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Abstract

A non-intrusive method to get a multi-element Polynomial Chaos model is developed. This method
is called ME-ACD, for Multi-Element based on Agglomerative Clustering on Derivatives. It aims
at approximating a Quantity of Interest which presents discontinuities or irregularities making it
difficult to be accurately approximated by standard Polynomial Chaos models. The method permits
to efficiently split the parameter space and to train local polynomial models of lower degrees on every
element where the local pieces of the Quantity of Interest are smoother. The algorithm is based on
agglomerative clustering of the observations in a well-chosen abstract space taking into account the
value of the Quantity of Interest and of its derivatives with respect to the stochastic input parameters.
The same observations are used for both partitioning the space and training the local models. Several
partitions of the parameter space are tested, and the one leading to local models minimizing a cross-
validation error is selected. Once the training observations are labelled with a class number indicating
the element they are located in, a neural network classifier is trained to determine which local model
to use for further evaluations. The method has proven to efficiently split the parameter space for a
set of applications of moderate dimension. The piecewise chaos model is compared with the ones of a
standard Polynomial Chaos non-intrusive method and of a Gradient Boosted Trees method in terms
of accuracy.

Keywords : Uncertainty Quantification, Multi-element Polynomial Chaos, Machine learning.

1 Introduction
Uncertainty Quantification (UQ) has become paramount in physical simulations in a wide range of fields.
Deterministic simulations, with fixed parameters, have been the core of numerical analysis during many
years, but they do not take into account the potential uncertainties of the parameters, notably the ones
coming from data. UQ focuses on the impact of these uncertainties on an output, which is often denoted
the "output" or the "Quantity of Interest" (QOI). The studied uncertainties are called the "input param-
eters" and are supposed to follow a stochastic distribution law. The determination of the distribution
law of an input parameter is one step of UQ which is not discussed in the context of this article. Here is
assumed that the input parameters are independent with a known probability distribution function (pdf).
Some transforms are known in the literature to handle the case of independent input parameters and map
them to independent ones [20, 16].
The classical Monte-Carlo (MC) method is known to be robust and simple to implement, but has a low
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convergence rate and only gives information on the statistic moments of the QOI. The use of surrogate
models overcomes these drawbacks. Surrogate models approximate the relation between the QOI and the
input parameters by an analytical formula. In this article, we are interested in the Polynomial Chaos
expansion (PC), first introduced by Wiener in [28]. Originally, this expansion aimed at building an ap-
proximation of a stochastic process as a series of Hermite polynomials of gaussian random variables. PC
was later extended in [32] for other stochastic distributions using other orhogonal families, introducing
the gPC (generalized polynomial chaos) framework. In the article, PC denotes an expansion in the gPC
framework.
Constructing a PC model for an Ordinary Differential Equation or a Partial Differential Equation is classi-
cally done by Stochastic Galerkin (SG) methods, also called "Intrusive methods" [32] in the field of chaos
polynomials. SG methods extend both input parameters and QOI into a chaos series and use orthog-
onalisation to obtain a system of coupled differential equations with every coefficient of the polynomial
approximation series of the QOI. These methods can therefore result in large systems and need to develop
new simulation codes, which is extremely difficult for complex systems. In the context of this article,
"Non-intrusive" (NI) methods are considered [31, 2, 29, 14, 4, 8]. NI methods consist in fixing a value of
the input parameters and then running the deterministic associated system, which is suitable for QOIs
with complex computation, seeing it as a "black box". NI methods are then close to Machine learning
(ML) problems. A set of fixed values of the input parameters and the corresponding value of the QOI
with these parameters is called an "observation" (or in some references a "node"). Observations can be
represented in an abstract space. The parameter space is one possible abstract space where every coordi-
nate of a point corresponds to the value taken by the input parameters. The number of input parameters
is then representing the dimension of this space. The PC model is obtained with the values of the QOI on
a set of observations, called "training observations". There are numerous NI methods. Some of them are
based on classical interpolation or linear regression methods but with observations representing stochastic
uncertainties. For more details on "Intrusive" or "Non-intrusive" methods, the reader is referred to [30].
PC models (both obtained with SG and NI) have been proven to be very efficient in many cases when the
QOI is smooth with respect to the input parameters but its accuracy highly deteriorates in presence of
irregularities and discontinuities. In this article, the term of irregularities refers to a continuous behaviour
needing a high truncation degree of the chaos expansion to be accurately approximated. As shown below,
the number of terms of the expansion grows in factorial with the truncation degree and with the dimension
of the parameter space (the number of input parameters), which can become a burden both in term of
computational time and memory to approximate such quantities. Moreover, a discontinuous QOI suffers
from Gibbs phenomenon, which does not vanish when the truncation degree is increased.
Among other methods, Multi-Element (ME) methods were developed to address these issues [27, 5, 10, 22].
The first NI ME method, ME-PCM [5] (the non-intrusive equivalent of the multi-element intrusive method
ME-PC [27]), consists in refining the parameter space into smaller and smaller hypercubes, and applying
stochastic collocation methods on these elements to find the chaos coefficients of the local PC models. In
that way, a QOI can be approximated locally by models with lower degrees, which can reduce the cost
of the algorithm in time and in memory. In the case of a discontinuous QOI, the Gibbs phenomenon is
confined in the hypercubes which contain the discontinuity so that its impact on the variance of the QOI
is reduced. However, if the discontinuity or the irregularity is not aligned with the Cartesian axis of the
parameter space, the number of hypercubes can grow dramatically.
In [10], the minimal multi-element method has been developed to study a discontinuous QOI. Relying on
polynomial annihilation edge detection [1], this algorithm aims at splitting the parameter space along the
discontinuities, which totally removes the Gibbs phenomenon as the QOI is smooth on each element. The
same observations are used to divide the parameter space and to train the surrogate models, using the
least orthogonal interpolation [15] on every element. Similar methods split the parameter space along the
discontinuity using Bayesian inference to detect the discontinuity and to approximate its curve equation
[22]. Nevertheless, these two methods only focus on discontinuous behaviours but do not simplify the study
of irregular continuous behaviours as ME-PCM did. Moreover, to the author knowledge, these methods
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do not permit to split the parameter space in presence of a discontinuity which runs partially through it.
In this article, a new NI ME method is developed. This method aims at partitioning the parameter space
according to a potential discontinuity or efficiently partitioning it to use local models of lower degree in
presence of irregularities. This method is called "ME-ACD", which stands for Multi Element method
based on Agglomerative Clustering on Derivatives. To split the parameter space, the used method is
agglomerative clustering on the training observations represented in an well chosen abstract space taking
into account the value of the QOI and the values of its derivatives with respect to the input parameters.
This method also permits to split the parameter space in presence of a discontinuity which runs partially
through it. The same training observations are used for both partitioning the parameter space and for
training the local surrogate models with linear regression. Once the piecewise model is obtained, the
observations are labelled with an index stating in what element they are in and a supervised classifier is
trained to determine which local polynomial model is used for a given evaluation. The chosen classifier is
the Multi-Layer Perceptron (MLP) classifier, based on artificial neural network.
The use of clustering to study discontinuous UQ has already been done in [19] and [23] but both are only
driven by the QOI values on the observations. To the author knowledge, the development of a method
which selects the most suitable partition of the parameter space using clustering on a abstract space con-
taining the derivatives of the QOI had never been done in the field of UQ.

The article is outlined as following : PC framework and its extension to multi-element is developed in
Section 2. Section 3 presents in details the different steps of ME-ACD. Section 4 shows its performances
on a set of applications. The accuracy of ME-ACD is compared with the one of an algorithm of Gradient
Boosted Trees (GBT) [6] and with the accuracy of classical NI PC method on a set of discontinuous and
irregular continuous QOIs. GBT is not a PC method, but a ML one which can be used for regression.
As NI PC methods are classical regression or interpolation methods used in the context of UQ with a
polynomial surrogate model, GBT can be used in this same context, except that it does not give orthogonal
polynomial series. GBT are adapted to the study as they are said to be able to approximate even irregular
and discontinuous QOIs. In a similar way, the method developed in this article in the context of UQ could
be used in other approaches as a new regression method.

2 from PC expansion to ME model
In this section, notations and the standard PC framework are introduced and its limits are underlined.
Then, some NI methods are recalled. Finally, the ME approach is introduced.

