≲ C
1/2
1 ε−1T 3/2

(∫ T

0

∥(1 + ε∂t)∂
2
t g

ε
0(t)∥21/2dt

)1/2

.(4.41)
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Step 1.2. Bounding the right-hand side with respect to uinc. Finally, to obtain the bound in the statement
of the proposition, we use in (4.41) the estimate of Proposition 4.15. It yields the following bound, where the
constant C ′

µ0 depends on R∗, R−1
∗ , N , d∗

−1 polynomially:

∥µεG∥L∞(0,T ;Vε
0 )

≤ C ′
µ0ε

−1/2T 3/2∥∂2t uinc∥2H1
ε (0,T ;L∞(R2)).

The above yields the desired stability bound in the statement of the proposition.
Let us remark that such a bound would have been difficult to obtain, had we used immediately the frequency-

domain counterpart of Proposition 4.15 in the frequency-domain bound (4.30), and next applied the Plancherel
theorem. The reason for this is that when applying the Plancherel theorem to −iωûinc, we need to take the
non-vanishing initial conditions for uinc when using F−1(−iωûinc) = ∂tu

inc.
Step 2. Error bounds. The bounds on the errors of different components of the density can be computed

like in Step 1, by making use of the inequalities (4.33) and (4.34), the Plancherel theorem, the causality argument
and Propositions 4.15, 4.16.

In order to avoid technicalities, we will not specify explicit dependence of the constants in the error estimates
on T , since it is clear that the resulting bounds will depend on it polynomially. In what follows, the constants
Ci,G,⊥, Ci,G,0, Ci,G, i ∈ N, depend on polynomially on T,N, d∗

−1, R∗, R−1
∗ .

Step 2.1. An error bound for the orthogonal component of the density. Our next goal is to estimate the error
eε⊥, starting with the bound (4.33). Applying the same arguments as in Step 1 yields the following bound:

∥eε⊥∥L∞(0,T ;H−1/2(Γε)) ≤ C1,G,⊥
(
∥∂2t gε⊥∥H1

ε (0,T ;H1/2(Γε)) + ε1/2∥∂3t gε0∥H2
ε (0,T ;Vε

0 )

)
.(4.42)

Step 2.2. An error bound for the constant component of the density. We start with (4.34), which in the time
domain yields:

∥eε0∥L∞(0,T ;H−1/2(Γε)) ≤ ε1/2

× C1,G,0

(
∥∂4t gε⊥∥H2

ε (0,T ;H1/2(Γε)) + ε1/2∥∂5t gε0∥H3
ε (0,T ;H1/2(Γε))

)
,

(4.43)

Step 2.3. Obtaining final error bounds. It remains to sum up (4.42), (4.43):

∥eε∥L∞(0,T ;H−1/2(Γε)) ≲ C1,G

(
∥∂4t gε⊥∥H2

ε (0,T ;H1/2(Γε)) + ε1/2∥∂5t gε0∥H3
ε (0,T ;H1/2(Γε))

)
,

where we used the bound (4.40). Applying Propositions 4.15 and 4.16 yields the final bound in the statement
of the proposition:

∥eε∥L∞(0,T ;H−1/2(Γε)) ≲ C2,Gε
(
∥∂4t uinc∥H2

ε (0,T ;W 1,∞(R2)) + ∥∂5t uinc∥H3
ε (0,T ;L∞(R2))

)
.

Let us remark that with the bounds of Propositions 4.15 and 4.16, we have

∥êε⊥∥−1/2 = O(ε) and ∥êε0∥−1/2 = O(ε3/2).(4.44)

This fact is not reflected in the statement of the proposition, but will be of use later.

4.6. Proof of Theorem 4.1. Let δε > 0, and let x ∈ Ωε+δε,c. Remark that dist(x,Ωε,c) ≥ δε. First, we
will obtain an explicit in frequency bound for the error

ν̂ε := ûε(ω,x)− ûεG(ω,x),
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and next translate it into the time domain like in the proof of Proposition 4.3.
We use an explicit representation of ν̂ε and split

ν̂ε = ν̂ε0 + ν̂ε⊥,

ν̂ε0 :=

∫
Γε

Gω(x− y)êε0(y)dΓy, ν̂ε⊥ :=

∫
Γε

Gω(x− y)êε⊥(y)dΓy.

We would like to show in particular that the far-field error behaves as |ν̂ε| = O(ε2), while the density error
looses an order of ε: ∥êε∥H−1/2(Γε) = O(ε), cf. Proposition 4.3. In order to obtain such a super-convergence
result, we will treat the terms ν̂ε0 and ν̂ε⊥ separately, in order to make use of the different scalings of the error
components (4.44). We will explain the interest in this approach afterwards.

In what follows, by Ci,G, i ∈ N, we will denote a constant depending polynomially on R∗, R−1
∗ , N , d∗

−1,
and, where applicable, on T .