2.1 QOI and input parameters

The studied QOI is denoted f . f can be a given function, the solution of an Ordinary Differential Equation
system at a given instant or the solution of a Partial Differential Equation system at a given location and
instant. In this work, the possible dependencies in time and in space of the QOI are ignored to only focus
on its dependency in the input parameters, without loss of generality. f depends on d stochastic input
parameters p = (p1, ..., pd)

T which are supposed stochastic and independent. With this hypothesis, p
follows the following multivariate pdf

ρ(p) =
d∏

m=1

ρm(pm) (1)

where ρm is the pdf of pm. All the pdfs are supposed known. f is therefore stochastic and is supposed
having a finite variance.
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2.2 PC expansion

PC methods aims at approximating the dependence of the QOI f with respect to the stochastic input
parameters p as a sum of multivariate orthogonal polynomials. As orthogonal polynomials take input pa-
rameters in a standard form, a bijective mapping is needed. In [2], every input parameter is mapped with a
standard Gaussian variable and multivariate Hermite polynomials are selected as orthogonal basis for the
polynomial expansion. Isoprobabilisitic transformations can also be used to map every input parameter to
an input parameter following the same kind of stochastic distribution but which is standardized. In that
way, the used multivariate orthogonal polynomials are the ones being products of univariate polynomials
corresponding to the standard distribution law of the input parameter through the Wiener-Askey scheme
[32]. In this article, another mapping, developed below, is considered. For NI methods, as for ML methods,
a sampling of the input parameters is effectuated. In the case of UQ, the observations are representing
stochastic parameters, so the sampling is usually done in respect to their distribution. Observations are
then mapped. The orthogonal properties are then used, notably to estimate the moments of the QOI and
the Sobol sensitivity indices [26].

With the ME decomposition, the orthogonal properties of the polynomial family cannot be used as
local models only fits data on its element and is ignored in the rest of the parameter space, whereas the
orthogonal properties need information of the model on the whole parameter space. A method permitting
to use the orthogonal properties of the polynomials and then estimating Sobol indices with a ME model
is the subject of further researches. Here, as orthogonal properties are not required for the learning of the
model, the canonical multivariate polynomials basis (Ψk) is used. For k ∈ Nd

Ψk =
d∏

m=1

Xkm (2)

Moreover, a bijective mapping from p to x, where every xm follows an uniform law on [0, 1], is used.
To do this, another hypothesis is considered on top of the others. Every ρm is strictly positive (instead of
being only positive), so that its cumulative distribution function Cm is bijective.

xm = Cm(pm) (3)

From now on, the input parameters refer to x, the parameter space refers to X = [0, 1]d, the unit d−
dimensional hypercube which contains all possibles x and the QOI refers to f̃

f̃(x) = f(C1(p1), ..., Cd(pd)) = f(p) (4)

Once the model is trained, the same mapping is necessary for evaluating it with new values.

The truncation degree of the chaos series is denoted n ∈ N. There are several way to truncate a series
of multidimensional polynomials, which leads to a finite number of terms M . The classical truncation

scheme consists on selecting all the polynomials with ||k||1 =
d∑

m=1

km ≤ n. This set of polynomials has a

size of

M(n, d) =
(n+ d)!

n!d!
(5)

M highlights the famous "curse of dimensionality", which underlines the dramatical increase of the
number of terms of the series with d and n. For high values of n and d, the computational cost in time
and in memory can become problematic. From this moment, the multi-index k is not used anymore and
is replaced by a scalar index j. The polynomials are indexed from 1 to M(n, d) by increasing truncation
degree. The order between polynomials with the same truncation degree is not important. Moreover, the
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dependence on n and d is sometimes omitted to simply denote the number of chaos terms M . In the
approach, the standard computational PC model f̃ is then written

f̂(x) =
M∑
j=1

cjΨj(x) (6)

PC model f̃ converges fast when the QOI f̃ is smooth. However, as stated above, the model is not
accurate when the QOI is irregular or discontinuous. Figure 1 underlines this loss of accuracy for a 1D
piecewise constant QOI f̃ (1)

f̃
(1)
1 (x) =

{
−1 if x < 1

2

1 otherwise (7)

where x follows an uniform law on [0, 1].

The Gibbs phenomenon induces that even by increasing the truncation degree, the oscillations close to
the discontinuity are not vanishing. In this example, a piecewise surrogate model would have been very
accurate, approximating only the two constant parts of the function independently with 0th-degree local
polynomial models.
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Figure 1: (a) Plot of f̃ (1)
1 (dashed lines) and of its PC surrogate model f̂ (1)

1 (plain lines) with n = 150. (b)
Plot of f̃ (1)

1 (dashed lines) and of its piecewise polynomials model (called Multi-element model below).

2.3 Non-intrusive methods

Before introducing ME techniques, three NI methods are recalled. NI methods aim at finding the chaos
coefficients of the model by running simulations on a set of observations called the training set or the
training observations. In the whole article, the number of training observations is denoted N and the set
of input parameters taken in the training observations is denoted T = {xi}Ni=1.

Pseudo-spectral projection [29, 14], one of the stochastic collocation method, uses the orthogonality of
the chosen chaos polynomials basis to find the expression of the coefficients with an integral. Quadrature
rules are then used to evaluate the integral. This implies that the training observations are structured.
The structure can correspond to the Gauss-Legendre grid or the Smolyak sparse grids [24] for example.
In the context of this article, the ME approach based on clustering implies that the observations are un-
structured, and the use of Pseudo-spectral projection method is not possible.
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Two NI methods are able to get the chaos coefficients with an unstructured observation grid : interpo-
lation on unstructured grid and linear regression. Interpolation on unstructured grid is developed in [15].
The surrogate model is forced to be equal to the real value of the QOI at each training observation. This
method is used in [10, 9].

In the present study, Ordinary Least Square (OLS) method, a linear regression method, is used to find
the coefficients. Contrary to interpolation on unstructured grid, regression methods [2, 4, 8] do not imply
that the surrogate model is equal to the real value of the QOI on the training observations. The aim of
OLS is to minimize the euclidean distance between the model value and the real value on the N training
observations

Copt = argmin
C

∥ AC−B ∥2 (8)

where C ∈ RM is the vector containing the unknown chaos coefficients, A ∈ MN,M is the design
matrix and B ∈ RN is the vector of predicted values. For the particular case of finding coefficients of a
polynomials model : Aij = Ψ

(d)
j (xi), Bi = f̃(xi) and Cj = cj

The problem is equivalent to solve this matrix equation, usually referred to as the normal equations

ATAC = ATB (9)

The solution is therefore

Copt = A+B (10)

where A+ = (ATA)−1AT .

The number of terms of the series M (determined in the case of finding the chaos coefficients by the
chosen truncation degree n and the dimension d through equation (5)) is a crucial variable for regression.
Compared to the number of training observations N , if M is too low, the regression is poorly accurate
(usually called "underfitting" or "bias" in the ML field). If M is too high, what is called "overfitting" or
"variance" in the ML field can occur. Overfitting is the fact that the model is accurate on the training
observation but do not generalize well on other observations, thus leading to a poorly accurate model in
between the training observations. These aspects can be taken into account by testing all regressions with
the truncation degrees between the chosen nmin and nmax and selecting the optimal model as the one
minimizing a cross validation error.

The considered error has to be an error between the surrogate model values and the real values of
the QOI evaluated on the training observations. In that way, this error can be used when the algorithm
is running to select the most suitable degree of a model and more generally the best hyperparameters
to use in an range of values. Using the Mean Square Error (MSE) between the local surrogate model
values and the values of the QOI on the training observations would give very poor information of the
model accuracy if overfitting occurs. In that way, cross-validation is used. The Predicted Residual Sum
of Squares (PRESS) error (based on the Leave-One-Out error) used in [4] is really efficient in the context
of PC models learned with linear regression. PRESS error is defined by

δ =
1

N

N∑
i=1

(
f̂ (i)(xi)− f̃(xi)

)2
(11)

where f̂ (i) is the surrogate model learned on the set T \{xi}.
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Fortunately, in the context of OLS, a method exists to express analytically every term of the sum
without having to train a new model on the set T \{xi} for every observation xi. This formula [21], which
only needs the model trained on the observations of T , leads to

δ =
1

N

N∑
i=1

(
f̂(xi)− f̃(xi)

1− hi

)2

(12)

where hi is the ith diagonal term of the matrix H = AA+ known as the "Hat matrix" or the "projection
matrix". This error correctly gives information on the accuracy of the local surrogate models, even when
overfitting occurs.

To compute A+ and the PRESS error, the Singular Value Decomposition (SVD) of A is used [12]. If
A is a N ×M matrix, finding the SVD of A consists in finding a N ×N orthogonal matrix U, a N ×M
diagonal rectangular matrix Σ and a M ×M orthogonal matrix V so that

A = UΣVT (13)

The columns of U are called "left singular vectors" of A, they are the eigenvectors of AAT . The
columns of V are called "right singular vectors" of A, they are the eigenvectors of ATA. The diagonal
terms of Σ are the so-called "singular values" of A, which are the eigenvalues of AAT . SVD decomposition
is not unique, but what is usually done is to take the one which leads to the singular values ordered by
decreasing value in the diagonal of Σ. If the rank of A is equal to r, A has r non-zero singular values.

SVD is really useful to compute efficiently A+. It is proven in [12] that

A+ = VΣ+UT (14)

where Σ+ is the diagonal rectangular M × N matrix with the inverse of the non-zero singular values
on the diagonal and zeros elsewhere.

SVD is also useful to compute the "Hat matrix" and then the PRESS error. Indeed, we have

H = AA+ = UΣVTVΣ+UT = UΣΣ+UT = UrU
T
r (15)

where Ur is the square matrix containing the first r rows and columns of U. The diagonal terms of
H, needed for the computation of the PRESS error, are then equals to

hi,i =
r∑

j=1

[
(Ur)i,j

]2 (16)

Not all the rows and the columns of U and V have to be computed to get A+ and H. Taking only the
r first columns of U, Σ and the first r rows of VT is known as "compact SVD".

Algorithm 1 underlines the pseudo-code to compute OLS and the PRESS error.

Note : in all the pseudo-codes of this article, X ← value means that variable X gets the given value.
Moreover, a ":" used as an index of a vector or a matrix denotes all the rows or all the columns of the item.

If A is ill-conditioned, the user can ignore a set of singular value less than a given threshold, thus
considering r̂ ≤ r singular values instead of r.
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Algorithm 1 Pseudo-code of the computation of OLS and PRESS error
A← N ×M design matrix
B← vector of size N containing the values of the QOI on the training observations
U, Σ, V← SVD(A) (compact form)
Σ+ ← min(N,M)×min(N,M) matrix with 1

σi,i
on its diagonal and zeros elsewhere

X← VΣ+UTB
H ← ∑r

j=1

[
(U)i,j

]2 (Here H is the vector containing the diagonal terms of the "Hat matrix" and not
the matrix itself)
Y = AX

δ ← 1
N

N∑
i=1

(
Yi−Bi

1−Hi

)2
Return X, δ

Let’s consider that N ≥ M without loss of generality (if M > N the operations can be conducted
on the transpose of the matrix). In the most time expensive case, r = M . Time complexity of a matrix
product between a N ×M matrix A and a M × P matrix B is in O(NMP ). In that way, time complex-
ity of calculating X is in O(M3 + M2N + MN) = O(M2N). To the author knowledge, the complexity
of compact SVD isO(M2N). Time complexity of the algorithm of OLS and PRESS Error is thenO(M2N).

In [8], the authors state that a standard random sampling often lead to suboptimal approximations,
and show the existence of a special sampling leading to nearly optimal solutions. However, as it is described
in section 2.4, in the current paper, regression is used on subsets of the sampling, which induces that for
every approximation, the user does not have the control on the position of the training observations which
are used in the training of the local surrogate models.

2.4 Multi-element approach

As stated above in section 2, to approximate an irregular or a discontinuous QOI, one solution is to use
a ME method. ME methods consist into partitioning the parameter space X into NE non-overlapping
subsets Ee called elements

X =

NE⋃
e=1

Ee (17)

Ee1

⋂
Ee2 = ∅ if e1 ̸= e2 (18)

Once X is partitioned, a local surrogate model f̂e is obtained in every element Ee with the training
observations located in this element. The global surrogate model is then a piecewise model composed of
every local model. The global piecewise model is written

f̂(x) =

NE∑
e=1

f̂e(x)IEe(x) =

NE∑
e=1

(
Me∑
j=1

cejΨ
(d)
j (x)

)
IEe(x) (19)

with Me the number of multivariate monomials of the local PC model f̂e. IEe is the indicator function
of the element Ee satisfying

IEe(x) =

{
1 if x ∈ Ee

0 otherwise (20)

In numerical applications, the classifier plays the role of the indicator function. Once the global model
is trained, to evaluate the model on a new point, the classifier detects in which Ee the observation lies to
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know which local model to use. Every coefficient of the local polynomials models f̂e is obtained with the
OLS algorithm on the training observations located in Ee.

3 ME-ACD algorithm

3.1 Abstract spaces

In the following algorithm, different abstract spaces are considered:

• P : the original d-dimensional parameter space of points of coordinates (p1, ..., pd).

• X : the mapped d-dimensional parameter space containing points of coordinates (x1, ..., xd). This
space is the one referred to as the parameter space.

• F : the d+ 1-dimensional space containing points of coordinates (x1, ..., xd, f̃(x)).

• D : the d+ 1-dimensional space containing points of coordinates (f̃(x), ∂f̃
∂x1

(x), ..., ∂f̃
∂xd

(x)).

In that way, an observation can be considered in those different spaces. The objective is to split the
parameter space X into a partition of NE elements Ee. To do this, agglomerative clustering is used.
The results of the clustering are different according to the space the observations areconsidered in. The
space has to be chosen so that the clustering efficiently splits the parameter space both in the case of a
discontinuous QOI and in the case of a continuous but irregular QOI.

3.2 Step 1 - Sampling of the parameter space

The first step of the algorithm consists in properly sampling the parameter space X to get a training set
T = {xi}Ni=1 of N training observations. One aim of ME-ACD is to work on every sampling, so that it
could be used with experimental data. In that way, an adaptive sampling is not used, conversely to other
methods [10, 9]. In this article, Sobol quasi-random sequences [25] are used. Sobol sequences, as Latin
Hypercube Sampling, aims to sample a d−dimensional space leaving less sparse zones in the hypercube
than purely random Monte-Carlo sampling. More information on the Sobol sequences can be found in
[11]. The initial direction numbers used in the article are the one suggested on the following website :
https://web.maths.unsw.edu.au/ fkuo/sobol/ (last accessed : April 2022).

With this strategy, the unit hypercube is sampled and the corresponding pi of input parameters of
training observation xi can be obtained by inverting formula (3). In some cases, a slight modification on
the sampling can be performed for the observations located on the hyperfaces of the unit hypercube. They
can be translated of a distance ϵ = 10−3 perpendicularly to the hyperface (ϵ is added to every components
of every xi which are equals to 0 and is subtracted to every components equals to 1). This avoids having
an infinitely far point for normal distribution for example. Figure 2 shows a Monte-Carlo sampling and a
Sobol sequence for a 2D example. 500 observations of p with p1 following an uniform law on [1, 1.5] and
p2 following a normal law of mean 10 and of standard deviation 5 sampled with the two strategies are
represented in X and in P . Monte Carlo and Sobol samplings are very close to each other, but the latter
is elaborated to guarantee a lower discrepancy.

Once the sampling is performed, the QOI is evaluated on every training observations of T to get a
vector B ∈ RN with :

Bi = f̃(xi) = f(pi) (21)

Time complexity of the computation of a Sobol sequence is in O(N×d). Time complexity of evaluating
the QOI is independent of the algorithm.
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Figure 2: Ntrain = 500 observations generated by 2 sampling strategies. (a) Monte-Carlo sampling in X .
(b) Mapping of the Monte-Carlo sampling in P . (c) Sobol sampling in X . (d) Mapping of the Sobol
sampling in P .

3.3 Step 2 - Computation of the global design matrix

In Step 4, the parameter space is partitioned and OLS with a multidimensional polynomial model of degree
varying from nmin to nmax is used on every element to find the chaos coefficients of the local models. A
major advantage of using OLS in this approach is that a single design matrix has to be computed once.
This matrix will be referred to as the global design matrix. When OLS is called to learn the coefficients of a
local model, only a submatrix of this global design matrix is used. The rows of the submatrix are the rows
corresponding to training observations located in the element. Its columns are the first M(n, d) columns
corresponding to the chosen truncature degree n. This global matrix, denoted A, is a N ×M(nmax, d)
matrix, M(nmax, d) being the number of terms of the polynomial series of degree nmax (see formula (5)).
The global design matrix terms are written

Ai,j = Ψj(xi) (22)

As a reminder, j is a scalar index used to denote the multidimensional canonical polynomial Ψj. For
theses polynomials :
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Ψj =
d∏

m=1

Xkm
m (23)

n =
d∑

m=1

km (24)

with n ∈ [0, nmax] being the degree of Ψj.