We start with the error generated by the constant component of the density error:

|ν̂ε0 |2 ≤

∣∣∣∣∣∑
n∈N

∫
Γε
n

Gω(x− y)êεn,0(y)dΓy

∣∣∣∣∣
2

≤ N sup
n

∥Gω(x− .)∥2L2(Γε
n)
∥êε0∥2L2(Γε).

(4.45)

The desired bound for ν̂ε0 then follows from Lemma 4.11 (used in a simplified form):

|ν̂ε0 | ≤ C1,Gε
1/2 max(1, log

1

δε Imω
)∥êε0∥L2(Γε)

≲ C1,Gε
1/2 max(1, log

1

δε
)max(1, log

1

Imω
)∥êε0∥L2(Γε),

(4.46)

where to obtain the latter inequality we used max(1, a+b) ≤ max(1, a)+max(1, b) ≤ max(1, a)(1+max(1, b)) ≤
2max(1, a)max(1, b).

In a similar manner, we can bound the field error generated by the error in the orthogonal component of
the density:

|ν̂ε⊥|2 ≤ N sup
n

∥Gω(x− .)∥2H1/2(Γε
n)
∥êε⊥∥2H−1/2(Γε).(4.47)

Using the result of Lemma 4.11,

|ν̂ε⊥| ≤ C2,Gεδ
−1
ε max(1, |ωδε|1/2)∥êε⊥∥−1/2

≤ C2,Gεδ
−1
ε max(1, δ1/2ε )|ω|max(1, (Imω)−1)∥êε⊥∥−1/2,

(4.48)

where to get the last bound we used in particular max(1, |ω|1/2) < max(1, |ω|) < |ω|max(1, (Imω)−1).
At this point we can see the interest in splitting ν̂ε into two components. When δε = const, both |ν̂ε0 | and

|ν̂ε⊥| have the same scaling with respect to ε: they behave as O(ε2), cf. (4.44). Had we used from the beginning
the same argument as we used to obtain (4.48), we would have the bound

|ν̂ε| ≲ sup
n

∥Gω(xε − .)∥H1/2(Γε
n)
∥êε∥H−1/2(Γε),

which, with Lemma 4.11 and Proposition 4.3 would yield, for δε = const, |ν̂ε| = O(ε3/2).
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With bounds (4.46) and (4.48), and remarking that both max(1, log 1
δε
) and δ−1

ε max(1, δ
1/2
ε ) are bounded

by max(1, δ−1
ε ), we arrive at the following expression:

|ν̂ε| ≤ C3,Gmax(1, δ−1
ε )max(1, (Imω)−1)

(
ε|ω|∥êε⊥∥−1/2 + ε1/2∥êε0∥−1/2

)
.

It remains to replace in the above bound ε|ω|∥êε⊥∥−1/2 + ε1/2∥êε0∥−1/2 by their bounds (4.33), (4.34), and next
proceed like in the proof of Proposition 4.3.

4.7. Discussion of the obtained results and the techniques used in the proofs. As one can notice
already in the proof of Proposition 4.3, the powers of ω in the frequency-domain bounds are translated into the
derivatives in the time domain, while powers of (Imω)−1 yield the constants growing polynomially in time. As
discussed in Remark 5, obtaining optimal error bounds in ω and Imω is necessary to derive optimal convergence
results, and to understand the interplay between the asymptotic parameter ε and the wavelength. The approach
that we use here most likely yields non-optimal results. First of all, we bound norms of products of operators by
products of their norms, cf. (4.4), see the related discussions on p. 87 of [39]. Some information is also lost when
passing from the Fourier-Laplace domain into the time domain, see the bottom of p. 44 in [39]. Moreover, we
obtain bounds without distinguishing the cases of the frequencies belonging to a bounded range and asymptotic
|ω| → +∞, cf. the proofs of Theorems 4.8, 4.9.

5. Extension of the results: a cluster of particles. The goal of this section is to show how the obtained
convergence bounds can be adapted to the case of sound-soft scattering problem in the case when the centres
of the particles and distances between them are no longer fixed with ε. We will assume that N = O(ε−γ), and
dε∗ = O(εα), with γ, α ≥ 0. Let us additionally assume that α ≤ 1. We will limit our discussion to the case
when the particles fill a fixed volume, which implies that N ≲ min(ε−2, ε−2α), thus

γ ≤ 2α.(5.1)

Our goal is to extend the (far-field) result of Theorem 4.1 to this case. In other words, we would like to bound
the following quantity:

|νε(t)| = |uεG(t,x)− uε(t,x)|, x ∈ Ωc, dist(x,Ωε,c) = δ > 0.

It is straightforward to verify that the only assumption used in our proofs was an assumption on the circles
not touching each other. Therefore, as seen from the proof of Proposition 4.3 and Theorem 4.1, it suffices to
(carefully) keep track of the dependence of the error bounds in the frequency domain on N , dε∗ and ε. Like
before, we will rely on the inequalities (4.4). For convenience, let us rewrite the bounds of Theorems 4.8, 4.9,
4.12, as well as of Propositions 4.15, 4.16. First, according to (4.8),

C0(ε, d
ε
∗) = 1 +

ε

dε∗
= O(1), ε→ 0.

We then have the following bounds for the operator norms:

∥(Ŝε00)−1∥ = O(ε−1), ∥Pε,∗⊥ (Ŝε)−1Pε⊥∥ = O(1), ∥Ŝε0⊥∥ = ∥Ŝε⊥0∥ = O(ε3/2−γ−α).

Moreover,

∥ĝε0∥1/2 = O(ε1/2−γ/2), ∥ĝε⊥∥1/2 = O(ε1−γ/2).
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It remains to rewrite the inequalities (4.4):

∥êε⊥∥−1/2 = O(ε1−
γ
2 ) +O(ε1−3γ/2−α) = O(ε1−3γ/2−α).

The constant component of the density error, cf. (4.4), satisfies:

∥êε0∥ = O(ε3/2−5γ/2−2α).

Finally, to obtain the bound for the field, we proceed like in the proof of Theorem 4.1. In particular, by (4.45),
(4.46), as well as (4.47), (4.48) it follows that

|ν̂ε0 | = O(ε−γ/2+1/2 ∥êε0∥−1/2) = O(ε2−3γ−2α) and

|ν̂ε⊥| = O(ε−γ/2+1∥êε⊥∥−1/2) = O(ε2−2γ−α).

Therefore,

|ν̂ε| = O(ε2−3γ−2α).

Evidently, we cannot expect convergence in the case when α = 1, independently of the number of particles. For
α < 1, in the particular case γ = 2α, we can expect the convergence rate of O(ε2(1−4α)) for α < 1/4.

6. Numerical experiments. In all the experiments we use the trapezoid convolution quadrature method
for the time semi-discretization. The reference solutions are computed with the use of the spatial Galerkin BEM
with 2Ns + 1 spectral Galerkin basis functions {eimθ}Ns

m=−Ns
on each of the obstacles.

6.1. Numerical validation of Theorem 4.1 and Proposition 4.3. We study a configuration ofN = 20
particles with centers located on the boundary of a unit circle, see Figure 6.1, left. We start with the Ri =
R = 0.1 (in this case d∗ ≈ 0.11). The incident field uinc(t,x) = e−100(t−d·x−2)2 , d = (0, 1), is approximately
band-limited, with the smallest wavelength λmin ≈ 0.12. The simulations are performed on the time interval
(0, T ), T = 8. We change ε and compare µεG(t) and u

ε
G(t,x0) in the centre of the circle x0 = 0 to the reference

density µε(t,x) and solution uε(t,x0) by computing

eεµ = ∥eε∥L∞(0,T ;H−1/2(Γε)), eεu = ∥uεG(.,x0)− uε(.,x0)∥L∞(0,T ).(6.1)

The dependence of the solutions uε(t,x0) and u
ε
G(t,x0) on t is depicted in Figure 6.1, right. The dependence

of eεµ and eεu on ε is shown in Figure 6.2, left. The numerical experiments support the claims of Proposition 4.3
and Theorem 4.1: as expected, eεµ = O(ε) and eεu = O(ε2).

6.2. Comparison with the Foldy-Lax model (FL1-FL2). The goal of this section is to compare the
Foldy-Lax model (FL1-FL2) to the new Galerkin Foldy-Lax model. In the case when the Foldy-Lax model
converges, we expect it to have the same convergence order as the Galerkin Foldy-Lax model, see Section 3.4.3
for the related discussion, as well as Proposition 4.3. The reason for this is that in the frequency domain, for a
fixed frequency, the difference between the coefficients of the two models is O(ε2), which is of convergence order
of the solution.

We present two experiments: the first one in which the Foldy-Lax model (FL1-FL2) has a performance com-
parable to the Galerkin Foldy-Lax model, and the second one where the Galerkin Foldy-Lax model outperforms
the Foldy-Lax model.

The first experiment is performed with the same data as in the previous section. In Figure 6.2, right, we
depict eεu defined for the Galerkin Foldy-Lax model in (6.1) and the analogous quantity eεFL,u for the Foldy-Lax
model (FL1-FL2). We were not able to make the first experiment with εR = 0.1 for the original Foldy-Lax
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Fig. 6.1. Left: the geometric configuration for the numerical experiment of Section 6 for ε = 1. Right: the dependence of
the solutions uε(t,x0) in x0 = 0 on time t obtained with the help of the Galerkin Foldy-Lax method and the high-order BEM for
εR = 0.05 (top) and εR = 0.01 (bottom).
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Fig. 6.2. Left: an illustration to the experiment of Section 6.1. Convergence of the errors eεu and eεµ. Right: an illustration
to the experiment of Section 6.2. Convergence of the error eεFL,u.

model, since we observed an exponential blow-up of the solution on the given time interval. Nonetheless, for
small ε, we see that the errors of the Galerkin Foldy-Lax model and the model (FL1-FL2) almost coincide.