Computing this global matrix in a naive way would result in recomputing every components (xi)
kl
l for

the calculus of every Ψj(xi) thus leading to a complexity in O(d2) for the computation of every Ψj(xi).
Computing the global matrix would then have a complexity in O

(
N ×M(nmax, d)× d2

)
.

Instead of using this naive computation, for every training observations xi, we can store the values of
every (xi)

km
m in a d× nmax matrix D(i) with D

(i)
m,l = (xi)

l
m. Every term Ai,j of the global design matrix is

then the product of terms of D(i) :

Ai,j =
d∏

m=1

D
(i)
m,km

(25)

With this computation scheme, the computation of a matrix D(i) is in O(d× nmax). The computation
of the term Ψj(xi) with these matrices is in O(d). Time complexity of computing the global matrix is
then in O

(
N × d× nmax +N ×M(nmax, d)× d

)
= O

(
N ×M(nmax, d)× d

)
.

Algorithm 2 is the pseudo-code of the global design matrix computation with this method.

Algorithm 2 Pseudo-code of the computation of the global design matrix
d← dimension of the parameter space
T ← input parameters of training observations sampled in Step 1
nmax ← maximal wanted degree of the local models
M ← (nmax+d)!

nmax!d!

Initiate a N ×M matrix A with zeros
for i ∈ [1, N ] do

x← Ti
Initiate a d× nmax matrix D with zeros
for l ∈ [1, d] do

for m ∈ [1, nmax] do
Dl,m ← xm

l

end for
end for
for j ∈ [1,M ] do

k← multidimensional degree corresponding to the mapped scalar degree j
a = 1
for l ∈ [1, d] do

a← a×Dl,kl

end for
Ai,j ← a

end for
end for

11



3.4 Step 3 - Estimation of the derivatives

In Step 4, agglomerative clustering is used on the observations considered as points of D. Therefore, the
values of the derivatives of the QOI on the unstructured training points grid need to be estimated. To
estimate these values, the first order Taylor’s theory is employed. For two different observations x and x′

f̃(x) ≈ f̃(x′) +
∂f̃

∂x1

(x′)× (x1 − x′
1) + ...+

∂f̃

∂xd

(x′)× (xd − x′
d) (26)

In that way, the values of the derivatives of the QOI on a given point x′ can be obtained by using
OLS algorithm, solving the previous formula with its nearest neighbours. {xi}Nneigh

i=1 denoting the set of
the Nneigh nearest neighbours of x′, the following system has to be solved x1

1 − x′
1 · · · x1

d − x′
d

...
...

x
Nneigh

1 − x′
1 · · · x

Nneigh

d − x′
d




∂f̃
∂x1

(x′)
...

∂f̃
∂xd

(x′)

 =

 f̃(x1)− f̃(x′)
...

f̃(xNneigh)− f̃(x′)

 (27)

The observations considered as neighbours of x′ have to be determined. A first idea would be to con-
sider as neighbours the observations corresponding to the nearest points in X . Nevertheless, if the QOI is
discontinuous, the calculus of the gradient between two observations which are from different sides of the
discontinuity is going to be highly altered as the QOI is not derivable in this zone. In that way, the Nneigh

closest neighbours are going to be determined as the nearest neighbours of x′ in the space F , so that in
this calculus, only points on the same side of the discontinuity are going to be considered as neighbours.
The Ball tree algorithm [17] is used to search the neighbours. To determine the best number of neighbours,
OLS algorithm is effectuated for Nneigh varying from kmin to kmax and the one minimizing the PRESS
error is selected.

Now the observations can be represented in the space D and the agglomerative clustering to test the
different partitions of the space can be used with these points. Algorithm 3 is the pseudo-code for Step 3.

This step contains the construction of a Ball tree on the training set considered as N points of a
d + 1-dimensional space. Construction time of the ball tree is in O(Nlog(N)) [17]. According to author
knowledge, query time in this ball tree is inO(d log(N)), so the time of all the queries for nearest neighbours
is in O(dN log(N)). This step also contains the construction of a design matrix for every observations
for a total time complexity in O(N × dkmax), and kmax − kmin + 1 regressions with submatrices of size
Nneigh × d of that matrix. If kmin and kmax are proportional to the dimension d, time complexity of the
kmax− kmin +1 regressions for a an observation is in O(d4). Time complexity of this step is more likely to
be dominated by the regressions and is in O(N × d4).

3.5 Step 4 - Partition of the space and training of the local models

This step is the core of ME-ACD. It consists in testing different partitions of the parameter space X using
agglomerative clustering and to select the one providing the most accurate local models. Partitions with
NE ∈ [|NEmin

, NEmax|] elements are considered leading to Np = NEmax − NEmin
+ 1 tested partitions. In

this section, as several partitions are considered, an element is denoted Ep,e, where p ∈ [|1, Np|] is the
index of the partition with NE = NEmin

+ p − 1 elements and e ∈ [|1, NE|] is the index of the element in
this partition. E1,e correspond to the elements of the partition with NE = NEmin

elements and ENp,e to
the elements of the partition with NE = NEmax elements.

Agglomerative clustering follows a "bottom-up" approach : each point of the considered space begins
with its own cluster and at each step, the 2 closest clusters are merged together, until the wanted number
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Algorithm 3 Pseudo-code of Step 3
d← dimension of the parameter space
T ← input parameters of training observations sampled in Step 1
B← values of the QOI of the training observations computed in Step 1
Initiate a N × d matrix D with zeros
Construct the Ball tree with training data considered in F (using information of T and of B)
J ← N × kmax matrix where every row contains the indices of the kmax nearest neighbours of the
observation of index the index of the row sorted from the nearest to the furthest.
for i ∈ [1, N ] do

x← Ti
I← Ji,:
Initiate a kmax × d matrix A and a vector F of length kmax with zeros
for m ∈ [1, kmax] do

Fm ← Bi −BIm

for l ∈ [1, d] do
Am,l ← xl − TIm,l

end for
end for
Initiate a d× (kmax − kmin + 1) matrix C and a vector E of length kmax − kmin + 1 with zeros
for m ∈ [kmin, kmax] do

C:,m−kmin+1, δm = OLS (A1:m,:, F1:m)
end for
kopt ← argmin

m∈[kmin,kmax]

δm

Di,: ← C:,kopt

end for
return(D)

of clusters is reached. Ward clustering is used. In this clustering, the two clusters having the minimal
sum of square of the distance between pairs of points (one from one cluster and the other from the other
cluster) are merged at each step. To take advantage of the bottom-up approach, only the partition with
NEmin

elements is made. The partitions from NEmin
+ 1 to NEmax corresponds to the last steps of the ag-

glomerative clustering with NEmin
elements, and are also accessible. From the partition with NE = NEmax

elements, two of the elements are merged to get the partition with NEmax − 1 elements and so on until
the partition with NE = NEmin

elements is reached. In that way, elements of partitions with NE < NEmax

elements are unions of the elements of the partition with NEmax elements. A compact way to store this
information is to give a label to every training observations from 1 to NEmax corresponding to the index of
the element ENp,e the corresponding points belongs (partition with NEmax elements). As elements Ep,e of a
given partition are union of elements ENp,e, an element can be stored as a list of the indices corresponding
to elements ENp,e which compose it.

The information of all the partitions obtained by clustering can be stored in :

• a vector L of size N containing the labels for every training observations, labels corresponding to
the index e of the element ENp,e (maximal partition) they belong.

• Np lists of elements Ep, one by tested partition, containing NE elements Ep,e. As Ep,e is the union of
some elements ENp,e′ , one element is represented as a list of labels, labels corresponding to the index
e′ of the elements ENp,e′ which compose it.
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Figure 3 illustrates this idea in a tree like structure diagram. In this example, NEmin
= 2 and NEmax = 4.

Elements are represented as circles and every step of agglomerative clustering is a depth of the tree. In
the example, L is a vector of size N containing labels from 1 to 4 and they are 3 lists :

• E1 is a list containing the elements E1,e being stored as E1,1 = [1] and E1,2 = [2, 3, 4]

• E2 is a list containing the elements E2,e being stored as E2,1 = [1], E2,2 = [2, 3] and E2,3 = [4]

• E3 is a list containing the elements E3,e being stored as E3,1 = [1], E3,2 = [2], E3,3 = [3] and E2,4 = [4]

NE = NEmax

NE = NEmin

E3,1 E3,2 E3,3 E3,4

E2,1 E2,2 E2,3

E1,1 E1,2

Ω

Figure 3: Tree-like diagram giving an example of agglomerative clustering. Clusters are represented by
circles and steps from NE = 1 to NEmax = 4 are displayed ; NEmin

= 2 in this example.