The second experiment is performed on longer times. We take N = 16 particles; the centers of the 15
particles of radius Ri = 0.01, 1 ≤ i ≤ 15, are equidistant, and are located on the boundary of a circle of radius
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Fig. 6.3. An illustration to the numerical experiment of Section 6.2. Left: The dependence of the solutions u1(t,x0) and
u1
G(t,x0) on t. Right: the dependence of the condition number of the Foldy-Lax matrix (FL1) on ω plotted in the axis (Reω, Imω).

0.1 centered in the origin, and the remaining particle of radius R16 = 0.02 is again centered in the origin. We
set

uinc(t,x) = − sin(8(t− s(x)))H(t− s(x)), s(x) = x2 + 2, H(t) =
1

1 + e−20t
.

Let us remark that the initial data for the Cauchy problem satisfied by the incident field (2.1) is no longer
compactly supported, but the analysis of the article can be extended to this case as well.

We perform the simulations on the time interval (0, T ) with T = 20, and measure the field in the point
x0 = (0.07, 0). We show the reference solution versus the Galerkin Foldy-Lax approximation in Figure 6.3,
left. The relative L∞(0, T )-error between the two solutions does not exceed 3%. At the same time, the
solution obtained with the Foldy-Lax model (FL1-FL2) explodes, at least for the chosen time step and the
simulation time.1 Numerically, we observe that the matrix in the right-hand side of (2.9) is not invertible for
ω ≈ 39.47+0.03i, see Figure 6.3, right, and this probably accounts for the exponential growth of the computed
solution.

Remark that as the source is harmonic in time, we expect the limiting amplitude principle [14] to hold for
the exact solution; this is the case for the approximation of the solution computed with the help of the Galerkin
Foldy-Lax model, as shown in Figure 6.3, left.

7. Conclusions and open questions. In this work we have constructed an asymptotic model for scat-
tering by small particles as a Galerkin discretization of the single-layer boundary integral formulation. This
procedure yields a model a priori stable in the time-domain. For a particular case of scattering by circles, we
have shown the second order convergence of the method, confirmed by the numerical experiments. Nonetheless,
many questions still remain open, and we list them below:

1. optimality of the obtained estimates in regularity requirements;
2. construction of a (higher order) Galerkin Foldy-Lax model for particles of arbitrary shapes;
3. efficient numerical methods for such models, and comparison of their performance to the finite element

method based simulations;
4. advantages/disadvantages in using other integral formulations (e.g. time-domain CFIE or direct integral

formulation);
5. performance of Galerkin Foldy-Lax models purely in the frequency domain (in particular for the prob-

lems without absorption).

1Remarkably, one still may have stability for larger time steps, see Section 3.2 for a related discussion.
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We plan to address some of these questions in future works, as well as extend the analysis to the 3D electro-
magnetic case.
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Appendix A. Proof of Proposition 2.1. The outgoing solution to (2.5) is given by (we write ĝεn for
ĝε1,n) the series of Hankel functions:

ûε(ω, ρŝθ) =
∑
n∈Z

H
(1)
n (ωρ)

H
(1)
n (ωε)

ĝεne
inθ, ŝθ = (cos θ, sin θ).

We further split ûε into two terms that have different scalings with respect to ε:

ûε = ûε0 + ûε⊥, ûε0(ω, ρŝθ) =
H

(1)
0 (ωρ)

H
(1)
0 (ωε)

ĝε0, ûε⊥(ω, ρŝθ) =
∑

n∈Z\{0}

H
(1)
n (ωρ)

H
(1)
n (ωε)

ĝεne
inθ.

Asymptotic behaviour of Hankel functions [13, Chapter 10.8] yields

ûε0(ω, ρŝθ) = − iπ
2
H

(1)
0 (ωρ)ĝε0 log

−1 ε+ o(log−1 ε), as ε→ 0,(A.1)

cf. the statement of Proposition 2.1. The term ûε⊥(ω, ρŝθ) is bounded with the Cauchy-Schwarz inequality and
Lemma D.1:

|ûε⊥(ω, ρŝθ)|
2 ≤

∑
n∈Z\{0}

∣∣∣∣∣H(1)
n (ωρ)

H
(1)
n (ωε)

∣∣∣∣∣
2 ∑
n∈Z\{0}

|ĝεn|2 ≤ Cε2
∑

n∈Z\{0}

|ĝεn|2.(A.2)

Let us now estimate the quantities related to the data. For sufficiently regular ûinc,

ĝε0 = − 1

2πε

∫
Γε

ûinc(ω,x)dΓx = −ûinc(ω, 0) +O(ε),∑
n∈Z\{0}

|ĝεn|2 = (2πε)−1∥ĝε − ĝε0∥2L2(Γε) = (2πε)−1 inf
c∈C

∥ĝε − c∥2L2(Γε)

≲ ε−1

∫
Γε

|ûinc(ω,y)− ûinc(ω, 0)|2dΓy = O(ε2).

Inserting the above expressions into (A.2), (A.1) yields the desired result in the statement of the proposition.