With this data structure, for a given partition, the observations located in an element Ep,e are the ones
with a label L equals to one of the indices in the list which store the information of Ep,e. For example, an
observation located in E1,2 in the above example has a label of 2, 3 or 4 (corresponding to the elements of
the partition with NE = NEmax elements).

Applying the clustering step on observations considered in different spaces give different results. Making
a clustering in X would not have any interest. Making a clustering of the observations considered as points
in F would efficiently split the parameter space for a discontinuous QOI, but would not be efficient in
the case of a continuous irregular QOI. An irregular behaviour of a QOI is due to a high variation of
its derivatives. The idea is then to make clusters in which the QOI has "close" derivatives’ values. In
that way, agglomerative clustering on the observations considered in D is used. Therefore, the space is
split according to discontinuities, as the value of the QOI is present in the coordinates of a point in D,
and according to irregular behaviours, as the values of the derivatives are also present in the coordinates.
Figure 4 represents the plots of observations of two 1D−QOIs f̃ (1)

1 (see equation (7)) and f̃
(1)
2 (see equation

(28) below) considered in the spaces D and F . f̃
(1)
2 is an irregular QOI defined by

f̃
(1)
2 (x) = 10 tanh

(
10(x− 1

2
)

)
(28)
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As d = 1 for the examples of the figure, the considered sampling is an uniform 1D grid with a constant
step. Figure 4 highlights how the clustering is performed in space D (subfigures (b) and (d)), and how it
permits the use of local models of lower degrees (as shown by subfigures (a) and (c)) in both examples.
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Figure 4: Plots of 50 observations of two 1D−QOIs f̃
(1)
1 and f̃

(1)
2 considered in the spaces F and D. The

different colors of the observations stand for different clusters. (a) Observations of f̃ (1)
1 represented in F .

(b) Observations of f̃ (1)
1 represented in D. (c) Observations of f̃ (1)

2 represented in F . (d) Observations of
f̃
(1)
2 represented in D.

One can add a connectivity diagram between the training observations represented in X before the
clustering (as an optional step between step 3 and step 4). With a connectivity diagram, only two clusters
which have at least one observation connected together can be merged. This connectivity reduces the
chances to gather two clusters which are far from one another in X . If the user decide to use connectivity,
one way to construct the diagram is to connect an observation with its kconnect nearest neighbours in X ,
kconnect being a hyperparameter to choose. The choice of using or not a connectivity diagram is modelled
by the boolean isConnect.

A low accuracy of the gradient calculus of step 3 can alter the partition but if a point is miscalculated
with this method, it can be seen as an outlier in D and is more likely to be isolated by the partition
approach, however creating unnecessary elements. Some action could then be taken to remove the obser-
vation from the training set without counting a supplementary element. In the scope of this article, no
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outlier removing actions are taken.

Once the Np partitions have been found, the one leading to the most accurate model has to be selected.
For every partitions, local models are trained on the elements. The selection criterion of the optimal
partition is based on the PRESS errors of the local models. The partition of NE ∈ [NEmin

, NEmax ] elements
is considered. For each of its elements Ep,e, a local surrogate model is trained using the OLS on the
observations located in the element to find the coefficients of the chaos series. As stated in 2.3, the
optimal truncation degree of the polynomials model is obtained minimising PRESS errors. For every local
surrogate model, regressions are carried out with a truncation degree from nmin to nmax. The selected
truncation degree is the one minimizing the PRESS error δp,e,n of the considered local surrogate model
f̃e trained with the observations of Ep,e of the considered partition p with NE elements with a truncation
degree n :

δp,e = min
n∈[nmin,nmax]

δp,e,n (29)

This error δp,e represents the accuracy of the local surrogate model f̃e trained on the observations
located in Ep,e and having an optimal degree between nmin and nmax. The error δp, image of the accuracy
of the considered partition p with NE elements, is defined as the maximal value of the errors δp,e of all the
local models trained on its elements with an optimal degree :

δp = max
e∈[1,NE ]

δp,e (30)

To get the optimal partition, we first consider the one with NEmin
elements. Local models for every

of its elements are trained with optimal degree. From one partition to the next one, only one element is
split into two, going down the agglomerative clustering tree. In that way, only the local models on the two
new elements can be trained at each step, the other ones having already be trained for previous partitions.
During the different partitions of the space, a test can be added : if the selection error δp of the current
tested partition is lower than a given threshold δmin, a suitable partition is already found and there is no
need to look for others with a lowest δp error. This test is referred as the early stop.

As stated above in section 2.3, one major advantage of using OLS in this approach is that the global
design matrix A, of size (N ×M(nmax, d)), is only computed once, at Step 2. When a regression on a
element is wanted, only a sub-matrix composed of the lines corresponding to the observations located
in the element and of the columns corresponding to the considered truncation degree (the first M(n, d)
columns for a given degree n) is used.

Algorithm 4 is the pseudo-code for Step 4.

Time complexity of this step is given by the construction of the agglomerative clustering with NEmin

elements and by all the regressions. Ward clustering time complexity is in O(d×N3). In a case without
early stop, NEmin

+ 2×
(
NEmax −NEmin

)
local models are trained. Every training needs nmax − nmin + 1

regressions to determine the local models with optimal degree, dominated by the one with n = nmax. Time

complexity of all these regressions is then in O
([

NEmin
+2×

(
NEmax−NEmin

)]
×
(
max

(
N,M(nmax, d)

)
×

min
(
N,M(nmax, d)

)2).
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Algorithm 4 Pseudo-code of Step 4
d← dimension of the parameter space
NEmin

← minimal number of elements
NEmax ← maximal number of elements
Np = NEmax −NEmin

+ 1
δmin ← minimal partition error for a potential early stop of the search of partitions
B← values of the QOI on the training observations computed in Step 1
A← global design matrix computed at Step 2
D← derivatives of the QOI on the training observations computed at Step 3
L, E1, ..., ENp ← Results of ward clustering with NEmin

elements on the observations considered as points
of D (using information of B and D)
Initiate a variable δopt to a huge value
Initiate three void lists C, δ and done_elements
for p ∈ [1, Np] do

NE = NEmin
+ p− 1

for e ∈ [1, NE] do
if the list e of Ep, Ep,e, is not already in done_elements then

Ep,e is appended to done_elements
I ← indices of L where the items are equals to one of the labels contained in Ep,e

b← subvector of B with the rows of indices in I
Initiate a void list c and initiate a vector δ̃ of size nmax − nmin + 1 with zeros
for n ∈ [nmin, nmax] do

a← submatrix of A with the M(n, d) first column and the rows of indices in I
the result of the OLS with matrices a and b is appended to c and the related PRESS error

is stored as δ̃n−nmin+1

end for
nopt ← argmin

n∈[nmin,nmax]

δ̃

cnopt−nmin+1 is appended to C
δnopt−nmin+1 is appended to δ

end if
end for
δp ← maximum of elements of δ corresponding to the elements of the partition p
if δp ≤ δopt then

NEopt ← NE

δopt = δp
if δp ≤ δmin then

Break the loops
end if

end if
end for
the coefficients of the local models are the coefficients in C corresponding to the elements of the partition
with NEopt elements

3.6 Step 5 - Training of a classifier

Once the most suitable partition is obtained, with its set of NE elements and NE local surrogate models,
a classifier is needed. Indeed, for further model evaluations, the first step is to determine in which element
Ee the evaluation is, to know which local model to use to perform the evaluation. The use of a local
model corresponding to a wrong element leads to huge errors, polynomial models being potentially highly

17



divergent far from their training observations. To model the action of the indicator function denoted IEe

in formula (19), a classifier is used.

The user is free to choose any supervised classification method. In this article, Multi Layer Perceptron
(MLP) classifier is chosen. MLP classifier is an artificial neural network used in a purpose of classifying
observations labelled with class numbers. In Step 4, a label corresponding to the element in the partition
with NE = NEmax is given to every training observation. In Step 5, training observations are relabelled
with this time a class number equal to the index of the element in the partition with NE elements, NE

being the optimal number of elements found at the end of Step 4.