Appendix B. Proof of Proposition 2.2. Proof of Proposition 2.2 relies on several auxiliary lemmas.
First of all, let us examine (FL1), (FL2). Evidently, the temporal behaviour of u1FL is defined by the behaviour
of λ1

FL. In order to show that t 7→ ∥λ1
FL(t)∥ admits an exponential growth, we will prove that its Fourier-

Laplace transform has poles with a strictly positive imaginary part. The poles of λ̂
1

FL are closely related to
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the points ω where the matrix in the left-hand side of (2.9) is not invertible. Let us denote this matrix for the
geometry described in Proposition 2.2 by Λ(ω):

Λnk(ω) = δnk + (1− δnk)P (ω), P (ω) =
H

(1)
0 (ωc)

H
(1)
0 (ωr)

, k, n = 1, . . . , N.

We then have the following result.

Lemma B.1. Under assumptions of Proposition 2.2, with η = cr−1 < 4,
(i) The matrix Λ = Λ(ω) is not invertible for a countable set of frequencies ωn ∈ C+, n ∈ Z.
(ii) These frequencies satisfy

lim
n→±∞

Imωn =
1

r(η − 1)
log

2
√
η
> 0.(B.1)

(iii) The respective eigenvalues are simple, moreover KerΛ(ωn) = span{(1, 1, 1)}.
We present the complete proof later, while here we will briefly outline how (i) and (ii) are proven. One can
show that the points ω ∈ C+ where the matrix Λ is not invertible are in particular the roots ω ∈ C+ of the
equation P (ω) = −1/2. From the known asymptotics of the Hankel functions it follows that

P (ω) = η−
1
2 ei(η−1)ωr + o(1), |ω| → +∞.

The inverse function theorem can then be used to prove that the roots of P (ω) = −1/2 are close to the roots

of η−
1
2 ei(η−1)ωr = −1/2, which, in turn, are given by

ω∞,n =
1

r(η − 1)

(
(2n+ 1)π + i log

2
√
η

)
, n ∈ Z.(B.2)

Evidently, Imω∞,n > 0 for η < 4.
To illustrate the statement of Lemma B.1, we plot E(ω) = |P (ω) + 1/2| in Figure B.1 (see the proof of the

lemma). We compare the numerically computed roots of E(ω) (zeros of detΛ(ω) in C+) to the values ω∞,n cf.
(B.2). As seen in Figure B.1, for the chosen parameters, the values ω∞,n provide a good approximation to the
roots of E(ω).

Fig. B.1. |P (ω) + 1/2| in the coordinates (Reω, Imω), η = 2.1 and r = 1. The values ω∞,n are shown in white.

To prove Lemma B.1, we will rely on the following result.

Lemma B.2. [12, Chapter XII, Lemma 1.2] Let f be analytic on B(0, R), f(0) = 0, |f ′(0)| = µ > 0, and
|f(z)| ≤M for all z ∈ B(0, R). Then

f(B(0;R)) ⊃ B

(
0;
R2µ2

6M

)
.
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We will also need an asymptotic behaviour of Hankel functions [37, pp. 266-267]. For all z ∈ C+ (where for

x < 0 we write H
(1)
m (x) = lim

ν→0+
H

(1)
m (x+ iν)):

H
(1)
0 (z) =

(
2

πz

) 1
2

ei(z−
π
4 )
(
1 +O(|z|−1)

)
, |z| → +∞,(B.3)

H
(1)
1 (z) =

(
2

πz

) 1
2

ei(z−
3π
4 )
(
1 +O

(
|z|−1

))
, |z| → +∞.(B.4)

The error constants in the above expansions can be bounded uniformly in Arg z ∈ [0, π].

Proof of Lemma B.1. The matrix Λ with detΛ = 1+2P 3−3P 2 is not invertible for ω s.t. P (ω) ∈ {−1/2, 1}.
Let us look for ω ∈ C+, s.t.

P (ω) = −1/2.(B.5)

Let us remark that in general it is possible to show that for ω ∈ C+, |P (ω)| < 1, and therefore, Λ(ω) is not
invertible in ω ∈ C+ if and only if (B.5) holds true.

Proof of (i) and (ii). The set of the roots of (B.5) is at most countable, since ω 7→ P (ω) is analytic in C+.
To show that there are infinitely many roots, we will rely on

• an explicit asymptotic behaviour of P (ω), which will allow us to obtain an ansatz for the location of
the solutions of (B.5) in C+;

• Lemma B.2 which will that some solutions of (B.5) are close to this ansatz.
Step 1. Ansatz for the roots. By (B.3), for all |ωr| sufficiently large, we have that

P (ω) =
H

(1)
0 (ωηr)

H
(1)
0 (ωr)

= η−
1
2 ei(η−1)ωr +O(|ω|−1).(B.6)

The solutions of

η−1/2ei(η−1)ωr = −1/2(B.7)

are given by

ω∞,n =
1

r(η − 1)

(
(2n+ 1)π + i log

2
√
η

)
, n ∈ Z.(B.8)

Because 1 <
√
η < 2 by the assumption of the proposition, all these roots satisfy ω∞,n ∈ C+, with Imω∞,n

independent of n. As n→ ∞, we also have that |ω∞,n| = O(n). Moreover, |ω∞,n+1 −ω∞,n| = 2π
r(η−1) . Without

loss of generality, in the proof we will consider the case n > 0.
Step 2. Roots of (B.5). Based on the above, let us show that countably many solutions of (B.5) lie in C+.