In all the below applications, 2 hidden layers of 50 neurons are taken. For the hidden layers, Rectified
Linear Unit activation function is used. For the output layer, Softmax function is used. Cross-entropy cost
function is minimised. The training of the classifier is done using backpropagation with Adam method [13]
(with the classical decay values of β1 = 0.9 and β2 = 0.999, a mini-bacth size of 200 observations and a
max number of iterations over the entire training set of nepochs = 200 with an early stop if the weights have
converged). Several classifiers are trained with different learning rates. The training which maximises the
number of well classified training observations, giving the best accuracy being the fraction of well classified
observations. In the article, a naive method testing all Nl learning rates is used. No regularisation term is
added as classification overfitting is not a problem in the approach (all the training observations have to
be well-classified to avoid using a wrong local model).

To the author knowledge, time complexity of one optimisation step with feedforward, backpropagation
and Adam bias momentum correction is in O

(
(d×nneurons+n2

neurons+nneurons×NE)×N
)
, with nneurons

being the number of neurons in the hidden layers (50 in our case). In that case, the learning of one clas-
sifier is in in O(nepochs× n2

neurons×Ntrain), where nepochs = 200 in the worst case is the number of steps of
optimisation going on all the training set. So the learning of all classifiers is inO(Nl×nepochs×n2

neurons×N).

The input of the classifier is a given point in X (a set of value of input parameters) which need to be
evaluated by the piecewise model. This point is denoted the evaluation point. The output is an array
of NE components containing the probabilities that this evaluation point is located in the element Ee.
Therefore, a test can be added to check if the evaluation point lies in an indecision zone : if the highest
probability is lower than θ, θ ∈ [0, 1] being a threshold to choose, the evaluation point is considered as
located in an indecision zone. In this case, the point is not evaluated by the model and is ignored. θ is a
trade-off parameter. The greater θ is, the more prudence is taken, but the more evaluation points close to
the boundaries of the elements are ignored. With θ = 0, no evaluation point is ignored but the ones located
in the indecision zone are going to alter the accuracy of the model. By increasing θ, an evaluation point
is more likely to be ignored if it is potentially affecting the accuracy. After a given value, rising θ induces
that some evaluation points are ignored even if they are not really altering the accuracy. In [10], the
minimal multi-element method presents a similar procedure, using the resolution of the sampling strategy
to ignore points lying within a distance of the boundary lower than this resolution. θ is a parameter which
can be tuned after the training of the model.

3.7 Summary of ME-ACD algorithm

The numerical parameters and hyperparameters of the algorithm are :

• N : the number of observations generated in the Sobol sequence. It determines the size of the
training set.

• NEmin
: the minimal number of wanted elements.
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• NEmax : the maximal number of wanted elements.

• Nneigh−min : the minimal number of neighbours in F used in the estimation of the derivatives.

• kmax : the maximal number of neighbours in F used in the estimation of the derivatives.

• nmin : the minimum chaos degree a local surrogate model can have

• nmax : the maximum chaos degree a local surrogate model can have.

• δmin : an optional threshold to early stop the search of partition if one suitable partition has already
been found.

• A set of Nl learning rates to get the optimal classifier.

• isConnect : a boolean indicating if a connectivity diagram is used.

• (Optional) kconnect : number of connected neighbours an observation have in the optional connectivity
diagram

For the classifier, hyperparameters are given in section 3.6. The caution threshold θ ∈ [0, 1] of the
classifier is a post-processing parameter. Once the model is obtained with its attached classifier, the user
is still free to tune θ without launching the training once again.

For agglomerative clustering, research of the nearest neighbours and MLP classifiers, the Scikit-learn
toolkit has been used [18].

In term of time complexity :

• Step 1 : O(N × d) + N× time complexity for computing a value of f

• Step 2 : O
(
N ×M(nmax, d)× d

)
• Step 3 : O(N × d4) (if kmin and kmax are set to be proportional to d)

• Step 4 : O
([

NEmin
+ 2×

(
NEmax −NEmin

)]
×
(
max

(
N,M(nmax, d)

)
×min

(
N,M(nmax, d)

)2)
• Step 5 : O(Nl × nepochs × n2

neurons ×N)

The dominant step is dependent of the choice of the hyperparameters and of the dimension of the QOI.

4 Applications
In this section, performances of ME-ACD are demonstrated on a set of test functions. To evaluate these
performances, the possible causes of errors between the piecewise surrogate model and the QOI it approx-
imates have to be identified. These errors can come from 3 phenomenons :

• Underfitting (or bias) : the optimal degrees of the local polynomials models are too low to
approximate the QOI on the elements. Increasing N , nmax and/or NEmax could solve the issue.

• Overfitting (or variance) : as the partitions of the parameter space and the optimal degrees of
the local models are selected with the PRESS error, overfitting is not likely to occur. If it still occurs,
lowering nmin and/or increasing NEmax could solve the issue.
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• Misclassification : as the polynomial models are highly divergent far from their training observa-
tions, if the evaluation point is misclassified in a wrong element, the wrong local model is used and
the accuracy is highly altered. As a reminder, the caution threshold θ is here to avoid these errors,
ignoring the point when the probability of being in the element given by the classifier is strictly
lower than it. Increasing N or adding training observations close to the boundaries of the elements
and/or modifying the classifier parameters could solve the issue. Increasing θ makes the algorithm
stricter and makes it ignoring more evaluation points which are more likely to be responsible of
misclassification errors.

For the classifier, the learning rate is the one within [10−m, 2 × 10−m, 5 × 10−m], ∀m ∈ [1, 7] given
the classifier maximising the accuracy on the training set itself (the optimal classifier between Nl = 21
is therefore selected). The threshold is set to θ = 0.85, which means that the evaluation point is not ig-
nored by the caution procedure if the classifier is sure at more than 85% that it is located in a given element.

The performances of the algorithm are compared to the ones of the standard PC model of optimal
degrees between a given nmin−PC and nmax−PC and of Gradient Boosted Trees (GBT) algorithm trained
on the same test observations. In fact, in the applications, the standard PC model is obtained with the
ME-ACD method with NEmin

= NEmax = 1. To set the 3 hyperparameters of GBT : the learning rate, the
number of trees and the depth of the trees ; a validation set of Nval = 105 observations for every training set
is sampled. A brute force search is realised for every training set : every combination of hyperparameters
is tried to train a GBT model and the one minimizing the MSE between the true value of the QOI and the
value of the given GBT model on the validation observations is chosen. In the applications, the learning
rates is located in [10−m, 2 × 10−m, 5 × 10−m], ∀m ∈ [1, 7], the number of trees in [100, 200, 300, 400, 500]
and the maximum depth of the trees in [2, 3, 4, 5].

To evaluate the precision of the algorithms, a test set of Ntest = 105 observations is randomly sampled.
This test set is different from the validation ones used to tune the GBT models, but remains the same
for a given convergence study. Conversely, the validation sets used to tune the hyperparameters of GBT
models is different for every different training set (for every different N of the convergence study).

The precision of each model is given by E, the MSE between the true value of the QOI and the value
given by the predictions of the model on the test set. To see the impact of the caution parameter, Eθ

is also studied, which is the same error but evaluated with the Nθ test observations kept by the caution
procedure of the ME-ACD model with θ = 85%. The value Vθ=0.85 = Nθ=0.85

Ntest
, fraction of the kept test

observations by the caution procedure, is given for each N of the convergence study.

4.1 Discontinuous functions

In this section, a set of 3 different discontinuous functions taking d = 2 input parameters are studied :

f̃hyperplane =

{
1 if x1 + 0.3x2 − 0.5 > 0
−1 otherwise (31)

This function presents a discontinuity which is a line of equation x1 + 0.3x2 − 0.5 = 0.

f̃hypersphere =

{
1 if (x1 − 0.5)2 + (x2 − 0.5)2 < (0.25)2

−1 otherwise (32)

This function presents a discontinuity which is a circle of center (0.5, 0.5) and of radius 0.25.
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f̃multiple =


3 if (x1)

2 + (x2)
2 < (0.25)2

2 else if x1 < 0.5− 0.3x2

1 else if (x1 − 1)2 + (x1 − 1)2 > 0.32

0 otherwise

(33)

This function presents 3 discontinuities, two fractions of circles in the corners of the unit hypercube
and the same line as in f̃hyperplane.

For these test functions, optimal elements are clearly defined. In that way, a true label can be provided
indicating in which element a test observation is located. With these labels, the accuracy of the classifier,
denoted F and representing the fraction of well-classified test observations, can be computed. For the
next sections, as the Multi-element procedure is also used to study continuous irregular behaviour with
polynomials series of fewer degrees, the optimal partition is not clearly defined and the computation of
this accuracy is not possible.

Figure 5 shows 1000 training observations labelled by the clustering step of ME-ACD and represented
in the parameter space for the 3 test functions. This first visualisation highlights that in that dimension,
ME-ACD method is able to detect discontinuities and to partition the parameter space according to these
discontinuities.
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Figure 5: Visualisation of 1000 labelled training observations represented in the 2D parameter space
X partitioned for the 3 test functions. Different colors stands for different elements obtained with the
clustering. (a) Visualisation of f̃hyperplane. (a) Visualisation of f̃hypersphere. (a) Visualisation of f̃multiple.

Figure 6 gathers all convergence plots of the mean square error E, of the accuracy F of the ME-ACD
classifier and of the fraction of kept observations by the caution procedure of ME-ACD on the 3 test
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PC ME-ACD
N [100, 2000]

NEmin
1 1

NEmax 1 10
kmin not relevant 6
kmax not relevant 10
nmin 0 0
nmax 20 0
δmin 10−5 10−5

learning rate see section 4
isConnect False False

θ not relevant 0.85

Table 1: Hyperparameters and parameters selected for ME-ACD and PC for the convergence study of
f̃hyperplane, f̃hypersphere and f̃multiple.

functions on the test set. Table 1 contains the hyperparameters and the parameters selected for PC and
for ME-ACD for these convergence studies. Hyperparameters for GBT are the best from the brute-force
search described above in section 4 for every N of the convergence studies.

The convergence plots of E (Figures 6a, Figure 6c and Figure 6e) highlight that ME-ACD method is
able to give a more accurate model than the 2 other methods, but error is still relatively high. As the func-
tions are piecewise constant and the model is also piecewise constant(as nmin = nmax = 0), the cause of the
errors for the ME model are missclassification errors. As F is close to 99% for every N , around 1% of the
observations are responsible for all the error. They are the observations located close to the discontinuities.

Figure 7 shows this time a convergence plot of the MSE on the Nθ test observations kept by the caution
procedure for every N . With θ = 85%, Vθ is around 90% for every N (shown by Figure 6b, Figure 6d and
Figure 6f). In most of the case, all the problematic observations are removed by the caution procedure,
leading to errors of magnitude 10−30, stating that no remaining observation is missclassified, or leading
to errors of magnitude 10−5, highlighting than only around 10 of the Nθ ≈ 104 kept test observations are
missclassified. With θ = 85%, around 9% of the test observations are ignored despite the fact they are not
leading to any error. The caution procedure is then able to detect the problematic observations and the
user is free to act consequently to avoid these missclassification errors.

Even better classifier results (F and Vθ) could have been obtained with another sampling. Here, Sobol
sampling is used to model a general case, leading to a homogeneous sampling no matter the potential
discontinuities. In [9], an adaptive sampling is developed. This sampling is able to get more observations
close to discontinuities. If the user is free to sample the parameter space, more observations close to the
discontinuities should lead to an even better accuracy of the classifier and to an even more efficient caution
procedure.

Figure 8 shows the optimal degrees for the PC models in the convergence studies for the 3 test func-
tions. The corresponding number of terms of the series is also shown on the left in parenthesis. With
increasing number of training observations, PC is able to select higher optimal degrees without suffering
from overfitting. Compared to these PC models, local polynomials models of the ME method have only
one term and lead to a better accuracy. The economy in number of terms of the PC series induced by
using lower degrees local model would be even more marked at higher dimensions.
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Figure 6: On the left, convergence plots of the MSE between the values of the models and the true value
of the 3 discontinuous functions on the test set. (a) f̃hyperplane. (c) f̃hypersphere. (e) f̃multiple. On the right,
convergence plots of the accuracy of the classifier of ME-ACD and of the kept fraction of observations by
the caution procedure of the ME-ACD, on the test set. (b) f̃hyperplane. (d) f̃hypersphere. (f) f̃multiple.

4.2 Discontinuity which runs partially through the parameter space

In this subsection, the following QOI is studied :

f̃partial =

{
0.5x2 − 0.25 if x1 >= 0.5
−0.5x2 + 0.25 otherwise (34)

This piecewise function presents a discontinuity which "runs partially" through the parameter space.
The function is linear on each side of the hyperplane x1 = 0.5 and so has the geometry of an hyperplane.
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Figure 7: Convergence plots of the MSE between the values of the models and the true value, on the
Nθ=0.85 of the of Ntest = 105 tests observations kept by the caution procedure set observations at each
N . (a) Convergence plot of the MSE for f̃hyperplane on the kept observations. (b) Convergence plot of the
MSE for f̃hypersphere on the kept observations. (c) Convergence plot of the MSE for f̃multiple on the kept
observations.

PC ME-ACD
N [100, 2000]

NEmin
1 1

NEmax 1 10
kmin not relevant 6
kmax not relevant 10
nmin 0 0
nmax 20 10
δmin 10−5 10−5

learning rate see section 4
isConnect False False

θ not relevant 0.85

Table 2: Hyperparameters and parameters selected for ME-ACD and PC for the convergence study of
f̃partial.

However, when x2 becomes close to 0.5, the gap between the two surfaces is so thin that numerically, it
becomes more and more regular (although the discontinuity is still here mathematically). To the author
knowledge, none of the previous multi-element methods permits to split the parameter space in presence
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Figure 8: Evolution of the optimal degrees of PC models in the convergence studies for the 3 disconitnuous
functions f̃hyperplane, f̃hypersphere and f̃multiple. The corresponding number of terms of the series M(n, d = 2)
is shown on the left in parenthesis.

of a discontinuity which runs partially through it. As stated in [9], this is a problematic for some of the
modern methods in the multi-element domain.

Figure 9, containing results obtained with the parameters and hyperparameters gathered in Table 2,
shows similar results for the convergence study of this function as for the discontinuous functions presented
at the previous subsection. ME-ACD is then able to handle discontinuities running partially through the
parameter space in the same way as any other discontinuity. Conversely to polynomial annihilation used
in [1, 10], agglomerative clustering of the observations in space D is not affected by thinner gap close to
the boundaries of elements.

4.3 Bifurcation function

One major advantage of ME-ACD is that it is able to accurately model continuous regular functions, con-
tinuous irregular functions and discontinuous functions. The adaptation of ME-ACD to model solutions
of Ordinary Differential Equation (ODE) is under development. This adaptation will then be suitable
to approximate solutions of ODE with the apparition of bifurcations (thus leading to irregularities and
discontinuities with respect to the input parameters).

In this subsection, the following QOI is studied :

f̃ bif−t(x1, x2) = (1 + x2) tanh(
1

2
(3x1 − 1)(1 + x2)t) (35)

this function is the solution at time t of the following ODE :

ẏ = −p1(y2 − p22) (36)

with y(t = 0) = 0, p1 following an uniform distribution law on [−1
2
, 1] and p2 following an uniform dis-

tribution law on [1, 2]. The transformation to get the corresponding x appears in the form of the mapped
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Figure 9: (a) Convergence plot of the MSE for f̃partial on its test set. (b) Convergence plot of the accuracy
of the ME-ACD classifier and fraction of kept observations by the caution procedure of ME-ACD for f̃partial

on its test set. (c) Convergence plot of the MSE between the values of the models and the true value on
the Nθ=0.85 tests observations kept by the caution procedure at each N for f̃partial.

function. This system models the apparition of a bifurcation in a system. The two equilibria of the system
(if we ignore the punctual case p1 = 0) are −p2, stable if p1 < 0 and p2, stable if p1 > 0.

At the first instant, the solution is regular in function of x. When t rises, the solution is more and
more irregular with respect to x. Asymptotically (t→∞), the solution presents a discontinuity which is
a line of equation p1 = 0 (x1 =

1
3
), symbol of a bifurcation with respect to p1 (x1).

The 3 considered instants are : t = 1 (regular), t = 10 (irregular) and t = 1000 (discontinuous). Figure
10 shows the variation of the function with x1 for x2 = 1 (the value of x2 leading to the widest gap).

Similarly to previous sections, Figure 11 shows the results of convergence studies of the MSE on all
the test set and of the kept fraction of test observations by the caution procedure of ME-ACD. Figure 12
underlines the convergence of the MSE Eθ=0.85 on the kept observations. The hyperparameters and the
parameters used for the functions in these studies are given by Table 3.