Let us consider the following function:

pn(ω) := P (ω)− P (ω∞,n).

Remark that, by (B.6), we have in particular

|P (ω∞,n) + 1/2| ≤ CPn
−1, CP > 0.(B.9)
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We will show that for all n sufficiently large, there exists δn > 0, s.t. B(ω∞,n, δn) ⊂ C+ and, with some cp > 0,

pn(B(ω∞,n, δn)) ⊃ B
(
0, cpn

−1/2
)
.(B.10)

For the function

P (ω) + 1/2 = pn(ω) + zn, zn = P (ω∞,n) + 1/2,

this will imply that for all z ∈ B(zn, cpn
−1/2), there exists ωz ∈ B(ω∞,n, δn), s.t.

P (ωz) + 1/2 = z.

In particular, by the bound (B.9), 0 ∈ B(zn, cpn
−1/2), and hence the desired result. We will show a stronger

result, namely, we will prove that in the above one can choose δn s.t. lim
n→+∞

δn = 0, which will yield the

statement (ii).
It remains to prove (B.10). For this we will use Lemma B.2, applied to f(.) = p̃n(.) = pn(. + ω∞,n). A

priori, we will choose δn so that

δn <
1

4
min(Imω∞,n, sup

k
|ω∞,k+1 − ω∞,k|) ≤

1

4r(η − 1)
log

2
√
η
,(B.11)

so that B(ω∞,n, δn) ⊂ C+, and B(ω∞,n, δn) ∩B(ω∞,n+1, δn+1) = ∅.
Let us now prove (B.10). We need a lower bound on p′n(ω∞,n) and an upper bound on pn inside B(ω∞,n, δ).

Step 2.1. A lower bound on p′n(ω∞,n). Because (H
(1)
0 (z))′ = −H(1)

1 (z) ([1, 9.1.3, 9.1.28]), we have that

p′n(ω∞,n) = −cH
(1)
1 (ω∞,nc)

H
(1)
0 (ω∞,nr)

+ r
H

(1)
1 (ω∞,nr)P (ω∞,n)

H
(1)
0 (ω∞,nr)

.(B.12)

We consider (B.12) for n → +∞, i.e. |ω∞,n| → +∞. Using the asymptotic expansions (B.4), (B.6) and (B.9)
in (B.12) results in the following expansion for p′n:

p′n(ω∞,n) = i
c
√
η
ei(η−1)ω∞,nr +

ir

2
+O(n−1), n→ +∞.

Because ω∞,n solves (B.7), we have

p′n(ω∞,n) = − i(c− r)

2
+O(n−1),

hence for n sufficiently large it holds that

|p′n(ω∞,n)| ≥
r

4
(η − 1).(B.13)

Step 2.2. An upper bound on pn. Again, we are interested in the case when n→ +∞, and ω ∈ B(ω∞,n, δn).
From the definition of pn(ω), the bound (B.9) and (B.6) it follows that, for all n sufficiently large, with

some C > 0 independent of n,

|pn(ω)| ≤ η−1/2e−(η−1) Imωr +
1

2
+ Cn−1.
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For ω ∈ B(ω∞,n, δn) ⊂ C+, and using η > 1, one sees that there exists Cη > 0 s.t.

|pn(ω)| ≤ Cη, for all n sufficiently large.(B.14)

Step 2.3. Proof of (B.10). Using (B.13) and (B.14), and applying Lemma B.2 to p̃n(.) := pn(. + ω∞,n), we
conclude that, for all n sufficiently large

pn(B(ω∞,n, δn)) ⊃ B

(
0;
δ2nr

2(η − 1)2

96Cη

)
.

To obtain the desired result, it remains to choose δn e.g. so that |δn| < n−1/4 (for all n sufficiently large (B.11)
will be automatically satisfied).

To summarize, it follows that for all n sufficiently large, there exists ωk(n) ∈ B(ω∞,n; δn) ⊂ C+ s.t. (B.5) is
satisfied with ω = ωk(n). This proves (i).

Because ωk(n) ∈ B(ω∞,n; δn), δn → 0 as n → +∞, and using explicit expressions of ω∞,n in (B.8), we see
the validity of (ii).

Finally, (iii) follows by considering an explicit expression of Λ, when P (ω) = − 1
2 .

We now have all necessary ingredients to prove Proposition 2.2.

Proof of Proposition 2.2. For brevity, we will omit the index 1 in λ1
FL and u1FL. First of all, let us prove

the result for λFL(t), and next discuss how to extend the reasoning to uFL. More precisely, we will show that
there exist u0, u1 ∈ C∞

0 (Ωc), c,B > 0 s.t., for some sequence tn → +∞, one has that ∥λFL(tn)∥ ≥ ceBtn .
Let us assume the opposite, i.e. that for all u0, u1 ∈ C∞

0 (Ωc), for all B > 0,

lim sup
t→+∞

(
e−Bt∥λFL(t)∥

)
= 0.(B.15)

The assumption implies that for all δ > 0, there exists Cδ > 0, s.t.