At t = 1, the early stop of ME-ACD makes the algorithm not using the ME procedure, thus being
equivalent to PC, but with a lower nmax. PC is then outmatching ME-ACD is this case. With a similar
nmax, both methods would have been identical. As NEopt = 1 for all N , 100% of the test set is always kept
by the caution procedure.
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Figure 10: Plot of f̃ bif−t(x1, x2 = 1) vs x1 at 3 different instants : t = 1 (regular), t = 10 (irregular) and
t = 1000 (discontinuous).

PC ME-ACD
N [100, 2000]

NEmin
1 1

NEmax 1 10
kmin not relevant 6
kmax not relevant 10
nmin 0 0
nmax 20 10
δmin 10−5 10−5

learning rate see section 4
isConnect False True
kconnect not relevant 10

θ not relevant 0.85

Table 3: Hyperparameters and parameters selected for ME-ACD and PC for the convergence study of
f̃ bif−1, f̃ bif−10 and f̃ bif−1000.

At t = 10, ME-ACD split the parameter space into 3 or more elements to use local models of lower
degrees. ME-ACD is able to accurately give an approximation of a continuous irregular QOI using lower
degrees local models. As shown in Figure 12b, the caution procedure permits to have an even more accu-
rate model, but as the QOI is not discontinuous, missclassification errors are less altering the accuracy.
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Figure 11: On the left, convergence plots of the MSE between the values of the models and the true
value of the 3 discontinuous functions on the test set. (a) f̃ bif−1. (c) f̃ bif−10. (e) f̃ bif−1000. On the right,
convergence plots of the kept fraction of observations by the caution procedure of the ME-ACD on the
test set. (b) f̃ bif−1. (d) f̃ bif−10. (f) f̃ bif−1000.

At t = 1000, ME-ACD is behaving quasi-identically to the case of f̃hyperplane. Only a few training
observations close to the quasi-discontinuity have a QOI value different from p2 or −p2. These training
observations alters the accuracy of the local models, but there are not enough of them to make a third
element. If the caution procedure enables to get rid of a lot of missclassification errors and getting a
relatively accurate model, the problematic training observations alter the accuracy of the local models.
This explains why the error is decreasing very slowly, as Sobol sampling does not have high chances to
sample new training observations in the very thin quasi-discontinuity zone. With a low N , no observation
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Figure 12: Convergence plots of the MSE between the values of the models and the true value of the
3 functions, on the Nθ=0.85 of the of Ntest = 105 tests observations kept by the caution procedure set
observations at each N . (a) Convergence plot of the MSE for f̃ bif−1 on the kept observations. (b)
Convergence plot of the MSE for f̃ bif−10 on the kept observations. (c) Convergence plot of the MSE for
f̃ bif−1000 on the kept observations.

is located in this zone, and a 2 elements model with two hyperplanes is given by ME-ACD, explaining why
the accuracy is better with a low N . Generating more observations close to the quasi-discontinuity with
an adaptive sampling or ignoring these points seeing them at outliers should solve the issue.

ME-ACD is then able to give an accurate model in the three cases of a regular QOI, a continuous
irregular QOI and a discontinuous QOI, which makes it a model able to approximate a lot of QOIs and a
good candidate to approximate solutions of ODE with potential bifurcations.

4.4 Genz function in dimension 5

In this section, a 5−dimensional function a QOI from the Genz family [7], depending on d = 5 input
parameters is studied :

f̃ genz(x) =

{
0 if one of the xi > 0.5

exp(
∑5

i=1 xi) otherwise (37)

Table 4 gathers all selected hyperparameters and parameters, and Table 5 shows the performances of
the 3 methods with N = 50000 training observations. Once again, ME-ACD is able to give a relatively
accurate model and is able to reduce missclassification errors with the caution procedure, ignoring test
observations located in the indecision zone. For this application, ME-ACD and PC use the same global
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PC ME-ACD
N 50000

NEmin
1 1

NEmax 1 5
kmin not relevant 15
kmax not relevant 25
nmin 0 0
nmax 10 10
δmin 10−5 10−5

learning rate see section 4
isConnect not relevant True
kconnect not relevant 30

θ not relevant 0.85

Table 4: Hyperparameters and parameters selected for ME-ACD and PC for the convergence study of
f̃ genz

PC GBT ME-ACD
E 0.15415751 0.01737417 0.02062906

Eθ=0.85 not relevant 0.00182077
Vθ=0.85 not relevant 99.651%

Table 5: Performances of the 3 methods for the 5 − d QOI f genz trained with N = 50000 observations.
Performances are evaluated on a test set of Ntest = 105 test observations.

design matrix having M(nmax = 10, d = 5) = 3003 columns, but ME-ACD leads to a far better accuracy
with its ME procedure. Optimal degree of PC is equal to 9.

5 Conclusion and discussions
A new NI-ME method, ME-ACD, is developed in this paper. This method is able to efficiently partition
the parameter space in order to construct a piecewise chaos polynomial model in the case of a discontinu-
ous QOI, as the methods relying on Bayesian inference [22] or polynomial annihilation edge detection [10].
ME-ACD is also able to partition the space in presence of a discontinuity which runs partially through
the parameter space, which was not possible with previous methods to the author knowledge. Moreover,
the method permits to study a continuous but irregular QOI, which needs a lot of chaos modes to be
accurately approximate by the standard PC models. ME-ACD model is composed of local models of lower
degrees, taking the same logic as ME-PCM [5] but with a partition following the irregular behaviours. The
method has been successfully tested on several discontinuous and continuous irregular QOIs from d = 2 to
d = 5. From the results of the paper, the method is general and is very promising to approximate a large
set of QOIs. The method will be tested on other kind of theoretical QOIs and on practical applications in
the near future. On the majority of the discontinuous and irregular applications presented in the paper,
ME-ACD models are more accurate than standard PC and GBT models. Moreover, ME-ACD can lead to
physical interpretation, partitioning the space into elements which could be interpreted. With the use of
a neural network classifier, the model is also able to determine which evaluation lie in a zone in between
the given elements, and is so able to be cautious with these points, ignoring them instead of giving a value
which risks to be inaccurate due to misclassification errors. ME-ACD has been developed in the context
of UQ, but as other NI PC methods, it can be used in another context as a new regression method, with
inputs which are not representing uncertaintites.
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ME-ACD presents limits which will be the subject of future researches. The partition performed by
the ME-ACD algorithm is sensitive to the chosen hyperparameters and to the sampling strategy. In
that way, the partition and the classification may lack of robustness according to the studied QOI and
to the chosen sampling. One of the aims of ME-ACD is to work on every sampling. However, ME
method may fail to give a suitable partition leading to an accurate model with the chosen sampling and/or
hyperparameters. According to the QOI, some zones of the parameter space may need more observations
than others. With a general sampling, sparsity can lead to selection of nearest neighbours from different
sides of the discontinuity, leading to poorly accurate gradient estimation. Moreover, sparsity in some
zones can lead to observations which are isolated from the others in D, not being enough to constitute
a proper element with an accurate local model, like in the case of the QOI f̃ bif−1000 studied in section
4.3, and therefore spoiling the accuracy of another element. Finally, this sparsity can alter the accuracy
of the classification step, leading to missclassification errors undetected by the caution procedure. For
now, even if these drawbacks were present, ME-ACD have been tested successfully on theoretical QOIs
depending on a low or moderate number of input parameters, up to d = 5. For higher dimensions, the
notion of nearest neighbours which is used for the gradient calculus and for the connectivity diagram,
might become less "meaningful", as highlighted in [3]. ME-ACD is therefore expected to be even less
robust as the dimension increases. Moreover, as the number of input parameters rises, the value of the
QOI, which is one of the d+ 1 considered coordinate in F or in D, is expected to have less impact in the
selection of the nearest neighbours and in the agglomerative clustering step. The risk of selecting nearest
neighbours from different sides of a discontinuity is therefore expected to increase, altering the calculus of
the derivatives and then of the partition. First tests have been made with QOIs depending on d = 9 input
parameters. The partition step worked on a simple constant piecewise QOI with d = 9, but failed with
a more complex one where an element represented only 0.2% of the parameter space. These first tests
showed that the method is promising with dimensions d ∈ [5, 10], even if the lack of robustness persists
and seems exacerbated. Further works will therefore consist in adapting the method for higher dimensions
and finding a sampling strategy suitable to make the algorithm more robust, if the user has control over
sampling. With such improvements, the use of local models with lower degrees would be promising to
approximate higher dimensionality examples (d > 5). Finally, ME-ACD is also going to be adapted to
approximate time-dependent functions being the solution of an ODE.
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