∥λFL(t)∥ ≤ Cδe
δt, for all t > 0.

Then ω 7→ λ̂FL is C3-valued analytic function in C+. We will arrive at contradiction by choosing uinc so that
λ̂FL has a pole in C+. Let us introduce

a(ω) = −
(
ûinc(ω, ck)

)3
k=1

∈ C3, so that λ̂FL(ω) = Λ(ω)−1a(ω).

In the vicinity of ωn defined as in Lemma B.1, one has that Λ(ω)−1 = (ω − ωn)
−1P1 + O(1), where P1 is an

orthogonal projector on Span{1 = (1, 1, 1)t}. To show that λ̂FL has a pole in ω = ωn, it suffices to find u0, u1
so that for some n ∈ Z, P1a(ωn) ̸= 0.

Let us fix n = n∗. The choice of u0, u1 is then as follows. We fix u0 = 0. Let a priori suppu1 = K0, where
K0 is a compact in Ωc. Without loss of generality, let us assume that K0 includes a small ball in the vicinity
of the midpoint x∗ of the equilateral triangle formed by the points ck, k = 1, . . . , 3. Then

ûinc(ω,x) = −
∫
K0

Gω(∥x− y∥)u1(y)dy,

and we need to choose u1 so that

α = (1,a(ωn∗)) = −
∫
K0

3∑
k=1

Gωn∗
(∥ck − y∥)u1(y)dy ̸= 0.(B.16)
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Evidently, such a function u1 ∈ C∞
0 (K0) exists, since otherwise one would have had that

∑3
k=1Gωn∗

(∥ck−y∥) =
0 for all y ∈ K0, and, in particular, Gωn∗

(∥ck − x∗∥) = 0; this is impossible since H
(1)
0 (z) does not vanish in

C+.
This construction ensures that λ̂(ω) has a pole in ωn∗ ∈ C+, thus a contradiction to (B.15).
Let us now argue that with the above choice of the initial data, ω 7→ ûFL(ω) is not L

2-analytic in C+; this
will prove the statement of the proposition. By (2.8),

ûFL(ω,x) =

3∑
k=1

Gω(∥x− ck∥)
Gω(r)

λ̂FL,k.

In the vicinity of ωn∗ , λ̂FL(ω) = (ω − ωn∗)
−1α1+O(1), cf. (B.16), and thus ûFL has the following expansion:

ûFL(ω,x) = (ω − ωn∗)
−1 (f(ωn∗ ,x),1) +O(1), fk(ω,x) = α

Gω(∥x− ck∥)
Gω(r)

.

It remains to prove that there exists a compact K, s.t. ûFL : C+ → L2(K) is not analytic. For this it is
sufficient to show that (f(ωn∗ ,x),1) ̸= 0 for x lying in a subset of K of a non-zero Lebesgue measure. In
particular, we will choose K as a small ball around x∗, where x∗ is as defined above. We remark that

f(ωn∗ ,x
∗) = α

Gωn∗
(∥x∗ − ck∥)
Gωn∗

(r)
1 ̸= 0,

because z 7→ H
(1)
0 (z) does not vanish in C+. Moreover, x 7→ f(ωn∗ ,x) is continuous in the vicinity of x∗, which

proves the desired result.

Appendix C. Proof of Corollary 4.2. The convergence property is immediate from Theorem 4.1 and
(2.3).

The uniform stability property relies on the triangle inequality

|uεG(t,xε)| ≤ error+|uε(t,xε)|.

It remains to bound |uε(t,xε)| and ∥∂5t uinc∥H3
ε (0,T ;W 1,∞(R2)) by some Sobolev norms of u0, u1. Let us sketch

how this can be done.
To obtain a bound on uε we start by remarking that, by the Sobolev embedding theorem [16, Theo-

rem 1.4.4.1], |uε(t,x0)| ≲ ∥uε(t)∥H2(B(x0,r)), where r > 0 is s.t. B(x0, r) ⊂ Ωc. To obtain a bound on
∥uε(t)∥H2(B(x0,r)), we use the definition uε = uεtot − uinc and the energy argument applied to uεtot and uinc.
More precisely, by the triangle inequality, we have that

∥∂tuε(t)∥Ωc + |uε(t)|H1(Ωc) ≤ 2(∥u0∥+ ∥u1∥).

This immediately yields a bound on |uε(t)|H1(B(x0,r)).
To control ∥uε(t)∥B(x0,r), we use that for v(0) = 0, |v(t)| ≤ t∥v′∥L2(0,t), thus

∥uε(t)∥Ωc ≤ 2t(∥u0∥+ ∥u1∥).

Finally, by using elliptic regularity results, cf. [35, Theorem 4.16], to bound ∥D2uε(t)∥B(x0,r), it suffices
to bound ∥∆uε(t)∥B(x0,r+δ), where δ > 0 is s.t. B(x0, r + δ) ⊂ Ωc. We have that ∥∆uε(t)∥B(x0,r+δ) =
∥∂2t uε(t)∥B(x0,r+δ). The bound on ∥∂2t uε(t)∥B(x0,r+δ) can then be obtained by the triangle inequality and the
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energy argument applied to ∂tu
ε
tot, ∂tu

inc, which in their turn, solve the respective BVP and free space problem
with the initial data (u1,∆u0). This yields

∥D2uε(t)∥B(x0,r) ≲ ∥∂2t uε(t)∥B(x0,r+δ) ≤ 2(∥∆u0∥+ ∥u1∥).

To bound ∥∂5t uinc∥H3
ε (0,T ;W 1,∞(R2)), we use the Sobolev embedding theorem [16], to show that ∥∂5t uinc∥H3

ε (0,T ;W 1,∞(R2)) ≤
∥∂5t uinc∥H3

ε (0,T ;H3(R2)). Next we remark that ∂kt u
inc solves the wave equation, and, like before, make use of the

initial data regularity and energy arguments. We leave the remaining details to the reader.

Appendix D. Estimates on Hankel functions.

Lemma D.1. Let ω, ρ > 0. Then

∑
n∈Z\{0}

∣∣∣∣∣H(1)
n (ωρ)

H
(1)
n (ωε)

∣∣∣∣∣
2

= O(ε2), as ε→ 0.

Proof. Since it holds that H
(1)
n (z) = (−1)nH

(1)
−n(z), see [13, §10.4], it suffices to derive a bound on

∑
n∈N∗

+

∣∣∣∣∣H(1)
n (ωρ)

H
(1)
n (ωε)

∣∣∣∣∣
2

.

First of all, there exist ε1 > 0, c1 > 0, s.t. for all ε < ε1 and n ≥ 1,

1

|H(1)
n (ωε)|

≤ c1
(ωε)n

n!
.(D.1)

For n = 1, the above bound follows from the expansion of H
(1)
1 into series, cf. [13, §10.8 and 10.2.2]. For n ≥ 2,

by Lemma 7 in [9], we have that

1

|H(1)
n (ωε)|

≤ 2(ωε)n−2

n!|H(1)
2 (ωε)|

, for 0 < ωε < 1 and n ≥ 2.

Then the bound (D.1) can be obtained again by considering the series expansion of H
(1)
2 , cf. [13, §10.8 and

10.2.2].
Next, by the asymptotic expansions of Hankel functions as n→ +∞ [13, §10.19], it follows that there exist

Nωρ, c2 > 0, s.t. for all n ≥ Nωρ,

|H(1)
n (ωρ)| ≤ c2

√
2

πn

(
2n

eωρ

)n
≤ c2(n− 1)!

(
2

ρω

)n
.(D.2)

Finally, we split the sum in the statement of the lemma into two terms and bound them using (D.1), (D.2),
assuming in particular that ε < ρ/2:

∑
n∈N∗

+

∣∣∣∣∣H(1)
n (ωρ)

H
(1)
n (ωε)

∣∣∣∣∣
2

≤ sup
0<n≤Nωρ

|H(1)
n (ωρ)|2

Nωρ−1∑
n=1

|H(1)
n (ωε)|−2 +

+∞∑
n=Nωρ

∣∣∣∣∣H(1)
n (ωρ)

H
(1)
n (ωε)

∣∣∣∣∣
2

≤ Cωρε
2.

Lemma D.2. For µ > 1, all x > 0, K0(µx) < K0(x).
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Proof. By [13, 10.32.9], the function

x 7→ K0(x) =

∫ +∞

0

e−x cosh tdt,(D.3)

is strictly monotonically decreasing.

Lemma D.3. For µ ≥ 1, m ≥ 1, x ∈ R+, it holds that Km(µx) < µ−mKm(x).

Proof. By [13, 10.32.11], for all µ > 0,

Km(µx) =
Γ(m+ 1/2)(2x)m√

πµm

∫ +∞

0

cosµt

(t2 + x2)m+1/2
dt.(D.4)

A straightforward computation yields

sign (µmKm(µx)−Km(x)) = signG(µ, x), G(µ, x) =

∫ +∞

0

cosµt− cos t

(t2 + x2)m+1/2
dt.(D.5)

It remains to prove that for µ > 1 the quantity in the right hand side is negative. Let x > 0 be fixed. We have
G(1, x) = 0 and, integrating by parts (with m ≥ 1),

∂µG(µ, x) = −
∫ +∞

0

t sinµt

(t2 + x2)m+1/2
dt = − µ

(2m− 1)

∫ +∞

0

cosµt

(t2 + x2)m−1/2
dt.

By (D.4), sign ∂µG = − signKm−1(µx) < 0, since Kν(x) > 0 for x > 0 (compare [13, 10.32.8]). Thus G(µ, x) <
G(1, x) = 0, and the desired result follows from (D.5).
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